Recent development of nanomedicine for the treatment of bacterial biofilm infections
Bacterial biofilm related infections are ever growing issues for global medical community. Traditional antibiotic therapy is usually ineffective for treating them because the bacteria inside biofilms have evolved with multiple mechanisms to evade antibiotic challenge. Hence, effective therapeutic st...
Saved in:
Published in | View (Beijing, China) Vol. 2; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
John Wiley & Sons, Inc
01.02.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bacterial biofilm related infections are ever growing issues for global medical community. Traditional antibiotic therapy is usually ineffective for treating them because the bacteria inside biofilms have evolved with multiple mechanisms to evade antibiotic challenge. Hence, effective therapeutic strategy with novel antibiofilm mode of action is highly desired. In this context, nanomedicine has drawn great attentions and has been proven promising to prevent and eliminate bacterial biofilms. In this review, we focus on the recent advance of nanotechnology‐based strategies and nanoagents for combating bacterial biofilm infections. First, typical antibiofilm nanotechnologies utilized different chemical, physical, and biological properties of nanomaterials are discussed. Second, smart nanoagents that can responsive to biofilm microenvironment, including pH, H2O2, and enzymes, are shown. Third, some promising antibiofilm approaches, such as theranostics, biofilm structure destruction, and quorum sensing inhibition, are also demonstrated. Finally, we conclude the current antibiofilm nanotechnologies and discuss the challenges and future directions in this field.
Bacterial biofilm related infections are ever growing threats for global medical community. However, traditional antibiotic therapy is usually ineffective for eradicating bacterial biofilms. In this review, recent development of nanomedicine to treat bacterial biofilm infections is introduced, and typical therapeutic strategies based on nanotechnology are summarized and discussed herein. |
---|---|
AbstractList | Bacterial biofilm related infections are ever growing issues for global medical community. Traditional antibiotic therapy is usually ineffective for treating them because the bacteria inside biofilms have evolved with multiple mechanisms to evade antibiotic challenge. Hence, effective therapeutic strategy with novel antibiofilm mode of action is highly desired. In this context, nanomedicine has drawn great attentions and has been proven promising to prevent and eliminate bacterial biofilms. In this review, we focus on the recent advance of nanotechnology‐based strategies and nanoagents for combating bacterial biofilm infections. First, typical antibiofilm nanotechnologies utilized different chemical, physical, and biological properties of nanomaterials are discussed. Second, smart nanoagents that can responsive to biofilm microenvironment, including pH, H
2
O
2
, and enzymes, are shown. Third, some promising antibiofilm approaches, such as theranostics, biofilm structure destruction, and quorum sensing inhibition, are also demonstrated. Finally, we conclude the current antibiofilm nanotechnologies and discuss the challenges and future directions in this field. Abstract Bacterial biofilm related infections are ever growing issues for global medical community. Traditional antibiotic therapy is usually ineffective for treating them because the bacteria inside biofilms have evolved with multiple mechanisms to evade antibiotic challenge. Hence, effective therapeutic strategy with novel antibiofilm mode of action is highly desired. In this context, nanomedicine has drawn great attentions and has been proven promising to prevent and eliminate bacterial biofilms. In this review, we focus on the recent advance of nanotechnology‐based strategies and nanoagents for combating bacterial biofilm infections. First, typical antibiofilm nanotechnologies utilized different chemical, physical, and biological properties of nanomaterials are discussed. Second, smart nanoagents that can responsive to biofilm microenvironment, including pH, H2O2, and enzymes, are shown. Third, some promising antibiofilm approaches, such as theranostics, biofilm structure destruction, and quorum sensing inhibition, are also demonstrated. Finally, we conclude the current antibiofilm nanotechnologies and discuss the challenges and future directions in this field. Bacterial biofilm related infections are ever growing issues for global medical community. Traditional antibiotic therapy is usually ineffective for treating them because the bacteria inside biofilms have evolved with multiple mechanisms to evade antibiotic challenge. Hence, effective therapeutic strategy with novel antibiofilm mode of action is highly desired. In this context, nanomedicine has drawn great attentions and has been proven promising to prevent and eliminate bacterial biofilms. In this review, we focus on the recent advance of nanotechnology‐based strategies and nanoagents for combating bacterial biofilm infections. First, typical antibiofilm nanotechnologies utilized different chemical, physical, and biological properties of nanomaterials are discussed. Second, smart nanoagents that can responsive to biofilm microenvironment, including pH, H2O2, and enzymes, are shown. Third, some promising antibiofilm approaches, such as theranostics, biofilm structure destruction, and quorum sensing inhibition, are also demonstrated. Finally, we conclude the current antibiofilm nanotechnologies and discuss the challenges and future directions in this field. Bacterial biofilm related infections are ever growing threats for global medical community. However, traditional antibiotic therapy is usually ineffective for eradicating bacterial biofilms. In this review, recent development of nanomedicine to treat bacterial biofilm infections is introduced, and typical therapeutic strategies based on nanotechnology are summarized and discussed herein. Bacterial biofilm related infections are ever growing issues for global medical community. Traditional antibiotic therapy is usually ineffective for treating them because the bacteria inside biofilms have evolved with multiple mechanisms to evade antibiotic challenge. Hence, effective therapeutic strategy with novel antibiofilm mode of action is highly desired. In this context, nanomedicine has drawn great attentions and has been proven promising to prevent and eliminate bacterial biofilms. In this review, we focus on the recent advance of nanotechnology‐based strategies and nanoagents for combating bacterial biofilm infections. First, typical antibiofilm nanotechnologies utilized different chemical, physical, and biological properties of nanomaterials are discussed. Second, smart nanoagents that can responsive to biofilm microenvironment, including pH, H2O2, and enzymes, are shown. Third, some promising antibiofilm approaches, such as theranostics, biofilm structure destruction, and quorum sensing inhibition, are also demonstrated. Finally, we conclude the current antibiofilm nanotechnologies and discuss the challenges and future directions in this field. |
Author | Yang, Kaili Wang, Lianhui Xiu, Weijun Shan, Jingyang Xiao, Hang Yuwen, Lihui |
Author_xml | – sequence: 1 givenname: Weijun surname: Xiu fullname: Xiu, Weijun organization: Nanjing University of Posts and Telecommunications – sequence: 2 givenname: Jingyang surname: Shan fullname: Shan, Jingyang organization: Nanjing University of Posts and Telecommunications – sequence: 3 givenname: Kaili surname: Yang fullname: Yang, Kaili organization: Nanjing University of Posts and Telecommunications – sequence: 4 givenname: Hang surname: Xiao fullname: Xiao, Hang organization: Nanjing University of Posts and Telecommunications – sequence: 5 givenname: Lihui surname: Yuwen fullname: Yuwen, Lihui email: iamlhyuwen@njupt.edu.cn organization: Nanjing University of Posts and Telecommunications – sequence: 6 givenname: Lianhui orcidid: 0000-0001-9030-9172 surname: Wang fullname: Wang, Lianhui email: iamlhwang@njupt.edu.cn organization: Nanjing University of Posts and Telecommunications |
BookMark | eNp9kU1LAzEQhoMoqLU3f8CCV6tJNtmPo4gfhYIgft3CJDvRlG1Ss1Hx35taexH0kGQyPPMyM-8-2fbBIyGHjJ4wSvnpw_TxhFNOKa3kFtnjVdNM8vW0_ROXbdPskvEwzDPCJWN1K_fI3S0a9Kno8B37sFys4mALDz4ssHPGeSxsiEV6wSJFhLQhNJiE0UFfaBes6xeF8xZNcsEPB2THQj_g-OcdkfvLi7vz68ns5mp6fjabGFFLManb1raay4Zh3QnRsXy01VJKZmTbcmSgjbYG2o51ABVozqHUVnA0UjAoR2S61u0CzNUyugXETxXAqe9EiM8KYnKmR6VrXVuBQvK6EpQabcDYGixFyHsQJmsdrbWWMby-4ZDUPLxFn9tXXErORFVKnim-pkwMwxDRKuMSrIZOEVyvGFUrM1Q2Q23MyEXHv4o2rf6B0zX-4Xr8_JddfXglyi_dUZwp |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_130747 crossref_primary_10_1039_D3DT01287E crossref_primary_10_1093_jac_dkae051 crossref_primary_10_1007_s40242_021_1190_7 crossref_primary_10_1186_s12964_024_01511_2 crossref_primary_10_1142_S1793545822500043 crossref_primary_10_1007_s12598_022_02223_7 crossref_primary_10_3390_pharmaceutics16020254 crossref_primary_10_1007_s10853_024_09622_4 crossref_primary_10_1016_j_nantod_2024_102400 crossref_primary_10_1002_smll_202101495 crossref_primary_10_1002_adhm_202302031 crossref_primary_10_1002_wnan_1944 crossref_primary_10_1002_adhm_202402559 crossref_primary_10_1016_j_cej_2022_136153 crossref_primary_10_1186_s40824_023_00405_7 crossref_primary_10_1002_adhm_202402240 crossref_primary_10_1002_aisy_202300342 crossref_primary_10_1007_s10904_022_02294_0 crossref_primary_10_1016_j_actbio_2025_02_022 crossref_primary_10_1021_acs_jafc_4c00872 crossref_primary_10_1016_j_colsurfb_2023_113727 crossref_primary_10_1002_smll_202306960 crossref_primary_10_1002_adhm_202201323 crossref_primary_10_1002_jbm_b_35150 crossref_primary_10_3390_pharmaceutics15041147 crossref_primary_10_1016_j_mtbio_2025_101553 