Root architecture development in stony soils

Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined...

Full description

Saved in:
Bibliographic Details
Published inVadose zone journal Vol. 20; no. 4
Main Authors Morandage, Shehan, Vanderborght, Jan, Zörner, Mirjam, Cai, Gaochao, Leitner, Daniel, Vereecken, Harry, Schnepf, Andrea
Format Journal Article
LanguageEnglish
Published Madison John Wiley & Sons, Inc 01.07.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [Triticum aestivum L.] and maize [Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities. Core Ideas We present a dynamic root architecture model that considers macroscopic soil properties. Root elongation rate and preferred growth direction are influenced by stones. We simulate the effects of soil properties on root architecture development using field data. Only belowground effects are considered by the root architecture model. Similar trends in measured and simulated root growth are observed in two different soils.
AbstractList Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [ Triticum aestivum L.] and maize [ Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities. We present a dynamic root architecture model that considers macroscopic soil properties. Root elongation rate and preferred growth direction are influenced by stones. We simulate the effects of soil properties on root architecture development using field data. Only belowground effects are considered by the root architecture model. Similar trends in measured and simulated root growth are observed in two different soils.
Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [Triticum aestivum L.] and maize [Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities.
Abstract Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [Triticum aestivum L.] and maize [Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities.
Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [Triticum aestivum L.] and maize [Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities. Core Ideas We present a dynamic root architecture model that considers macroscopic soil properties. Root elongation rate and preferred growth direction are influenced by stones. We simulate the effects of soil properties on root architecture development using field data. Only belowground effects are considered by the root architecture model. Similar trends in measured and simulated root growth are observed in two different soils.
Author Morandage, Shehan
Cai, Gaochao
Zörner, Mirjam
Vereecken, Harry
Schnepf, Andrea
Vanderborght, Jan
Leitner, Daniel
Author_xml – sequence: 1
  givenname: Shehan
  orcidid: 0000-0003-1309-7369
  surname: Morandage
  fullname: Morandage, Shehan
  email: shehan.morandage@uni-hohenheim.de
  organization: Univ. of Hohenheim
– sequence: 2
  givenname: Jan
  orcidid: 0000-0001-7381-3211
  surname: Vanderborght
  fullname: Vanderborght, Jan
  organization: Agrosphere (IBG‐3)
– sequence: 3
  givenname: Mirjam
  surname: Zörner
  fullname: Zörner, Mirjam
  organization: Agrosphere (IBG‐3)
– sequence: 4
  givenname: Gaochao
  orcidid: 0000-0003-4484-1146
  surname: Cai
  fullname: Cai, Gaochao
  organization: Univ. of Bayreuth
– sequence: 5
  givenname: Daniel
  surname: Leitner
  fullname: Leitner, Daniel
  organization: Simulationswerkstatt
– sequence: 6
  givenname: Harry
  orcidid: 0000-0002-8051-8517
  surname: Vereecken
  fullname: Vereecken, Harry
  organization: Agrosphere (IBG‐3)
– sequence: 7
  givenname: Andrea
  orcidid: 0000-0003-2203-4466
  surname: Schnepf
  fullname: Schnepf, Andrea
  organization: Agrosphere (IBG‐3)
BookMark eNp9kU9rFEEQxRuJYBK9-AkGchFx167-MzN9DCExkYAg6sFLU9tTbXqZnV67ezesnz6zO0EkBE9VFL_3qop3wo6GOBBjb4HPgXPxcftnKeaCg5Qv2DFoaWZQ1_Lon_4VO8l5yTkYpcQx-_A1xlJhcnehkCubRFVHW-rjekVDqcJQ5RKHXZVj6PNr9tJjn-nNYz1l368uv11cz26_fLq5OL-dOdVoOUNjuAYjajDQtYKg6chBY0DrzpPyhEIYrb1xqLpuQW0rsAUPwjiOCrk8ZTeTbxdxadcprDDtbMRgD4OYfllMJbiebOMAfe2dV6ZWulkskOuO0Kv9bqdo9Ho3ea1T_L2hXOwqZEd9jwPFTbaigVbWvJEwomdP0GXcpGH81AqtRV2LxsiRej9RLsWcE_m_BwK3-xDsPgR7CGGE-RPYhYIlxKEkDP3zEpgk96Gn3X_M7Y-fn8WkeQB58ZnW
CitedBy_id crossref_primary_10_1007_s11104_022_05685_x
crossref_primary_10_48044_jauf_2024_005
crossref_primary_10_1093_jxb_erae378
crossref_primary_10_34133_plantphenomics_0127
crossref_primary_10_5194_bg_21_5495_2024
crossref_primary_10_1002_pld3_582
crossref_primary_10_1007_s11104_024_06799_0
crossref_primary_10_1111_aab_70006
crossref_primary_10_3390_d15090957
crossref_primary_10_1093_insilicoplants_diad012
crossref_primary_10_1016_j_jhydrol_2023_129708
crossref_primary_10_1038_s41597_024_03535_2
crossref_primary_10_34133_2022_9758532
crossref_primary_10_1002_vzj2_20382
crossref_primary_10_1002_vzj2_20293
crossref_primary_10_1002_vzj2_20181
Cites_doi 10.1016/j.agwat.2010.08.021
