Dectin‐1 promotes fungicidal activity of human neutrophils
Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin‐1 (β‐glucan receptor) is a PRR expre...
Saved in:
Published in | European Journal of Immunology Vol. 37; no. 2; pp. 467 - 478 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag
01.02.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 0014-2980 1521-4141 1365-2567 |
DOI | 10.1002/eji.200636653 |
Cover
Abstract | Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin‐1 (β‐glucan receptor) is a PRR expressed on several cell types and has been studied on monocytes and macrophages. However, the role played by dectin‐1 in the recognition and killing of fungi by PMN is unknown. We investigated the ability of dectin‐1 to mediate human PMN phagocytosis and fungicidal activity. Dectin‐1 was expressed on the surface of PMN from all subjects tested (n=29) and in an intracellular compartment that co‐sedimented with azurophilic granules in Percoll density gradients. Soluble β‐glucan and mAb GE2 (anti‐dectin‐1) inhibited binding and phagocytosis of zymosan by human PMN (e.g., ingestion was inhibited 40.1% by 30 min, p<0.001), and blocked reactive oxygen species production. Notably, soluble β‐glucan and GE2 inhibited phagocytosis and killing of Candida albicans by PMN (inhibition of killing was 54.8% for β‐glucan and 36.2% for GE2, p<0.01). Our results reveal a mechanism whereby PMN dectin‐1 plays a key role in the recognition and killing of fungal pathogens by the innate immune system. |
---|---|
AbstractList | Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin‐1 (β‐glucan receptor) is a PRR expressed on several cell types and has been studied on monocytes and macrophages. However, the role played by dectin‐1 in the recognition and killing of fungi by PMN is unknown. We investigated the ability of dectin‐1 to mediate human PMN phagocytosis and fungicidal activity. Dectin‐1 was expressed on the surface of PMN from all subjects tested (
n
=29) and in an intracellular compartment that co‐sedimented with azurophilic granules in Percoll density gradients. Soluble β‐glucan and mAb GE2 (anti‐dectin‐1) inhibited binding and phagocytosis of zymosan by human PMN (
e.g
., ingestion was inhibited 40.1% by 30 min,
p
<0.001), and blocked reactive oxygen species production. Notably, soluble β‐glucan and GE2 inhibited phagocytosis and killing of
Candida albicans
by PMN (inhibition of killing was 54.8% for β‐glucan and 36.2% for GE2,
p
<0.01). Our results reveal a mechanism whereby PMN dectin‐1 plays a key role in the recognition and killing of fungal pathogens by the innate immune system. Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin-1 (beta-glucan receptor) is a PRR expressed on several cell types and has been studied on monocytes and macrophages. However, the role played by dectin-1 in the recognition and killing of fungi by PMN is unknown. We investigated the ability of dectin-1 to mediate human PMN phagocytosis and fungicidal activity. Dectin-1 was expressed on the surface of PMN from all subjects tested (n=29) and in an intracellular compartment that co-sedimented with azurophilic granules in Percoll density gradients. Soluble beta-glucan and mAb GE2 (anti-dectin-1) inhibited binding and phagocytosis of zymosan by human PMN (e.g., ingestion was inhibited 40.1% by 30 min, p<0.001), and blocked reactive oxygen species production. Notably, soluble beta-glucan and GE2 inhibited phagocytosis and killing of Candida albicans by PMN (inhibition of killing was 54.8% for beta-glucan and 36.2% for GE2, p<0.01). Our results reveal a mechanism whereby PMN dectin-1 plays a key role in the recognition and killing of fungal pathogens by the innate immune system.Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin-1 (beta-glucan receptor) is a PRR expressed on several cell types and has been studied on monocytes and macrophages. However, the role played by dectin-1 in the recognition and killing of fungi by PMN is unknown. We investigated the ability of dectin-1 to mediate human PMN phagocytosis and fungicidal activity. Dectin-1 was expressed on the surface of PMN from all subjects tested (n=29) and in an intracellular compartment that co-sedimented with azurophilic granules in Percoll density gradients. Soluble beta-glucan and mAb GE2 (anti-dectin-1) inhibited binding and phagocytosis of zymosan by human PMN (e.g., ingestion was inhibited 40.1% by 30 min, p<0.001), and blocked reactive oxygen species production. Notably, soluble beta-glucan and GE2 inhibited phagocytosis and killing of Candida albicans by PMN (inhibition of killing was 54.8% for beta-glucan and 36.2% for GE2, p<0.01). Our results reveal a mechanism whereby PMN dectin-1 plays a key role in the recognition and killing of fungal pathogens by the innate immune system. Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin‐1 (β‐glucan receptor) is a PRR expressed on several cell types and has been studied on monocytes and macrophages. However, the role played by dectin‐1 in the recognition and killing of fungi by PMN is unknown. We investigated the ability of dectin‐1 to mediate human PMN phagocytosis and fungicidal activity. Dectin‐1 was expressed on the surface of PMN from all subjects tested (n=29) and in an intracellular compartment that co‐sedimented with azurophilic granules in Percoll density gradients. Soluble β‐glucan and mAb GE2 (anti‐dectin‐1) inhibited binding and phagocytosis of zymosan by human PMN (e.g., ingestion was inhibited 40.1% by 30 min, p<0.001), and blocked reactive oxygen species production. Notably, soluble β‐glucan and GE2 inhibited phagocytosis and killing of Candida albicans by PMN (inhibition of killing was 54.8% for β‐glucan and 36.2% for GE2, p<0.01). Our results reveal a mechanism whereby PMN dectin‐1 plays a key role in the recognition and killing of fungal pathogens by the innate immune system. Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin-1 (beta-glucan receptor) is a PRR expressed on several cell types and has been studied on monocytes and macrophages. However, the role played by dectin-1 in the recognition and killing of fungi by PMN is unknown. We investigated the ability of dectin-1 to mediate human PMN phagocytosis and fungicidal activity. Dectin-1 was expressed on the surface of PMN from all subjects tested (n=29) and in an intracellular compartment that co-sedimented with azurophilic granules in Percoll density gradients. Soluble beta-glucan and mAb GE2 (anti-dectin-1) inhibited binding and phagocytosis of zymosan by human PMN (e.g., ingestion was inhibited 40.1% by 30 min, p<0.001), and blocked reactive oxygen species production. Notably, soluble beta-glucan and GE2 inhibited phagocytosis and killing of Candida albicans by PMN (inhibition of killing was 54.8% for beta-glucan and 36.2% for GE2, p<0.01). Our results reveal a mechanism whereby PMN dectin-1 plays a key role in the recognition and killing of fungal pathogens by the innate immune system. Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that facilitate identification of invading microorganisms and ultimately promote resolution of disease. Dectin-1 (-glucan receptor) is a PRR expressed on several cell types and has been studied on monocytes and macrophages. However, the role played by dectin-1 in the recognition and killing of fungi by PMN is unknown. We investigated the ability of dectin-1 to mediate human PMN phagocytosis and fungicidal activity. Dectin-1 was expressed on the surface of PMN from all subjects tested (n=29) and in an intracellular compartment that co-sedimented with azurophilic granules in Percoll density gradients. Soluble -glucan and mAb GE2 (anti-dectin-1) inhibited binding and phagocytosis of zymosan by human PMN (e.g., ingestion was inhibited 40.1% by 30min, p<0.001), and blocked reactive oxygen species production. Notably, soluble -glucan and GE2 inhibited phagocytosis and killing of Candida albicans by PMN (inhibition of killing was 54.8% for -glucan and 36.2% for GE2, p<0.01). Our results reveal a mechanism whereby PMN dectin-1 plays a key role in the recognition and killing of fungal pathogens by the innate immune system. |
Author | Kennedy, Adam D. Dorward, David W. Brown, Gordon D. Williams, David L. Willment, Janet A. DeLeo, Frank R. |
Author_xml | – sequence: 1 givenname: Adam D. surname: Kennedy fullname: Kennedy, Adam D. – sequence: 2 givenname: Janet A. surname: Willment fullname: Willment, Janet A. – sequence: 3 givenname: David W. surname: Dorward fullname: Dorward, David W. – sequence: 4 givenname: David L. surname: Williams fullname: Williams, David L. – sequence: 5 givenname: Gordon D. surname: Brown fullname: Brown, Gordon D. – sequence: 6 givenname: Frank R. surname: DeLeo fullname: DeLeo, Frank R. email: fdeleo@niaid.nih.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17230442$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0LtOwzAUBmALFdELjKwoE1vK8SVOIrGgUqCoEgvMluM41FXilDgBdeMReEaeBKMWKiEB8uDB328f_0PUs7XVCB1jGGMAcqaXZkwAOOU8ontogCOCQ4YZ7qEBAGYhSRPoo6FzSwBIeZQeoD6OCQXGyACdX2rVGvv--oaDVVNXdatdUHT20SiTyzKQ_vTZtOugLoJFV0kbWN21Tb1amNIdov1Clk4fbfcReria3k9uwvnd9WxyMQ8ViyMaygRILrNMqSLK4zyRlMQsJ5nitEhzwLH0DDIVKcULHUkc-Y-BJoqBKhLM6Qidbu71Ez512rWiMk7pspRW150TPElT4PH_EKcx8Yt5eLKFXVbpXKwaU8lmLb6K8SDcANXUzjW62BEQn8ULX7z4Lt57-sMr08rW1LZtpCl_TcWb1Isp9frvJ8T0drZLfgDJ2Jb6 |
CitedBy_id | crossref_primary_10_1016_j_lfs_2009_08_014 crossref_primary_10_1016_j_cimid_2007_08_005 crossref_primary_10_1371_journal_ppat_1007850 crossref_primary_10_3390_jof4010009 crossref_primary_10_1016_j_csbj_2022_08_013 crossref_primary_10_3390_jof10050302 crossref_primary_10_1016_j_chom_2009_12_005 crossref_primary_10_1080_21505594_2022_2137987 crossref_primary_10_1128_CMR_00093_13 crossref_primary_10_1371_journal_pgen_1010405 crossref_primary_10_1016_j_mib_2011_07_001 crossref_primary_10_1371_journal_ppat_1000976 crossref_primary_10_1016_j_intimp_2013_11_010 crossref_primary_10_1186_s40409_017_0102_2 crossref_primary_10_1371_journal_ppat_1002713 crossref_primary_10_1111_j_1574_6976_2007_00077_x crossref_primary_10_1074_jbc_M112_384164 crossref_primary_10_1146_annurev_pathol_020712_164023 crossref_primary_10_1016_j_molimm_2009_09_018 crossref_primary_10_1111_cmi_12103 crossref_primary_10_1186_s13613_024_01355_6 crossref_primary_10_1128_microbiolspec_FUNK_0014_2016 crossref_primary_10_4049_jimmunol_1202671 crossref_primary_10_1111_imr_12020 crossref_primary_10_1007_s00281_014_0465_1 crossref_primary_10_1080_14397595_2019_1601852 crossref_primary_10_3389_fimmu_2018_01261 crossref_primary_10_3389_fimmu_2021_767175 crossref_primary_10_1172_jci_insight_159491 crossref_primary_10_1093_infdis_jis607 crossref_primary_10_3389_ffunb_2022_842501 crossref_primary_10_3390_jof9100986 crossref_primary_10_1016_j_earlhumdev_2009_05_011 crossref_primary_10_1038_ni_2987 crossref_primary_10_1097_MCC_0b013e32833e046e crossref_primary_10_1189_jlb_0810457 crossref_primary_10_18632_oncotarget_24984 crossref_primary_10_1371_journal_pone_0114113 crossref_primary_10_1152_ajplung_00054_2014 crossref_primary_10_1371_journal_pone_0050589 crossref_primary_10_1007_s11046_017_0184_y crossref_primary_10_1111_j_1600_065X_2009_00793_x crossref_primary_10_1080_08910600701343286 crossref_primary_10_1073_pnas_1111415108 crossref_primary_10_4049_jimmunol_1200185 crossref_primary_10_1159_000360478 crossref_primary_10_1111_jfbc_12606 crossref_primary_10_1371_journal_pntd_0006237 crossref_primary_10_1007_s00011_018_1164_5 crossref_primary_10_1111_bjh_14597 crossref_primary_10_1017_S1462399408000835 crossref_primary_10_4049_jimmunol_180_8_5727 crossref_primary_10_1080_13693780802209082 crossref_primary_10_1128_mbio_03036_23 crossref_primary_10_1007_s00432_009_0562_z crossref_primary_10_1128_CMR_00055_08 crossref_primary_10_1128_iai_00342_22 crossref_primary_10_1016_j_mib_2010_04_009 crossref_primary_10_4049_jimmunol_0901293 crossref_primary_10_3390_jof9101014 crossref_primary_10_1128_IAI_00097_15 crossref_primary_10_1016_j_micinf_2009_03_010 crossref_primary_10_1016_j_chom_2010_08_002 crossref_primary_10_1093_intimm_dxy001 crossref_primary_10_1007_s00281_011_0295_3 crossref_primary_10_1111_myc_12725 crossref_primary_10_1128_CMR_00032_16 crossref_primary_10_1128_IAI_00102_08 crossref_primary_10_1111_j_1462_5822_2007_01086_x crossref_primary_10_1038_mp_a004078_01 crossref_primary_10_1186_s12920_023_01702_9 crossref_primary_10_1189_jlb_0213063 crossref_primary_10_1007_s00705_017_3569_9 crossref_primary_10_3389_fcimb_2014_00145 crossref_primary_10_1007_s00005_013_0221_6 crossref_primary_10_1016_j_intimp_2013_06_034 crossref_primary_10_1097_ACI_0b013e3282f82492 crossref_primary_10_1155_2019_1529189 crossref_primary_10_3109_13693780903136887 crossref_primary_10_1128_mbio_00074_23 crossref_primary_10_1007_s12026_008_8049_6 crossref_primary_10_1038_nrmicro1815 crossref_primary_10_3109_13693780903164566 crossref_primary_10_1016_j_it_2013_02_008 crossref_primary_10_1586_eri_12_74 crossref_primary_10_1007_s00281_013_0374_8 crossref_primary_10_4236_ojst_2012_24056 |
Cites_doi | 10.1016/j.micinf.2003.09.008 10.1182/blood-2004-03-1140 10.1172/JCI113241 10.1111/j.0300-9475.2004.01351.x 10.1083/jcb.97.1.52 10.1126/science.127.3301.756-a 10.1016/j.cell.2006.03.018 10.1038/nature03253 10.1084/jem.20030932 10.1074/jbc.270.28.16974 10.1056/NEJM200012073432307 10.1074/jbc.M909512199 10.1128/IAI.72.7.4159-4171.2004 10.4049/jimmunol.163.12.6732 10.4049/jimmunol.153.2.804 10.1083/jcb.109.6.3169 10.1073/pnas.0337370100 10.4049/jimmunol.176.9.5513 10.4049/jimmunol.172.2.1157 10.1083/jcb.200206089 10.4049/jimmunol.170.6.3357 10.1172/JCI118777 10.1084/jem.20020470 10.1073/pnas.092148299 10.4049/jimmunol.150.4.1535 10.1083/jcb.200501113 10.1002/eji.200425725 10.1016/0014-5793(92)81077-Y 10.1124/jpet.105.085415 10.1016/S0301-472X(02)00928-1 10.1182/blood.V93.10.3521.410k21_3521_3530 10.4049/jimmunol.175.6.3907 10.1182/blood-2005-03-1239 10.1165/rcmb.2002-0138OC 10.4049/jimmunol.177.4.2276 10.1023/A:1024154200702 10.1038/35092620 10.4049/jimmunol.169.11.6417 10.1189/jlb.0404216 10.1189/jlb.0104031 10.1016/S0092-8674(02)01201-1 10.1016/S1081-1206(10)62005-4 10.4049/jimmunol.171.9.4569 10.4049/jimmunol.156.3.1235 10.1189/jlb.1204697 10.1016/j.immuni.2005.03.004 10.1074/jbc.M107715200 10.1172/JCI111572 10.4049/jimmunol.134.5.3307 |
ContentType | Journal Article |
Copyright | Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7T7 8FD C1K FR3 H94 M7N P64 7X8 |
DOI | 10.1002/eji.200636653 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1521-4141 1365-2567 |
EndPage | 478 |
ExternalDocumentID | 17230442 10_1002_eji_200636653 EJI200636653 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health – fundername: Medical Research Council, South Africa – fundername: Intramural NIH HHS |
GroupedDBID | --- .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI UB1 UPT V2E VH1 W8V W99 WBKPD WHWMO WIB WIH WIK WIN WJL WOHZO WQJ WVDHM WXSBR X7M XG1 XPP XV2 Y6R ZGI ZXP ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 24P AEUQT AFPWT CGR CUY CVF ECM EIF NPM RGB RWI WRC WUP -~X 29I 2WC 36B 52R 52V 5HH 5LA 7T5 7T7 8FD A01 A8Z AAFWJ ABDBF ABXGK ACGFO ACGOF ACIWK ACMXC ACNCT ACUHS ADBTR AEGXH AFEBI AIACR AIAGR AOIJS BAWUL C1K C45 CAG COF D-6 D-7 DIK DRMAN E3Z EAD EAP EAS EBB EBC EBX EMB EMK EPT ESX EX3 FD6 FIJ FR3 FUBAC GX1 H94 HZI IH2 IHE K48 KBYEO M7N MRMAN MSMAN MXMAN OBC OBS P2Z P4B P64 Q~Q RPM TR2 TUS V8K WH7 WIJ WOW WXI YF5 YFH YOC YUY 7X8 |
ID | FETCH-LOGICAL-c4753-a802dabbccf5d7d8a3274d2bc63f9d017a4750bc5cc6fe5a150020e2c40cf8163 |
IEDL.DBID | DR2 |
ISSN | 0014-2980 |
IngestDate | Fri Jul 11 09:16:36 EDT 2025 Thu Jul 10 19:24:07 EDT 2025 Wed Feb 19 01:47:04 EST 2025 Tue Jul 01 00:48:37 EDT 2025 Thu Apr 24 22:57:44 EDT 2025 Wed Aug 20 07:25:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4753-a802dabbccf5d7d8a3274d2bc63f9d017a4750bc5cc6fe5a150020e2c40cf8163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eji.200636653 |
PMID | 17230442 |
PQID | 19727274 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_68990676 proquest_miscellaneous_19727274 pubmed_primary_17230442 crossref_primary_10_1002_eji_200636653 crossref_citationtrail_10_1002_eji_200636653 wiley_primary_10_1002_eji_200636653_EJI200636653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2007 2007-02-00 2007-Feb 20070201 |
PublicationDateYYYYMMDD | 2007-02-01 |
PublicationDate_xml | – month: 02 year: 2007 text: February 2007 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | European Journal of Immunology |
PublicationTitleAlternate | Eur J Immunol |
PublicationYear | 2007 |
Publisher | WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY‐VCH Verlag |
References | 2005; 170 2005; 175 2002; 196 2002; 111 2002; 99 1983; 97 2006; 176 2002; 159 1999; 163 2005; 22 2003; 198 2006; 177 2004; 76 1989; 109 1958; 127 1994; 144 2004; 72 2000 1987; 80 2004; 172 2002; 88 2005; 106 1985; 134 2003; 5 1999; 98 1999; 93 2005; 77 2005; 35 2006; 125 2001; 413 2004; 104 2002; 30 2005; 433 1994; 153 2005; 314 2003; 171 2003; 170 2000; 275 1992; 309 1995; 270 2001; 276 1984; 74 2004; 59 2002; 169 2002; 24 1993; 150 2003; 29 2000; 343 1999; 156 2003; 100 e_1_2_7_5_2 Nauseef W. M. (e_1_2_7_3_2) 2000 e_1_2_7_9_2 e_1_2_7_7_2 Sengelov H. (e_1_2_7_19_2) 1994; 153 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 Sengelov H. (e_1_2_7_23_2) 1993; 150 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_21_2 e_1_2_7_35_2 Underhill D. M. (e_1_2_7_10_2) 2005; 106 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_6_2 Cham B. P. (e_1_2_7_24_2) 1994; 144 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 Allen L.‐A. H. (e_1_2_7_45_2) 1999; 93 e_1_2_7_29_2 Klebanoff S. J. (e_1_2_7_2_2) 2005; 77 DeLeo F. R. (e_1_2_7_47_2) 1999; 163 Thornton B. P. (e_1_2_7_34_2) 1999; 156 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_36_2 e_1_2_7_38_2 Ross G. D. (e_1_2_7_33_2) 1985; 134 |
References_xml | – volume: 413 start-page: 36 year: 2001 end-page: 37 article-title: A new receptor for β‐glucans. publication-title: Nature – volume: 97 start-page: 52 year: 1983 end-page: 61 article-title: Subcellular localization of the ‐cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. publication-title: J. Cell Biol. – volume: 198 start-page: 1677 year: 2003 end-page: 1688 article-title: Alveolar macrophage‐mediated killing of f. sp. muris involves molecular recognition by the dectin‐1 β‐glucan receptor. publication-title: J. Exp. Med. – volume: 170 start-page: 3357 year: 2003 end-page: 3368 article-title: Down‐regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. publication-title: J. Immunol. – volume: 35 start-page: 1539 year: 2005 end-page: 1547 article-title: The human β‐glucan receptor is widely expressed and functionally equivalent to murine dectin‐1 on primary cells. publication-title: Eur. J. Immunol. – volume: 106 start-page: 2543 year: 2005 end-page: 2550 article-title: Dectin‐1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. publication-title: Blood – volume: 163 start-page: 6732 year: 1999 end-page: 6740 article-title: NADPH oxidase activation and assembly during phagocytosis. publication-title: J. Immunol. – volume: 177 start-page: 2276 year: 2006 end-page: 2284 article-title: Preferential induction of CD4 T cell responses through targeting of antigen to dendritic cell‐associated C‐type lectin‐1. publication-title: J. Immunol. – volume: 150 start-page: 1535 year: 1993 end-page: 1543 article-title: Control of exocytosis in early neutrophil activiation. publication-title: J. Immunol. – volume: 98 start-page: 50 year: 1999 end-page: 61 article-title: Soluble β‐glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement recpetor type 3 (CD11b/CD18) generates a primed state of the receptor capapble of mediating cytotoxicity of iC3b‐opsonized target cells. publication-title: J. Clin. Invest. – volume: 5 start-page: 1317 year: 2003 end-page: 1327 article-title: Neutrophil granules and secretory vesicles in inflammation. publication-title: Microbes Infect. – volume: 314 start-page: 1079 year: 2005 end-page: 1086 article-title: Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. publication-title: J. Pharmacol. Exp. Ther. – volume: 156 start-page: 1235 year: 1999 end-page: 1246 article-title: Analysis of the sugar specificity and molecular location of the β‐glucan‐binding lectin site of complement receptor type 3 (CD11b/CD18). publication-title: J. Immunol. – volume: 309 start-page: 119 year: 1992 end-page: 122 article-title: Zymosan induces selective release of arachidonic acid from rabbit alveolar macrophages stimulation of a β‐glucan receptor. publication-title: FEBS – volume: 29 start-page: 598 year: 2003 end-page: 605 article-title: Nontypeable activates human eosinophils through β‐glucan receptors. publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 175 start-page: 3907 year: 2005 end-page: 3919 article-title: Insights into mechanisms used by to avoid destruction by human neutrophils. publication-title: J. Immunol. – volume: 24 start-page: 79 year: 2002 end-page: 90 article-title: Host‐pathogen interaction: leukocyte phagocytosis and associated sequelae. publication-title: Methods Cell Sci. – volume: 169 start-page: 6417 year: 2002 end-page: 6426 article-title: Function of the lectin domain of Mac‐1/complement receptor type 3 (CD11b/CD18) in regulating neutrophil adhesion. publication-title: J. Immunol. – volume: 176 start-page: 5513 year: 2006 end-page: 5518 article-title: Expression of functionally different dectin‐1 isoforms by murine macrophages. publication-title: J. Immunol. – volume: 80 start-page: 1550 year: 1987 end-page: 1560 article-title: Neutrophil activation on biological surfaces. publication-title: J. Clin. Invest. – volume: 144 start-page: 1369 year: 1994 end-page: 1380 article-title: Granulophysin is located in the membrane of azurophilic granules in human neutrophils and mobilizes to the plasma membrane following cell stimulation. publication-title: Am. J. Pathol. – volume: 275 start-page: 20157 year: 2000 end-page: 20167 article-title: Identification of a novel, dendritic cell‐associated molecule, dectin‐1, by subtractive cDNA cloning. publication-title: J. Biol. Chem. – volume: 88 start-page: 253 year: 2002 end-page: 264 article-title: Innate immunity and its role against infections. publication-title: Ann. Allergy Asthma Immunol. – volume: 433 start-page: 523 year: 2005 end-page: 527 article-title: CD36 is a sensor of diacylglycerides. publication-title: Nature – volume: 276 start-page: 43818 year: 2001 end-page: 43823 article-title: Characterization of the human beta‐glucan receptor and its alternatively spliced isoforms. publication-title: J. Biol. Chem. – volume: 30 start-page: 1309 year: 2002 end-page: 1315 article-title: Molecular and functional characterization of human dectin‐1. publication-title: Exp. Haematol. – volume: 22 start-page: 507 year: 2005 end-page: 517 article-title: Syk dependent cytokin induction by dectin‐1 reveals a novel pattern recognition pathway for C type lectins. publication-title: Immunity – volume: 74 start-page: 1566 year: 1984 end-page: 1571 article-title: Human neutrophils increase expression of C3bi as well as C3b receptors upon activation. publication-title: J. Clin. Invest. – volume: 343 start-page: 1703 year: 2000 end-page: 1714 article-title: Immunodeficiency diseases caused by defects in phagocytes. publication-title: N. Engl. J. Med. – volume: 93 start-page: 3521 year: 1999 end-page: 3530 article-title: Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47 and p67 with phagosomes in neutrophils from patients with X‐linked chronic granulomatous disease. publication-title: Blood – volume: 76 start-page: 86 year: 2004 end-page: 94 article-title: Expression of the β‐glucan receptor, dectin‐1, on murine leukocytes correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. publication-title: J. Leukoc. Biol. – volume: 77 start-page: 598 year: 2005 end-page: 625 article-title: Myeloperoxidase: friend and foe. publication-title: J. Leukoc. Biol. – volume: 100 start-page: 1996 year: 2003 end-page: 2001 article-title: Genome‐wide protective response used by group A to evade destruction by human polymorphonuclear leukocytes. publication-title: Proc. Natl. Acad. Sci. USA – start-page: pp 89 year: 2000 end-page: 112 article-title: Granulocytic phagocytes. publication-title: Basic Principles in the Diagnosis and Management of Infectious Diseases. – volume: 196 start-page: 407 year: 2002 end-page: 412 article-title: Dectin‐1 is the major beta‐glucan receptor on macrophages. publication-title: J. Exp. Med. – volume: 270 start-page: 16974 year: 1995 end-page: 16980 article-title: Topological mapping of neutrophil cytochrome epitopes with phage‐display libraries. publication-title: J. Biol. Chem. – volume: 172 start-page: 1157 year: 2004 end-page: 1162 article-title: The role of SIGNR1 and the β‐glucan receptor (dectin‐1) in the nonopsonic recognition of yeast by specific macorphages. publication-title: J. Immunol. – volume: 134 start-page: 3307 year: 1985 end-page: 3315 article-title: Membrane complement receptor type three (CR3) has lectin‐like properties analogous to bovine conglutinin and functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. publication-title: J. Immunol. – volume: 109 start-page: 3169 year: 1989 end-page: 3182 article-title: Adhesomes: specific granules containing receptors for laminin, C3bi/fibrinogen, fibronectin, and vitronectin in human polymorphonuclear leukocytes and monocytes. publication-title: J. Cell Biol. – volume: 159 start-page: 181 year: 2002 end-page: 189 article-title: Cytosolic free Ca changes and calpain activation are required for β integrin‐accelerated phagocytosis by human neutrophils. publication-title: J. Cell Biol. – volume: 104 start-page: 4038 year: 2004 end-page: 4045 article-title: Dectin‐1 uses novel mechanisms for yeast phagocytosis in macrophages. publication-title: Blood – volume: 127 start-page: 756 year: 1958 end-page: 757 article-title: On the composition of zymosan. publication-title: Science – volume: 59 start-page: 25 year: 2004 end-page: 33 article-title: Changes in neutrophil surface‐receptor expression after stimulation with FMLP, endotoxin, interleukin‐8 and activated complement compared to degranulation. publication-title: Scand. J. Immunol. – volume: 153 start-page: 804 year: 1994 end-page: 810 article-title: Secretory vesicles are the intracellular reservoir of complement receptor 1 in human neutrophils. publication-title: J. Immunol. – volume: 72 start-page: 4159 year: 2004 end-page: 4171 article-title: Characterization of β‐glucan recognition site on C‐type lectin, dectin‐1. publication-title: Infect. Immun. – volume: 99 start-page: 6901 year: 2002 end-page: 6906 article-title: Global changes in gene expression by human polymorphonuclear leukocytes during receptor‐mediated phagocytosis: Cell fate is regulated at the level of gene expression. publication-title: Proc. Natl. Acad. Sci. USA – volume: 125 start-page: 29 year: 2006 end-page: 32 article-title: Emerging patterns in complement‐mediated pathogen recognition. publication-title: Cell – volume: 76 start-page: 760 year: 2004 end-page: 781 article-title: Structure and regulation of the neutrphil respiratory burst oxidase: comparison with non‐phagocyte oxidases. publication-title: J. Leukoc. Biol. – volume: 170 start-page: 477 year: 2005 end-page: 485 article-title: Response to requires CD36‐mediated phagocytosis triggered by the COOH‐terminal cytoplasmic domain. publication-title: J. Cell Biol. – volume: 171 start-page: 4569 year: 2003 end-page: 4573 article-title: Dectin‐1 expression and function are enhanced on alternatively activated and GM‐CSF‐treated macrophages and are negatively regulated by IL‐10, dexamethasone, and lipopolysaccharide. publication-title: J. Immunol. – volume: 111 start-page: 927 year: 2002 end-page: 930 article-title: Pattern recognition receptors: doubling up for the innate immune response. publication-title: Cell – ident: e_1_2_7_1_2 doi: 10.1016/j.micinf.2003.09.008 – ident: e_1_2_7_11_2 doi: 10.1182/blood-2004-03-1140 – ident: e_1_2_7_48_2 doi: 10.1172/JCI113241 – ident: e_1_2_7_21_2 doi: 10.1111/j.0300-9475.2004.01351.x – ident: e_1_2_7_43_2 doi: 10.1083/jcb.97.1.52 – ident: e_1_2_7_18_2 doi: 10.1126/science.127.3301.756-a – ident: e_1_2_7_28_2 doi: 10.1016/j.cell.2006.03.018 – ident: e_1_2_7_6_2 doi: 10.1038/nature03253 – ident: e_1_2_7_27_2 doi: 10.1084/jem.20030932 – start-page: pp 89 year: 2000 ident: e_1_2_7_3_2 article-title: Granulocytic phagocytes. publication-title: Basic Principles in the Diagnosis and Management of Infectious Diseases. – ident: e_1_2_7_44_2 doi: 10.1074/jbc.270.28.16974 – ident: e_1_2_7_26_2 doi: 10.1056/NEJM200012073432307 – ident: e_1_2_7_37_2 doi: 10.1074/jbc.M909512199 – volume: 144 start-page: 1369 year: 1994 ident: e_1_2_7_24_2 article-title: Granulophysin is located in the membrane of azurophilic granules in human neutrophils and mobilizes to the plasma membrane following cell stimulation. publication-title: Am. J. Pathol. – ident: e_1_2_7_31_2 doi: 10.1128/IAI.72.7.4159-4171.2004 – volume: 163 start-page: 6732 year: 1999 ident: e_1_2_7_47_2 article-title: NADPH oxidase activation and assembly during phagocytosis. publication-title: J. Immunol. doi: 10.4049/jimmunol.163.12.6732 – volume: 153 start-page: 804 year: 1994 ident: e_1_2_7_19_2 article-title: Secretory vesicles are the intracellular reservoir of complement receptor 1 in human neutrophils. publication-title: J. Immunol. doi: 10.4049/jimmunol.153.2.804 – ident: e_1_2_7_22_2 doi: 10.1083/jcb.109.6.3169 – ident: e_1_2_7_50_2 doi: 10.1073/pnas.0337370100 – ident: e_1_2_7_13_2 doi: 10.4049/jimmunol.176.9.5513 – ident: e_1_2_7_29_2 doi: 10.4049/jimmunol.172.2.1157 – ident: e_1_2_7_25_2 doi: 10.1083/jcb.200206089 – ident: e_1_2_7_42_2 doi: 10.4049/jimmunol.170.6.3357 – ident: e_1_2_7_35_2 doi: 10.1172/JCI118777 – ident: e_1_2_7_30_2 doi: 10.1084/jem.20020470 – ident: e_1_2_7_41_2 doi: 10.1073/pnas.092148299 – volume: 150 start-page: 1535 year: 1993 ident: e_1_2_7_23_2 article-title: Control of exocytosis in early neutrophil activiation. publication-title: J. Immunol. doi: 10.4049/jimmunol.150.4.1535 – ident: e_1_2_7_7_2 doi: 10.1083/jcb.200501113 – ident: e_1_2_7_12_2 doi: 10.1002/eji.200425725 – ident: e_1_2_7_17_2 doi: 10.1016/0014-5793(92)81077-Y – ident: e_1_2_7_40_2 doi: 10.1124/jpet.105.085415 – ident: e_1_2_7_14_2 doi: 10.1016/S0301-472X(02)00928-1 – volume: 93 start-page: 3521 year: 1999 ident: e_1_2_7_45_2 article-title: Transient association of the nicotinamide adenine dinucleotide phosphate oxidase subunits p47phox and p67phox with phagosomes in neutrophils from patients with X‐linked chronic granulomatous disease. publication-title: Blood doi: 10.1182/blood.V93.10.3521.410k21_3521_3530 – ident: e_1_2_7_51_2 doi: 10.4049/jimmunol.175.6.3907 – volume: 106 start-page: 2543 year: 2005 ident: e_1_2_7_10_2 article-title: Dectin‐1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. publication-title: Blood doi: 10.1182/blood-2005-03-1239 – ident: e_1_2_7_15_2 doi: 10.1165/rcmb.2002-0138OC – ident: e_1_2_7_39_2 doi: 10.4049/jimmunol.177.4.2276 – ident: e_1_2_7_46_2 doi: 10.1023/A:1024154200702 – ident: e_1_2_7_8_2 doi: 10.1038/35092620 – ident: e_1_2_7_36_2 doi: 10.4049/jimmunol.169.11.6417 – ident: e_1_2_7_4_2 doi: 10.1189/jlb.0404216 – ident: e_1_2_7_38_2 doi: 10.1189/jlb.0104031 – ident: e_1_2_7_32_2 doi: 10.1016/S0092-8674(02)01201-1 – ident: e_1_2_7_5_2 doi: 10.1016/S1081-1206(10)62005-4 – ident: e_1_2_7_16_2 doi: 10.4049/jimmunol.171.9.4569 – volume: 156 start-page: 1235 year: 1999 ident: e_1_2_7_34_2 article-title: Analysis of the sugar specificity and molecular location of the β‐glucan‐binding lectin site of complement receptor type 3 (CD11b/CD18). publication-title: J. Immunol. doi: 10.4049/jimmunol.156.3.1235 – volume: 77 start-page: 598 year: 2005 ident: e_1_2_7_2_2 article-title: Myeloperoxidase: friend and foe. publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.1204697 – ident: e_1_2_7_9_2 doi: 10.1016/j.immuni.2005.03.004 – ident: e_1_2_7_49_2 doi: 10.1074/jbc.M107715200 – ident: e_1_2_7_20_2 doi: 10.1172/JCI111572 – volume: 134 start-page: 3307 year: 1985 ident: e_1_2_7_33_2 article-title: Membrane complement receptor type three (CR3) has lectin‐like properties analogous to bovine conglutinin and functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. publication-title: J. Immunol. doi: 10.4049/jimmunol.134.5.3307 |
SSID | ssj0009659 ssj0013055 |
Score | 2.2059894 |
Snippet | Human polymorphonuclear leukocytes (PMN) are a first line of defense against fungal infections. PMN express numerous pattern recognition receptors (PRR) that... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 467 |
SubjectTerms | Candida albicans Candida albicans - immunology Cell surface molecules Cytotoxicity, Immunologic Electrophoresis, Polyacrylamide Gel Flow Cytometry Fluorescent Antibody Technique Fungal Human Humans Immunoblotting Lectins, C-Type Membrane Proteins - immunology Microscopy, Confocal Microscopy, Electron, Scanning Microscopy, Electron, Transmission Nerve Tissue Proteins - immunology Neutrophils Neutrophils - immunology Neutrophils - microbiology Neutrophils - ultrastructure Phagocytosis Phagocytosis - immunology |
Title | Dectin‐1 promotes fungicidal activity of human neutrophils |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feji.200636653 https://www.ncbi.nlm.nih.gov/pubmed/17230442 https://www.proquest.com/docview/19727274 https://www.proquest.com/docview/68990676 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSyNBFH4MgoMXdVyjs_RBPNnaqS1d4GUYIxrQwzCCt7ZWjIZOMMlBT_4Ef6O_xFddnYTM4MAw9KnhVXdtb6lXVd8HsOfRxVAmfZoTR1NmuUrzwObuvLaS6pa0OuQ7Li7F2RXrXPPrmuc03IWJ-BDThFvQjMpeBwVXeng0Aw11d91q54AKwQPaZ5OKgJ1_8nMGHxXA8qIlZimReVZjbGL5o7nS8z7pj0BzPm6tHM_pCtxMqhzPm9wfjkf60Dz9hub4H21aheU6KE2-x1n0CT64cg0WI03l4xp8vKg34Nfh-CQYyPL1-aWZDKqTfG6YoG9E-9m1-IlwTSKwUSR9n1T0f0npxqOH_uC22xtuwNVp-9ePs7QmYEgNw2VMqvKMWKW1MZ7bls0VxTWsJdoI6qVFXVYolmnDjRHecYXBJUafjhiWGZ9jpLcJC2W_dNuQCEc4aXFFTeYZVVJqR3MlVdNKJTzXDTiYDEFhanTyQJLRKyKuMimwb4pp3zRgfyo-iLAc7wl-m4xngYoTdkNU6frjYRH41vBh70sIXIuiMxcN2IoTYfarVsilM9KArBrOv9ehaHfOpy87_15kF5ZiRjkcovkMC6OHsfuCodBIf63m-xtEkP_p |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RUAsXSmmBQAt7qHrqwuJX1hIXxEPhEQ4VSNxWfqpp0SYiyYGe-hP4jfwSxutNQqioVFV7Wsn2em3PzDdj-xuAzx5NDGXSpzlxNGWWqzQP2dyd11ZS3ZRWh3hH-0K0rtjpNb9-cos_8kOMA25BMip9HQQ8BKR3Jqyh7ken2jqgQnD6CuYYgo3gfh1-mxBIBbq8qItZSmSe1Syb2MDOVPVpq_QH1JxGrpXpOX4LatTpeOLk5_ZwoLfNr2d8jv_zV0uwWOPSZD8upHcw48pleB0zVd4tw5t2vQf_HvYOg44sH37f7ya96jCf6ydoHlGFdiw2EW5KhIQUSdcnVQbApHTDwW23971z0_8AV8dHlwettM7BkBqGnkyq8oxYpbUxntumzRVFN9YSbQT10qI4KyyWacONEd5xhfgSAagjhmXG5wj2VmC27JZuDRLhCCdNrqjJPKNKSu1orqTatVIJz3UDvo7moDA1QXnIk3FTRGplUuDYFOOxacCXcfFeZOZ4qeDWaEILlJ2wIaJK1x32i5ByDR_2cgmB7ijac9GA1bgSJp9qhnA6Iw3Iqvn8ex-Ko9OT8cv6v1fZgvnWZfu8OD-5ONuAhRhgDmdqPsLs4HboPiEyGujNavE_AlL2BBc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xEKiXlme7tJQcUE8Egl8bS71UXVZAC0IVSNyCn-q2KLvax6E99SfwG_tLOo6zu1oQSBXKKdLYcWzPzOex_Q3ArkcXQ5n0aU4cTZnlKs1DNnfntZVUN6XVId5xdi6Or9jpNb-u85yGuzCRH2IScAuaUdnroOA96w-mpKHuR6faOaBCcDoPi0wgmgio6NuUPyqw5UVTzFIi86wm2cQKDmaKzzqlB0hzFrhWnqf9Cm7GbY4HTn7uj4Z63_y-R-f4jJ9agZc1Kk0-xWm0CnOuXIOlmKfy1xosn9U78OvwsRUsZPn3z91h0quO8rlBgs4RDWjHYhXhnkRIR5F0fVLl_0tKNxr2u73vndvBBly1jy4_H6d1BobUMFzHpCrPiFVaG-O5bdpcUVzEWqKNoF5aVGaFYpk23BjhHVeILhF-OmJYZnyOUG8TFspu6d5AIhzhpMkVNZlnVEmpHc2VVIdWKuG5bsDeeAgKU9OThywZt0UkViYF9k0x6ZsGfJiI9yIvx2OCO-PxLFBzwnaIKl13NChCwjV82OMSAhej6M1FA17HiTD9VDME0xlpQFYN59NtKI5OTyYvW_9fZAeWL1rt4uvJ-Ze38CJGl8OBmnewMOyP3DbCoqF-X039fz4HAsY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dectin%E2%80%901+promotes+fungicidal+activity+of+human+neutrophils&rft.jtitle=European+journal+of+immunology&rft.au=Kennedy%2C+Adam%E2%80%84D.&rft.au=Willment%2C+Janet%E2%80%84A.&rft.au=Dorward%2C+David%E2%80%84W.&rft.au=Williams%2C+David%E2%80%84L.&rft.date=2007-02-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0014-2980&rft.eissn=1521-4141&rft.volume=37&rft.issue=2&rft.spage=467&rft.epage=478&rft_id=info:doi/10.1002%2Feji.200636653&rft.externalDBID=10.1002%252Feji.200636653&rft.externalDocID=EJI200636653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-2980&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-2980&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-2980&client=summon |