crossref_primary_10_1016_j_mtbio_2023_100559 crossref_primary_10_1016_j_cej_2023_144206 crossref_primary_10_1039_D3NA00482A crossref_primary_10_1002_adhm_202101991 crossref_primary_10_1186_s12951_024_02483_8 crossref_primary_10_1002_btm2_10441 crossref_primary_10_1002_smtd_202400513 crossref_primary_10_1088_2632_959X_ad9299 crossref_primary_10_1007_s12598_021_01802_4 crossref_primary_10_1039_D2TB00555G crossref_primary_10_1016_j_jinorgbio_2024_112755 crossref_primary_10_1016_j_cej_2022_139839 crossref_primary_10_1016_j_ijmm_2023_151588 crossref_primary_10_1016_j_cej_2023_144597 crossref_primary_10_3390_antibiotics11121822 crossref_primary_10_1016_j_cej_2024_149447 crossref_primary_10_3390_ph17030320 crossref_primary_10_1002_adfm_202402607 crossref_primary_10_1002_adfm_202307013 crossref_primary_10_1016_j_bsheal_2022_02_001 crossref_primary_10_1002_smll_202302547 crossref_primary_10_1155_2023_9959296 crossref_primary_10_1016_j_nantod_2022_101602 crossref_primary_10_1039_D1BM00406A crossref_primary_10_1002_smtd_202301165 crossref_primary_10_1039_D2BM01570F crossref_primary_10_3389_fmicb_2023_1284195 crossref_primary_10_1002_adfm_202304974 crossref_primary_10_1039_D2QM00511E crossref_primary_10_4014_jmb_2403_03029 crossref_primary_10_1002_adhm_202300985 crossref_primary_10_1038_s41467_023_43067_8 crossref_primary_10_1021_acsnano_1c11333 crossref_primary_10_3389_fcimb_2022_926363 crossref_primary_10_2147_IJN_S383182 crossref_primary_10_1016_j_cej_2021_129431 crossref_primary_10_1016_j_ijbiomac_2023_123303 crossref_primary_10_1038_s41467_022_31479_x crossref_primary_10_1016_j_trac_2023_117232 crossref_primary_10_2147_IJN_S360246 crossref_primary_10_1016_j_pdpdt_2023_103672 crossref_primary_10_1002_adfm_202314492 crossref_primary_10_3390_nano14221830 crossref_primary_10_1002_advs_202300601 crossref_primary_10_1016_j_isci_2023_106861 crossref_primary_10_1021_acs_nanolett_4c06221 crossref_primary_10_1002_smll_202200743 crossref_primary_10_1039_D2NR01998A crossref_primary_10_1186_s12903_024_04399_z crossref_primary_10_1016_j_actbio_2022_05_006 crossref_primary_10_1016_j_ijpharm_2024_124214 crossref_primary_10_1002_hsr2_381 crossref_primary_10_3389_fmicb_2022_955286 crossref_primary_10_1002_jbt_70030 crossref_primary_10_1016_j_bioactmat_2023_03_022 crossref_primary_10_1002_smll_202306135 crossref_primary_10_1002_smll_202309403 |
Cites_doi | 10.1039/C8NR09801H 10.1021/acsami.8b18543 10.1021/acsnano.9b03868 10.1080/02656736.2017.1369173 10.1016/j.biomaterials.2016.10.041 10.1038/nri3423 10.1016/j.biomaterials.2016.05.051 10.1002/adfm.201903018 10.1021/acsami.9b19644 10.1021/acsnano.9b05493 10.1021/acsnano.8b08702 10.1002/adma.201806444 10.1039/C3CC48667B 10.1016/j.tibtech.2012.06.004 10.1038/nrmicro2415 10.1002/adma.201603823 10.1021/acsnano.6b05810 10.1128/CMR.15.2.167-193.2002 10.1016/j.addr.2011.12.009 10.1021/acsami.0c01967 10.1038/s41467-019-09001-7 10.1038/nrmicro1838 10.1093/jmicro/dfv010 10.1038/nrmicro.2017.99 10.1186/s12951-020-0588-6 10.1002/jcp.26117 10.1038/s41467-018-05342-x 10.1002/smll.201601729 10.1038/nrmicro.2017.42 10.1038/s41467-018-06164-7 10.2174/1381612820666140905123529 10.1038/nrmicro.2016.89 10.1007/s12274-014-0654-1 10.1126/scirobotics.aaw2388 10.1038/s41467-020-15730-x 10.1021/bc200151q 10.1111/apm.12668 10.1038/s41467-019-09158-1 10.1177/0022034517736497 10.1038/s41467-018-06884-w 10.1039/C8CS00001H 10.1016/j.jconrel.2015.04.028 10.1038/nrmicro.2017.26 10.1002/adma.201405105 10.1002/adma.201707073 10.1016/j.addr.2012.05.004 10.1021/acsnano.7b08500 10.1021/nn501640q 10.1109/TNB.2016.2527600 10.1002/adma.201808166 10.1002/anie.201605296 10.1002/adma.201801808 10.1039/C8NR04111C 10.1039/C8CS00234G 10.1021/acsnano.0c00269 10.1586/14787210.2013.811861 10.1038/nrmicro1557 10.1128/MMBR.00013-14 10.1002/smll.202000436 10.1002/anie.202001407 10.1021/acsami.8b19522 10.1039/c3cs35486e 10.1016/j.biomaterials.2016.11.045 10.1016/j.ijantimicag.2009.12.011 10.1016/j.tim.2013.06.002 10.1021/acsinfecdis.5b00116 10.1016/j.actbio.2018.01.022 10.1126/science.284.5418.1318 10.1021/acsnano.9b09282 10.1002/smll.201804105 10.3389/fmicb.2018.01299 10.1039/C8CS00457A 10.1016/j.nantod.2014.06.003 10.34133/2020/9426453 10.1021/acsami.9b07866 10.1016/j.biomaterials.2018.02.004 10.1038/nrmicro1289 10.1016/j.cej.2012.08.054 10.1002/anie.202001783 10.1021/acsami.9b21777 10.1016/j.biotechadv.2008.09.002 10.1088/1361-6528/aa6c9b 10.1038/nrmicro1004 10.1002/smll.201903880 10.1016/j.jconrel.2014.03.055 10.1021/acs.accounts.9b00140 10.1016/j.nano.2016.09.003 10.1038/natrevmats.2017.14 10.1016/j.jconrel.2008.01.006 10.1016/S1473-3099(16)30268-7 10.1002/adma.201901778 10.1002/adfm.201701974 10.1021/nn507170s 10.1016/j.addr.2019.01.005 10.1146/annurev.micro.112408.134306 10.1038/nnano.2007.260 10.1016/j.addr.2007.03.020 10.1002/adbi.201700262 10.2217/nnm-2016-0014 10.1016/j.partic.2011.08.007 10.1021/acsnano.6b01370 10.1111/j.1574-6968.2000.tb08958.x 