10.1007/s11104-018-3656-z
10.1093/jxb/eru250
10.1111/gcb.12389
10.1093/jxb/erw320
10.1093/jxb/erz383
10.1007/s11104-005-4827-2
10.1007/BF00018055
10.1093/jxb/ert286
10.1016/j.catena.2009.02.011
10.1007/s11104-008-9771-5
10.1093/aob/mcs031
10.1016/S1161-0301(98)00047-1
10.1007/BF02182917
10.1023/A:1011972019617
10.2136/vzj2018.11.0196
10.1093/aob/mcs118
10.1038/s41598-020-72557-8
10.1016/0098-8472(93)90055-K
10.1186/s13007-019-0409-9
10.1007/BF00010082
10.1111/j.1469-8137.2007.02271.x
10.1002/eco.134
10.1007/s11104-019-03993-3
10.1007/BF00541120
10.1093/oxfordjournals.aob.a087903
10.1093/jxb/erv077
10.1007/s11104-013-1769-y
10.3733/ca.v046n05p9
10.1098/rsif.2019.0293
10.1016/0167-1987(94)90006-X
10.1007/BF02378351
10.2136/vzj2018.08.0163
10.3389/fpls.2019.01358
10.1007/s11104-016-3144-2
10.1093/insilicoplants/diaa001
10.1007/978-3-642-39802-5_57
10.1104/pp.111.175489
10.1016/j.fcr.2016.07.009
10.2136/vzj2016.05.0043
10.1104/pp.109.142448
10.1093/aob/mcw057
10.1111/nph.14641
10.1080/00288233.1997.9513265
10.1093/aob/mcs082
10.1093/aob/mcx221
10.1016/0021-8634(78)90075-6
10.1016/j.eja.2014.12.004
10.1007/0-387-22746-6_7
10.1088/1478-3975/aa90dd
10.2136/vzj2017.11.0201
10.1023/A:1004240706284
10.1093/jxb/erj003
10.1023/A:1004264608576
10.1007/s11104-013-1942-3
10.1007/BF02370272
10.1023/A:1004556100253
10.1007/BF00779171
10.2136/sssaj2013.01.0016
10.1007/BF02374326
10.2136/vzj2011.0179
10.1046/j.1365-2435.1998.00276.x
10.1093/jxb/erq350
10.3390/agronomy9060297
10.1111/j.1365-3040.2005.01304.x
10.1093/jxb/erv007
10.1007/BF01373511
10.1071/CP14184
10.1097/00010694-199210000-00005
10.1016/S1161-0301(00)00056-3
10.1046/j.1365-2389.2002.00429.x
10.1016/j.fcr.2009.07.006
10.1104/pp.17.00357
10.1515/johh-2017-0052
10.1016/0098-8472(91)90046-Q
10.1016/j.jhydrol.2007.04.013
10.2136/vzj2011.0152
10.1071/FP09184
10.1006/jtbi.1996.0367
10.1016/0167-1987(91)90080-H
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of Soil Science Society of America
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Soil Science Society of America
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7S9
L.6
DOA
DOI 10.1002/vzj2.20133
DatabaseName Wiley Online Library Open Access
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1539-1663
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7c1af6fcf496457bba05deaf4191dc4e
10_1002_vzj2_20133
VZJ220133
Genre article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .~0
0R~
123
18M
1OB
1OC
24P
2WC
6KN
AAHBH
AAHHS
AAWFE
ABJNI
ACAWQ
ACCFJ
ACCMX
ACGFO
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFRAH
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
C1A
CS3
DDYGU
DU5
E3Z
EBS
ECGQY
EJD
GOHGZ
GROUPED_DOAJ
GX1
H13
IAO
IGS
ITC
MV1
M~E
NHAZY
O9-
OK1
P2P
RAK
RGW
SAMSI
TR2
WIN
WOQ
WXSBR
~02
~KM
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7UA
C1K
F1W
H96
L.G
7S9
L.6
ID FETCH-LOGICAL-c4753-a99051926191d82e17dec179155dfe4fea22955f9ca4ddbe882a81f129c0a4a03
IEDL.DBID 24P
ISSN 1539-1663
IngestDate Wed Aug 27 01:21:56 EDT 2025
Fri Jul 11 18:24:23 EDT 2025
Fri Jul 25 05:35:28 EDT 2025
Fri Jul 04 03:42:02 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Wed Jan 22 16:30:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4753-a99051926191d82e17dec179155dfe4fea22955f9ca4ddbe882a81f129c0a4a03
Notes Assigned to Associate Editor Thorsten Knappenberger.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8051-8517
0000-0003-1309-7369
0000-0001-7381-3211
0000-0003-4484-1146
0000-0003-2203-4466
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fvzj2.20133
PQID 2552662793
PQPubID 2046224
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_7c1af6fcf496457bba05deaf4191dc4e
proquest_miscellaneous_2718360731
proquest_journals_2552662793
crossref_primary_10_1002_vzj2_20133
crossref_citationtrail_10_1002_vzj2_20133
wiley_primary_10_1002_vzj2_20133_VZJ220133
PublicationCentury 2000
PublicationDate July/August 2021
2021-07-00
20210701
2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July/August 2021
PublicationDecade 2020
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle Vadose zone journal
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2010; 98
2018; 121
1991; 19
1997; 40
1989; 119
2002; 53
2019; 10
2011; 62
1982; 54
2013; 64
2019; 15
2007; 340
2019; 16
2019; 18
2009; 151
2020; 10
2014; 375
2005; 28
2012; 11
1999; 209
2011; 156
2009; 114
2014; 65
2014; 20
2020; 2
1978; 23
1992; 154
2000; 13
2016; 118
1997; 186
1993; 33
1997; 188
1997; 189
2008; 316
1999; 10
2006; 285
1992; 46
2019; 438
2010; 3
1998; 12
1994; 30
2016; 196
2019; 9
2019; 70
1987; 98
1986; 94
2006; 57
1991; 31
1973; 39
2017; 174
2018; 428
2004
2003
2018; 66
2016; 15
2017; 215
2017; 415
2009; 77
2009; 36
2018; 17
1990; 65
2012; 110
2013; 77
2017; 14
2015; 64
1994; 164
1984; 77
2015; 66
1993; 150
2017
2013; 372
2013
1972; 36
2008; 177
2001; 235
2016; 67
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
Fakih M. (e_1_2_9_23_1) 2017
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 372
  start-page: 93
  year: 2013
  end-page: 124
  article-title: Modelling root‐soil interactions using three‐dimensional models of root growth, architecture and function
  publication-title: Plant and Soil
– volume: 154
  start-page: 290
  year: 1992
  end-page: 299
  article-title: Soil‐temperature and root‐growth
  publication-title: Soil Science
– volume: 39
  start-page: 177
  year: 1973
  end-page: 186
  article-title: Effect of soil temperature on direction of corn root growth
  publication-title: Plant and Soil
– volume: 10
  start-page: 23
  year: 1999
  end-page: 36
  article-title: Temperatures and the growth and development of wheat: A review
  publication-title: European Journal of Agronomy
– volume: 14
  year: 2017
  article-title: Physical root‐soil interactions
  publication-title: Physical Biology
– volume: 110
  start-page: 521
  year: 2012
  end-page: 534
  article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures
  publication-title: Annals of Botany
– volume: 62
  start-page: 59
  year: 2011
  end-page: 68
  article-title: Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits
  publication-title: Journal of Experimental Botany
– volume: 28
  start-page: 562
  year: 2005
  end-page: 569
  article-title: Root navigation by self inhibition
  publication-title: Plant Cell and Environment
– volume: 118
  start-page: 685
  year: 2016
  end-page: 698
  article-title: Plant root tortuosity: An indicator of root path formation in soil with different composition and density
  publication-title: Annals of Botany
– volume: 415
  start-page: 99
  year: 2017
  end-page: 116
  article-title: A new model for root growth in soil with macropores
  publication-title: Plant and Soil
– volume: 156
  start-page: 1190
  year: 2011
  end-page: 1201
  article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium
  publication-title: Plant Physiology
– volume: 186
  start-page: 327
  year: 1997
  end-page: 338
  article-title: Modelling rooting depth and soil strength in a drying soil profile
  publication-title: Journal of Theoretical Biology
– volume: 10
  year: 2019
  article-title: Mechanical and hydric stress effects on maize root system development at different soil compaction levels
  publication-title: Frontiers in Plant Science
– volume: 177
  start-page: 549
  year: 2008
  end-page: 557
  article-title: Automatic discrimination of fine roots in minirhizotron images
  publication-title: New Phytologist
– volume: 174
  start-page: 2289
  year: 2017
  end-page: 2301
  article-title: Root tip shape governs root elongation rate under increased soil strength
  publication-title: Plant Physiology
– volume: 316
  start-page: 205
  year: 2008
  end-page: 215
  article-title: Evaluation of a core sampling scheme to characterize root length density of maize
  publication-title: Plant and Soil
– volume: 15
  start-page: 26
  year: 2019
  article-title: Construction of a large‐scale semi‐field facility to study genotypic differences in deep root growth and resources acquisition
  publication-title: Plant Methods
– volume: 110
  start-page: 259
  year: 2012
  end-page: 270
  article-title: Soil strength and macropore volume limit root elongation rates in many UK agricultural soils
  publication-title: Annals of Botany
– volume: 31
  start-page: 471
  year: 1991
  end-page: 477
  article-title: Growth and development of seminal and crown roots of wheat seedlings as affected by temperature
  publication-title: Environmental and Experimental Botany
– volume: 215
  start-page: 1274
  year: 2017
  end-page: 1286
  article-title: OpenSimRoot: Widening the scope and application of root architectural models
  publication-title: New Phytologist
– volume: 65
  start-page: 27
  year: 1990
  end-page: 36
  article-title: Effects of the temperature of the rooting zone on the growth and development of roots of potato ( )
  publication-title: Annals of Botany
– volume: 428
  start-page: 67
  year: 2018
  end-page: 92
  article-title: Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil
  publication-title: Plant and Soil
– volume: 3
  start-page: 238
  year: 2010
  end-page: 245
  article-title: The ecohydrology of roots in rocks
  publication-title: Ecohydrology
– volume: 119
  start-page: 87
  year: 1989
  end-page: 97
  article-title: Effects of temperature on the development and growth of winter wheat roots
  publication-title: Plant and Soil
– volume: 30
  start-page: 217
  year: 1994
  end-page: 243
  article-title: Growth and functioning of roots and of root systems subjected to soil compaction. Towards a system with multiple signalling?
  publication-title: Soil and Tillage Research
– volume: 53
  start-page: 119
  year: 2002
  end-page: 127
  article-title: Influence of soil strength on root growth: experiments and analysis using a critical‐state model
  publication-title: European Journal of Soil Science
– volume: 66
  start-page: 2055
  year: 2015
  end-page: 2065
  article-title: Reduced frequency of lateral root branching improves N capture from low‐N soils in maize
  publication-title: Journal of Experimental Botany
– volume: 64
  start-page: 4761
  year: 2013
  end-page: 4777
  article-title: How do roots elongate in a structured soil?
  publication-title: Journal of Experimental Botany
– volume: 2
  year: 2020
  article-title: CPlantBox, a whole‐plant modelling framework for the simulation of water‐ and carbon‐related processes
  publication-title: In Silico Plants
– year: 2004
– volume: 65
  start-page: 6231
  year: 2014
  end-page: 6249
  article-title: Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding
  publication-title: Journal of Experimental Botany
– volume: 9
  year: 2019
  article-title: Scanner‐based minirhizotrons help to highlight relations between deep roots and yield in various wheat cultivars under combined water and nitrogen deficit conditions
  publication-title: Agronomy
– volume: 64
  start-page: 8
  year: 2015
  end-page: 20
  article-title: Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements
  publication-title: European Journal of Agronomy
– volume: 19
  start-page: 111
  year: 1991
  end-page: 119
  article-title: Effect of soil compaction on root development
  publication-title: Soil & Tillage Research
– volume: 189
  start-page: 155
  year: 1997
  end-page: 164
  article-title: A biophysical analysis of root growth under mechanical stress
  publication-title: Plant and Soil
– volume: 121
  start-page: 1033
  year: 2018
  end-page: 1053
  article-title: CRootBox: A structural‐functional modelling framework for root systems
  publication-title: Annals of Botany
– volume: 17
  year: 2018
  article-title: Erratum to “Construction of minirhizotron facilities for investigating root zone processes” and “Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation
  publication-title: Vadose Zone Journal
– volume: 12
  start-page: 959
  year: 1998
  end-page: 964
  article-title: Root growth dependence on soil temperature for : Influences of air temperature and a doubled CO concentration
  publication-title: Functional Ecology
– volume: 13
  start-page: 39
  year: 2000
  end-page: 45
  article-title: Relationships between soil structure, root distribution and water uptake of chickpea ( L.). Plant growth and water distribution
  publication-title: European Journal of Agronomy
– volume: 114
  start-page: 75
  year: 2009
  end-page: 83
  article-title: Root size, distribution and soil water depletion as affected by cultivars and environmental factors
  publication-title: Field Crops Research
– volume: 209
  start-page: 201
  year: 1999
  end-page: 208
  article-title: Calibration of minirhizotron readings against root length density data obtained from soil cores
  publication-title: Plant and Soil
– volume: 66
  start-page: 181
  year: 2018
  end-page: 188
  article-title: The influence of stony soil properties on water dynamics modeled by the HYDRUS model
  publication-title: Journal of Hydrology and Hydromechanics
– volume: 11
  year: 2012
  article-title: Parameterizing a dynamic architectural model of the root system of spring barley from minirhizotron data
  publication-title: Vadose Zone Journal
– volume: 188
  start-page: 319
  year: 1997
  end-page: 327
  article-title: Root and inorganic nitrogen distributions in sesbania fallow, natural fallow and maize fields
  publication-title: Plant and Soil
– volume: 15
  year: 2016
  article-title: Construction of minirhizotron facilities for investigating root zone processes
  publication-title: Vadose Zone Journal
– volume: 11
  year: 2012
  article-title: Links between root length density profiles and models of the root system architecture
  publication-title: Vadose Zone Journal
– volume: 66
  start-page: 2293
  year: 2015
  end-page: 2303
  article-title: Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield
  publication-title: Journal of Experimental Botany
– volume: 66
  start-page: 158
  year: 2015
  end-page: 167
  article-title: Root growth of irrigated summer crops in cotton‐based farming systems sown in Vertosols of northern New South Wales
  publication-title: Crop & Pasture Science
– volume: 70
  start-page: 6019
  year: 2019
  end-page: 6034
  article-title: Soil compaction and the architectural plasticity of root systems
  publication-title: Journal of Experimental Botany
– year: 2003
– volume: 18
  year: 2019
  article-title: Modeling the impact of biopores on root growth and root water uptake
  publication-title: Vadose Zone Journal
– volume: 438
  start-page: 101
  year: 2019
  end-page: 126
  article-title: Parameter sensitivity analysis of a root system architecture model based on virtual field sampling
  publication-title: Plant and Soil
– volume: 10
  year: 2020
  article-title: Modeling root system growth around obstacles
  publication-title: Scientific Reports
– volume: 98
  start-page: 199
  year: 2010
  end-page: 212
  article-title: Distribution of roots and root length density in a maize/soybean strip intercropping system
  publication-title: Agricultural Water Management
– volume: 40
  start-page: 429
  year: 1997
  end-page: 435
  article-title: A study of the effects of soil bulk density on root and shoot growth of different ryegrass lines
  publication-title: New Zealand Journal of Agricultural Research
– volume: 110
  start-page: 511
  year: 2012
  end-page: 519
  article-title: Quantifying the impact of soil compaction on root system architecture in tomato ( ) by X‐ray micro‐computed tomography
  publication-title: Annals of Botany
– volume: 340
  start-page: 205
  year: 2007
  end-page: 216
  article-title: Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques
  publication-title: Journal of Hydrology
– volume: 151
  start-page: 1855
  year: 2009
  end-page: 1866
  article-title: Mechanical stimuli modulate lateral root organogenesis
  publication-title: Plant Physiology
– volume: 285
  start-page: 45
  year: 2006
  end-page: 55
  article-title: Root length density and water uptake distributions of winter wheat under sub‐irrigation
  publication-title: Plant and Soil
– volume: 150
  start-page: 15
  year: 1993
  end-page: 24
  article-title: Simulation model of soil compaction and root growth
  publication-title: Plant and Soil
– volume: 94
  start-page: 321
  year: 1986
  end-page: 332
  article-title: Effects of temperature on parameters of root‐growth relevant to nutrient‐uptake: Measurements on oilseed rape and barley grown in flowing nutrient solution
  publication-title: Plant and Soil
– volume: 196
  start-page: 268
  year: 2016
  end-page: 275
  article-title: Limited‐irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat
  publication-title: Field Crops Research
– volume: 235
  start-page: 135
  year: 2001
  end-page: 142
  article-title: Scaling of root length density of maize in the field profile
  publication-title: Plant and Soil
– volume: 16
  year: 2019
  article-title: Model selection and parameter estimation for root architecture models using likelihood‐free inference
  publication-title: Journal of The Royal Society Interface
– volume: 33
  start-page: 53
  year: 1993
  end-page: 61
  article-title: The impact of the soil environment on the growth of root systems
  publication-title: Environmental and Experimental Botany
– volume: 375
  start-page: 75
  year: 2014
  end-page: 88
  article-title: Estimating the parameters of a 3‐D root distribution function from root observations with the trench profile method: Case study with simulated and field‐observed root data
  publication-title: Plant and Soil
– volume: 57
  start-page: 437
  year: 2006
  end-page: 447
  article-title: Root responses to soil physical conditions; growth dynamics from field to cell
  publication-title: Journal of Experimental Botany
– volume: 23
  start-page: 17
  year: 1978
  end-page: 22
  article-title: The deflection of plant roots
  publication-title: Journal of Agricultural Engineering Research
– volume: 17
  year: 2018
  article-title: Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation
  publication-title: Vadose Zone Journal
– volume: 36
  start-page: 613
  year: 1972
  end-page: 622
  article-title: Soil physical conditions affecting seedling root growth
  publication-title: Plant and Soil
– volume: 77
  start-page: 131
  year: 1984
  end-page: 140
  article-title: Displacement of soil aggregates by elongating roots and emerging shoots of crop plants
  publication-title: Plant and Soil
– volume: 77
  start-page: 285
  year: 2009
  end-page: 291
  article-title: The stone and boulder content of Swedish forest soils
  publication-title: Catena
– volume: 77
  start-page: 1488
  year: 2013
  end-page: 1495
  article-title: Scaling the dependency of soil penetration resistance on water content and bulk density of different soils
  publication-title: Soil Science Society of America Journal
– year: 2017
  article-title: Modeling root growth in granular soils: Effects of root stiffness and packing fraction
  publication-title: EPJ Web of Conferences
– volume: 36
  start-page: 947
  year: 2009
  end-page: 959
  article-title: Temperature responses of roots: Impact on growth, root system architecture and implications for phenotyping
  publication-title: Functional Plant Biology
– volume: 46
  start-page: 9
  year: 1992
  end-page: 11
  article-title: Cracks in irrigated clay soil may allow some drainage
  publication-title: California Agriculture
– volume: 164
  start-page: 299
  year: 1994
  end-page: 314
  article-title: Simultaneous modeling of transient three‐dimensional root growth and soil water flow
  publication-title: Plant and Soil
– volume: 20
  start-page: 408
  year: 2014
  end-page: 417
  article-title: Temperatures and the growth and development of maize and rice: A review
  publication-title: Global Change Biology
– volume: 98
  start-page: 303
  year: 1987
  end-page: 312
  article-title: Mechanics of root growth
  publication-title: Plant and Soil
– volume: 18
  issue: 1
  year: 2019
  article-title: Influence of stone content on soil hydraulic properties: Experimental investigation and test of existing model concepts
  publication-title: Vadose Zone Journal
– volume: 67
  start-page: 5605
  year: 2016
  end-page: 5614
  article-title: 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces
  publication-title: Journal of Experimental Botany
– volume: 54
  start-page: 136
  year: 1982
  end-page: 137
  article-title: Temperature effect on growth rates of roots
  publication-title: Oecologia
– year: 2013
– start-page: 140
  year: 2017
  ident: e_1_2_9_23_1
  article-title: Modeling root growth in granular soils: Effects of root stiffness and packing fraction
  publication-title: EPJ Web of Conferences
– ident: e_1_2_9_25_1
  doi: 10.1016/j.agwat.2010.08.021
– ident: e_1_2_9_14_1
  doi: 10.1007/s11104-018-3656-z
– ident: e_1_2_9_73_1
  doi: 10.1093/jxb/eru250
– ident: e_1_2_9_59_1
  doi: 10.1111/gcb.12389
– ident: e_1_2_9_6_1
  doi: 10.1093/jxb/erw320
– ident: e_1_2_9_13_1
  doi: 10.1093/jxb/erz383
– ident: e_1_2_9_84_1
  doi: 10.1007/s11104-005-4827-2
– ident: e_1_2_9_46_1
  doi: 10.1007/BF00018055
– ident: e_1_2_9_33_1
  doi: 10.1093/jxb/ert286
– ident: e_1_2_9_64_1
  doi: 10.1016/j.catena.2009.02.011
– ident: e_1_2_9_7_1
  doi: 10.1007/s11104-008-9771-5
– ident: e_1_2_9_68_1
  doi: 10.1093/aob/mcs031
– ident: e_1_2_9_53_1
  doi: 10.1016/S1161-0301(98)00047-1
– ident: e_1_2_9_76_1
  doi: 10.1007/BF02182917
– ident: e_1_2_9_82_1
  doi: 10.1023/A:1011972019617
– ident: e_1_2_9_39_1
  doi: 10.2136/vzj2018.11.0196
– ident: e_1_2_9_69_1
  doi: 10.1093/aob/mcs118
– ident: e_1_2_9_34_1
  doi: 10.1038/s41598-020-72557-8
– ident: e_1_2_9_41_1
  doi: 10.1016/0098-8472(93)90055-K
– ident: e_1_2_9_65_1
  doi: 10.1186/s13007-019-0409-9
– ident: e_1_2_9_11_1
  doi: 10.1007/BF00010082
– ident: e_1_2_9_78_1
  doi: 10.1111/j.1469-8137.2007.02271.x
– ident: e_1_2_9_62_1
  doi: 10.1002/eco.134
– ident: e_1_2_9_43_1
  doi: 10.1007/s11104-019-03993-3
– ident: e_1_2_9_49_1
– ident: e_1_2_9_21_1
  doi: 10.1007/BF00541120
– ident: e_1_2_9_60_1
  doi: 10.1093/oxfordjournals.aob.a087903
– ident: e_1_2_9_75_1
  doi: 10.1093/jxb/erv077
– ident: e_1_2_9_19_1
  doi: 10.1007/s11104-013-1769-y
– ident: e_1_2_9_28_1
  doi: 10.3733/ca.v046n05p9
– ident: e_1_2_9_83_1
  doi: 10.1098/rsif.2019.0293
– ident: e_1_2_9_66_1
  doi: 10.1016/0167-1987(94)90006-X
– ident: e_1_2_9_16_1
  doi: 10.1007/BF02378351
– ident: e_1_2_9_45_1
  doi: 10.2136/vzj2018.08.0163
– ident: e_1_2_9_15_1
  doi: 10.3389/fpls.2019.01358
– ident: e_1_2_9_38_1
  doi: 10.1007/s11104-016-3144-2
– ident: e_1_2_9_81_1
  doi: 10.1093/insilicoplants/diaa001
– ident: e_1_2_9_51_1
  doi: 10.1007/978-3-642-39802-5_57
– ident: e_1_2_9_55_1
  doi: 10.1104/pp.111.175489
– ident: e_1_2_9_77_1
  doi: 10.1016/j.fcr.2016.07.009
– ident: e_1_2_9_10_1
  doi: 10.2136/vzj2016.05.0043
– ident: e_1_2_9_58_1
  doi: 10.1104/pp.109.142448
– ident: e_1_2_9_52_1
  doi: 10.1093/aob/mcw057
– ident: e_1_2_9_57_1
  doi: 10.1111/nph.14641
– ident: e_1_2_9_30_1
  doi: 10.1080/00288233.1997.9513265
– ident: e_1_2_9_56_1
  doi: 10.1093/aob/mcs082
– ident: e_1_2_9_61_1
  doi: 10.1093/aob/mcx221
– ident: e_1_2_9_17_1
  doi: 10.1016/0021-8634(78)90075-6
– ident: e_1_2_9_63_1
  doi: 10.1016/j.eja.2014.12.004
– ident: e_1_2_9_47_1
  doi: 10.1007/0-387-22746-6_7
– ident: e_1_2_9_37_1
  doi: 10.1088/1478-3975/aa90dd
– ident: e_1_2_9_8_1
  doi: 10.2136/vzj2017.11.0201
– ident: e_1_2_9_4_1
  doi: 10.1023/A:1004240706284
– ident: e_1_2_9_3_1
  doi: 10.1093/jxb/erj003
– ident: e_1_2_9_42_1
  doi: 10.1023/A:1004264608576
– ident: e_1_2_9_70_1
  doi: 10.1007/s11104-013-1942-3
– ident: e_1_2_9_72_1
  doi: 10.1007/BF02370272
– ident: e_1_2_9_22_1
  doi: 10.1023/A:1004556100253
– ident: e_1_2_9_27_1
  doi: 10.1007/BF00779171
– ident: e_1_2_9_71_1
  doi: 10.2136/sssaj2013.01.0016
– ident: e_1_2_9_40_1
  doi: 10.1007/BF02374326
– ident: e_1_2_9_26_1
  doi: 10.2136/vzj2011.0179
– ident: e_1_2_9_18_1
  doi: 10.1046/j.1365-2435.1998.00276.x
– ident: e_1_2_9_5_1
  doi: 10.1093/jxb/erq350
– ident: e_1_2_9_54_1
  doi: 10.3390/agronomy9060297
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1365-3040.2005.01304.x
– ident: e_1_2_9_79_1
  doi: 10.1093/jxb/erv007
– ident: e_1_2_9_20_1
  doi: 10.1007/BF01373511
– ident: e_1_2_9_32_1
  doi: 10.1071/CP14184
– ident: e_1_2_9_35_1
  doi: 10.1097/00010694-199210000-00005
– ident: e_1_2_9_50_1
  doi: 10.1016/S1161-0301(00)00056-3
– ident: e_1_2_9_9_1
  doi: 10.2136/vzj2017.11.0201
– ident: e_1_2_9_36_1
  doi: 10.1046/j.1365-2389.2002.00429.x
– ident: e_1_2_9_80_1
  doi: 10.1016/j.fcr.2009.07.006
– ident: e_1_2_9_12_1
  doi: 10.1104/pp.17.00357
– ident: e_1_2_9_29_1
  doi: 10.1515/johh-2017-0052
– ident: e_1_2_9_31_1
  doi: 10.1016/0098-8472(91)90046-Q
– ident: e_1_2_9_74_1
  doi: 10.1016/j.jhydrol.2007.04.013
– ident: e_1_2_9_48_1
  doi: 10.2136/vzj2011.0152
– ident: e_1_2_9_44_1
  doi: 10.1071/FP09184
– ident: e_1_2_9_2_1
  doi: 10.1006/jtbi.1996.0367
– ident: e_1_2_9_67_1
  doi: 10.1016/0167-1987(91)90080-H
SSID ssj0019442
Score 2.3763742
Snippet Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil...
Abstract Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms carbon
corn
Cracks
Crops
Developmental stages
Field tests
Growth models
Investigations
Moisture content
Root development
root growth
root systems
Rooting
Silt loam
silt loam soils
Soil investigations
Soil properties
Soil strength
Soil temperature
Stone
Stony soils
Systems development
Temperature
Triticum aestivum
vadose zone
Vegetation
Water content
Water temperature
Weather
Wheat
Zea mays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWiehFMTTZbF7HKpZS0INYKV6WfUqlJNKHoL_emSStLYhevIXNQJaZ7M73ZSffEHKuTKrjVDIPaJfxWCy1J2igvEyF0ldaAkZBonh3H3f7rDeIBkutvrAmrJIHrhzXSlQgbGyVZVnMokRK4UfaCMuAaGjFDO6-kPPmZKo-P8gYowsxUtp6_3zFn66CMFxJP6VK_wq0XAaoZYbpbJHNGhq67WpK22TN5Dtko_0yruUxzC65eiiKqbv88d_V31U_7jB3Ect9uJNiOJrskX7n9vGm69X9DjzFgDV4IkOxrAw5TaBTaoJEG4XyoVGkrWHWCOy9HdlMCaa1NACORRpYyNjKF0z44T5p5EVuDoirYti2ANklCcQBYICwqQWqEmiLI8Z3yMXcDVzVYuDYk2LEKxljytFlvHSZQ84Wtm-VBMaPVtfozYUFylaXAxBMXgeT_xVMhzTnseD1WppwID0UZeozeMbp4jasAjzaELkpZmADKTaMYbsKHHJZxvCXqfKn5x4trw7_Y9JHZJ1ioUtZw9skjel4Zo4BqUzlSflSfgEppucb
  priority: 102
  providerName: Directory of Open Access Journals
Title Root architecture development in stony soils
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fvzj2.20133
https://www.proquest.com/docview/2552662793
https://www.proquest.com/docview/2718360731
https://doaj.org/article/7c1af6fcf496457bba05deaf4191dc4e
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPQgPrG-iOhFMZikmxd4UVFEUESsiJdln6VSEmmroAd_uzPbNK0ggpcQkglJZjI735fd_RZgX5lMJ5lkPtIu47NEal9EofJz1ZSB0hIxChHFm9vkqsWun-KnKTgZzYUZ6kPUP9woM1x7TQkuZP94LBr6_vlCE6mQY03DLM2tJeX8iN3VfQg5c0vnYErnfoiFtRYnjY7H1_4oR061_wfUnASsruJcLsJCBRW902Fsl2DKFMswf9ruVXIZZgWO7sty4E12Bnh6PArI6xQeYbsPr192uv1VaF1ePJxf-dX6B75iyCJ8kZN4Vk4cJ9RZZMJUG0VyonGsrWHWCFqLO7a5EkxraRAsiyy0WMFVIJgImmswU5SFWQdPJdiMIdJLU4wLwgJhM4vUJdSWjpigAQcjN3BViYPTGhVdPpQ1jji5jDuXNWCvtn0dSmL8anVG3qwtSMbaHSh7bV5lBU9VKGxilWV5wuJUShHE2gjL6I0VMw3YGsWCV7nV50iCIpKtz_Eeu_VpzArq6hCFKd_QBktuM8HmK2zAoYvhH4_KH5-vI7e38R_jTZiLaICLG7u7BTOD3pvZRoQykDvuQ9xx_B63N18X31A34d4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8RADA66PqgP4onrWdEXxWI7O70eVZT1RERFfBmmc4girewh6K83ma1dBRF8K21K26SZfJnJfAHYUibVcZpzH9Mu4_M4175kofIz1coDpXPEKJQoXlzG7Vt-eh_dV7U5tBdmwA9RT7iRZ7jxmhycJqT3hqyhbx_PtJMKk6xRGOMxS8gvGb-qFxEy7nrnoE9nfoiRtWYnZXvDe3_EI0fb_wNrfkesLuQcT8NUhRW9_YFxZ2DEFLMwuf_YqfgyzBzsXpdlz_u-GuDpYRmQ91R4BO7evW759NKdh9vjo5vDtl81QPAVxzTClxmxZ2WU5IQ6ZSZMtFHEJxpF2hpujaRm3JHNlORa5wbRskxDiyFcBZLLoLUAjaIszCJ4KsZxDKFekqBhEBdIm1rMXUJt6YwJmrD9pQahKnZwalLxIga8xkyQyoRTWRM2a9nXASfGr1IHpM1agnis3Ymy8ygqtxCJCqWNrbI8i3mU5LkMIm2k5fTFipsmrHzZQlTO1RWYBTHirc_wGRv1ZXQLWuuQhSn7KIMxtxXj-BU2YcfZ8I9XFXcPp8wdLf1HeB3G2zcX5-L85PJsGSYYVbu4Qt4VaPQ6fbOKcKWXr7mf8hPlwOMk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QPRBPLGeEX1RDE3SzQW-1KN4I2JFfFk2e4giibRV0F_vzDZNFUTwLWwmJJnZ2flmj28AtqVOVJRkzMW0S7ssypQrAl-6qWxknlQZYhRKFC-vopM2O7sP70dgf3AWps8PUU24kWfY8Zoc_FWZ-pA09P3zmQ5SYY41CuNEk4d9erx5135oV6sIKbPFc9CpU9fH0FrRkwb14dM_ApLl7f8BNr9DVhtzWjMwXYJFp9m37iyM6HwOppqPnZIwQ8_D3k1R9JzvywGOGu4Dcp5yh9Ddh9Mtnl66C9BuHd8enrhlBQRXMswjXJESfVZKWY6vkkD7sdKSCEXDUBnNjBZUjTs0qRRMqUwjXBaJbzCGS08w4TUWYSwvcr0EjoxwIEOsF8doGQQGwiQGkxdfGWrRXg12BmrgsqQHpyoVL7xPbBxwUhm3KqvBViX72ifF-FXqgLRZSRCRtW0oOo-89AseS1-YyEjD0oiFcZYJL1RaGEZ_LJmuwerAFrz0ri7HNCgg4voU37FZ3Ua_oMUOkeviDWUw6DYiHMD8GuxaG_7xqfzu4SywV8v_Ed6AieujFr84vTpfgcmAdrvYjbyrMNbrvOk1hCu9bL3slV_4JOQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+architecture+development+in+stony+soils&rft.jtitle=Vadose+zone+journal&rft.au=Shehan+Morandage&rft.au=Vanderborght%2C+Jan&rft.au=Z%C3%B6rner%2C+Mirjam&rft.au=Cai%2C+Gaochao&rft.date=2021-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1539-1663&rft.volume=20&rft.issue=4&rft_id=info:doi/10.1002%2Fvzj2.20133&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon