Validation of GPM IMERG Extreme Precipitation in the Maritime Continent by Station and Radar Data

The Maritime Continent (MC) is a region subject to high impact weather (HIW) events, which are still poorly predicted by numerical weather prediction (NWP) models. To improve predictability of such events, NWP needs to be evaluated against accurate measures of extreme precipitation across the whole...

Full description

Saved in:
Bibliographic Details
Published inEarth and space science (Hoboken, N.J.) Vol. 8; no. 7
Main Authors Silva, Nicolas A., Webber, Benjamin G. M., Matthews, Adrian J., Feist, Matthew M., Stein, Thorwald H. M., Holloway, Christopher E., Abdullah, Muhammad F. A. B.
Format Journal Article
LanguageEnglish
Published Hoboken John Wiley & Sons, Inc 01.07.2021
American Geophysical Union (AGU)
Subjects
Online AccessGet full text
ISSN2333-5084
2333-5084
DOI10.1029/2021EA001738

Cover

Loading…
Abstract The Maritime Continent (MC) is a region subject to high impact weather (HIW) events, which are still poorly predicted by numerical weather prediction (NWP) models. To improve predictability of such events, NWP needs to be evaluated against accurate measures of extreme precipitation across the whole MC. With its global spatial coverage at high spatio‐temporal resolution, the Global Precipitation Measurement (GPM) data set is a suitable candidate. Here we evaluate extreme precipitation in the Integrated Multi‐Satellite Retrieval for GPM (IMERG) V06B product against station data from the Global Historical Climatology Network in Malaysia and the Philippines. We find that the high intragrid spatial variability of precipitation extremes results in large spatial sampling errors when each IMERG grid box is compared with individual co‐located precipitation measurements, a result that may explain discrepancies found in earlier studies in the MC. Overall, IMERG daily precipitation is similar to station precipitation between the 85th and 95th percentile, but tends to overestimate above the 95th. IMERG data were also compared with radar data in western Peninsular Malaysia for sub‐daily timescales. Allowing for uncertainties in radar data, the analysis suggests that the 95th percentile is still suitable for NWP evaluation of extreme sub‐daily precipitation, but that the rainfall rates diverge at higher percentiles. Hence, our overall recommendation is that the 95th percentile be used to evaluate NWP forecasts of HIW on daily and sub‐daily time scales against IMERG data, but that higher percentiles (i.e., more extreme precipitation) be treated with caution. Plain Language Summary Extreme rainfall is a major hazard in many parts of the tropics, leading to flooding and social and economic impacts. Accurate weather forecasting of extreme rainfall events is needed by national and regional government planners and disaster relief organizations, as well as by agriculture and industry. The skill of weather forecast computer models needs to be tested against a reliable data set of observed rainfall, so that scientists can improve the models to give better forecasts of extreme rainfall. Observed rainfall data sets need to be evaluated prior to their use for testing models. Here, we evaluate the reliability of the Integrated Multi‐Satellite Retrieval for Global Precipitation Measurement (IMERG) rainfall data set for this purpose. IMERG is based on satellite and rain gauge measurements of rainfall from across the planet. We focus on the area known as the western Maritime Continent. After comparing IMERG rainfall against local measurements of rainfall from weather radar in Malaysia, and weather station data across the region, the recommendation is that IMERG can be used as a reliable measure of fairly extreme rainfall (the top 5% of daily rainfall totals), but tends to overestimate and therefore should be used with caution for very extreme rainfall (the top 1% of daily rainfall totals). Key Points Spatial sampling error severely affects the comparison of Integrated Multi‐Satellite Retrieval for Global Precipitation Measurement (IMERG) data with pointwise precipitation The 95th percentile is the optimum choice for comparison of numerical weather prediction precipitation extremes against IMERG Above the 95th percentile, IMERG overestimates daily precipitation rates compared with rain gauges
AbstractList The Maritime Continent (MC) is a region subject to high impact weather (HIW) events, which are still poorly predicted by numerical weather prediction (NWP) models. To improve predictability of such events, NWP needs to be evaluated against accurate measures of extreme precipitation across the whole MC. With its global spatial coverage at high spatio‐temporal resolution, the Global Precipitation Measurement (GPM) data set is a suitable candidate. Here we evaluate extreme precipitation in the Integrated Multi‐Satellite Retrieval for GPM (IMERG) V06B product against station data from the Global Historical Climatology Network in Malaysia and the Philippines. We find that the high intragrid spatial variability of precipitation extremes results in large spatial sampling errors when each IMERG grid box is compared with individual co‐located precipitation measurements, a result that may explain discrepancies found in earlier studies in the MC. Overall, IMERG daily precipitation is similar to station precipitation between the 85th and 95th percentile, but tends to overestimate above the 95th. IMERG data were also compared with radar data in western Peninsular Malaysia for sub‐daily timescales. Allowing for uncertainties in radar data, the analysis suggests that the 95th percentile is still suitable for NWP evaluation of extreme sub‐daily precipitation, but that the rainfall rates diverge at higher percentiles. Hence, our overall recommendation is that the 95th percentile be used to evaluate NWP forecasts of HIW on daily and sub‐daily time scales against IMERG data, but that higher percentiles (i.e., more extreme precipitation) be treated with caution. Extreme rainfall is a major hazard in many parts of the tropics, leading to flooding and social and economic impacts. Accurate weather forecasting of extreme rainfall events is needed by national and regional government planners and disaster relief organizations, as well as by agriculture and industry. The skill of weather forecast computer models needs to be tested against a reliable data set of observed rainfall, so that scientists can improve the models to give better forecasts of extreme rainfall. Observed rainfall data sets need to be evaluated prior to their use for testing models. Here, we evaluate the reliability of the Integrated Multi‐Satellite Retrieval for Global Precipitation Measurement (IMERG) rainfall data set for this purpose. IMERG is based on satellite and rain gauge measurements of rainfall from across the planet. We focus on the area known as the western Maritime Continent. After comparing IMERG rainfall against local measurements of rainfall from weather radar in Malaysia, and weather station data across the region, the recommendation is that IMERG can be used as a reliable measure of fairly extreme rainfall (the top 5% of daily rainfall totals), but tends to overestimate and therefore should be used with caution for very extreme rainfall (the top 1% of daily rainfall totals). Spatial sampling error severely affects the comparison of Integrated Multi‐Satellite Retrieval for Global Precipitation Measurement (IMERG) data with pointwise precipitation The 95th percentile is the optimum choice for comparison of numerical weather prediction precipitation extremes against IMERG Above the 95th percentile, IMERG overestimates daily precipitation rates compared with rain gauges
The Maritime Continent (MC) is a region subject to high impact weather (HIW) events, which are still poorly predicted by numerical weather prediction (NWP) models. To improve predictability of such events, NWP needs to be evaluated against accurate measures of extreme precipitation across the whole MC. With its global spatial coverage at high spatio‐temporal resolution, the Global Precipitation Measurement (GPM) data set is a suitable candidate. Here we evaluate extreme precipitation in the Integrated Multi‐Satellite Retrieval for GPM (IMERG) V06B product against station data from the Global Historical Climatology Network in Malaysia and the Philippines. We find that the high intragrid spatial variability of precipitation extremes results in large spatial sampling errors when each IMERG grid box is compared with individual co‐located precipitation measurements, a result that may explain discrepancies found in earlier studies in the MC. Overall, IMERG daily precipitation is similar to station precipitation between the 85th and 95th percentile, but tends to overestimate above the 95th. IMERG data were also compared with radar data in western Peninsular Malaysia for sub‐daily timescales. Allowing for uncertainties in radar data, the analysis suggests that the 95th percentile is still suitable for NWP evaluation of extreme sub‐daily precipitation, but that the rainfall rates diverge at higher percentiles. Hence, our overall recommendation is that the 95th percentile be used to evaluate NWP forecasts of HIW on daily and sub‐daily time scales against IMERG data, but that higher percentiles (i.e., more extreme precipitation) be treated with caution.
Abstract The Maritime Continent (MC) is a region subject to high impact weather (HIW) events, which are still poorly predicted by numerical weather prediction (NWP) models. To improve predictability of such events, NWP needs to be evaluated against accurate measures of extreme precipitation across the whole MC. With its global spatial coverage at high spatio‐temporal resolution, the Global Precipitation Measurement (GPM) data set is a suitable candidate. Here we evaluate extreme precipitation in the Integrated Multi‐Satellite Retrieval for GPM (IMERG) V06B product against station data from the Global Historical Climatology Network in Malaysia and the Philippines. We find that the high intragrid spatial variability of precipitation extremes results in large spatial sampling errors when each IMERG grid box is compared with individual co‐located precipitation measurements, a result that may explain discrepancies found in earlier studies in the MC. Overall, IMERG daily precipitation is similar to station precipitation between the 85th and 95th percentile, but tends to overestimate above the 95th. IMERG data were also compared with radar data in western Peninsular Malaysia for sub‐daily timescales. Allowing for uncertainties in radar data, the analysis suggests that the 95th percentile is still suitable for NWP evaluation of extreme sub‐daily precipitation, but that the rainfall rates diverge at higher percentiles. Hence, our overall recommendation is that the 95th percentile be used to evaluate NWP forecasts of HIW on daily and sub‐daily time scales against IMERG data, but that higher percentiles (i.e., more extreme precipitation) be treated with caution.
The Maritime Continent (MC) is a region subject to high impact weather (HIW) events, which are still poorly predicted by numerical weather prediction (NWP) models. To improve predictability of such events, NWP needs to be evaluated against accurate measures of extreme precipitation across the whole MC. With its global spatial coverage at high spatio‐temporal resolution, the Global Precipitation Measurement (GPM) data set is a suitable candidate. Here we evaluate extreme precipitation in the Integrated Multi‐Satellite Retrieval for GPM (IMERG) V06B product against station data from the Global Historical Climatology Network in Malaysia and the Philippines. We find that the high intragrid spatial variability of precipitation extremes results in large spatial sampling errors when each IMERG grid box is compared with individual co‐located precipitation measurements, a result that may explain discrepancies found in earlier studies in the MC. Overall, IMERG daily precipitation is similar to station precipitation between the 85th and 95th percentile, but tends to overestimate above the 95th. IMERG data were also compared with radar data in western Peninsular Malaysia for sub‐daily timescales. Allowing for uncertainties in radar data, the analysis suggests that the 95th percentile is still suitable for NWP evaluation of extreme sub‐daily precipitation, but that the rainfall rates diverge at higher percentiles. Hence, our overall recommendation is that the 95th percentile be used to evaluate NWP forecasts of HIW on daily and sub‐daily time scales against IMERG data, but that higher percentiles (i.e., more extreme precipitation) be treated with caution. Plain Language Summary Extreme rainfall is a major hazard in many parts of the tropics, leading to flooding and social and economic impacts. Accurate weather forecasting of extreme rainfall events is needed by national and regional government planners and disaster relief organizations, as well as by agriculture and industry. The skill of weather forecast computer models needs to be tested against a reliable data set of observed rainfall, so that scientists can improve the models to give better forecasts of extreme rainfall. Observed rainfall data sets need to be evaluated prior to their use for testing models. Here, we evaluate the reliability of the Integrated Multi‐Satellite Retrieval for Global Precipitation Measurement (IMERG) rainfall data set for this purpose. IMERG is based on satellite and rain gauge measurements of rainfall from across the planet. We focus on the area known as the western Maritime Continent. After comparing IMERG rainfall against local measurements of rainfall from weather radar in Malaysia, and weather station data across the region, the recommendation is that IMERG can be used as a reliable measure of fairly extreme rainfall (the top 5% of daily rainfall totals), but tends to overestimate and therefore should be used with caution for very extreme rainfall (the top 1% of daily rainfall totals). Key Points Spatial sampling error severely affects the comparison of Integrated Multi‐Satellite Retrieval for Global Precipitation Measurement (IMERG) data with pointwise precipitation The 95th percentile is the optimum choice for comparison of numerical weather prediction precipitation extremes against IMERG Above the 95th percentile, IMERG overestimates daily precipitation rates compared with rain gauges
Author Feist, Matthew M.
Silva, Nicolas A.
Webber, Benjamin G. M.
Matthews, Adrian J.
Abdullah, Muhammad F. A. B.
Holloway, Christopher E.
Stein, Thorwald H. M.
Author_xml – sequence: 1
  givenname: Nicolas A.
  orcidid: 0000-0003-3255-9274
  surname: Silva
  fullname: Silva, Nicolas A.
  email: dasilvanicolas95@gmail.com
  organization: University of East Anglia
– sequence: 2
  givenname: Benjamin G. M.
  orcidid: 0000-0002-8812-5929
  surname: Webber
  fullname: Webber, Benjamin G. M.
  organization: University of East Anglia
– sequence: 3
  givenname: Adrian J.
  orcidid: 0000-0003-0492-1168
  surname: Matthews
  fullname: Matthews, Adrian J.
  organization: University of East Anglia
– sequence: 4
  givenname: Matthew M.
  surname: Feist
  fullname: Feist, Matthew M.
  organization: University of Reading
– sequence: 5
  givenname: Thorwald H. M.
  orcidid: 0000-0002-9215-5397
  surname: Stein
  fullname: Stein, Thorwald H. M.
  organization: University of Reading
– sequence: 6
  givenname: Christopher E.
  orcidid: 0000-0001-9903-8989
  surname: Holloway
  fullname: Holloway, Christopher E.
  organization: University of Reading
– sequence: 7
  givenname: Muhammad F. A. B.
  surname: Abdullah
  fullname: Abdullah, Muhammad F. A. B.
BookMark eNp9kd9P2zAQx60JpLHC2_4AS3ul4-L4R_KIulAqtRpqYa_WxXHAVbCL42rrf79AOglN2p7udPe57_36RE588JaQzxl8zYCVVwxYVl0DZCovPpAzluf5VEDBT975H8lF329hgJiQwPgZwR_YuQaTC56Gls7vVnSxqtZzWv1K0T5behetcTuXRsR5mp4sXWF0yQ3ZWfDJeesTrQ90c4TQN3SNDUb6DROek9MWu95eHO2EPNxU97Pb6fL7fDG7Xk4NV0JOWasks63JVWmEULUxTQEMuGRStorVokGlTI6l5VJIC9C2sjaNMrIBC0LmE7IYdZuAW72L7hnjQQd0-i0Q4qPGmJzprK6NtJLXCEYZDrIopOBDG5ExKMoC1KD1ZdTaxfCyt33S27CPfhhfMyEE55KrcqDYSJkY-j7aVpvjnVJE1-kM9Otn9PvPDEWXfxX9GfUfeDbiP11nD_9ldbXZsGGX_Df_Epsp
CitedBy_id crossref_primary_10_3389_fenvs_2023_1281265
crossref_primary_10_3390_atmos13122090
crossref_primary_10_1016_j_dib_2024_111179
crossref_primary_10_3390_w15122195
crossref_primary_10_1007_s00382_024_07278_z
crossref_primary_10_1007_s00382_022_06336_8
crossref_primary_10_1016_j_atmosres_2023_106639
crossref_primary_10_3390_rs14051172
crossref_primary_10_1016_j_jhydrol_2023_130384
crossref_primary_10_2151_jmsj_2024_028
crossref_primary_10_1002_qj_4667
crossref_primary_10_1007_s00382_024_07154_w
crossref_primary_10_3390_rs14205126
crossref_primary_10_1016_j_rsase_2024_101256
crossref_primary_10_1029_2023JD039132
crossref_primary_10_1007_s00704_023_04555_5
crossref_primary_10_1016_j_atmosres_2023_106673
crossref_primary_10_3390_w14111699
crossref_primary_10_1029_2023GL104672
crossref_primary_10_1007_s00703_023_00985_y
crossref_primary_10_1016_j_teadva_2024_200120
crossref_primary_10_3390_rs16152779
crossref_primary_10_3390_rs16224137
crossref_primary_10_1007_s41976_022_00069_2
crossref_primary_10_1016_j_ejrh_2022_101242
crossref_primary_10_1016_j_atmosres_2023_106826
crossref_primary_10_1029_2023EA002980
crossref_primary_10_3390_ijgi11070378
crossref_primary_10_5194_gmd_17_3815_2024
crossref_primary_10_1002_qj_4877
crossref_primary_10_1016_j_jenvman_2025_124160
crossref_primary_10_1007_s00704_022_04007_6
Cites_doi 10.3390/rs8020135
10.1108/IJDRBE-06-2019-0037
10.1016/j.jhydrol.2018.02.057
10.1175/JHM-D-20-0040.1
10.1175/JHM-D-15-0197.1
10.1175/JHM-D-16-0087.1
10.1016/j.atmosres.2014.07.024
10.3390/atmos9040138
10.1175/JTECH-D-18-0007.1
10.1175/JHM560.1
10.3390/rs9070720
10.1175/JAMC-D-12-074.1
10.1175/1520-0450(1991)030<1436:OTEOCR>2.0.CO;2
10.1016/j.jhydrol.2015.12.008
10.1175/JHM-D-11-022.1
10.1002/2016JD025418
10.1175/2010JAMC2375.1
10.1080/01431160600954688
10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
10.1016/j.atmosres.2020.105032
10.1016/j.atmosres.2019.03.001
10.1016/j.jhydrol.2018.06.067
10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2
10.1002/qj.3175
10.1029/2019GL083426
10.1175/WAF-D-16-0160.1
10.1016/j.atmosres.2016.12.007
10.1080/17565529.2016.1167658
10.1175/JHM-D-17-0139.1
10.1175/JHM-D-14-0106.1
10.1029/2019GL085395
10.1175/JHM-D-15-0190.1
10.3390/rs9050503
10.1175/JTECH-D-17-0128.1
10.3390/rs9111127
10.1175/JTECH-D-11-00103.1
10.1175/BAMS-D-14-00283.1
10.3390/rs8070544
10.1111/1752-1688.12610
10.1002/qj.1903
10.1175/JHM-D-17-0161.1
10.1175/JHM-D-16-0079.1
10.1175/BAMS-D-15-00296.1
10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2
10.1016/j.atmosres.2017.11.006
10.1111/jfr3.12607
10.5194/hess-22-5801-2018
10.1016/j.advwatres.2012.05.005
10.1029/2018JD028991
10.3390/rs11060697
10.1002/qj.3218
10.3390/su11246935
10.1175/JCLI-D-16-0758.1
10.1029/2020MS002413
10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
10.3354/cr01527
10.1175/BAMS-D-11-00171.1
10.1175/JTECH-D-15-0039.1
10.1175/JHM-D-11-088.1
10.1029/2007JD009214
10.2151/jmsj.87A.1
10.1016/j.advwatres.2015.11.008
10.1002/qj.3313
10.1002/2017RG000574
10.1175/JHM-D-16-0174.1
10.3390/rs11212470
10.1007/s13351-018-7067-0
10.5194/hess-21-6559-2017
ContentType Journal Article
Copyright 2021. The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. The Authors. Earth and Space Science published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1029/2021EA001738
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2333-5084
EndPage n/a
ExternalDocumentID oai_doaj_org_article_bc6e64ba0c7c40688654266512089807
10_1029_2021EA001738
ESS2886
Genre article
GeographicLocations Philippines
Malaysia
GeographicLocations_xml – name: Philippines
– name: Malaysia
GrantInformation_xml – fundername: Research Computing Service at the University of East Anglia
– fundername: Newton Fund
  funderid: DN373682
– fundername: Forecasting in Southeast Asia (FORSEA)
GroupedDBID 0R~
1OC
24P
5VS
AAFWJ
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EJD
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KQ8
M~E
O9-
OK1
PCBAR
PIMPY
WIN
AAYXX
CITATION
IEP
PHGZM
PHGZT
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4756-2f762efc379c557bccd802046266f72b5da77c3a9e4656e00ff6bcd7c6d0e0563
IEDL.DBID DOA
ISSN 2333-5084
IngestDate Wed Aug 27 00:39:39 EDT 2025
Sun Jul 13 03:47:04 EDT 2025
Tue Jul 01 01:06:20 EDT 2025
Thu Apr 24 22:56:57 EDT 2025
Wed Jan 22 16:29:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4756-2f762efc379c557bccd802046266f72b5da77c3a9e4656e00ff6bcd7c6d0e0563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0492-1168
0000-0001-9903-8989
0000-0003-3255-9274
0000-0002-9215-5397
0000-0002-8812-5929
OpenAccessLink https://doaj.org/article/bc6e64ba0c7c40688654266512089807
PQID 2555446479
PQPubID 4368366
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_bc6e64ba0c7c40688654266512089807
proquest_journals_2555446479
crossref_citationtrail_10_1029_2021EA001738
crossref_primary_10_1029_2021EA001738
wiley_primary_10_1029_2021EA001738_ESS2886
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Earth and space science (Hoboken, N.J.)
PublicationYear 2021
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2009; 87
2019; 11
2018; 563
2018; 123
2015; 32
2018; 202
2019; 14
2020; 13
2020; 244
1972
2011; 12
2012; 13
2017; 9
2007; 28
2018; 9
2017; 30
2013; 51
2017; 32
2013; 94
1993; 32
2013; 52
2007; 8
2012; 29
2008; 113
2017; 122
2018; 76
2012; 138
2018; 32
1998; 13
2016; 88
2018; 35
2015; 163
2018; 144
2015; 16
1947; 4
2012
1991; 30
2017; 21
2019; 36
2008
2019; 223
2016; 17
2018; 22
1995; 8
2021; 13
2018; 19
2010; 49
2021
2018; 559
2020; 153
2019; 46
2017; 98
1997; 78
2019
2017; 18
2016; 533
2017; 187
2020; 21
2018; 56
2018; 54
2016; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
Warlina L. (e_1_2_7_69_1) 2019; 14
e_1_2_7_49_1
e_1_2_7_28_1
Miller J. R. (e_1_2_7_43_1) 1972
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
Yuda I. W. A. (e_1_2_7_76_1) 2020
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_18_1
Silva N. (e_1_2_7_8_1) 2021
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
Marshall J. S. (e_1_2_7_39_1) 1947; 4
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
Huffman G. J. (e_1_2_7_22_1) 2019
Schneider U. (e_1_2_7_54_1) 2008
e_1_2_7_38_1
Menne M. J. (e_1_2_7_41_1) 2012
References_xml – volume: 30
  start-page: 5419
  issue: 14
  year: 2017
  end-page: 5454
  article-title: The Modern‐Era Retrospective Analysis for Research and Applications, version 2 (MERRA‐2)
  publication-title: Journal of Climate
– volume: 533
  start-page: 152
  year: 2016
  end-page: 167
  article-title: Evaluation of GPM Day‐1 IMERG and TMPA Version‐7 legacy products over Mainland China at multiple spatiotemporal scales
  publication-title: Journal of Hydrology
– volume: 17
  start-page: 1817
  issue: 6
  year: 2016
  end-page: 1836
  article-title: Multiregional satellite precipitation products evaluation over complex terrain
  publication-title: Journal of Hydrometeorology
– volume: 17
  start-page: 2477
  issue: 9
  year: 2016
  end-page: 2491
  article-title: A novel approach to identify sources of errors in IMERG for GPM ground validation
  publication-title: Journal of Hydrometeorology
– volume: 78
  start-page: 2539
  issue: 11
  year: 1997
  end-page: 2558
  article-title: Global precipitation: A 17‐year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs
  publication-title: Bulletin of the American Meteorological Society
– year: 2021
– volume: 49
  start-page: 1615
  issue: 8
  year: 2010
  end-page: 1633
  article-title: Comprehensive automated quality assurance of daily surface observations
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 56
  start-page: 79
  issue: 1
  year: 2018
  end-page: 107
  article-title: A review of global precipitation data sets: Data sources, estimation, and intercomparisons
  publication-title: Reviews of Geophysics
– volume: 51
  start-page: 357
  year: 2013
  end-page: 366
  article-title: Radar for hydrology: Unfulfilled promise or unrecognized potential?
  publication-title: Advances in Water Resources
– volume: 28
  start-page: 1503
  issue: 7
  year: 2007
  end-page: 1526
  article-title: Validation of satellite rainfall products over East Africa's complex topography
  publication-title: International Journal of Remote Sensing
– volume: 18
  start-page: 2817
  issue: 10
  year: 2017
  end-page: 2825
  article-title: Validation of IMERG precipitation in Africa
  publication-title: Journal of Hydrometeorology
– volume: 98
  start-page: 1169
  issue: 6
  year: 2017
  end-page: 1184
  article-title: NASA's remotely sensed precipitation: A reservoir for applications users
  publication-title: Bulletin of the American Meteorological Society
– volume: 563
  start-page: 950
  year: 2018
  end-page: 961
  article-title: How reliable are satellite precipitation estimates for driving hydrological models: A verification study over the Mediterranean area
  publication-title: Journal of Hydrology
– volume: 76
  start-page: 73
  issue: 1
  year: 2018
  end-page: 86
  article-title: Precipitation measurement biases in an arid setting of central Asia: Using different methods to divide precipitation types
  publication-title: Climate Research
– volume: 13
  start-page: 377
  issue: 2
  year: 1998
  end-page: 395
  article-title: The WSR‐88D rainfall algorithm
  publication-title: Weather and Forecasting
– volume: 30
  start-page: 1436
  issue: 10
  year: 1991
  end-page: 1445
  article-title: On the estimation of climatological Z–R relationships
  publication-title: Journal of Applied Meteorology
– volume: 36
  start-page: 17
  issue: 1
  year: 2019
  end-page: 39
  article-title: An integrated approach to weather radar calibration and monitoring using ground clutter and satellite comparisons
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 113
  issue: D11
  year: 2008
  article-title: Rainfall and sampling uncertainties: A rain gauge perspective
  publication-title: Journal of Geophysical Research
– volume: 9
  issue: 11
  year: 2017
  article-title: On the spatial and temporal sampling errors of remotely sensed precipitation products
  publication-title: Remote Sensing
– volume: 52
  start-page: 242
  issue: 1
  year: 2013
  end-page: 254
  article-title: Improvement of TMI rain retrievals in mountainous areas
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 29
  start-page: 897
  issue: 7
  year: 2012
  end-page: 910
  article-title: An overview of the global historical climatology network‐daily database
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 22
  start-page: 5801
  issue: 11
  year: 2018
  end-page: 5816
  article-title: The PERSIANN family of global satellite precipitation data: A review and evaluation of products
  publication-title: Hydrology and Earth System Sciences
– volume: 19
  start-page: 339
  issue: 2
  year: 2018
  end-page: 349
  article-title: How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity?
  publication-title: Journal of Hydrometeorology
– volume: 88
  start-page: 1
  year: 2016
  end-page: 7
  article-title: From TRMM to GPM: How well can heavy rainfall be detected from space?
  publication-title: Advances in Water Resources
– volume: 153
  year: 2020
– start-page: 112
  year: 2008
– volume: 46
  start-page: 13584
  issue: 22
  year: 2019
  end-page: 13592
  article-title: Diurnal cycle of IMERG V06 precipitation
  publication-title: Geophysical Research Letters
– volume: 11
  issue: 6
  year: 2019
  article-title: Systematical evaluation of GPM IMERG and TRMM 3B42V7 precipitation products in the Huang‐Huai‐Hai Plain, China
  publication-title: Remote Sensing
– volume: 98
  start-page: 69
  issue: 1
  year: 2017
  end-page: 78
  article-title: So, how much of the Earth's surface is covered by rain gauges?
  publication-title: Bulletin of the American Meteorological Society
– volume: 144
  start-page: 27
  issue: S1
  year: 2018
  end-page: 48
  article-title: The Global Precipitation Measurement (GPM) mission's scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 14
  start-page: 3481
  issue: 6
  year: 2019
  end-page: 3495
  article-title: Flood susceptibility and spatial analysis of Pangkalpinang City, Bangka Belitung, Indonesia
  publication-title: Journal of Engineering Science & Technology
– volume: 13
  issue: 4
  year: 2021
  article-title: Description of the NASA geos composition forecast modeling system GEOS‐CF v1.0
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 8
  issue: 2
  year: 2016
  article-title: Assessment of GPM‐IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results
  publication-title: Remote Sensing
– volume: 122
  start-page: 910
  issue: 2
  year: 2017
  end-page: 924
  article-title: Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high‐density rain gauge network
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 35
  start-page: 323
  issue: 2
  year: 2018
  end-page: 346
  article-title: Calibrating Ground‐Based Radars against TRMM and GPM
  publication-title: Journal of Atmospheric and Oceanic Technology
– start-page: 153
  year: 1972
  end-page: 154
– volume: 9
  issue: 4
  year: 2018
  article-title: The Global Precipitation Climatology Project (GPCP) monthly analysis (new version 2.3) and a review of 2017 global precipitation
  publication-title: Atmosphere
– volume: 244
  year: 2020
  article-title: Assessment of satellite precipitation product estimates over Bali Island
  publication-title: Atmospheric Research
– volume: 8
  issue: 7
  year: 2016
  article-title: Characteristics and diurnal cycle of GPM rainfall estimates over the central Amazon region
  publication-title: Remote Sensing
– volume: 16
  start-page: 631
  issue: 2
  year: 2015
  end-page: 651
  article-title: Precipitation seasonality over the Indian Subcontinent: An evaluation of gauge, reanalyses, and satellite retrievals
  publication-title: Journal of Hydrometeorology
– year: 2019
– volume: 21
  start-page: 1
  year: 2020
  end-page: 2873
  article-title: Assessment of extremes in global precipitation products: How reliable are they?
  publication-title: Journal of Hydrometeorology
– volume: 559
  start-page: 294
  year: 2018
  end-page: 306
  article-title: Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products
  publication-title: Journal of Hydrology
– volume: 11
  issue: 21
  year: 2019
  article-title: Assessment of IMERG precipitation estimates over Europe
  publication-title: Remote Sensing
– volume: 9
  start-page: 110
  issue: 2
  year: 2017
  end-page: 123
  article-title: Identified vulnerability contexts for a paddy production assessment with climate change in Bali, Indonesia
  publication-title: Climate & Development
– volume: 87
  start-page: 1
  year: 2009
  end-page: 30
  article-title: Uncertainties in the rain profiling algorithm for the TRMM precipitation radar
  publication-title: Journal of the Meteorological Society of Japan. Series II
– volume: 54
  start-page: 882
  issue: 4
  year: 2018
  end-page: 898
  article-title: Evaluation of the Global Precipitation Measurement (GPM) satellite rainfall products over the Lower Colorado River Basin, Texas
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 11
  start-page: 329
  issue: 3
  year: 2019
  end-page: 342
  article-title: Flood resilience in Malaysian cities: A case study of two towns in Johor state
  publication-title: International Journal of Disaster Resilience in the Built Environment
– volume: 9
  issue: 5
  year: 2017
  article-title: Evaluation of error in IMERG precipitation estimates under different topographic conditions and temporal scales over Mexico
  publication-title: Remote Sensing
– volume: 32
  start-page: 50
  issue: 1
  year: 1993
  end-page: 72
  article-title: General probability‐matched relations between radar reflectivity and rain rate
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 17
  start-page: 1101
  issue: 4
  year: 2016
  end-page: 1117
  article-title: A review of merged high‐resolution satellite precipitation product accuracy during the tropical rainfall measuring mission (TRMM) era
  publication-title: Journal of Hydrometeorology
– volume: 223
  start-page: 24
  year: 2019
  end-page: 38
  article-title: Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China
  publication-title: Atmospheric Research
– volume: 11
  issue: 24
  year: 2019
  article-title: GIS‐based livelihood vulnerability index mapping of the socioeconomy of the Pekan Community
  publication-title: Sustainability
– volume: 94
  start-page: 365
  issue: 3
  year: 2013
  end-page: 375
  article-title: Precipitation from space: Advancing earth system science
  publication-title: Bulletin of the American Meteorological Society
– volume: 32
  start-page: 2265
  issue: 12
  year: 2015
  end-page: 2280
  article-title: The evolution of the Goddard profiling algorithm to a fully parametric scheme
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 138
  start-page: 1692
  issue: 668
  year: 2012
  end-page: 1708
  article-title: Precipitation distributions for explicit versus parametrized convection in a large‐domain high‐resolution tropical case study
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 187
  start-page: 95
  year: 2017
  end-page: 105
  article-title: Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far‐East Asia
  publication-title: Atmospheric Research
– volume: 32
  start-page: 324
  issue: 2
  year: 2018
  end-page: 336
  article-title: Assessment of the GPM and TRMM precipitation products using the rain gauge network over the Tibetan Plateau
  publication-title: Journal of Meteorological Research
– volume: 123
  start-page: 10423
  issue: 18
  year: 2018
  end-page: 10442
  article-title: Validating the integrated multisatellite retrievals for global precipitation measurement in terms of diurnal variability with hourly gauge observations collected at 50,000 stations in China
  publication-title: Journal of Geophysical Research: Atmospheres
– year: 2012
– volume: 13
  start-page: 1397
  issue: 5
  year: 2012
  end-page: 1420
  article-title: The hydrological cycle in three state‐of‐the‐art reanalyses: Intercomparison and performance analysis
  publication-title: Journal of Hydrometeorology
– volume: 13
  issue: 2
  year: 2020
  article-title: Flood risk assessment for Davao Oriental in the Philippines using geographic information system‐based multi‐criteria analysis and the maximum entropy model
  publication-title: Journal of Flood Risk Management
– volume: 46
  start-page: 8415
  issue: 14
  year: 2019
  end-page: 8423
  article-title: Time‐lag correlation between passive microwave measurements and surface precipitation and its impact on precipitation retrieval evaluation
  publication-title: Geophysical Research Letters
– volume: 12
  start-page: 1547
  issue: 6
  year: 2011
  end-page: 1563
  article-title: Kalman filter‐based CMORPH
  publication-title: Journal of Hydrometeorology
– volume: 9
  issue: 7
  year: 2017
  article-title: Assessment of GPM and TRMM precipitation products over Singapore
  publication-title: Remote Sensing
– volume: 8
  start-page: 38
  issue: 1
  year: 2007
  end-page: 55
  article-title: The TRMM multisatellite precipitation analysis (TMPA): Quasi‐global, multiyear, combined‐sensor precipitation estimates at fine scales
  publication-title: Journal of Hydrometeorology
– volume: 4
  start-page: 186
  issue: 6
  year: 1947
  end-page: 192
  article-title: Measurement of rainfall by radar
  publication-title: Journal of the Atmospheric Sciences
– volume: 144
  start-page: 313
  issue: S1
  year: 2018
  end-page: 328
  article-title: Validation of the Version 05 Level 2 precipitation products from the GPM Core Observatory and constellation satellite sensors
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 21
  start-page: 6559
  issue: 12
  year: 2017
  end-page: 6572
  article-title: Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria
  publication-title: Hydrology and Earth System Sciences
– volume: 163
  start-page: 36
  year: 2015
  end-page: 47
  article-title: Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers
  publication-title: Atmospheric Research
– volume: 17
  start-page: 2799
  issue: 11
  year: 2016
  end-page: 2814
  article-title: First‐year evaluation of GPM rainfall over the Netherlands: IMERG day 1 final run (V03D)
  publication-title: Journal of Hydrometeorology
– volume: 8
  start-page: 1284
  issue: 5
  year: 1995
  end-page: 1295
  article-title: Global Precipitation estimates based on a technique for combining satellite‐based estimates, rain gauge analysis, and NWP model precipitation information
  publication-title: Journal of Climate
– volume: 18
  start-page: 307
  issue: 2
  year: 2017
  end-page: 319
  article-title: Performance of IMERG as a function of spatiotemporal scale
  publication-title: Journal of Hydrometeorology
– volume: 32
  start-page: 849
  issue: 3
  year: 2017
  end-page: 872
  article-title: Extreme rainstorms that caused devastating flooding across the east coast of Peninsular Malaysia during November and December 2014
  publication-title: Weather and Forecasting
– volume: 144
  start-page: 270
  issue: S1
  year: 2018
  end-page: 281
  article-title: Evaluation of diurnal variation of GPM IMERG‐derived summer precipitation over the contiguous US using MRMS data
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 202
  start-page: 63
  year: 2018
  end-page: 76
  article-title: Comparison of GPM IMERG, TMPA 3B42 and PERSIANN‐CDR satellite precipitation products over Malaysia
  publication-title: Atmospheric Research
– ident: e_1_2_7_55_1
  doi: 10.3390/rs8020135
– ident: e_1_2_7_25_1
  doi: 10.1108/IJDRBE-06-2019-0037
– ident: e_1_2_7_65_1
  doi: 10.1016/j.jhydrol.2018.02.057
– ident: e_1_2_7_51_1
  doi: 10.1175/JHM-D-20-0040.1
– ident: e_1_2_7_9_1
  doi: 10.1175/JHM-D-15-0197.1
– ident: e_1_2_7_16_1
  doi: 10.1175/JHM-D-16-0087.1
– ident: e_1_2_7_74_1
  doi: 10.1016/j.atmosres.2014.07.024
– ident: e_1_2_7_3_1
  doi: 10.3390/atmos9040138
– ident: e_1_2_7_37_1
  doi: 10.1175/JTECH-D-18-0007.1
– ident: e_1_2_7_21_1
  doi: 10.1175/JHM560.1
– ident: e_1_2_7_63_1
  doi: 10.3390/rs9070720
– volume-title: Global Historical Climatology Network‐Daily (GHCN‐Daily), version 3.12
  year: 2012
  ident: e_1_2_7_41_1
– ident: e_1_2_7_56_1
  doi: 10.1175/JAMC-D-12-074.1
– ident: e_1_2_7_31_1
  doi: 10.1175/1520-0450(1991)030<1436:OTEOCR>2.0.CO;2
– ident: e_1_2_7_66_1
  doi: 10.1016/j.jhydrol.2015.12.008
– ident: e_1_2_7_24_1
  doi: 10.1175/JHM-D-11-022.1
– ident: e_1_2_7_73_1
  doi: 10.1002/2016JD025418
– ident: e_1_2_7_13_1
  doi: 10.1175/2010JAMC2375.1
– ident: e_1_2_7_11_1
  doi: 10.1080/01431160600954688
– ident: e_1_2_7_71_1
  doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
– ident: e_1_2_7_35_1
  doi: 10.1016/j.atmosres.2020.105032
– ident: e_1_2_7_14_1
  doi: 10.1016/j.atmosres.2019.03.001
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jhydrol.2018.06.067
– ident: e_1_2_7_53_1
  doi: 10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2
– ident: e_1_2_7_28_1
  doi: 10.1002/qj.3175
– ident: e_1_2_7_75_1
  doi: 10.1029/2019GL083426
– ident: e_1_2_7_18_1
  doi: 10.1175/WAF-D-16-0160.1
– ident: e_1_2_7_29_1
  doi: 10.1016/j.atmosres.2016.12.007
– volume: 4
  start-page: 186
  issue: 6
  year: 1947
  ident: e_1_2_7_39_1
  article-title: Measurement of rainfall by radar
  publication-title: Journal of the Atmospheric Sciences
– ident: e_1_2_7_59_1
  doi: 10.1080/17565529.2016.1167658
– ident: e_1_2_7_10_1
  doi: 10.1175/JHM-D-17-0139.1
– ident: e_1_2_7_52_1
  doi: 10.1175/JHM-D-14-0106.1
– ident: e_1_2_7_60_1
  doi: 10.1029/2019GL085395
– volume-title: GPM IMERG final precipitation L3 half hourly 0.1 degree×0.1 degree V06
  year: 2019
  ident: e_1_2_7_22_1
– ident: e_1_2_7_38_1
  doi: 10.1175/JHM-D-15-0190.1
– ident: e_1_2_7_40_1
  doi: 10.3390/rs9050503
– ident: e_1_2_7_70_1
  doi: 10.1175/JTECH-D-17-0128.1
– ident: e_1_2_7_4_1
  doi: 10.3390/rs9111127
– ident: e_1_2_7_42_1
  doi: 10.1175/JTECH-D-11-00103.1
– ident: e_1_2_7_27_1
  doi: 10.1175/BAMS-D-14-00283.1
– ident: e_1_2_7_46_1
  doi: 10.3390/rs8070544
– ident: e_1_2_7_47_1
  doi: 10.1111/1752-1688.12610
– ident: e_1_2_7_19_1
  doi: 10.1002/qj.1903
– ident: e_1_2_7_67_1
  doi: 10.1175/JHM-D-17-0161.1
– ident: e_1_2_7_62_1
  doi: 10.1175/JHM-D-16-0079.1
– ident: e_1_2_7_30_1
  doi: 10.1175/BAMS-D-15-00296.1
– ident: e_1_2_7_20_1
  doi: 10.1175/1520-0442(1995)008<1284:GPEBOA>2.0.CO;2
– volume-title: Validation of GPM IMERG extreme precipitation in the Maritime Continent by station and radar data [Dataset]
  year: 2021
  ident: e_1_2_7_8_1
– start-page: 153
  volume-title: A climatological Z‐R relationship for convective storms in the northern Great Plains
  year: 1972
  ident: e_1_2_7_43_1
– ident: e_1_2_7_64_1
  doi: 10.1016/j.atmosres.2017.11.006
– ident: e_1_2_7_6_1
  doi: 10.1111/jfr3.12607
– ident: e_1_2_7_45_1
  doi: 10.5194/hess-22-5801-2018
– ident: e_1_2_7_5_1
  doi: 10.1016/j.advwatres.2012.05.005
– ident: e_1_2_7_34_1
  doi: 10.1029/2018JD028991
– ident: e_1_2_7_72_1
  doi: 10.3390/rs11060697
– ident: e_1_2_7_49_1
  doi: 10.1002/qj.3218
– ident: e_1_2_7_2_1
  doi: 10.3390/su11246935
– ident: e_1_2_7_17_1
  doi: 10.1175/JCLI-D-16-0758.1
– ident: e_1_2_7_26_1
  doi: 10.1029/2020MS002413
– ident: e_1_2_7_15_1
  doi: 10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
– ident: e_1_2_7_12_1
  doi: 10.3354/cr01527
– ident: e_1_2_7_32_1
  doi: 10.1175/BAMS-D-11-00171.1
– ident: e_1_2_7_33_1
  doi: 10.1175/JTECH-D-15-0039.1
– start-page: 02001
  year: 2020
  ident: e_1_2_7_76_1
– ident: e_1_2_7_36_1
  doi: 10.1175/JHM-D-11-088.1
– volume: 14
  start-page: 3481
  issue: 6
  year: 2019
  ident: e_1_2_7_69_1
  article-title: Flood susceptibility and spatial analysis of Pangkalpinang City, Bangka Belitung, Indonesia
  publication-title: Journal of Engineering Science & Technology
– ident: e_1_2_7_68_1
  doi: 10.1029/2007JD009214
– start-page: 112
  volume-title: Global precipitation analysis products of the GPCC
  year: 2008
  ident: e_1_2_7_54_1
– ident: e_1_2_7_23_1
  doi: 10.2151/jmsj.87A.1
– ident: e_1_2_7_50_1
  doi: 10.1016/j.advwatres.2015.11.008
– ident: e_1_2_7_57_1
  doi: 10.1002/qj.3313
– ident: e_1_2_7_58_1
  doi: 10.1002/2017RG000574
– ident: e_1_2_7_61_1
  doi: 10.1175/JHM-D-16-0174.1
– ident: e_1_2_7_44_1
  doi: 10.3390/rs11212470
– ident: e_1_2_7_77_1
  doi: 10.1007/s13351-018-7067-0
– ident: e_1_2_7_48_1
  doi: 10.5194/hess-21-6559-2017
SSID ssj0001256024
Score 2.357023
Snippet The Maritime Continent (MC) is a region subject to high impact weather (HIW) events, which are still poorly predicted by numerical weather prediction (NWP)...
Abstract The Maritime Continent (MC) is a region subject to high impact weather (HIW) events, which are still poorly predicted by numerical weather prediction...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Climate
Climatology
Datasets
Estimates
IMERG
Land area
Maritime Continent
Observatories
Precipitation
precipitation evaluation
Radar
radar precipitation
Rain
Rainfall
Sampling error
Satellites
Sensors
South East Asia
Weather forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKCIkLggJiecmHcqGKCIkfyamCNixFWrTaFsQtssc2qlRllyVI8O87k_XS7aFck7GVeOyZb8b2fIx98hj3BJAq0eBVInIrk1LnOgkgPAiEwKWlPOTgRl3diut7eR8Tbk_xWOXcJnaG2o2BcuSnCH0lhi5Cl18mjwmxRtHuaqTQWGIraIILDL5WLqqb4Wghy4IePRPxxHualRTsn1XnZJzpSsqCL-pK9v-DMxfRauduLjfYesSJ_Hym2E32wTcf2Wq_4-F93WLmDvHzjA6JjwPvDwf8-6Aa9Xn10lLGjw-pasUkFuDmvxqOQI8PDJUwwrdUkwrhZdNy-8p_RCHTOD4yzkz5N9OabXZ7Wf38epVEtoQEhMbBzgLaNR8g1yVIqS2AK-jmK0YsKujMSme0htyUnkqk-TQNQVlwGpRLPcKgfIctN-PG7zIerCyUtM7pNGB7MCBBW4XOH820OXM99nk-bjXEPyFGi991t6WdlfXiKPfY8Zv0ZFZC4z9yF6SCNxkqfN09GE8f6riOagvKK2FNChoEEeYQ4ZZSCFvSoixS3WMHcwXWcTU-1X_nTo-ddEp990NqnPoZ9rz3fl_7bI1azc7uHrDldvrsDxGhtPYoTsM_a5LgFA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfY0KS9THwMUVaQH-AFFJHFX8ljgbYDqagaFO0tss82QkLp1GXS9t9z53hV9wASr87FSu5y599d7N8x9jpg3hNB6cJA0IUUThWNEaaIIANIhMCNozrk4qs-W8kvF-oiF9zoLMzAD7EtuJFnpHhNDm7dVSYbII5MzNpPpxOKsqLeYw_pdC1x51dyuVNjwfU89bWthBAFYhGZ977jFO93J7i3KiXy_nuIcxe3poVn9ogdZcTIJ4OJH7MHoXvCDuapI-_tU2Z_IJIeGiPxdeTz5YJ_XkzP53x601Ptjy-Jv-IyU3HzXx1HyMcXlsiM8CqxU6Equp67W_4tC9nO83Pr7YZ_sr09ZqvZ9PvHsyL3TShAGlR7FTHChQjCNKCUcQC-pjOwmLvoaCqnvDUGhG0CkaWFsoxRO_AGtC8DAiLxjO136y48Zzw6VWvlvDdlxPvBggLjNMIADNj21I_Yuzu9tZDfhHpb_G7Tz-2qaXe1PGJvttKXA5nGX-Q-kAm2MkSBnQbWm59t9qjWgQ5aOluCAUmtc6j1ltYIYMq6qUszYuM7A7bZL69aTKAUJsDSNCP2Nhn1nw_SohNUOPOL_xE-YYc0POzpHbP9fnMdXiJy6d2r9Hn-AcXY4GU
  priority: 102
  providerName: Wiley-Blackwell
Title Validation of GPM IMERG Extreme Precipitation in the Maritime Continent by Station and Radar Data
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EA001738
https://www.proquest.com/docview/2555446479
https://doaj.org/article/bc6e64ba0c7c40688654266512089807
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BUSUuiEKrLpSVD3ABRU0Tf2yOLaRbkHa1WmjVW2SPbakSyq6WINF_z0ySrsKh7YVrMrGc8cTzxrHfA3gfqO6JqHRiMOhE5k4lhclNElEGlASBC8frkLO5vriU367V9UDqi_eEdfTAneOOHeqgpbMpGpSskMIKS1pTnkonxaQ7R045b1BMdasrlMkz2e90T7OCi_yT8pQnZT6KMshBLVX_P_hyiFLbNHP-El70-FCcdv3agyehfgW701Z_9_Y12CvCzZ0MklhFMV3MxNdZuZyK8k_DK31iwWwV6554W9zUggCemFmmLqK7zEVFsLJuhLsV33sjW3uxtN5uxBfb2H24PC9_fL5IepWEBKUhJ2eR5rMQMTcFKmUcop_wiVeqVHQ0mVPeGoO5LQJTo4U0jVE79Aa1TwPBn_wAdupVHQ5BRKfIvc57k0Z6Hi0qNE5T0qfp2Z74EXy681uF_ZuwksXPqv2VnRXV0Msj-LC1XnfUGffYnfEQbG2Y8Lq9QGFQ9WFQPRYGIzi6G8Cq_wp_VVQuKSp3pSlG8LEd1Ac7UlHIZ9Tym__RobfwnNvudvYewU6z-R3eEX5p3BieZnIxhmdn5XyxHLeB-xdB1-fU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheEJ-iMMAP7AUUkSX-aB4Q2ljWli1VVTa0t2CfbYSE0tIFQf8p_kbOSTrKA3vba3KxHJ_P97uzfT-Al47iHo9CRgqdjHhqRJSpVEUeuUNOEDgzIQ9ZTOTojH84F-db8Ht9FyYcq1yvic1CbecYcuRvCPoKCl24yt4tvkeBNSrsrq4pNNppcexWPylku3g7PiT97ibJUX76fhR1rAIRckWdSjzZv_OYqgyFUAbRDsINUUL20qvECKuVwlRnLpQSc3HsvTRoFUobO4ILKbV7A7Z5SqFMD7YP8sl0tpHVIQSR8O6EfZxkIbmwl-8HZxCuwGz4voYi4B9cu4mOG_d2dBfudLiU7bcT6R5sueo-3Bw2vL-rB6A_EV5v6ZfY3LPhtGDjIp8NWf6rDhlGNg1VMhZdwW_2tWIELFmhQ8kkehtqYBGcrWpmVuxjJ6Qry2ba6iU71LV-CGfXMo6PoFfNK_cYmDdiIIWxVsWevkeNApWRBDbILeg924fX63ErsfuTwKDxrWy20JOs3BzlPuxeSi_akh3_kTsIKriUCYW2mwfz5Zeys9vSoHSSGx2jQh4IegLBl5QEk-JBNohVH3bWCiw7678o_87VPrxqlHplR0oytYRafnJ1Wy_g1ui0OClPxpPjp3A7tNCeG96BXr384Z4ROqrN825KMvh83VbwBxUkHMo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZGJxAviJ-iY4Af2AsoWpbEdvOA0EbTroxWVWFob5l9thHSlJYuCPqv8ddxl7ijPLC3vSbOyfGdz5_P5_sYe-Vw3-NByEiBk1GWGhHlKlWRh8xBhhA4NxSHHE_k8Wn24UycbbHf67swlFa59omNo7ZzoBj5PkJfgVuXTOX7PqRFTPuDd4vvETFI0Unrmk6jNZETt_qJ27fLt6M-6novSQbF5_fHUWAYiCBT2MHEoy9wHlKVgxDKANge3RZFlC-9SoywWilIde6orJiLY--lAatA2tghdEhR7i22rXBXFHfY9lExmc42IjyIJpIsZNvHSU6BhoPikBYGug6zsQ42dAH_YNxNpNwsdYP77F7AqPywNaoHbMtVD9ntYcMBvHrE9BfE7i0VE597PpyO-WhczIa8-FVTtJFPqWLGIhT_5t8qjiCTjzWVT8K3VA8LoW1Vc7Pin0IjXVk-01YveV_X-jE7vZFxfMI61bxyTxn3RvSkMNaq2OP3oEGAMhKBBy4R-sB22Zv1uJUQ_oTYNC7K5jg9ycvNUe6yvavWi7Z8x3_aHZEKrtpQ0e3mwXz5tQxzuDQgncyMjkFBRmQ9RPYlJUKmuJf3YtVlu2sFlsETXJZ_7bbLXjdKvbYjJU67BCXvXC_rJbuD1l9-HE1OnrG7JKBNId5lnXr5wz1HoFSbF8EiOTu_6UnwB3TTIP8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+GPM+IMERG+Extreme+Precipitation+in+the+Maritime+Continent+by+Station+and+Radar+Data&rft.jtitle=Earth+and+space+science+%28Hoboken%2C+N.J.%29&rft.au=Nicolas+A.+DaSilva&rft.au=Benjamin+G.+M.+Webber&rft.au=Adrian+J.+Matthews&rft.au=Matthew+M.+Feist&rft.date=2021-07-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.eissn=2333-5084&rft.volume=8&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021EA001738&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bc6e64ba0c7c40688654266512089807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2333-5084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2333-5084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2333-5084&client=summon