10.1021/acsnano.7b04731 10.1002/adfm.201808222 10.1021/acsnano.9b02816 10.1021/acsnano.0c01336 10.1128/AAC.00235-13 10.1002/adfm.201804688 10.1002/adhm.201600346 10.1016/j.addr.2005.04.007 10.1002/adhm.201900608 10.3390/molecules20045286 10.1002/adma.201805368 10.1002/adfm.201900143 10.1002/anie.201903968 10.1002/smll.201602660 10.1126/science.1095833 10.1016/S0927-7757(01)00481-2 10.1016/j.biomaterials.2017.08.024 10.1038/nrmicro.2016.94 10.1021/acs.accounts.8b00011 10.1038/nrd4000 10.1002/adfm.201403478 10.1016/j.ijantimicag.2017.08.029 10.1038/s41579-019-0186-5 10.1146/annurev.micro.57.030502.090720 10.1056/NEJMra0912273 10.3390/nano10010140 10.1039/C3NR05422E 10.1038/nrmicro.2016.190 10.1021/acs.nanolett.7b02106 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Australia, Ltd and Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Australia, Ltd and Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/VIW.20200065 |
DatabaseName | Wiley Online Library Open Access - NZ CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2688-268X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_b7b7f4e45276400cbcacf7af0ea7954c 10_1002_VIW_20200065 VIW264 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions funderid: YX030003 – fundername: National Key Research and Development Program of China funderid: 2017YFA0205302 – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province funderid: KYCX20_0793 – fundername: Natural Science Key Fund for Colleges and Universities in Jiangsu Province funderid: 17KJA430011 – fundername: Key Research and Development Program of Jiangsu funderid: BE2018732 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20191382 |
GroupedDBID | 0R~ 1OC 24P 7X7 8FI 8FJ AAHHS ABUWG ACCFJ ACCMX ACXQS ADKYN ADPDF ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR CCPQU EBS FYUFA GROUPED_DOAJ HMCUK IAO IHR INH ITC M~E OVD PIMPY TEORI UKHRP WIN AAYXX CITATION IGS PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4754-799f9b2581e7d44d144dbfb5551c5992e1abcbfca9d1daa6ab22a3bf42ec541a3 |
IEDL.DBID | 7X7 |
ISSN | 2688-3988 2688-268X |
IngestDate | Wed Aug 27 01:24:46 EDT 2025 Sat Jul 26 00:02:06 EDT 2025 Tue Jul 01 02:42:39 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Wed Jan 22 16:31:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4754-799f9b2581e7d44d144dbfb5551c5992e1abcbfca9d1daa6ab22a3bf42ec541a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9030-9172 |
OpenAccessLink | https://www.proquest.com/docview/2552146352?pq-origsite=%requestingapplication% |
PQID | 2552146352 |
PQPubID | 5068494 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b7b7f4e45276400cbcacf7af0ea7954c proquest_journals_2552146352 crossref_citationtrail_10_1002_VIW_20200065 crossref_primary_10_1002_VIW_20200065 wiley_primary_10_1002_VIW_20200065_VIW264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 20210201 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | View (Beijing, China) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2002; 15 2018; 162 2013; 65 2019; 11 2019; 10 2019; 13 2019; 15 2003; 57 2019; 17 2020; 16 1999; 284 2020; 14 2020; 12 2020; 11 2004; 2 2020; 10 2012; 10 2018; 47 2020; 18 2018; 9 2018; 2 2013; 57 2019; 29 2018; 30 2007; 5 2007; 2 2018; 34 2010; 8 2019; 8 2018; 29 2018; 28 2004; 303 2019; 4 2010; 35 2019; 31 2016; 10 2008; 128 2016; 15 2016; 14 2016; 13 2012; 30 2016; 12 2016; 11 2016; 5 2016; 2 2020; 2020 2015; 64 2018; 233 2019; 48 2000; 183 2005; 3 2018; 12 2017; 144 2018; 10 2017; 2 2001; 186 2013; 21 2019; 52 2019; 58 2016; 101 2020; 59 2008; 6 2017; 113 2017; 116 2012; 209 2010; 64 2013; 11 2013; 13 2013; 12 2011; 22 2014; 9 2014; 8 2014; 50 2014; 6 2017; 125 2012; 64 2017; 28 2017; 27 2013; 42 2010; 363 2014; 190 2015; 209 2017; 29 2015; 9 2015; 8 2009; 27 2007; 59 2018; 69 2016; 55 2015; 25 2015; 27 2017; 15 2017; 17 2020 2015; 20 2017; 11 2017; 13 2015; 21 2019; 138 2018; 51 2014; 78 2005; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_1 Carrouel F. (e_1_2_8_55_1) 2020; 10 e_1_2_8_24_1 e_1_2_8_47_1 Shi J. (e_1_2_8_57_1) 2020 Ding X. (e_1_2_8_110_1) 2016; 13 Hwang G. (e_1_2_8_115_1) 2019; 4 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 35 year: 2020 publication-title: J. Nanobiotechnol. – volume: 27 start-page: 76 year: 2009 publication-title: Biotechnol. Adv. – volume: 15 start-page: 385 year: 2017 publication-title: Nat. Rev. Microbiol. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 78 start-page: 510 year: 2014 publication-title: Microbiol. Mol. Biol. Rev. – volume: 10 start-page: 4779 year: 2016 publication-title: ACS Nano – volume: 14 start-page: 347 year: 2020 publication-title: ACS Nano – volume: 21 start-page: 43 year: 2015 publication-title: Curr. Pharm. Des. – volume: 2 year: 2018 publication-title: Adv. Biosys. – volume: 10 start-page: 1241 year: 2019 publication-title: Nat. Commun. – volume: 14 start-page: 2265 year: 2020 publication-title: ACS Nano – volume: 14 start-page: 5686 year: 2020 publication-title: ACS Nano – volume: 10 start-page: 327 year: 2012 publication-title: Particuology – volume: 11 start-page: 1857 year: 2020 publication-title: Nat. Commun. – volume: 162 start-page: 123 year: 2018 publication-title: Biomaterials – volume: 209 start-page: 150 year: 2015 publication-title: J. Control. Release – volume: 15 start-page: 453 year: 2017 publication-title: Nat. Rev. Microbiol. – volume: 9 start-page: 478 year: 2014 publication-title: Nano Today – volume: 125 start-page: 276 year: 2017 publication-title: APMIS – volume: 11 start-page: 9330 year: 2017 publication-title: ACS Nano – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 623 year: 2010 publication-title: Nat. Rev. Microbiol. – volume: 47 start-page: 4258 year: 2018 publication-title: Chem. Soc. Rev. – volume: 101 start-page: 272 year: 2016 publication-title: Biomaterials – volume: 14 start-page: 563 year: 2016 publication-title: Nat. Rev. Microbiol. – volume: 11 start-page: 669 year: 2013 publication-title: Expert Rev. Anti‐Infect. Ther. – volume: 51 start-page: 789 year: 2018 publication-title: Acc. Chem. Res. – volume: 64 start-page: 357 year: 2010 publication-title: Annu. Rev. Microbiol. – volume: 128 start-page: 2 year: 2008 publication-title: J. Control. Release – volume: 14 start-page: 5926 year: 2020 publication-title: ACS Nano – volume: 6 start-page: 2588 year: 2014 publication-title: Nanoscale – volume: 8 start-page: 6202 year: 2014 publication-title: ACS Nano – volume: 12 start-page: 9041 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 3713 year: 2018 publication-title: Nat. Commun. – volume: 55 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 48 year: 2007 publication-title: Nat. Rev. Microbiol. – volume: 209 start-page: 558 year: 2012 publication-title: Chem. Eng. J. – volume: 15 start-page: 167 year: 2002 publication-title: Clin. Microbiol. Rev. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 14 start-page: 576 year: 2016 publication-title: Nat. Rev. Microbiol. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 2 start-page: 3 year: 2016 publication-title: ACS Infect. Dis. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 64 start-page: 557 year: 2012 publication-title: Adv. Drug Deliv. Rev. – volume: 57 start-page: 2694 year: 2013 publication-title: Antimicrob. Agents Chemother. – volume: 29 start-page: 86 year: 2018 publication-title: Adv. Dent. Res. – volume: 48 start-page: 1004 year: 2019 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 2122 year: 2016 publication-title: Adv. Healthc. Mater. – volume: 15 start-page: 740 year: 2017 publication-title: Nat. Rev. Microbiol. – volume: 233 start-page: 3745 year: 2018 publication-title: J. Cell. Physiol. – volume: 13 year: 2017 publication-title: Small – volume: 20 start-page: 5286 year: 2015 publication-title: Molecules – volume: 65 start-page: 663 year: 2013 publication-title: Adv. Drug Deliv. Rev. – volume: 58 start-page: 8161 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 13 start-page: 297 year: 2016 publication-title: Nanomedicine – volume: 13 start-page: 349 year: 2013 publication-title: Nat. Rev. Immunol. – volume: 2020 year: 2020 publication-title: Research – volume: 42 start-page: 6060 year: 2013 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 38 year: 2019 publication-title: Chem. Soc. Rev. – volume: 284 start-page: 1318 year: 1999 publication-title: Science – volume: 64 start-page: 169 year: 2015 publication-title: Microscopy – volume: 11 start-page: 5014 year: 2019 publication-title: Nanoscale – volume: 50 start-page: 1969 year: 2014 publication-title: Chem. Commun. – volume: 9 start-page: 2920 year: 2018 publication-title: Nat. Commun. – volume: 22 start-page: 1879 year: 2011 publication-title: Bioconjugate Chem – volume: 2 start-page: 577 year: 2007 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 948 year: 2005 publication-title: Nat. Rev. Microbiol. – volume: 144 start-page: 155 year: 2017 publication-title: Biomaterials – volume: 57 start-page: 677 year: 2003 publication-title: Annu. Rev. Microbiol. – volume: 34 start-page: 144 year: 2018 publication-title: Int. J. Hyperthermia – volume: 12 start-page: 1747 year: 2018 publication-title: ACS Nano – volume: 16 year: 2020 publication-title: Small – volume: 113 start-page: 145 year: 2017 publication-title: Biomaterials – volume: 190 start-page: 607 year: 2014 publication-title: J. Control. Release – volume: 11 start-page: 873 year: 2016 publication-title: Nanomedicine – volume: 10 year: 2016 publication-title: ACS Nano – volume: 51 start-page: 299 year: 2018 publication-title: Int. J. Antimicrob. Agents – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 9 start-page: 1299 year: 2018 publication-title: Front. Microbiol. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 820 year: 2004 publication-title: Nat. Rev. Microbiol. – volume: 17 start-page: 49 year: 2017 publication-title: Lancet Infect. Dis. – volume: 4 year: 2019 publication-title: Sci. Robot. – volume: 10 start-page: 1 year: 2020 publication-title: Nanomaterials – volume: 12 start-page: 6200 year: 2016 publication-title: Small – volume: 69 start-page: 256 year: 2018 publication-title: Acta Biomater – volume: 10 start-page: 1087 year: 2019 publication-title: Nat. Commun. – volume: 21 start-page: 466 year: 2013 publication-title: Trends Microbiol – volume: 138 start-page: 302 year: 2019 publication-title: Adv. Drug Deliv. Rev. – volume: 52 start-page: 2190 year: 2019 publication-title: Acc. Chem. Res. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 30 start-page: 499 year: 2012 publication-title: Trends Biotechnol – volume: 59 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 294 year: 2016 publication-title: IEEE Trans. Nanobiosci. – volume: 17 start-page: 4964 year: 2017 publication-title: Nano Lett – volume: 183 start-page: 201 year: 2000 publication-title: FEMS Microbiol. Lett. – volume: 8 start-page: 1648 year: 2015 publication-title: Nano Res – volume: 17 start-page: 371 year: 2019 publication-title: Nat. Rev. Microbiol. – volume: 116 start-page: 1 year: 2017 publication-title: Biomaterials – volume: 13 start-page: 4960 year: 2019 publication-title: ACS Nano – volume: 10 year: 2018 publication-title: Nanoscale – volume: 13 year: 2019 publication-title: ACS Nano – volume: 12 start-page: 380 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 1097 year: 2015 publication-title: Adv. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 8 year: 2019 publication-title: Adv. Healthc. Mater. – volume: 11 start-page: 373 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 2390 year: 2015 publication-title: ACS Nano – volume: 13 start-page: 4869 year: 2019 publication-title: ACS Nano – volume: 9 start-page: 4518 year: 2018 publication-title: Nat. Commun. – volume: 186 start-page: 43 year: 2001 publication-title: Colloids Surf., A – volume: 303 start-page: 1818 year: 2004 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 199 year: 2008 publication-title: Nat. Rev. Microbiol. – volume: 25 start-page: 721 year: 2015 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2302 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 271 year: 2017 publication-title: Nat. Rev. Microbiol. – volume: 35 start-page: 322 year: 2010 publication-title: Int. J. Antimicrob. Agents – volume: 12 start-page: 791 year: 2013 publication-title: Nat. Rev. Drug Discov. – volume: 59 start-page: 274 year: 2007 publication-title: Adv. Drug Deliv. Rev. – volume: 57 start-page: 1539 year: 2005 publication-title: Adv. Drug Deliv. Rev. – volume: 363 start-page: 2434 year: 2010 publication-title: N. Engl. J. Med. – year: 2020 publication-title: J. Mater. Chem. B – ident: e_1_2_8_24_1 doi: 10.1039/C8NR09801H – ident: e_1_2_8_128_1 doi: 10.1021/acsami.8b18543 – ident: e_1_2_8_31_1 doi: 10.1021/acsnano.9b03868 – ident: e_1_2_8_62_1 doi: 10.1080/02656736.2017.1369173 – ident: e_1_2_8_83_1 doi: 10.1016/j.biomaterials.2016.10.041 – ident: e_1_2_8_94_1 doi: 10.1038/nri3423 – ident: e_1_2_8_92_1 doi: 10.1016/j.biomaterials.2016.05.051 – ident: e_1_2_8_105_1 doi: 10.1002/adfm.201903018 – ident: e_1_2_8_123_1 doi: 10.1021/acsami.9b19644 – ident: e_1_2_8_129_1 doi: 10.1021/acsnano.9b05493 – ident: e_1_2_8_52_1 doi: 10.1021/acsnano.8b08702 – ident: e_1_2_8_54_1 doi: 10.1002/adma.201806444 – ident: e_1_2_8_65_1 doi: 10.1039/C3CC48667B – ident: e_1_2_8_22_1 doi: 10.1016/j.tibtech.2012.06.004 – ident: e_1_2_8_2_1 doi: 10.1038/nrmicro2415 – ident: e_1_2_8_132_1 doi: 10.1002/adma.201603823 – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.6b05810 – ident: e_1_2_8_3_1 doi: 10.1128/CMR.15.2.167-193.2002 – ident: e_1_2_8_43_1 doi: 10.1016/j.addr.2011.12.009 – ident: e_1_2_8_76_1 doi: 10.1021/acsami.0c01967 – ident: e_1_2_8_48_1 doi: 10.1038/s41467-019-09001-7 – ident: e_1_2_8_15_1 doi: 10.1038/nrmicro1838 – ident: e_1_2_8_46_1 doi: 10.1093/jmicro/dfv010 – ident: e_1_2_8_35_1 doi: 10.1038/nrmicro.2017.99 – ident: e_1_2_8_51_1 doi: 10.1186/s12951-020-0588-6 – ident: e_1_2_8_78_1 doi: 10.1002/jcp.26117 – ident: e_1_2_8_93_1 doi: 10.1038/s41467-018-05342-x – ident: e_1_2_8_101_1 doi: 10.1002/smll.201601729 – ident: e_1_2_8_13_1 doi: 10.1038/nrmicro.2017.42 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-018-06164-7 – ident: e_1_2_8_38_1 doi: 10.2174/1381612820666140905123529 – ident: e_1_2_8_116_1 doi: 10.1038/nrmicro.2016.89 – ident: e_1_2_8_130_1 doi: 10.1007/s12274-014-0654-1 – volume: 4 start-page: eaaw2338 year: 2019 ident: e_1_2_8_115_1 publication-title: Sci. Robot. doi: 10.1126/scirobotics.aaw2388 – ident: e_1_2_8_60_1 doi: 10.1038/s41467-020-15730-x – ident: e_1_2_8_107_1 doi: 10.1021/bc200151q – ident: e_1_2_8_95_1 doi: 10.1111/apm.12668 – ident: e_1_2_8_102_1 doi: 10.1038/s41467-019-09158-1 – ident: e_1_2_8_104_1 doi: 10.1177/0022034517736497 – ident: e_1_2_8_114_1 doi: 10.1038/s41467-018-06884-w – ident: e_1_2_8_73_1 doi: 10.1039/C8CS00001H – ident: e_1_2_8_47_1 doi: 10.1016/j.jconrel.2015.04.028 – ident: e_1_2_8_80_1 doi: 10.1038/nrmicro.2017.26 – ident: e_1_2_8_131_1 doi: 10.1002/adma.201405105 – ident: e_1_2_8_32_1 doi: 10.1002/adma.201707073 – ident: e_1_2_8_63_1 doi: 10.1016/j.addr.2012.05.004 – ident: e_1_2_8_64_1 doi: 10.1021/acsnano.7b08500 – ident: e_1_2_8_90_1 doi: 10.1021/nn501640q – ident: e_1_2_8_7_1 doi: 10.1109/TNB.2016.2527600 – ident: e_1_2_8_67_1 doi: 10.1002/adma.201808166 – ident: e_1_2_8_113_1 doi: 10.1002/anie.201605296 – ident: e_1_2_8_75_1 doi: 10.1002/adma.201801808 – ident: e_1_2_8_53_1 doi: 10.1039/C8NR04111C – ident: e_1_2_8_108_1 doi: 10.1039/C8CS00234G – ident: e_1_2_8_122_1 doi: 10.1021/acsnano.0c00269 – ident: e_1_2_8_28_1 doi: 10.1586/14787210.2013.811861 – ident: e_1_2_8_14_1 doi: 10.1038/nrmicro1557 – ident: e_1_2_8_9_1 doi: 10.1128/MMBR.00013-14 – ident: e_1_2_8_66_1 doi: 10.1002/smll.202000436 – ident: e_1_2_8_120_1 doi: 10.1002/anie.202001407 – ident: e_1_2_8_112_1 doi: 10.1021/acsami.8b19522 – ident: e_1_2_8_88_1 doi: 10.1039/c3cs35486e – ident: e_1_2_8_125_1 doi: 10.1016/j.biomaterials.2016.11.045 – ident: e_1_2_8_12_1 doi: 10.1016/j.ijantimicag.2009.12.011 – ident: e_1_2_8_8_1 doi: 10.1016/j.tim.2013.06.002 – ident: e_1_2_8_106_1 doi: 10.1021/acsinfecdis.5b00116 – ident: e_1_2_8_126_1 doi: 10.1016/j.actbio.2018.01.022 – ident: e_1_2_8_6_1 doi: 10.1126/science.284.5418.1318 – ident: e_1_2_8_127_1 doi: 10.1021/acsnano.9b09282 – ident: e_1_2_8_58_1 doi: 10.1002/smll.201804105 – ident: e_1_2_8_70_1 doi: 10.3389/fmicb.2018.01299 – ident: e_1_2_8_89_1 doi: 10.1039/C8CS00457A – ident: e_1_2_8_23_1 doi: 10.1016/j.nantod.2014.06.003 – ident: e_1_2_8_111_1 doi: 10.34133/2020/9426453 – ident: e_1_2_8_103_1 doi: 10.1021/acsami.9b07866 – ident: e_1_2_8_30_1 doi: 10.1016/j.biomaterials.2018.02.004 – ident: e_1_2_8_5_1 doi: 10.1038/nrmicro1289 – ident: e_1_2_8_56_1 doi: 10.1016/j.cej.2012.08.054 – ident: e_1_2_8_69_1 doi: 10.1002/anie.202001783 – ident: e_1_2_8_77_1 doi: 10.1021/acsami.9b21777 – ident: e_1_2_8_21_1 doi: 10.1016/j.biotechadv.2008.09.002 – ident: e_1_2_8_50_1 doi: 10.1088/1361-6528/aa6c9b – ident: e_1_2_8_79_1 doi: 10.1038/nrmicro1004 – ident: e_1_2_8_74_1 doi: 10.1002/smll.201903880 – ident: e_1_2_8_39_1 doi: 10.1016/j.jconrel.2014.03.055 – ident: e_1_2_8_87_1 doi: 10.1021/acs.accounts.9b00140 – volume: 13 start-page: 297 year: 2016 ident: e_1_2_8_110_1 publication-title: Nanomedicine doi: 10.1016/j.nano.2016.09.003 – ident: e_1_2_8_20_1 doi: 10.1038/natrevmats.2017.14 – ident: e_1_2_8_40_1 doi: 10.1016/j.jconrel.2008.01.006 – ident: e_1_2_8_29_1 doi: 10.1016/S1473-3099(16)30268-7 – ident: e_1_2_8_85_1 doi: 10.1002/adma.201901778 – ident: e_1_2_8_98_1 doi: 10.1002/adfm.201701974 – ident: e_1_2_8_96_1 doi: 10.1021/nn507170s – ident: e_1_2_8_109_1 doi: 10.1016/j.addr.2019.01.005 – ident: e_1_2_8_17_1 doi: 10.1146/annurev.micro.112408.134306 – ident: e_1_2_8_86_1 doi: 10.1038/nnano.2007.260 – ident: e_1_2_8_44_1 doi: 10.1016/j.addr.2007.03.020 – ident: e_1_2_8_68_1 doi: 10.1002/adbi.201700262 – ident: e_1_2_8_34_1 doi: 10.2217/nnm-2016-0014 – ident: e_1_2_8_45_1 doi: 10.1016/j.partic.2011.08.007 – ident: e_1_2_8_99_1 doi: 10.1021/acsnano.6b01370 – ident: e_1_2_8_100_1 doi: 10.1111/j.1574-6968.2000.tb08958.x – ident: e_1_2_8_97_1 doi: 10.1021/acsnano.7b04731 – ident: e_1_2_8_119_1 doi: 10.1002/adfm.201808222 – ident: e_1_2_8_10_1 doi: 10.1021/acsnano.9b02816 – ident: e_1_2_8_49_1 doi: 10.1021/acsnano.0c01336 – ident: e_1_2_8_42_1 doi: 10.1128/AAC.00235-13 – ident: e_1_2_8_59_1 doi: 10.1002/adfm.201804688 – ident: e_1_2_8_133_1 doi: 10.1002/adhm.201600346 – ident: e_1_2_8_37_1 doi: 10.1016/j.addr.2005.04.007 – ident: e_1_2_8_71_1 doi: 10.1002/adhm.201900608 – ident: e_1_2_8_11_1 doi: 10.3390/molecules20045286 – ident: e_1_2_8_84_1 doi: 10.1002/adma.201805368 – ident: e_1_2_8_121_1 doi: 10.1002/adfm.201900143 – ident: e_1_2_8_72_1 doi: 10.1002/anie.201903968 – ident: e_1_2_8_25_1 doi: 10.1002/smll.201602660 – ident: e_1_2_8_36_1 doi: 10.1126/science.1095833 – ident: e_1_2_8_41_1 doi: 10.1016/S0927-7757(01)00481-2 – ident: e_1_2_8_124_1 doi: 10.1016/j.biomaterials.2017.08.024 – ident: e_1_2_8_16_1 doi: 10.1038/nrmicro.2016.94 – ident: e_1_2_8_82_1 doi: 10.1021/acs.accounts.8b00011 – ident: e_1_2_8_18_1 doi: 10.1038/nrd4000 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.201403478 – ident: e_1_2_8_81_1 doi: 10.1016/j.ijantimicag.2017.08.029 – ident: e_1_2_8_117_1 doi: 10.1038/s41579-019-0186-5 – ident: e_1_2_8_4_1 doi: 10.1146/annurev.micro.57.030502.090720 – ident: e_1_2_8_19_1 doi: 10.1056/NEJMra0912273 – volume: 10 start-page: 1 year: 2020 ident: e_1_2_8_55_1 publication-title: Nanomaterials doi: 10.3390/nano10010140 – year: 2020 ident: e_1_2_8_57_1 publication-title: J. Mater. Chem. B – ident: e_1_2_8_91_1 doi: 10.1039/C3NR05422E – ident: e_1_2_8_118_1 doi: 10.1038/nrmicro.2016.190 – ident: e_1_2_8_61_1 doi: 10.1021/acs.nanolett.7b02106 |
SSID | ssj0002511795 |
Score | 2.4640186 |
SecondaryResourceType | review_article |
Snippet | Bacterial biofilm related infections are ever growing issues for global medical community. Traditional antibiotic therapy is usually ineffective for treating... Abstract Bacterial biofilm related infections are ever growing issues for global medical community. Traditional antibiotic therapy is usually ineffective for... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adsorption antibiofilm Antibiotics Antimicrobial agents Bacteria bacterial biofilms Bacterial infections Biofilms Drug delivery systems Drug resistance Enzymes EPS Infections Metabolism Nanomaterials nanomedicine Nanoparticles Nanotechnology Photodynamic therapy responsive |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJy-iqBitsgc9iISazW42e1SxVEFPrfYW9hMETcXW_-_MJqntQb14TDKE5c0m84a8vCHk1DqjM-PzVAEbTXkR0PJW2bR0wnLpS-HjtIaHx2I04fdTMV0Z9YWasMYeuAFuYKSRgXsumCxgv1ljtQ1Sh0uvpRLc4tsXat5KM4XvYCTOMo5cYQVshVyVZat6h2uDp7tn6AzjTypirR5F2_41rrnKWGPJGW6TrZYr0qtmjTtkw9e7ZAxEDwoFdd9qHzoLtNb1rPtOToGIUiB2dKkixwjT-DLDDc0Lzul-o50Qq57vkcnwdnwzStvRCCkgKHgqlQrKMFFmXjrOHbRFzgQjgP9YoRTzmTbWBKuVy5zWhTaM6dwEzrwVPNP5PunVs9ofEMqcLx1CqV2B1Rzda4B2QKF3pdBeJOSiA6iyrW84jq94rRrHY1YBnFUHZ0LOltHvjV_GD3HXiPUyBl2u4wnIfdXmvvor9wnpd5mq2kdvXkGPhMPKgVgm5Dxm79eF4AGQwsP_WM8R2WQoeYmi7j7pLT4-_TFwloU5idvzC1BA5ss priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access - NZ dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aL15EUbFaJQc9iCx102R3c1SxqKB4aLW3JZ8i6K609f87k_1oe1DwuLtDCJNM5iX78oaQU2O1irUbRBLQaMQTj5K30kSZFYanLhMuVGt4fEruxvxhIib1gRvehan0IdoDN4yMsF5jgCs96y9EQ1_uX2F7F26aiHWygbdrkdLH-HN7xoLwOQ2FV1gCE2Igs6zmvsO3_nIDK1kpiPevIM5l3BoSz3CbbNWIkV5VQ7xD1lyxS0YA9yBdULvg_NDS00IVZfO3nAIcpQDvaMslRwtdqTNDg_odq3V_0oaOVcz2yHh4O7q5i-oCCRH4UfAoldJLzUQWu9RybmFzZLXXAlCQEVIyFytttDdK2tgqlSjNmBpoz5kzgsdqsE86RVm4A0KZdZkFX3FlE8zpqGED4APSvc2EcqJLLhoH5aZWD8ciFh95pXvMcnBn3rizS85a669KNeMXu2v0dWuDWtfhRTl9y-vQyXWqU88dFyxNYMUx2ijjU-UvncIOmy7pNSOV1wE4y2GnhCXLAV52yXkYvT87gg8ADQ__YXtENhnyWwKDu0c68-m3OwaAMtcnYRb-AI7o3WE priority: 102 providerName: Wiley-Blackwell |
Title | Recent development of nanomedicine for the treatment of bacterial biofilm infections |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200065 https://www.proquest.com/docview/2552146352 https://doaj.org/article/b7b7f4e45276400cbcacf7af0ea7954c |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSyQxEC1WvexlUdxlZ1eHHPQg0mhnkk7nJCojKigius6tyeey4Haro1d_u1WZ9KgHvTSkKUKofNRLUnkPYMN5a0obRoVGNFqIKhLlrXZF7aUTKtQyJLWGs_Pq-FqcTuQkH7hNc1plvyamhdp3js7IdxD6kgY14oW9u_uCVKPodjVLaCzAElGX0ahWEzU_YyH4rLTM-e5Y3vlzcoN7wvQ8Rb6LRImw_x3KfItVU7A5WoZvGSWy_Vm3rsCX0K7CFUI8DBHMv-b5sC6y1rRdf0POEIIyhHRsnj9OFnbGyIwV2n-k0P2f9SlY7fQ7XB-Nrw6PiyyKUKDvpCiU1lFbLusyKC-Exw2Rt9FKRD5Oas1Daayz0RntS29MZSznZmSj4MFJUZrRD1hsuzb8BMZ9qD36RxhfURwn3hoEHBjifS1NkAPY7h3UuMwYTsIVt82M65g36M6md-cANufWdzOmjA_sDsjXcxvit04_uoe_TZ4ujVVWRRGE5KrCVcZZZ1xUJu4GQw12A1jre6rJk27avA6RAWyl3vu0IVRAOPjr86p-w1dOaSwpUXsNFh8fnsI64pBHO4QFLi6GacgNYelgfH5xOUx7evyePY9fAO9w37Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXRFUQC6X40B4Qitp47Tg-IEQp1S59nLawN-MnQoKkdIsQf4rfyIyTbOmhvfXoaORY47HnG3s8H8C2D86WLo4LjWi0EFWikrfaF3WQXqhYy5jZGk5Oq8mZ-DiX8xX4O7yFobTKYU_MG3VoPZ2R7yL0JQ5qxAtvz38WxBpFt6sDhUZnFkfxz28M2RZvpgc4vzucH36YvZ8UPatAgT-XolBaJ-24rMuoghABI4rgkpMIHbzUmsfSOu-StzqUwdrKOs7t2CXBo5eitGPs9x6soePdo2BPzdXyTIfgutKyz6_H9u6n6WeMQfNzGHnN82WCgGuo9n9snJ3b4SN42KNS9q4zo3VYic0GzBBSokti4SqviLWJNbZphxt5hpCXIYRky3x1knBdBWjs0H0jRvAfbEj5ahaP4exO1PUEVpu2iU-B8RDrgPoRNlSEG6hODgIchBShljbKEbweFGR8X6GciDK-m662MjeoTjOocwQ7S-nzrjLHDXL7pOulDNXTzh_ai6-mX57GKaeSiEJyVeGu5p23Pimb9qKlAfsRbA4zZfpFvjBXJjmCV3n2bh0INRB-Pru9q5dwfzI7OTbH09Oj5_CAUwpNThLfhNXLi1_xBWKgS7eVDY_Bl7u29H8SSBl5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxQxFD7BJTG-EI0SV1D7IA-GTNbpttPpgyEibFguG0JAeau9GhOdQRZD_Gv-Os-ZyyIP8sZjJydNc3rafqfz9XwAb3xwNndxnGlEo5koEpW81T4rg_RCxVLGRq3haFbsnYn9c3m-BH_6tzBEq-z3xGajDrWnO_IRQl_SoEa8MEodLeJ4Z7J18TMjBSn609rLabQhchB_X2P6Nn8_3cG53uB8snv6cS_rFAYyHIgUmdI6acdlmUcVhAiYXQSXnEQY4aXWPObWeZe81SEP1hbWcW7HLgkevRS5HWO_D2BZUVY0gOXt3dnxyeKGh8C70rJj22N79Gn6GTPS5nGMvHUONnIBtzDuv0i5Oeomj2Glw6jsQxtUT2ApVk_hFAEmHlAs3LCMWJ1YZau6_z_PEAAzBJRswV4nC9fWg8YO3TfSB__BegJYNX8GZ_fisFUYVHUVnwPjIZYB_SNsKAhFUNUchDsIMEIpbZRD2OwdZHxXr5xkM76bttIyN-hO07tzCBsL64u2Tsd_7LbJ1wsbqq7dfKgvv5pusRqnnEoiCslVgXucd976pGx6Fy0N2A9hvZ8p0y35ubkJ0CG8bWbvzoFQA8Hoi7u7eg0PMcrN4XR2sAaPOPFpGsb4OgyuLn_FlwiIrtyrLvIYfLnvYP8L2uIfFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+development+of+nanomedicine+for+the+treatment+of+bacterial+biofilm+infections&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Xiu%2C+Weijun&rft.au=Jingyang+Shan&rft.au=Yang%2C+Kaili&rft.au=Xiao%2C+Hang&rft.date=2021-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2688-268X&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1002%2FVIW.20200065&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon |