Root architecture development in stony soils
Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined...
Saved in:
Published in | Vadose zone journal Vol. 20; no. 4 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Madison
John Wiley & Sons, Inc
01.07.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [Triticum aestivum L.] and maize [Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities.
Core Ideas
We present a dynamic root architecture model that considers macroscopic soil properties.
Root elongation rate and preferred growth direction are influenced by stones.
We simulate the effects of soil properties on root architecture development using field data.
Only belowground effects are considered by the root architecture model.
Similar trends in measured and simulated root growth are observed in two different soils. |
---|---|
AbstractList | Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [
Triticum aestivum
L.] and maize [
Zea mays
L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities.
We present a dynamic root architecture model that considers macroscopic soil properties.
Root elongation rate and preferred growth direction are influenced by stones.
We simulate the effects of soil properties on root architecture development using field data.
Only belowground effects are considered by the root architecture model.
Similar trends in measured and simulated root growth are observed in two different soils. Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [Triticum aestivum L.] and maize [Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities. Abstract Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [Triticum aestivum L.] and maize [Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities. Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil properties such as temperature or water content, which in turn affects root growth. We investigated the effects of all soil properties combined on root development in the field using both experiments and modeling. Field experiments were carried out in rhizotron facilities during two consecutive growing seasons (wheat [Triticum aestivum L.] and maize [Zea mays L.]) in silty loam soils with high (>50%) and low (<4%) stone contents. We extended the CPlantBox root architecture model to explicitly consider the presence of stones and simulated root growth on the plot scale over the whole vegetation period. We found that a linear increase of stone content resulted in a linear decrease of rooting depth across all stone contents and developmental stages considered, whereas rooting depth was only sensitive to cracks below a certain crack density and at earlier growth stages. Moreover, the impact of precipitation‐influenced soil strength had a relatively stronger impact on simulated root arrival curves during the vegetation periods than soil temperature. Resulting differences between stony and non‐stony soil of otherwise the same crop and weather conditions show similar trends as the differences observed in the rhizotron facilities. The combined belowground effects resulted in differences in characteristic root system measures of up to 48%. In future work, comparison of absolute values will require including shoot effects—in particular, different carbon availabilities. Core Ideas We present a dynamic root architecture model that considers macroscopic soil properties. Root elongation rate and preferred growth direction are influenced by stones. We simulate the effects of soil properties on root architecture development using field data. Only belowground effects are considered by the root architecture model. Similar trends in measured and simulated root growth are observed in two different soils. |
Author | Morandage, Shehan Cai, Gaochao Zörner, Mirjam Vereecken, Harry Schnepf, Andrea Vanderborght, Jan Leitner, Daniel |
Author_xml | – sequence: 1 givenname: Shehan orcidid: 0000-0003-1309-7369 surname: Morandage fullname: Morandage, Shehan email: shehan.morandage@uni-hohenheim.de organization: Univ. of Hohenheim – sequence: 2 givenname: Jan orcidid: 0000-0001-7381-3211 surname: Vanderborght fullname: Vanderborght, Jan organization: Agrosphere (IBG‐3) – sequence: 3 givenname: Mirjam surname: Zörner fullname: Zörner, Mirjam organization: Agrosphere (IBG‐3) – sequence: 4 givenname: Gaochao orcidid: 0000-0003-4484-1146 surname: Cai fullname: Cai, Gaochao organization: Univ. of Bayreuth – sequence: 5 givenname: Daniel surname: Leitner fullname: Leitner, Daniel organization: Simulationswerkstatt – sequence: 6 givenname: Harry orcidid: 0000-0002-8051-8517 surname: Vereecken fullname: Vereecken, Harry organization: Agrosphere (IBG‐3) – sequence: 7 givenname: Andrea orcidid: 0000-0003-2203-4466 surname: Schnepf fullname: Schnepf, Andrea organization: Agrosphere (IBG‐3) |
BookMark | eNp9kU9rFEEQxRuJYBK9-AkGchFx167-MzN9DCExkYAg6sFLU9tTbXqZnV67ezesnz6zO0EkBE9VFL_3qop3wo6GOBBjb4HPgXPxcftnKeaCg5Qv2DFoaWZQ1_Lon_4VO8l5yTkYpcQx-_A1xlJhcnehkCubRFVHW-rjekVDqcJQ5RKHXZVj6PNr9tJjn-nNYz1l368uv11cz26_fLq5OL-dOdVoOUNjuAYjajDQtYKg6chBY0DrzpPyhEIYrb1xqLpuQW0rsAUPwjiOCrk8ZTeTbxdxadcprDDtbMRgD4OYfllMJbiebOMAfe2dV6ZWulkskOuO0Kv9bqdo9Ho3ea1T_L2hXOwqZEd9jwPFTbaigVbWvJEwomdP0GXcpGH81AqtRV2LxsiRej9RLsWcE_m_BwK3-xDsPgR7CGGE-RPYhYIlxKEkDP3zEpgk96Gn3X_M7Y-fn8WkeQB58ZnW |
CitedBy_id | crossref_primary_10_1007_s11104_022_05685_x crossref_primary_10_48044_jauf_2024_005 crossref_primary_10_1093_jxb_erae378 crossref_primary_10_34133_plantphenomics_0127 crossref_primary_10_5194_bg_21_5495_2024 crossref_primary_10_1002_pld3_582 crossref_primary_10_1007_s11104_024_06799_0 crossref_primary_10_1111_aab_70006 crossref_primary_10_3390_d15090957 crossref_primary_10_1093_insilicoplants_diad012 crossref_primary_10_1016_j_jhydrol_2023_129708 crossref_primary_10_1038_s41597_024_03535_2 crossref_primary_10_34133_2022_9758532 crossref_primary_10_1002_vzj2_20382 crossref_primary_10_1002_vzj2_20293 crossref_primary_10_1002_vzj2_20181 |
Cites_doi | 10.1016/j.agwat.2010.08.021 10.1007/s11104-018-3656-z 10.1093/jxb/eru250 10.1111/gcb.12389 10.1093/jxb/erw320 10.1093/jxb/erz383 10.1007/s11104-005-4827-2 10.1007/BF00018055 10.1093/jxb/ert286 10.1016/j.catena.2009.02.011 10.1007/s11104-008-9771-5 10.1093/aob/mcs031 10.1016/S1161-0301(98)00047-1 10.1007/BF02182917 10.1023/A:1011972019617 10.2136/vzj2018.11.0196 10.1093/aob/mcs118 10.1038/s41598-020-72557-8 10.1016/0098-8472(93)90055-K 10.1186/s13007-019-0409-9 10.1007/BF00010082 10.1111/j.1469-8137.2007.02271.x 10.1002/eco.134 10.1007/s11104-019-03993-3 10.1007/BF00541120 10.1093/oxfordjournals.aob.a087903 10.1093/jxb/erv077 10.1007/s11104-013-1769-y 10.3733/ca.v046n05p9 10.1098/rsif.2019.0293 10.1016/0167-1987(94)90006-X 10.1007/BF02378351 10.2136/vzj2018.08.0163 10.3389/fpls.2019.01358 10.1007/s11104-016-3144-2 10.1093/insilicoplants/diaa001 10.1007/978-3-642-39802-5_57 10.1104/pp.111.175489 10.1016/j.fcr.2016.07.009 10.2136/vzj2016.05.0043 10.1104/pp.109.142448 10.1093/aob/mcw057 10.1111/nph.14641 10.1080/00288233.1997.9513265 10.1093/aob/mcs082 10.1093/aob/mcx221 10.1016/0021-8634(78)90075-6 10.1016/j.eja.2014.12.004 10.1007/0-387-22746-6_7 10.1088/1478-3975/aa90dd 10.2136/vzj2017.11.0201 10.1023/A:1004240706284 10.1093/jxb/erj003 10.1023/A:1004264608576 10.1007/s11104-013-1942-3 10.1007/BF02370272 10.1023/A:1004556100253 10.1007/BF00779171 10.2136/sssaj2013.01.0016 10.1007/BF02374326 10.2136/vzj2011.0179 10.1046/j.1365-2435.1998.00276.x 10.1093/jxb/erq350 10.3390/agronomy9060297 10.1111/j.1365-3040.2005.01304.x 10.1093/jxb/erv007 10.1007/BF01373511 10.1071/CP14184 10.1097/00010694-199210000-00005 10.1016/S1161-0301(00)00056-3 10.1046/j.1365-2389.2002.00429.x 10.1016/j.fcr.2009.07.006 10.1104/pp.17.00357 10.1515/johh-2017-0052 10.1016/0098-8472(91)90046-Q 10.1016/j.jhydrol.2007.04.013 10.2136/vzj2011.0152 10.1071/FP09184 10.1006/jtbi.1996.0367 10.1016/0167-1987(91)90080-H |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of Soil Science Society of America 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of Soil Science Society of America – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7UA C1K F1W H96 L.G 7S9 L.6 DOA |
DOI | 10.1002/vzj2.20133 |
DatabaseName | Wiley Online Library Open Access CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1539-1663 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_7c1af6fcf496457bba05deaf4191dc4e 10_1002_vzj2_20133 VZJ220133 |
Genre | article |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | .~0 0R~ 123 18M 1OB 1OC 24P 2WC 6KN AAHBH AAHHS AAWFE ABJNI ACAWQ ACCFJ ACCMX ACGFO ACXQS ADBBV ADKYN ADZMN AEEZP AENEX AEQDE AFRAH AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV C1A CS3 DDYGU DU5 E3Z EBS ECGQY EJD GOHGZ GROUPED_DOAJ GX1 H13 IAO IGS ITC MV1 M~E NHAZY O9- OK1 P2P RAK RGW SAMSI TR2 WIN WOQ WXSBR ~02 ~KM AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7UA C1K F1W H96 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-c4753-a99051926191d82e17dec179155dfe4fea22955f9ca4ddbe882a81f129c0a4a03 |
IEDL.DBID | 24P |
ISSN | 1539-1663 |
IngestDate | Wed Aug 27 01:21:56 EDT 2025 Fri Jul 11 18:24:23 EDT 2025 Fri Jul 25 05:35:28 EDT 2025 Fri Jul 04 03:42:02 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Wed Jan 22 16:30:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4753-a99051926191d82e17dec179155dfe4fea22955f9ca4ddbe882a81f129c0a4a03 |
Notes | Assigned to Associate Editor Thorsten Knappenberger. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8051-8517 0000-0003-1309-7369 0000-0001-7381-3211 0000-0003-4484-1146 0000-0003-2203-4466 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fvzj2.20133 |
PQID | 2552662793 |
PQPubID | 2046224 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7c1af6fcf496457bba05deaf4191dc4e proquest_miscellaneous_2718360731 proquest_journals_2552662793 crossref_primary_10_1002_vzj2_20133 crossref_citationtrail_10_1002_vzj2_20133 wiley_primary_10_1002_vzj2_20133_VZJ220133 |
PublicationCentury | 2000 |
PublicationDate | July/August 2021 2021-07-00 20210701 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July/August 2021 |
PublicationDecade | 2020 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison |
PublicationTitle | Vadose zone journal |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2010; 98 2018; 121 1991; 19 1997; 40 1989; 119 2002; 53 2019; 10 2011; 62 1982; 54 2013; 64 2019; 15 2007; 340 2019; 16 2019; 18 2009; 151 2020; 10 2014; 375 2005; 28 2012; 11 1999; 209 2011; 156 2009; 114 2014; 65 2014; 20 2020; 2 1978; 23 1992; 154 2000; 13 2016; 118 1997; 186 1993; 33 1997; 188 1997; 189 2008; 316 1999; 10 2006; 285 1992; 46 2019; 438 2010; 3 1998; 12 1994; 30 2016; 196 2019; 9 2019; 70 1987; 98 1986; 94 2006; 57 1991; 31 1973; 39 2017; 174 2018; 428 2004 2003 2018; 66 2016; 15 2017; 215 2017; 415 2009; 77 2009; 36 2018; 17 1990; 65 2012; 110 2013; 77 2017; 14 2015; 64 1994; 164 1984; 77 2015; 66 1993; 150 2017 2013; 372 2013 1972; 36 2008; 177 2001; 235 2016; 67 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 Fakih M. (e_1_2_9_23_1) 2017 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 372 start-page: 93 year: 2013 end-page: 124 article-title: Modelling root‐soil interactions using three‐dimensional models of root growth, architecture and function publication-title: Plant and Soil – volume: 154 start-page: 290 year: 1992 end-page: 299 article-title: Soil‐temperature and root‐growth publication-title: Soil Science – volume: 39 start-page: 177 year: 1973 end-page: 186 article-title: Effect of soil temperature on direction of corn root growth publication-title: Plant and Soil – volume: 10 start-page: 23 year: 1999 end-page: 36 article-title: Temperatures and the growth and development of wheat: A review publication-title: European Journal of Agronomy – volume: 14 year: 2017 article-title: Physical root‐soil interactions publication-title: Physical Biology – volume: 110 start-page: 521 year: 2012 end-page: 534 article-title: Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures publication-title: Annals of Botany – volume: 62 start-page: 59 year: 2011 end-page: 68 article-title: Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits publication-title: Journal of Experimental Botany – volume: 28 start-page: 562 year: 2005 end-page: 569 article-title: Root navigation by self inhibition publication-title: Plant Cell and Environment – volume: 118 start-page: 685 year: 2016 end-page: 698 article-title: Plant root tortuosity: An indicator of root path formation in soil with different composition and density publication-title: Annals of Botany – volume: 415 start-page: 99 year: 2017 end-page: 116 article-title: A new model for root growth in soil with macropores publication-title: Plant and Soil – volume: 156 start-page: 1190 year: 2011 end-page: 1201 article-title: Root cortical aerenchyma enhances the growth of maize on soils with suboptimal availability of nitrogen, phosphorus, and potassium publication-title: Plant Physiology – volume: 186 start-page: 327 year: 1997 end-page: 338 article-title: Modelling rooting depth and soil strength in a drying soil profile publication-title: Journal of Theoretical Biology – volume: 10 year: 2019 article-title: Mechanical and hydric stress effects on maize root system development at different soil compaction levels publication-title: Frontiers in Plant Science – volume: 177 start-page: 549 year: 2008 end-page: 557 article-title: Automatic discrimination of fine roots in minirhizotron images publication-title: New Phytologist – volume: 174 start-page: 2289 year: 2017 end-page: 2301 article-title: Root tip shape governs root elongation rate under increased soil strength publication-title: Plant Physiology – volume: 316 start-page: 205 year: 2008 end-page: 215 article-title: Evaluation of a core sampling scheme to characterize root length density of maize publication-title: Plant and Soil – volume: 15 start-page: 26 year: 2019 article-title: Construction of a large‐scale semi‐field facility to study genotypic differences in deep root growth and resources acquisition publication-title: Plant Methods – volume: 110 start-page: 259 year: 2012 end-page: 270 article-title: Soil strength and macropore volume limit root elongation rates in many UK agricultural soils publication-title: Annals of Botany – volume: 31 start-page: 471 year: 1991 end-page: 477 article-title: Growth and development of seminal and crown roots of wheat seedlings as affected by temperature publication-title: Environmental and Experimental Botany – volume: 215 start-page: 1274 year: 2017 end-page: 1286 article-title: OpenSimRoot: Widening the scope and application of root architectural models publication-title: New Phytologist – volume: 65 start-page: 27 year: 1990 end-page: 36 article-title: Effects of the temperature of the rooting zone on the growth and development of roots of potato ( ) publication-title: Annals of Botany – volume: 428 start-page: 67 year: 2018 end-page: 92 article-title: Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil publication-title: Plant and Soil – volume: 3 start-page: 238 year: 2010 end-page: 245 article-title: The ecohydrology of roots in rocks publication-title: Ecohydrology – volume: 119 start-page: 87 year: 1989 end-page: 97 article-title: Effects of temperature on the development and growth of winter wheat roots publication-title: Plant and Soil – volume: 30 start-page: 217 year: 1994 end-page: 243 article-title: Growth and functioning of roots and of root systems subjected to soil compaction. Towards a system with multiple signalling? publication-title: Soil and Tillage Research – volume: 53 start-page: 119 year: 2002 end-page: 127 article-title: Influence of soil strength on root growth: experiments and analysis using a critical‐state model publication-title: European Journal of Soil Science – volume: 66 start-page: 2055 year: 2015 end-page: 2065 article-title: Reduced frequency of lateral root branching improves N capture from low‐N soils in maize publication-title: Journal of Experimental Botany – volume: 64 start-page: 4761 year: 2013 end-page: 4777 article-title: How do roots elongate in a structured soil? publication-title: Journal of Experimental Botany – volume: 2 year: 2020 article-title: CPlantBox, a whole‐plant modelling framework for the simulation of water‐ and carbon‐related processes publication-title: In Silico Plants – year: 2004 – volume: 65 start-page: 6231 year: 2014 end-page: 6249 article-title: Soil coring at multiple field environments can directly quantify variation in deep root traits to select wheat genotypes for breeding publication-title: Journal of Experimental Botany – volume: 9 year: 2019 article-title: Scanner‐based minirhizotrons help to highlight relations between deep roots and yield in various wheat cultivars under combined water and nitrogen deficit conditions publication-title: Agronomy – volume: 64 start-page: 8 year: 2015 end-page: 20 article-title: Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements publication-title: European Journal of Agronomy – volume: 19 start-page: 111 year: 1991 end-page: 119 article-title: Effect of soil compaction on root development publication-title: Soil & Tillage Research – volume: 189 start-page: 155 year: 1997 end-page: 164 article-title: A biophysical analysis of root growth under mechanical stress publication-title: Plant and Soil – volume: 121 start-page: 1033 year: 2018 end-page: 1053 article-title: CRootBox: A structural‐functional modelling framework for root systems publication-title: Annals of Botany – volume: 17 year: 2018 article-title: Erratum to “Construction of minirhizotron facilities for investigating root zone processes” and “Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation publication-title: Vadose Zone Journal – volume: 12 start-page: 959 year: 1998 end-page: 964 article-title: Root growth dependence on soil temperature for : Influences of air temperature and a doubled CO concentration publication-title: Functional Ecology – volume: 13 start-page: 39 year: 2000 end-page: 45 article-title: Relationships between soil structure, root distribution and water uptake of chickpea ( L.). Plant growth and water distribution publication-title: European Journal of Agronomy – volume: 114 start-page: 75 year: 2009 end-page: 83 article-title: Root size, distribution and soil water depletion as affected by cultivars and environmental factors publication-title: Field Crops Research – volume: 209 start-page: 201 year: 1999 end-page: 208 article-title: Calibration of minirhizotron readings against root length density data obtained from soil cores publication-title: Plant and Soil – volume: 66 start-page: 181 year: 2018 end-page: 188 article-title: The influence of stony soil properties on water dynamics modeled by the HYDRUS model publication-title: Journal of Hydrology and Hydromechanics – volume: 11 year: 2012 article-title: Parameterizing a dynamic architectural model of the root system of spring barley from minirhizotron data publication-title: Vadose Zone Journal – volume: 188 start-page: 319 year: 1997 end-page: 327 article-title: Root and inorganic nitrogen distributions in sesbania fallow, natural fallow and maize fields publication-title: Plant and Soil – volume: 15 year: 2016 article-title: Construction of minirhizotron facilities for investigating root zone processes publication-title: Vadose Zone Journal – volume: 11 year: 2012 article-title: Links between root length density profiles and models of the root system architecture publication-title: Vadose Zone Journal – volume: 66 start-page: 2293 year: 2015 end-page: 2303 article-title: Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield publication-title: Journal of Experimental Botany – volume: 66 start-page: 158 year: 2015 end-page: 167 article-title: Root growth of irrigated summer crops in cotton‐based farming systems sown in Vertosols of northern New South Wales publication-title: Crop & Pasture Science – volume: 70 start-page: 6019 year: 2019 end-page: 6034 article-title: Soil compaction and the architectural plasticity of root systems publication-title: Journal of Experimental Botany – year: 2003 – volume: 18 year: 2019 article-title: Modeling the impact of biopores on root growth and root water uptake publication-title: Vadose Zone Journal – volume: 438 start-page: 101 year: 2019 end-page: 126 article-title: Parameter sensitivity analysis of a root system architecture model based on virtual field sampling publication-title: Plant and Soil – volume: 10 year: 2020 article-title: Modeling root system growth around obstacles publication-title: Scientific Reports – volume: 98 start-page: 199 year: 2010 end-page: 212 article-title: Distribution of roots and root length density in a maize/soybean strip intercropping system publication-title: Agricultural Water Management – volume: 40 start-page: 429 year: 1997 end-page: 435 article-title: A study of the effects of soil bulk density on root and shoot growth of different ryegrass lines publication-title: New Zealand Journal of Agricultural Research – volume: 110 start-page: 511 year: 2012 end-page: 519 article-title: Quantifying the impact of soil compaction on root system architecture in tomato ( ) by X‐ray micro‐computed tomography publication-title: Annals of Botany – volume: 340 start-page: 205 year: 2007 end-page: 216 article-title: Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques publication-title: Journal of Hydrology – volume: 151 start-page: 1855 year: 2009 end-page: 1866 article-title: Mechanical stimuli modulate lateral root organogenesis publication-title: Plant Physiology – volume: 285 start-page: 45 year: 2006 end-page: 55 article-title: Root length density and water uptake distributions of winter wheat under sub‐irrigation publication-title: Plant and Soil – volume: 150 start-page: 15 year: 1993 end-page: 24 article-title: Simulation model of soil compaction and root growth publication-title: Plant and Soil – volume: 94 start-page: 321 year: 1986 end-page: 332 article-title: Effects of temperature on parameters of root‐growth relevant to nutrient‐uptake: Measurements on oilseed rape and barley grown in flowing nutrient solution publication-title: Plant and Soil – volume: 196 start-page: 268 year: 2016 end-page: 275 article-title: Limited‐irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat publication-title: Field Crops Research – volume: 235 start-page: 135 year: 2001 end-page: 142 article-title: Scaling of root length density of maize in the field profile publication-title: Plant and Soil – volume: 16 year: 2019 article-title: Model selection and parameter estimation for root architecture models using likelihood‐free inference publication-title: Journal of The Royal Society Interface – volume: 33 start-page: 53 year: 1993 end-page: 61 article-title: The impact of the soil environment on the growth of root systems publication-title: Environmental and Experimental Botany – volume: 375 start-page: 75 year: 2014 end-page: 88 article-title: Estimating the parameters of a 3‐D root distribution function from root observations with the trench profile method: Case study with simulated and field‐observed root data publication-title: Plant and Soil – volume: 57 start-page: 437 year: 2006 end-page: 447 article-title: Root responses to soil physical conditions; growth dynamics from field to cell publication-title: Journal of Experimental Botany – volume: 23 start-page: 17 year: 1978 end-page: 22 article-title: The deflection of plant roots publication-title: Journal of Agricultural Engineering Research – volume: 17 year: 2018 article-title: Parameterization of root water uptake models considering dynamic root distributions and water uptake compensation publication-title: Vadose Zone Journal – volume: 36 start-page: 613 year: 1972 end-page: 622 article-title: Soil physical conditions affecting seedling root growth publication-title: Plant and Soil – volume: 77 start-page: 131 year: 1984 end-page: 140 article-title: Displacement of soil aggregates by elongating roots and emerging shoots of crop plants publication-title: Plant and Soil – volume: 77 start-page: 285 year: 2009 end-page: 291 article-title: The stone and boulder content of Swedish forest soils publication-title: Catena – volume: 77 start-page: 1488 year: 2013 end-page: 1495 article-title: Scaling the dependency of soil penetration resistance on water content and bulk density of different soils publication-title: Soil Science Society of America Journal – year: 2017 article-title: Modeling root growth in granular soils: Effects of root stiffness and packing fraction publication-title: EPJ Web of Conferences – volume: 36 start-page: 947 year: 2009 end-page: 959 article-title: Temperature responses of roots: Impact on growth, root system architecture and implications for phenotyping publication-title: Functional Plant Biology – volume: 46 start-page: 9 year: 1992 end-page: 11 article-title: Cracks in irrigated clay soil may allow some drainage publication-title: California Agriculture – volume: 164 start-page: 299 year: 1994 end-page: 314 article-title: Simultaneous modeling of transient three‐dimensional root growth and soil water flow publication-title: Plant and Soil – volume: 20 start-page: 408 year: 2014 end-page: 417 article-title: Temperatures and the growth and development of maize and rice: A review publication-title: Global Change Biology – volume: 98 start-page: 303 year: 1987 end-page: 312 article-title: Mechanics of root growth publication-title: Plant and Soil – volume: 18 issue: 1 year: 2019 article-title: Influence of stone content on soil hydraulic properties: Experimental investigation and test of existing model concepts publication-title: Vadose Zone Journal – volume: 67 start-page: 5605 year: 2016 end-page: 5614 article-title: 3D deformation field in growing plant roots reveals both mechanical and biological responses to axial mechanical forces publication-title: Journal of Experimental Botany – volume: 54 start-page: 136 year: 1982 end-page: 137 article-title: Temperature effect on growth rates of roots publication-title: Oecologia – year: 2013 – start-page: 140 year: 2017 ident: e_1_2_9_23_1 article-title: Modeling root growth in granular soils: Effects of root stiffness and packing fraction publication-title: EPJ Web of Conferences – ident: e_1_2_9_25_1 doi: 10.1016/j.agwat.2010.08.021 – ident: e_1_2_9_14_1 doi: 10.1007/s11104-018-3656-z – ident: e_1_2_9_73_1 doi: 10.1093/jxb/eru250 – ident: e_1_2_9_59_1 doi: 10.1111/gcb.12389 – ident: e_1_2_9_6_1 doi: 10.1093/jxb/erw320 – ident: e_1_2_9_13_1 doi: 10.1093/jxb/erz383 – ident: e_1_2_9_84_1 doi: 10.1007/s11104-005-4827-2 – ident: e_1_2_9_46_1 doi: 10.1007/BF00018055 – ident: e_1_2_9_33_1 doi: 10.1093/jxb/ert286 – ident: e_1_2_9_64_1 doi: 10.1016/j.catena.2009.02.011 – ident: e_1_2_9_7_1 doi: 10.1007/s11104-008-9771-5 – ident: e_1_2_9_68_1 doi: 10.1093/aob/mcs031 – ident: e_1_2_9_53_1 doi: 10.1016/S1161-0301(98)00047-1 – ident: e_1_2_9_76_1 doi: 10.1007/BF02182917 – ident: e_1_2_9_82_1 doi: 10.1023/A:1011972019617 – ident: e_1_2_9_39_1 doi: 10.2136/vzj2018.11.0196 – ident: e_1_2_9_69_1 doi: 10.1093/aob/mcs118 – ident: e_1_2_9_34_1 doi: 10.1038/s41598-020-72557-8 – ident: e_1_2_9_41_1 doi: 10.1016/0098-8472(93)90055-K – ident: e_1_2_9_65_1 doi: 10.1186/s13007-019-0409-9 – ident: e_1_2_9_11_1 doi: 10.1007/BF00010082 – ident: e_1_2_9_78_1 doi: 10.1111/j.1469-8137.2007.02271.x – ident: e_1_2_9_62_1 doi: 10.1002/eco.134 – ident: e_1_2_9_43_1 doi: 10.1007/s11104-019-03993-3 – ident: e_1_2_9_49_1 – ident: e_1_2_9_21_1 doi: 10.1007/BF00541120 – ident: e_1_2_9_60_1 doi: 10.1093/oxfordjournals.aob.a087903 – ident: e_1_2_9_75_1 doi: 10.1093/jxb/erv077 – ident: e_1_2_9_19_1 doi: 10.1007/s11104-013-1769-y – ident: e_1_2_9_28_1 doi: 10.3733/ca.v046n05p9 – ident: e_1_2_9_83_1 doi: 10.1098/rsif.2019.0293 – ident: e_1_2_9_66_1 doi: 10.1016/0167-1987(94)90006-X – ident: e_1_2_9_16_1 doi: 10.1007/BF02378351 – ident: e_1_2_9_45_1 doi: 10.2136/vzj2018.08.0163 – ident: e_1_2_9_15_1 doi: 10.3389/fpls.2019.01358 – ident: e_1_2_9_38_1 doi: 10.1007/s11104-016-3144-2 – ident: e_1_2_9_81_1 doi: 10.1093/insilicoplants/diaa001 – ident: e_1_2_9_51_1 doi: 10.1007/978-3-642-39802-5_57 – ident: e_1_2_9_55_1 doi: 10.1104/pp.111.175489 – ident: e_1_2_9_77_1 doi: 10.1016/j.fcr.2016.07.009 – ident: e_1_2_9_10_1 doi: 10.2136/vzj2016.05.0043 – ident: e_1_2_9_58_1 doi: 10.1104/pp.109.142448 – ident: e_1_2_9_52_1 doi: 10.1093/aob/mcw057 – ident: e_1_2_9_57_1 doi: 10.1111/nph.14641 – ident: e_1_2_9_30_1 doi: 10.1080/00288233.1997.9513265 – ident: e_1_2_9_56_1 doi: 10.1093/aob/mcs082 – ident: e_1_2_9_61_1 doi: 10.1093/aob/mcx221 – ident: e_1_2_9_17_1 doi: 10.1016/0021-8634(78)90075-6 – ident: e_1_2_9_63_1 doi: 10.1016/j.eja.2014.12.004 – ident: e_1_2_9_47_1 doi: 10.1007/0-387-22746-6_7 – ident: e_1_2_9_37_1 doi: 10.1088/1478-3975/aa90dd – ident: e_1_2_9_8_1 doi: 10.2136/vzj2017.11.0201 – ident: e_1_2_9_4_1 doi: 10.1023/A:1004240706284 – ident: e_1_2_9_3_1 doi: 10.1093/jxb/erj003 – ident: e_1_2_9_42_1 doi: 10.1023/A:1004264608576 – ident: e_1_2_9_70_1 doi: 10.1007/s11104-013-1942-3 – ident: e_1_2_9_72_1 doi: 10.1007/BF02370272 – ident: e_1_2_9_22_1 doi: 10.1023/A:1004556100253 – ident: e_1_2_9_27_1 doi: 10.1007/BF00779171 – ident: e_1_2_9_71_1 doi: 10.2136/sssaj2013.01.0016 – ident: e_1_2_9_40_1 doi: 10.1007/BF02374326 – ident: e_1_2_9_26_1 doi: 10.2136/vzj2011.0179 – ident: e_1_2_9_18_1 doi: 10.1046/j.1365-2435.1998.00276.x – ident: e_1_2_9_5_1 doi: 10.1093/jxb/erq350 – ident: e_1_2_9_54_1 doi: 10.3390/agronomy9060297 – ident: e_1_2_9_24_1 doi: 10.1111/j.1365-3040.2005.01304.x – ident: e_1_2_9_79_1 doi: 10.1093/jxb/erv007 – ident: e_1_2_9_20_1 doi: 10.1007/BF01373511 – ident: e_1_2_9_32_1 doi: 10.1071/CP14184 – ident: e_1_2_9_35_1 doi: 10.1097/00010694-199210000-00005 – ident: e_1_2_9_50_1 doi: 10.1016/S1161-0301(00)00056-3 – ident: e_1_2_9_9_1 doi: 10.2136/vzj2017.11.0201 – ident: e_1_2_9_36_1 doi: 10.1046/j.1365-2389.2002.00429.x – ident: e_1_2_9_80_1 doi: 10.1016/j.fcr.2009.07.006 – ident: e_1_2_9_12_1 doi: 10.1104/pp.17.00357 – ident: e_1_2_9_29_1 doi: 10.1515/johh-2017-0052 – ident: e_1_2_9_31_1 doi: 10.1016/0098-8472(91)90046-Q – ident: e_1_2_9_74_1 doi: 10.1016/j.jhydrol.2007.04.013 – ident: e_1_2_9_48_1 doi: 10.2136/vzj2011.0152 – ident: e_1_2_9_44_1 doi: 10.1071/FP09184 – ident: e_1_2_9_2_1 doi: 10.1006/jtbi.1996.0367 – ident: e_1_2_9_67_1 doi: 10.1016/0167-1987(91)90080-H |
SSID | ssj0019442 |
Score | 2.3763742 |
Snippet | Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also affects soil... Abstract Soils with high stone content represent a challenge to root development, as each stone is an obstacle to root growth. A high stone content also... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | carbon corn Cracks Crops Developmental stages Field tests Growth models Investigations Moisture content Root development root growth root systems Rooting Silt loam silt loam soils Soil investigations Soil properties Soil strength Soil temperature Stone Stony soils Systems development Temperature Triticum aestivum vadose zone Vegetation Water content Water temperature Weather Wheat Zea mays |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT4xWiehFMTTZbF7HKpZS0INYKV6WfUqlJNKHoL_emSStLYhevIXNQJaZ7M73ZSffEHKuTKrjVDIPaJfxWCy1J2igvEyF0ldaAkZBonh3H3f7rDeIBkutvrAmrJIHrhzXSlQgbGyVZVnMokRK4UfaCMuAaGjFDO6-kPPmZKo-P8gYowsxUtp6_3zFn66CMFxJP6VK_wq0XAaoZYbpbJHNGhq67WpK22TN5Dtko_0yruUxzC65eiiKqbv88d_V31U_7jB3Ect9uJNiOJrskX7n9vGm69X9DjzFgDV4IkOxrAw5TaBTaoJEG4XyoVGkrWHWCOy9HdlMCaa1NACORRpYyNjKF0z44T5p5EVuDoirYti2ANklCcQBYICwqQWqEmiLI8Z3yMXcDVzVYuDYk2LEKxljytFlvHSZQ84Wtm-VBMaPVtfozYUFylaXAxBMXgeT_xVMhzTnseD1WppwID0UZeozeMbp4jasAjzaELkpZmADKTaMYbsKHHJZxvCXqfKn5x4trw7_Y9JHZJ1ioUtZw9skjel4Zo4BqUzlSflSfgEppucb priority: 102 providerName: Directory of Open Access Journals |
Title | Root architecture development in stony soils |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fvzj2.20133 https://www.proquest.com/docview/2552662793 https://www.proquest.com/docview/2718360731 https://doaj.org/article/7c1af6fcf496457bba05deaf4191dc4e |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB58XPQgPrG-iOhFMZikmxd4UVFEUESsiJdln6VSEmmroAd_uzPbNK0ggpcQkglJZjI735fd_RZgX5lMJ5lkPtIu47NEal9EofJz1ZSB0hIxChHFm9vkqsWun-KnKTgZzYUZ6kPUP9woM1x7TQkuZP94LBr6_vlCE6mQY03DLM2tJeX8iN3VfQg5c0vnYErnfoiFtRYnjY7H1_4oR061_wfUnASsruJcLsJCBRW902Fsl2DKFMswf9ruVXIZZgWO7sty4E12Bnh6PArI6xQeYbsPr192uv1VaF1ePJxf-dX6B75iyCJ8kZN4Vk4cJ9RZZMJUG0VyonGsrWHWCFqLO7a5EkxraRAsiyy0WMFVIJgImmswU5SFWQdPJdiMIdJLU4wLwgJhM4vUJdSWjpigAQcjN3BViYPTGhVdPpQ1jji5jDuXNWCvtn0dSmL8anVG3qwtSMbaHSh7bV5lBU9VKGxilWV5wuJUShHE2gjL6I0VMw3YGsWCV7nV50iCIpKtz_Eeu_VpzArq6hCFKd_QBktuM8HmK2zAoYvhH4_KH5-vI7e38R_jTZiLaICLG7u7BTOD3pvZRoQykDvuQ9xx_B63N18X31A34d4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8RADA66PqgP4onrWdEXxWI7O70eVZT1RERFfBmmc4girewh6K83ma1dBRF8K21K26SZfJnJfAHYUibVcZpzH9Mu4_M4175kofIz1coDpXPEKJQoXlzG7Vt-eh_dV7U5tBdmwA9RT7iRZ7jxmhycJqT3hqyhbx_PtJMKk6xRGOMxS8gvGb-qFxEy7nrnoE9nfoiRtWYnZXvDe3_EI0fb_wNrfkesLuQcT8NUhRW9_YFxZ2DEFLMwuf_YqfgyzBzsXpdlz_u-GuDpYRmQ91R4BO7evW759NKdh9vjo5vDtl81QPAVxzTClxmxZ2WU5IQ6ZSZMtFHEJxpF2hpujaRm3JHNlORa5wbRskxDiyFcBZLLoLUAjaIszCJ4KsZxDKFekqBhEBdIm1rMXUJt6YwJmrD9pQahKnZwalLxIga8xkyQyoRTWRM2a9nXASfGr1IHpM1agnis3Ymy8ygqtxCJCqWNrbI8i3mU5LkMIm2k5fTFipsmrHzZQlTO1RWYBTHirc_wGRv1ZXQLWuuQhSn7KIMxtxXj-BU2YcfZ8I9XFXcPp8wdLf1HeB3G2zcX5-L85PJsGSYYVbu4Qt4VaPQ6fbOKcKWXr7mf8hPlwOMk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB48QPRBPLGeEX1RDE3SzQW-1KN4I2JFfFk2e4giibRV0F_vzDZNFUTwLWwmJJnZ2flmj28AtqVOVJRkzMW0S7ssypQrAl-6qWxknlQZYhRKFC-vopM2O7sP70dgf3AWps8PUU24kWfY8Zoc_FWZ-pA09P3zmQ5SYY41CuNEk4d9erx5135oV6sIKbPFc9CpU9fH0FrRkwb14dM_ApLl7f8BNr9DVhtzWjMwXYJFp9m37iyM6HwOppqPnZIwQ8_D3k1R9JzvywGOGu4Dcp5yh9Ddh9Mtnl66C9BuHd8enrhlBQRXMswjXJESfVZKWY6vkkD7sdKSCEXDUBnNjBZUjTs0qRRMqUwjXBaJbzCGS08w4TUWYSwvcr0EjoxwIEOsF8doGQQGwiQGkxdfGWrRXg12BmrgsqQHpyoVL7xPbBxwUhm3KqvBViX72ifF-FXqgLRZSRCRtW0oOo-89AseS1-YyEjD0oiFcZYJL1RaGEZ_LJmuwerAFrz0ri7HNCgg4voU37FZ3Ua_oMUOkeviDWUw6DYiHMD8GuxaG_7xqfzu4SywV8v_Ed6AieujFr84vTpfgcmAdrvYjbyrMNbrvOk1hCu9bL3slV_4JOQc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+architecture+development+in+stony+soils&rft.jtitle=Vadose+zone+journal&rft.au=Shehan+Morandage&rft.au=Vanderborght%2C+Jan&rft.au=Z%C3%B6rner%2C+Mirjam&rft.au=Cai%2C+Gaochao&rft.date=2021-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1539-1663&rft.volume=20&rft.issue=4&rft_id=info:doi/10.1002%2Fvzj2.20133&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon |