Spatial Sequential Modeling and Predication of Global Land Use and Land Cover Changes by Integrating a Global Change Assessment Model and Cellular Automata
Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sourc...
Saved in:
Published in | Earth's future Vol. 7; no. 9; pp. 1102 - 1116 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.09.2019
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp).
Key Points
In this paper, we propose a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA)
We use this strategy to sequentially spatialize and predict global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100 |
---|---|
AbstractList | Abstract
Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS,
http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp
).
Key Points
In this paper, we propose a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA)
We use this strategy to sequentially spatialize and predict global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100 Abstract Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp). Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp). Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp). Key Points In this paper, we propose a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) We use this strategy to sequentially spatialize and predict global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100 |
Author | Huang, Mengxue Zhou, Sheng Zhu, Yanhui Chen, Min Cao, Min Quan, Jinling Lü, Guonian |
Author_xml | – sequence: 1 givenname: Min surname: Cao fullname: Cao, Min organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application – sequence: 2 givenname: Yanhui surname: Zhu fullname: Zhu, Yanhui organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application – sequence: 3 givenname: Jinling surname: Quan fullname: Quan, Jinling organization: CAS – sequence: 4 givenname: Sheng surname: Zhou fullname: Zhou, Sheng organization: Tsinghua University – sequence: 5 givenname: Guonian surname: Lü fullname: Lü, Guonian organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application – sequence: 6 givenname: Min orcidid: 0000-0001-8922-8789 surname: Chen fullname: Chen, Min email: chenmin0902@163.com organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application – sequence: 7 givenname: Mengxue surname: Huang fullname: Huang, Mengxue organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application |
BookMark | eNp9kU1vEzEQhi1UJErpjR9giStp_W3vMVolJVIQSG3PltcfYSNnHewNKL-FP4uzC6gnfJnxzDPva3negqshDR6A9xjdYUSae4Jws1ojhAlRr8A1oUQtGJHy6kX-BtyWskf1NBJRLq_Br8ejGXsT4aP_fvLDlH5Ozsd-2EEzOPg1e9fbyqQBpgAfYuoqsr20noufkOnSph8-w_abGXa-wO4MN8Pod7kOXoT-zs19uCzFl3KofrPZJNP6GE_RZLg8jelgRvMOvA4mFn_7J96A5_Xqqf202H552LTL7cIyyemCYWRZF6gM0nGKFBYcOyyQ4aihilFFjWJSMdtYyTviqOBOOhG498qZYOkN2My6Lpm9Pub-YPJZJ9PrqZDyTps89jZ6zYXlAiNOOyKYCKJxPFDDVGgoa1DAVevDrHXMqX5oGfU-nfJQn68JRUJSghWt1MeZsjmVkn3454qRvmxTv9xmxfGM_-yjP_-X1av1E-GM0t-i5qAS |
CitedBy_id | crossref_primary_10_5194_essd_13_5403_2021 crossref_primary_10_1080_10095020_2022_2025748 crossref_primary_10_3390_land10040379 crossref_primary_10_1016_j_scitotenv_2021_145357 crossref_primary_10_1007_s10708_022_10776_4 crossref_primary_10_1109_JSTARS_2022_3152904 crossref_primary_10_3390_land13030393 crossref_primary_10_1007_s10113_024_02219_2 crossref_primary_10_3390_ijgi12020050 crossref_primary_10_5194_gmd_14_1493_2021 crossref_primary_10_3390_rs14194957 crossref_primary_10_3390_su11154081 crossref_primary_10_1016_j_landurbplan_2020_103993 crossref_primary_10_1016_j_scib_2023_03_012 crossref_primary_10_1080_19475683_2020_1871406 crossref_primary_10_3390_ijgi12080306 crossref_primary_10_1016_j_rsase_2021_100661 crossref_primary_10_1016_j_ecohyd_2020_12_001 crossref_primary_10_1016_j_jclepro_2023_140058 crossref_primary_10_3390_su152115322 crossref_primary_10_1016_j_isci_2023_106364 crossref_primary_10_1080_17538947_2020_1849439 crossref_primary_10_3390_su14159180 crossref_primary_10_1117_1_JRS_18_026501 crossref_primary_10_1038_s41597_023_02637_7 crossref_primary_10_1016_j_envsoft_2023_105826 crossref_primary_10_1029_2023EF003648 crossref_primary_10_3390_land12112073 crossref_primary_10_54097_ajst_v4i3_4901 crossref_primary_10_3390_land10090982 crossref_primary_10_1016_j_ecolind_2020_106671 crossref_primary_10_3389_ffgc_2022_994713 crossref_primary_10_1371_journal_pone_0248543 crossref_primary_10_1007_s44274_024_00066_w crossref_primary_10_1111_tgis_13054 crossref_primary_10_1038_s41597_022_01204_w crossref_primary_10_1080_10106049_2022_2152498 |
Cites_doi | 10.1016/j.gloenvcha.2018.02.016 10.1016/j.futures.2004.11.003 10.1007/s10980-009-9347-7 10.1016/j.gloenvcha.2018.04.001 10.1016/j.gloenvcha.2017.11.014 10.1016/j.envsoft.2016.08.016 10.1016/j.apgeog.2012.08.006 10.1016/j.ecolmodel.2014.07.027 10.1016/j.envsoft.2012.01.007 10.1002/2014EF000290 10.1080/24694452.2017.1303357 10.3390/e15072606 10.1016/j.envsoft.2018.03.021 10.1038/nature08823 10.1142/S2010007817500051 10.1016/j.envsoft.2015.10.015 10.1016/j.gloenvcha.2018.08.002 10.1111/gcb.13337 10.1016/j.esr.2018.02.001 10.1111/gcb.14110 10.1029/2010GL046402 10.1038/nclimate2444 10.1111/j.1467-9671.2007.01031.x 10.1080/136588198241617 10.1007/s12571-014-0375-z 10.1016/j.apenergy.2013.08.042 10.1080/13658810701757510 10.2172/1127203 10.1023/A:1021344614845 10.1080/13658816.2014.999245 10.1016/j.apgeog.2014.06.007 10.1016/j.apenergy.2017.09.122 10.1016/j.gloenvcha.2015.08.011 10.1080/15481603.2016.1265706 10.1016/j.envsoft.2011.02.013 10.1007/s10584-011-0152-3 10.1016/j.apenergy.2018.01.025 10.1080/13658810210137004 10.1016/j.envsoft.2018.10.006 10.1088/1748-9326/6/3/034019 10.1088/1748-9326/9/6/064004 10.1080/13658810701731168 10.1080/19475683.2018.1543205 10.1016/j.gloenvcha.2016.10.002 10.1111/gcb.12331 10.1002/2017EF000744 10.1016/j.enpol.2013.03.014 10.1073/pnas.1308044111 10.1007/s10584-011-0153-2 10.5194/gmd-10-4307-2017 10.5194/gmd-9-3055-2016 10.1002/2017EF000560 10.1016/j.landurbplan.2017.09.019 10.2172/1036082 10.1016/j.jmaa.2014.03.092 10.1016/j.rse.2018.04.050 10.1007/s10980-009-9355-7 10.1016/j.agee.2012.02.019 10.1007/s00168-007-0138-2 10.1080/19475683.2018.1520300 10.1155/2013/578350 |
ContentType | Journal Article |
Copyright | 2019. The Authors. 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019. The Authors. – notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7ST 7TG ABUWG AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ KL. PATMY PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PYCSY SOI DOA |
DOI | 10.1029/2019EF001228 |
DatabaseName | Wiley Open Access Wiley Online Library Journals CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Meteorological & Geoastrophysical Abstracts - Academic Environmental Science Database ProQuest Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Environmental Science Collection Meteorological & Geoastrophysical Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Titles (Open access) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2328-4277 |
EndPage | 1116 |
ExternalDocumentID | oai_doaj_org_article_56c561053b2646f69d5f3a48f93490f1 10_1029_2019EF001228 EFT2543 |
Genre | article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Surveying mapping and geoinformation research project of Jiangsu Province funderid: JSCHKY201814 – fundername: Project of Nanjing Normal University funderid: 1451527 – fundername: Qing‐Lan Project of Nanjing Normal University – fundername: National Basic Research Program of China (973 Program) funderid: No.2015CB954101; No.2015CB954103 – fundername: National Science Foundation of China funderid: No.41671385; No.41622108; No.41871178 |
GroupedDBID | 0R~ 1OC 24P 5VS 7XC 8-1 8FE 8FH 8GL AAHBH AAHHS AAZKR ACCFJ ACQOY ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EDH EJD GICCO GODZA GROUPED_DOAJ HCIFZ IEP ISN LK5 M7R M~E OK1 PATMY PCBAR PIMPY PROAC PYCSY SUPJJ WIN ~OA AAYXX CITATION ITC 7ST 7TG ABUWG AZQEC C1K DWQXO GNUQQ KL. PQEST PQQKQ PQUKI PRINS SOI |
ID | FETCH-LOGICAL-c4753-410c4bf37f7d53081651d160a509384383a84784c9c75b2d365d7d6f5ee8dafc3 |
IEDL.DBID | DOA |
ISSN | 2328-4277 |
IngestDate | Tue Oct 22 15:11:23 EDT 2024 Sat Nov 09 08:45:31 EST 2024 Thu Sep 26 19:28:08 EDT 2024 Sat Aug 24 01:17:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4753-410c4bf37f7d53081651d160a509384383a84784c9c75b2d365d7d6f5ee8dafc3 |
ORCID | 0000-0001-8922-8789 |
OpenAccessLink | https://doaj.org/article/56c561053b2646f69d5f3a48f93490f1 |
PQID | 2306732183 |
PQPubID | 2034575 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_56c561053b2646f69d5f3a48f93490f1 proquest_journals_2306732183 crossref_primary_10_1029_2019EF001228 wiley_primary_10_1029_2019EF001228_EFT2543 |
PublicationCentury | 2000 |
PublicationDate | September 2019 2019-09-00 20190901 2019-09-01 |
PublicationDateYYYYMMDD | 2019-09-01 |
PublicationDate_xml | – month: 09 year: 2019 text: September 2019 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earth's future |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2015; 35 2002; 16 2017; 5 2017; 42 2014; 417 2016; 75 2010; 463 2017; 08 2014; 291 2018; 48 2003; 56 2013; 19 2018; 6 2017; 208 2013; 15 2014; 4 2013; 58 2010; 25 2013; 2013 2018; 214 2019; 25 2018; 213 2016; 85 2008; 22 2011; 26 2005; 37 2014; 9 2017; 168 2014; 6 1998; 12 2019; 112 2014; 53 2009; 24 2015; 3 2011 1995 1994 2005 2012; 35 2014; 111 2011; 38 2007; 11 2011; 6 2012; 33 2018; 20 2014; 114 2018; 24 2012; 153 2018; 110 2011; 109 2015; 29 2017; 54 2017 2018; 52 2018; 50 2014 2008; 42 2018; 10 2016; 9 2017; 107 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Wu F. (e_1_2_7_63_1) 2013; 2013 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – year: 2011 – volume: 213 start-page: 22 year: 2018 end-page: 30 article-title: Roles of wind and solar energy in China's power sector: Implications of intermittency constraints publication-title: Applied Energy – volume: 6 start-page: 1 issue: 3 year: 2011 end-page: 12 article-title: A global assessment of market accessibility and market influence for global environmental change studies publication-title: Environmental Research Letters – volume: 214 start-page: 73 year: 2018 end-page: 86 article-title: Urban land‐use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery publication-title: Remote Sensing of Environment – volume: 463 start-page: 747 issue: 7282 year: 2010 end-page: 756 article-title: The next generation of scenarios for climate change research and assessment publication-title: Nature – volume: 22 start-page: 1247 issue: 11–12 year: 2008 end-page: 1269 article-title: A bottom‐up approach to discover transition rules of cellular automata using ant intelligence publication-title: International Journal of Geographical Information Science – volume: 3 start-page: 220 issue: 7 year: 2015 end-page: 251 article-title: Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs publication-title: Earth's Future – volume: 50 start-page: 164 year: 2018 end-page: 177 article-title: Land use projections in China under global socioeconomic and emission scenarios: Utilizing a scenario‐based land‐use change assessment framework publication-title: Global Environmental Change – year: 2005 – volume: 35 start-page: 138 year: 2015 end-page: 147 article-title: Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy publication-title: Global Environmental Change – volume: 35 start-page: 316 issue: 1–2 year: 2012 end-page: 326 article-title: Examining the potential impact of land use/cover changes on the ecosystem services of Baguio City, the Philippines: A scenario‐based analysis publication-title: Applied Geography – volume: 52 start-page: 259 year: 2018 end-page: 272 article-title: Meeting global land restoration and protection targets: What would the world look like in 2050? publication-title: Global Environmental Change – volume: 24 start-page: 2791 issue: 7 year: 2018 end-page: 2809 article-title: Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide publication-title: Global Change Biology – volume: 10 start-page: 4307 issue: 12 year: 2018 end-page: 4319 article-title: Evaluation of integrated assessment model hindcast experiments: A case study of the GCAM 3.0 land use module publication-title: Geoscientific Model Development Discussion – volume: 85 start-page: 246 year: 2016 end-page: 265 article-title: What are the effects of agro‐ecological zones and land use region boundaries on land resource projection using the global change assessment model? publication-title: Environmental Modelling & Software – volume: 24 start-page: 275 issue: 4 year: 2018 end-page: 285 article-title: On land‐use and land‐cover changes over Lidder Valley in changing environment publication-title: Annals of GIS – volume: 53 start-page: 172 year: 2014 end-page: 186 article-title: Modeling urban vertical growth using cellular automata—Guangzhou as a case study publication-title: Applied Geography – year: 1994 – volume: 114 start-page: 763 year: 2014 end-page: 773 article-title: Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid‐century publication-title: Applied Energy – year: 2014 – volume: 38 year: 2011 article-title: Future changes in tropospheric ozone under representative concentration pathways (rcps) publication-title: Geophysical Research Letters – volume: 42 start-page: 11 issue: 1 year: 2008 end-page: 37 article-title: Comparing the input, output, and validation maps for several models of land change publication-title: The Annals of Regional Science – volume: 112 start-page: 70 year: 2019 end-page: 81 article-title: A novel algorithm for calculating transition potential in cellular automata models of land‐use/cover change publication-title: Environmental Modelling & Software – volume: 16 start-page: 323 issue: 4 year: 2002 end-page: 343 article-title: Neural‐network‐based cellular automata for simulating multiple land use changes using GIS publication-title: International Journal of Geographical Information Science – volume: 111 start-page: 3709 issue: 10 year: 2014 end-page: 3714 article-title: Climate change mitigation through livestock system transitions publication-title: Proceedings of the National Academy of Sciences – volume: 9 start-page: 3055 issue: 9 year: 2016 end-page: 3069 article-title: Downscaling land use and land cover from the global change assessment model for coupling with earth system models publication-title: Geoscientific Model Development – volume: 5 start-page: 1068 issue: 11 year: 2017 end-page: 1083 article-title: Future scenarios of land change based on empirical data and demographic trends publication-title: Earth's Future – volume: 54 start-page: 283 issue: 3 year: 2017 end-page: 304 article-title: Integrating the multi‐label land‐use concept and cellular automata with the artificial neural network‐based land transformation model: An integrated ML‐CA‐LTM modeling framework publication-title: GIScience & Remote Sensing – volume: 6 start-page: 685 issue: 5 year: 2014 end-page: 699 article-title: Land use representation in a global CGE model for long‐term simulation: CET vs. logit functions publication-title: Food Security – volume: 42 start-page: 331 year: 2017 end-page: 345 article-title: Land‐use futures in the shared socio‐economic pathways publication-title: Global Environmental Change – volume: 22 start-page: 3967 issue: 12 year: 2016 end-page: 3983 article-title: Hotspots of uncertainty in land‐use and land‐cover change projections: A global‐scale model comparison publication-title: Global Change Biology – volume: 168 start-page: 94 year: 2017 end-page: 116 article-title: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects publication-title: Landscape and Urban Planning – volume: 20 start-page: 113 year: 2018 end-page: 123 article-title: Peak energy consumption and CO emissions in China's industrial sector publication-title: Energy Strategy Reviews – volume: 417 start-page: 963 issue: 2 year: 2014 end-page: 969 article-title: On the approximation by neural networks with bounded number of neurons in hidden layers publication-title: Journal of Mathematical Analysis and Applications – volume: 19 start-page: 3648 issue: 12 year: 2013 end-page: 3667 article-title: Land cover change or land‐use intensification: Simulating land system change with a global‐scale land change model publication-title: Global Change Biology – volume: 15 start-page: 2606 issue: 12 year: 2013 end-page: 2634 article-title: Simple urban simulation atop complicated models: Multi‐scale equation‐free computing of sprawl using geographic automata publication-title: Entropy – volume: 11 start-page: 29 issue: 1 year: 2007 end-page: 45 article-title: Toward optimal calibration of the SLEUTH land use change model publication-title: Transactions in GIS – volume: 56 start-page: 185 issue: 1/2 year: 2003 end-page: 210 article-title: Modeling agriculture and land use in an integrated assessment framework publication-title: Climatic Change – volume: 50 start-page: 41 year: 2018 end-page: 59 article-title: Impacts of land‐use and management changes on cultural agroecosystem services and environmental conflicts—A global review publication-title: Global Environmental Change – volume: 29 start-page: 806 issue: 5 year: 2015 end-page: 824 article-title: A new discovery of transition rules for cellular automata by using cuckoo search algorithm publication-title: International Journal of Geographical Information Science – volume: 33 start-page: 61 issue: 5 year: 2012 end-page: 79 article-title: A land‐use systems approach to represent land‐use dynamics at continental and global scales publication-title: Environmental Modelling and Software – volume: 107 start-page: 1040 issue: 5 year: 2017 end-page: 1059 article-title: A new global land‐use and land‐cover change product at a 1‐km resolution for 2010 to 2100 based on human–environment interactions publication-title: Annals of the American Association of Geographers – volume: 22 start-page: 943 issue: 9 year: 2008 end-page: 963 article-title: Using neural networks and cellular automata for modelling intra‐urban land‐use dynamics publication-title: International Journal of Geographical Information Science – volume: 24 start-page: 1167 issue: 9 year: 2009 end-page: 1181 article-title: Combining top‐down and bottom‐up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the dyna‐CLUE model publication-title: Landscape Ecology – volume: 6 start-page: 396 issue: 3 year: 2018 end-page: 409 article-title: Biogeophysical impacts of land‐use change on climate extremes in low‐emission scenarios: Results from HAPPI‐land publication-title: Earth's Future – volume: 08 issue: 01 year: 2017 article-title: A hindcast experiment using the GCAM 3.0 agriculture and land‐use module publication-title: Climate Change Economics – volume: 153 start-page: 1 issue: 6087 year: 2012 end-page: 15 article-title: Spatially explicit land‐use and landcover scenarios for the Great Plains of the United States publication-title: Ecosystems & Environment – volume: 109 start-page: 117 issue: 1–2 year: 2011 end-page: 161 article-title: Harmonization of land‐use scenarios for the period 1500–2100: 600 years of global gridded annual land‐use transitions, wood harvest, and resulting secondary lands publication-title: Climatic Change – volume: 110 start-page: 38 year: 2018 end-page: 51 article-title: Downscaling of climate model output for Alaskan stakeholders publication-title: Environmental Modelling & Software – volume: 37 start-page: 745 issue: 7 year: 2005 end-page: 766 article-title: Modelling and prediction in a complex world publication-title: Futures – volume: 26 start-page: 1041 issue: 8 year: 2011 end-page: 1051 article-title: An integrated approach to modelling land‐use change on continental and global scales publication-title: Environmental Modelling and Software – volume: 58 start-page: 284 year: 2013 end-page: 294 article-title: Energy use and CO emissions of China's industrial sector from a global perspective publication-title: Energy Policy – volume: 9 start-page: 1 issue: 6 year: 2014 end-page: 15 article-title: Downscaling global land cover projections from an integrated assessment model for use in regional analyses: Results and evaluation for the US from 2005 to 2095 publication-title: Environmental Research Letters – volume: 4 start-page: 1095 issue: 12 year: 2014 end-page: 1098 article-title: Land‐use protection for climate change mitigation publication-title: Nature Climate Change – volume: 75 start-page: 212 year: 2016 end-page: 229 article-title: Applying Occam's razor to global agricultural land use change publication-title: Environmental Modelling and Software – volume: 2013 start-page: 1 year: 2013 end-page: 7 article-title: A comparison of two land use simulation models under the RCP4. 5 scenario in China publication-title: Advances in Meteorology – year: 1995 – volume: 48 start-page: 119 year: 2018 end-page: 135 article-title: Exploring SSP land‐use dynamics using the IMAGE model: Regional and gridded scenarios of land‐use change and land‐based climate change mitigation publication-title: Global Environmental Change – volume: 25 start-page: 217 issue: 2 year: 2010 end-page: 232 article-title: Trajectories of land use change in Europe: A model‐based exploration of rural futures publication-title: Landscape Ecology – year: 2017 – volume: 291 start-page: 152 year: 2014 end-page: 174 article-title: Spatial modeling of agricultural land‐use change at global scale publication-title: Ecological Modelling – volume: 12 start-page: 699 issue: 7 year: 1998 end-page: 714 article-title: Loose‐coupling a cellular automata model and GIS: Long‐term urban growth prediction for San Francisco and Washington/Baltimore publication-title: International Journal of Geographical Information Science – volume: 25 start-page: 57 issue: 1 year: 2019 end-page: 70 article-title: Monitoring the impacts of spatio‐temporal land‐use changes on the regional climate of city Faisalabad, Pakistan publication-title: Annals of GIS – volume: 109 start-page: 95 issue: 1–2 year: 2011 end-page: 116 article-title: RCP2.6: Exploring the possibility to keep global mean temperature increase below 2° C publication-title: Climatic Change – volume: 208 start-page: 511 year: 2017 end-page: 521 article-title: Projecting state‐level air pollutant emissions using an integrated assessment model: GCAM‐USA publication-title: Applied Energy – ident: e_1_2_7_19_1 doi: 10.1016/j.gloenvcha.2018.02.016 – ident: e_1_2_7_6_1 doi: 10.1016/j.futures.2004.11.003 – ident: e_1_2_7_55_1 doi: 10.1007/s10980-009-9347-7 – ident: e_1_2_7_14_1 doi: 10.1016/j.gloenvcha.2018.04.001 – ident: e_1_2_7_11_1 – ident: e_1_2_7_13_1 doi: 10.1016/j.gloenvcha.2017.11.014 – ident: e_1_2_7_56_1 doi: 10.1016/j.envsoft.2016.08.016 – ident: e_1_2_7_17_1 doi: 10.1016/j.apgeog.2012.08.006 – ident: e_1_2_7_34_1 doi: 10.1016/j.ecolmodel.2014.07.027 – ident: e_1_2_7_28_1 doi: 10.1016/j.envsoft.2012.01.007 – ident: e_1_2_7_38_1 doi: 10.1002/2014EF000290 – ident: e_1_2_7_29_1 doi: 10.1080/24694452.2017.1303357 – ident: e_1_2_7_51_1 doi: 10.3390/e15072606 – ident: e_1_2_7_58_1 doi: 10.1016/j.envsoft.2018.03.021 – ident: e_1_2_7_35_1 doi: 10.1038/nature08823 – ident: e_1_2_7_7_1 doi: 10.1142/S2010007817500051 – ident: e_1_2_7_16_1 doi: 10.1016/j.envsoft.2015.10.015 – ident: e_1_2_7_61_1 doi: 10.1016/j.gloenvcha.2018.08.002 – ident: e_1_2_7_42_1 doi: 10.1111/gcb.13337 – ident: e_1_2_7_27_1 – ident: e_1_2_7_65_1 doi: 10.1016/j.esr.2018.02.001 – ident: e_1_2_7_2_1 doi: 10.1111/gcb.14110 – ident: e_1_2_7_25_1 doi: 10.1029/2010GL046402 – ident: e_1_2_7_41_1 doi: 10.1038/nclimate2444 – ident: e_1_2_7_12_1 doi: 10.1111/j.1467-9671.2007.01031.x – ident: e_1_2_7_10_1 doi: 10.1080/136588198241617 – ident: e_1_2_7_18_1 doi: 10.1007/s12571-014-0375-z – ident: e_1_2_7_60_1 doi: 10.1016/j.apenergy.2013.08.042 – ident: e_1_2_7_32_1 doi: 10.1080/13658810701757510 – ident: e_1_2_7_15_1 doi: 10.2172/1127203 – ident: e_1_2_7_45_1 doi: 10.1023/A:1021344614845 – ident: e_1_2_7_8_1 doi: 10.1080/13658816.2014.999245 – ident: e_1_2_7_31_1 doi: 10.1016/j.apgeog.2014.06.007 – ident: e_1_2_7_62_1 – ident: e_1_2_7_47_1 doi: 10.1016/j.apenergy.2017.09.122 – ident: e_1_2_7_3_1 doi: 10.1016/j.gloenvcha.2015.08.011 – ident: e_1_2_7_36_1 doi: 10.1080/15481603.2016.1265706 – ident: e_1_2_7_46_1 doi: 10.1016/j.envsoft.2011.02.013 – ident: e_1_2_7_57_1 doi: 10.1007/s10584-011-0152-3 – ident: e_1_2_7_66_1 doi: 10.1016/j.apenergy.2018.01.025 – ident: e_1_2_7_30_1 doi: 10.1080/13658810210137004 – ident: e_1_2_7_44_1 doi: 10.1016/j.envsoft.2018.10.006 – ident: e_1_2_7_53_1 doi: 10.1088/1748-9326/6/3/034019 – ident: e_1_2_7_59_1 doi: 10.1088/1748-9326/9/6/064004 – ident: e_1_2_7_4_1 doi: 10.1080/13658810701731168 – ident: e_1_2_7_5_1 doi: 10.1080/19475683.2018.1543205 – ident: e_1_2_7_40_1 doi: 10.1016/j.gloenvcha.2016.10.002 – ident: e_1_2_7_52_1 doi: 10.1111/gcb.12331 – ident: e_1_2_7_21_1 doi: 10.1002/2017EF000744 – ident: e_1_2_7_64_1 doi: 10.1016/j.enpol.2013.03.014 – ident: e_1_2_7_20_1 doi: 10.1073/pnas.1308044111 – ident: e_1_2_7_23_1 doi: 10.1007/s10584-011-0153-2 – ident: e_1_2_7_49_1 doi: 10.5194/gmd-10-4307-2017 – ident: e_1_2_7_37_1 doi: 10.5194/gmd-9-3055-2016 – ident: e_1_2_7_48_1 doi: 10.1002/2017EF000560 – ident: e_1_2_7_33_1 doi: 10.1016/j.landurbplan.2017.09.019 – ident: e_1_2_7_26_1 doi: 10.2172/1036082 – ident: e_1_2_7_24_1 doi: 10.1016/j.jmaa.2014.03.092 – ident: e_1_2_7_22_1 doi: 10.1016/j.rse.2018.04.050 – ident: e_1_2_7_9_1 – ident: e_1_2_7_54_1 doi: 10.1007/s10980-009-9355-7 – ident: e_1_2_7_50_1 doi: 10.1016/j.agee.2012.02.019 – ident: e_1_2_7_39_1 doi: 10.1007/s00168-007-0138-2 – ident: e_1_2_7_43_1 doi: 10.1080/19475683.2018.1520300 – volume: 2013 start-page: 1 year: 2013 ident: e_1_2_7_63_1 article-title: A comparison of two land use simulation models under the RCP4. 5 scenario in China publication-title: Advances in Meteorology doi: 10.1155/2013/578350 contributor: fullname: Wu F. |
SSID | ssj0000970357 |
Score | 2.3255224 |
Snippet | Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes,... Abstract Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental... Abstract Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1102 |
SubjectTerms | Agricultural production Biodiversity Carbon cycle Cellular automata cellular automata (CA) Climate change Computer simulation Emission standards Environmental changes Geopolitics global change assessment model (GCAM) Heterogeneity HyperText Markup Language Land cover Land use Land use and land cover change (LUCC) Modelling Socioeconomic factors Spatial data Spatial heterogeneity Spatial resolution spatial sequential modeling Temporal resolution |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9sIFtUDF0hb5ABekiDj-SHxC21VWBUFVoa7UW-RPhFRtymZ76G_pn8XjeLftpbfEduxIz_Y82-M3AJ-k4co1yhfSUlFwWpaFiR2rEEY577iqXVK8-XUuz5b8x5W4yhtuQ3ar3M6JaaJ2vcU98q9IlWuGBv3bzb8Co0bh6WoOofES9qq4UignsHfanl_83u2ylCo2LOrs8V5WKi72qWoX6USpeWKLkmT_E575mK0mc7PYh9eZJ5LZCOwBvPCrN3DYPlxLi5l5XA5v4R4jC__FpOQZnR4xyhneNSd65cjFOh3IIAqkD2RU-ic_MWs5-FQkvczRo5OMVw4GYu7I9ywnkSrafjfmk9lO1XNsLFUz99fX6NpKZrebPtJh_Q6Wi_ZyflbksAuF5XHxgoBZbgKrQ-0Ew8AcgjoqSx25BWtQ2lRHk9Zwq2wtTOWYFK52MgjvG6eDZYcwWfUr_x6ICcGFmKgNjbiH0JS2ktFYaks1pdZN4fMWgO5mVNfo0ql4pbrHQE3hFNHZlUFN7JTQr_90eYh1Qlokg4KZSPJkkMqJwDRvgmJclYFO4XiLbZcH6tA9dKspfEl4P_sjXbu4RPmAD8_XdQSv8KvRF-0YJpv1rT-J5GVjPuYe-h8wP-yW priority: 102 providerName: ProQuest – databaseName: Wiley Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swECaadMkSpI8gbh7g0C4FhIjiQ-LoGDacoi08xEA2gc8gQGAXljPkt-TPhneiHWcJ0E06UpSA4-k-knffEfJdWaF9o0OhHJOFYGVZ2DSxCmm1D17o2iPjzZ-_ajoXv27lbd5wg1yYnh9iu-EGloH_azBwY7tMNgAcmclz6fEEj4aaPfIRSGOAO78Ss-0eS6nTa5HsM-GGphBVXefY9zTE5e4Ab7wSkve_QZy7uBUdz-SIHGbESIe9ij-RD2HxmRyPXxPUUmO20O4LeYYaw_cgwhhpvIR6Z5B1Ts3C09kKj2ZAH3QZac_5T39D07wL2AVvRhDbSfvkg47aJ3qdiSVwoM1zfTsdbvk9-5fhMKPw8ABBrnT4uF4mYGy-kvlkfDOaFrkAQ-FEWsaA6pywkdex9pJDiQ7JPFOlSSiDN0ByapJza4TTrpa28lxJX3sVZQiNN9HxY7K_WC7CCaE2Rh-T0FiWZkCMTekqldymccww5vyA_NgooP3X82y0eD5e6XZXUQNyBdrZ9gF2bBQsV3dtNrZWKgewUHKb4J6KSnsZuRFN1FzoMrIBOdvots0m27WwFqs5IMYB-Yn6fvdD2vHkBogEvv1P51NyAOI-Ru2M7K9Xj-E8gZq1vcCZ-wJr8O0T priority: 102 providerName: Wiley-Blackwell |
Title | Spatial Sequential Modeling and Predication of Global Land Use and Land Cover Changes by Integrating a Global Change Assessment Model and Cellular Automata |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019EF001228 https://www.proquest.com/docview/2306732183 https://doaj.org/article/56c561053b2646f69d5f3a48f93490f1 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB4VeukFtRTUAI18oBekVdfrx66PIdqIIoqiikjcVn5KlVCCknDgt_Bn8dgbGi5w6W3X9tqWZ7zzjTz-BuBUGq5co3whLRUFp2VZmKhYhTDKecdV7RLjze9reTHjl7fidivVF8aEZXrgvHA_hbRo4gUz0XTLIJUTgWneBMW4KkN2fEq15Uylf7CKA4q6j3QvKxWdfKraSTpJal7ZoETV_wpfbqPUZGYmn2Gvx4dklOf1BT74-T4ctv-uo8XKfj-uvsITZhT-i0UpIjo9YnYzvGNO9NyR6TIdxODqk0UgmeGfXGHVbOVTk_QyxkhOkq8arIh5JL96GonU0ea7XE9GL2yeebDUzdjf3WFIKxk9rBcRBusDmE3am_FF0adbKCyPTgsKynITWB1qJxgm5BDUUVnqiClYg5SmOpqyhltla2Eqx6RwtZNBeN84HSw7hN35Yu6_ATEhuBALtaFR3iE0pa1kNJLaUk2pdQP4sRFAd59ZNbp0Gl6pbltQAzhH6by0QS7sVBA1pOs1pHtPQwZwspFt12_QVYeeV80QHw7gLMn7zYl07eQGaQOO_seEjuET9p0j1U5gd7188N8jtFmbIexUfDqEj-ft9fTPMOn0M7039PE |
link.rule.ids | 315,783,787,867,2109,11574,21400,27936,27937,33756,43817,46064,46488,50826,50935,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9MwGLZgO8AFMWCiY2w-wAUpIq4_Ep9QV6XqRldNqJV2s_yJkKZma7oDv4U_i1_H7bbLbont2JEe2-9j-_XzIvRFGCZdLX0hLOEFI2VZmNixCm6k847JyiXFm8u5mC7ZxTW_zhtuXXar3M6JaaJ2rYU98u9AlSsKBv3H7V0BUaPgdDWH0HiJ9kGqKi6-9s-a-dWv3S5LKWPDvMoe7-VQxsU-kc0knSjVT2xRkux_wjMfs9VkbiZv0ZvME_GoB_YAvfCrd-iwebiWFjPzuOzeo38QWfgPJCXP6PQIUc7grjnWK4ev1ulABlDAbcC90j-eQday86lIehmDRyfurxx02PzF51lOIlW0_a7Px6OdqmffWKpm7G9uwLUVj-43baTD-gNaTprFeFrksAuFZXHxAoBZZgKtQuU4hcAcnDgiSh25Ba1B2lRHk1YzK23FzdBRwV3lRODe104HSw_R3qpd-Y8ImxBciInakIh7CHVphyIaS22JJsS6Afq6BUDd9uoaKp2KD6V6DNQAnQE6uzKgiZ0S2vVvlYeY4sICGeTURJIngpCOB6pZHSRlsgxkgI632Ko8UDv10K0G6FvC-9kfUc1kAfIBR8_XdYpeTReXMzU7n__8hF5DDb1f2jHa26zv_edIZDbmJPfW_5J175A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuiFfF0gI-wAUparx-JD6h7ZKohbJaoa7Um-VnhVRtymZ76G_hz-JxvNv20ltiO46lGXs-e8bfIPRZGCZdLX0hLOEFI2VZmKhYBTfSecdk5RLjza-5OFmyHxf8Isc_9TmscrsmpoXadRbOyI8AKlcUDPpRyGERi-_tt-u_BWSQAk9rTqfxFO1VTNByhPaOm_ni9-7EpZRxELzK0e_lRMaNP5FNm7xL9QO7lOj7H2DO-8g1mZ72JXqRMSOeDkJ-hZ741Wu039xdUYuVeY72b9A_yDL8B4pSlHR6hIxncO8c65XDi3VyzoBEcBfwwPqPz6Bq2fvUJL3MILoTD9cPemxu8Wmmlkgdbb8b6vF0x_A5_Cx1M_NXVxDmiqc3my5CY_0WLdvmfHZS5BQMhWVxIwPCs8wEWoXKcQpJOjhxRJQ64gxaA82pjuatZlbaipuJo4K7yonAva-dDpbuo9GqW_l3CJsQXIiF2pCoAyHUpZ2IaDi1JZoQ68boy1YA6npg2lDJQz6R6r6gxugYpLNrA_zYqaBbX6o83RQXFoAhpyYCPhGEdDxQzeogKZNlIGN0uJWtypO2V3cqNkZfk7wfHYhq2nOgEnj_eF-f0LOoqOrsdP7zAD2HDoYQtUM02qxv_IeIaTbmY1bW_8br874 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Sequential+Modeling+and+Predication+of+Global+Land+Use+and+Land+Cover+Changes+by+Integrating+a+Global+Change+Assessment+Model+and+Cellular+Automata&rft.jtitle=Earth%27s+future&rft.au=Cao%2C+Min&rft.au=Zhu%2C+Yanhui&rft.au=Quan%2C+Jinling&rft.au=Zhou%2C+Sheng&rft.date=2019-09-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=7&rft.issue=9&rft.spage=1102&rft.epage=1116&rft_id=info:doi/10.1029%2F2019EF001228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2019EF001228 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon |