Spatial Sequential Modeling and Predication of Global Land Use and Land Cover Changes by Integrating a Global Change Assessment Model and Cellular Automata

Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sourc...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 7; no. 9; pp. 1102 - 1116
Main Authors Cao, Min, Zhu, Yanhui, Quan, Jinling, Zhou, Sheng, Lü, Guonian, Chen, Min, Huang, Mengxue
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.09.2019
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp). Key Points In this paper, we propose a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) We use this strategy to sequentially spatialize and predict global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100
AbstractList Abstract Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp ). Key Points In this paper, we propose a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) We use this strategy to sequentially spatialize and predict global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100
Abstract Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp).
Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp).
Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes, such as in biological diversity and the carbon cycle. Both natural cycles and human activities can be better examined with more accurate sources of land use data with higher spatial resolution. More importantly, it is crucial to consider spatial heterogeneity to simulate future changes in LUCC. In this paper, a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) is proposed. This modeling strategy is designed to sequentially spatialize global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100. The GCAM model is employed to predict the land use and land cover area demands for 283 world regions, which are divided by intersecting 32 geopolitical and socioeconomic regions and 18 agroecological zones. The spatialization rules of CA is trained separately for each world region to distinguish global land use and land cover types. The different spatialization rules and trends in land use and land cover demand for each of the 283 regions reflect the spatial heterogeneity in the GCAM‐CA model. We implement and validate the model for the simulation from 2000 to 2010. Next, the model is used to simulate three future scenarios, REF, G26, and G45, demonstrating that the GCAM‐CA model is effective for future global‐scale simulation of LUCCs. GCAM‐CA is freely available at the open geographic modeling and simulation platform (OpenGMS, http://geomodeling.njnu.edu.cn/GCAM‐CA.jsp). Key Points In this paper, we propose a modeling strategy (hereinafter referred to as GCAM‐CA) that combines a global change assessment model (GCAM) with cellular automata (CA) We use this strategy to sequentially spatialize and predict global LUCCs with 1‐km spatial resolution and 5‐year temporal resolution from 2010 to 2100
Author Huang, Mengxue
Zhou, Sheng
Zhu, Yanhui
Chen, Min
Cao, Min
Quan, Jinling
Lü, Guonian
Author_xml – sequence: 1
  givenname: Min
  surname: Cao
  fullname: Cao, Min
  organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
– sequence: 2
  givenname: Yanhui
  surname: Zhu
  fullname: Zhu, Yanhui
  organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
– sequence: 3
  givenname: Jinling
  surname: Quan
  fullname: Quan, Jinling
  organization: CAS
– sequence: 4
  givenname: Sheng
  surname: Zhou
  fullname: Zhou, Sheng
  organization: Tsinghua University
– sequence: 5
  givenname: Guonian
  surname:
  fullname: Lü, Guonian
  organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
– sequence: 6
  givenname: Min
  orcidid: 0000-0001-8922-8789
  surname: Chen
  fullname: Chen, Min
  email: chenmin0902@163.com
  organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
– sequence: 7
  givenname: Mengxue
  surname: Huang
  fullname: Huang, Mengxue
  organization: Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application
BookMark eNp9kU1vEzEQhi1UJErpjR9giStp_W3vMVolJVIQSG3PltcfYSNnHewNKL-FP4uzC6gnfJnxzDPva3negqshDR6A9xjdYUSae4Jws1ojhAlRr8A1oUQtGJHy6kX-BtyWskf1NBJRLq_Br8ejGXsT4aP_fvLDlH5Ozsd-2EEzOPg1e9fbyqQBpgAfYuoqsr20noufkOnSph8-w_abGXa-wO4MN8Pod7kOXoT-zs19uCzFl3KofrPZJNP6GE_RZLg8jelgRvMOvA4mFn_7J96A5_Xqqf202H552LTL7cIyyemCYWRZF6gM0nGKFBYcOyyQ4aihilFFjWJSMdtYyTviqOBOOhG498qZYOkN2My6Lpm9Pub-YPJZJ9PrqZDyTps89jZ6zYXlAiNOOyKYCKJxPFDDVGgoa1DAVevDrHXMqX5oGfU-nfJQn68JRUJSghWt1MeZsjmVkn3454qRvmxTv9xmxfGM_-yjP_-X1av1E-GM0t-i5qAS
CitedBy_id crossref_primary_10_5194_essd_13_5403_2021
crossref_primary_10_1080_10095020_2022_2025748
crossref_primary_10_3390_land10040379
crossref_primary_10_1016_j_scitotenv_2021_145357
crossref_primary_10_1007_s10708_022_10776_4
crossref_primary_10_1109_JSTARS_2022_3152904
crossref_primary_10_3390_land13030393
crossref_primary_10_1007_s10113_024_02219_2
crossref_primary_10_3390_ijgi12020050
crossref_primary_10_5194_gmd_14_1493_2021
crossref_primary_10_3390_rs14194957
crossref_primary_10_3390_su11154081
crossref_primary_10_1016_j_landurbplan_2020_103993
crossref_primary_10_1016_j_scib_2023_03_012
crossref_primary_10_1080_19475683_2020_1871406
crossref_primary_10_3390_ijgi12080306
crossref_primary_10_1016_j_rsase_2021_100661
crossref_primary_10_1016_j_ecohyd_2020_12_001
crossref_primary_10_1016_j_jclepro_2023_140058
crossref_primary_10_3390_su152115322
crossref_primary_10_1016_j_isci_2023_106364
crossref_primary_10_1080_17538947_2020_1849439
crossref_primary_10_3390_su14159180
crossref_primary_10_1117_1_JRS_18_026501
crossref_primary_10_1038_s41597_023_02637_7
crossref_primary_10_1016_j_envsoft_2023_105826
crossref_primary_10_1029_2023EF003648
crossref_primary_10_3390_land12112073
crossref_primary_10_54097_ajst_v4i3_4901
crossref_primary_10_3390_land10090982
crossref_primary_10_1016_j_ecolind_2020_106671
crossref_primary_10_3389_ffgc_2022_994713
crossref_primary_10_1371_journal_pone_0248543
crossref_primary_10_1007_s44274_024_00066_w
crossref_primary_10_1111_tgis_13054
crossref_primary_10_1038_s41597_022_01204_w
crossref_primary_10_1080_10106049_2022_2152498
Cites_doi 10.1016/j.gloenvcha.2018.02.016
10.1016/j.futures.2004.11.003
10.1007/s10980-009-9347-7
10.1016/j.gloenvcha.2018.04.001
10.1016/j.gloenvcha.2017.11.014
10.1016/j.envsoft.2016.08.016
10.1016/j.apgeog.2012.08.006
10.1016/j.ecolmodel.2014.07.027
10.1016/j.envsoft.2012.01.007
10.1002/2014EF000290
10.1080/24694452.2017.1303357
10.3390/e15072606
10.1016/j.envsoft.2018.03.021
10.1038/nature08823
10.1142/S2010007817500051
10.1016/j.envsoft.2015.10.015
10.1016/j.gloenvcha.2018.08.002
10.1111/gcb.13337
10.1016/j.esr.2018.02.001
10.1111/gcb.14110
10.1029/2010GL046402
10.1038/nclimate2444
10.1111/j.1467-9671.2007.01031.x
10.1080/136588198241617
10.1007/s12571-014-0375-z
10.1016/j.apenergy.2013.08.042
10.1080/13658810701757510
10.2172/1127203
10.1023/A:1021344614845
10.1080/13658816.2014.999245
10.1016/j.apgeog.2014.06.007
10.1016/j.apenergy.2017.09.122
10.1016/j.gloenvcha.2015.08.011
10.1080/15481603.2016.1265706
10.1016/j.envsoft.2011.02.013
10.1007/s10584-011-0152-3
10.1016/j.apenergy.2018.01.025
10.1080/13658810210137004
10.1016/j.envsoft.2018.10.006
10.1088/1748-9326/6/3/034019
10.1088/1748-9326/9/6/064004
10.1080/13658810701731168
10.1080/19475683.2018.1543205
10.1016/j.gloenvcha.2016.10.002
10.1111/gcb.12331
10.1002/2017EF000744
10.1016/j.enpol.2013.03.014
10.1073/pnas.1308044111
10.1007/s10584-011-0153-2
10.5194/gmd-10-4307-2017
10.5194/gmd-9-3055-2016
10.1002/2017EF000560
10.1016/j.landurbplan.2017.09.019
10.2172/1036082
10.1016/j.jmaa.2014.03.092
10.1016/j.rse.2018.04.050
10.1007/s10980-009-9355-7
10.1016/j.agee.2012.02.019
10.1007/s00168-007-0138-2
10.1080/19475683.2018.1520300
10.1155/2013/578350
ContentType Journal Article
Copyright 2019. The Authors.
2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. The Authors.
– notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7ST
7TG
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
DOA
DOI 10.1029/2019EF001228
DatabaseName Wiley Open Access
Wiley Online Library Journals
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Agriculture & Environmental Science Database
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Environmental Science Collection
Meteorological & Geoastrophysical Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Titles (Open access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage 1116
ExternalDocumentID oai_doaj_org_article_56c561053b2646f69d5f3a48f93490f1
10_1029_2019EF001228
EFT2543
Genre article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Surveying mapping and geoinformation research project of Jiangsu Province
  funderid: JSCHKY201814
– fundername: Project of Nanjing Normal University
  funderid: 1451527
– fundername: Qing‐Lan Project of Nanjing Normal University
– fundername: National Basic Research Program of China (973 Program)
  funderid: No.2015CB954101; No.2015CB954103
– fundername: National Science Foundation of China
  funderid: No.41671385; No.41622108; No.41871178
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAYXX
CITATION
ITC
7ST
7TG
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
KL.
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c4753-410c4bf37f7d53081651d160a509384383a84784c9c75b2d365d7d6f5ee8dafc3
IEDL.DBID DOA
ISSN 2328-4277
IngestDate Tue Oct 22 15:11:23 EDT 2024
Sat Nov 09 08:45:31 EST 2024
Thu Sep 26 19:28:08 EDT 2024
Sat Aug 24 01:17:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4753-410c4bf37f7d53081651d160a509384383a84784c9c75b2d365d7d6f5ee8dafc3
ORCID 0000-0001-8922-8789
OpenAccessLink https://doaj.org/article/56c561053b2646f69d5f3a48f93490f1
PQID 2306732183
PQPubID 2034575
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_56c561053b2646f69d5f3a48f93490f1
proquest_journals_2306732183
crossref_primary_10_1029_2019EF001228
wiley_primary_10_1029_2019EF001228_EFT2543
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 35
2002; 16
2017; 5
2017; 42
2014; 417
2016; 75
2010; 463
2017; 08
2014; 291
2018; 48
2003; 56
2013; 19
2018; 6
2017; 208
2013; 15
2014; 4
2013; 58
2010; 25
2013; 2013
2018; 214
2019; 25
2018; 213
2016; 85
2008; 22
2011; 26
2005; 37
2014; 9
2017; 168
2014; 6
1998; 12
2019; 112
2014; 53
2009; 24
2015; 3
2011
1995
1994
2005
2012; 35
2014; 111
2011; 38
2007; 11
2011; 6
2012; 33
2018; 20
2014; 114
2018; 24
2012; 153
2018; 110
2011; 109
2015; 29
2017; 54
2017
2018; 52
2018; 50
2014
2008; 42
2018; 10
2016; 9
2017; 107
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Wu F. (e_1_2_7_63_1) 2013; 2013
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – year: 2011
– volume: 213
  start-page: 22
  year: 2018
  end-page: 30
  article-title: Roles of wind and solar energy in China's power sector: Implications of intermittency constraints
  publication-title: Applied Energy
– volume: 6
  start-page: 1
  issue: 3
  year: 2011
  end-page: 12
  article-title: A global assessment of market accessibility and market influence for global environmental change studies
  publication-title: Environmental Research Letters
– volume: 214
  start-page: 73
  year: 2018
  end-page: 86
  article-title: Urban land‐use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
  publication-title: Remote Sensing of Environment
– volume: 463
  start-page: 747
  issue: 7282
  year: 2010
  end-page: 756
  article-title: The next generation of scenarios for climate change research and assessment
  publication-title: Nature
– volume: 22
  start-page: 1247
  issue: 11–12
  year: 2008
  end-page: 1269
  article-title: A bottom‐up approach to discover transition rules of cellular automata using ant intelligence
  publication-title: International Journal of Geographical Information Science
– volume: 3
  start-page: 220
  issue: 7
  year: 2015
  end-page: 251
  article-title: Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs
  publication-title: Earth's Future
– volume: 50
  start-page: 164
  year: 2018
  end-page: 177
  article-title: Land use projections in China under global socioeconomic and emission scenarios: Utilizing a scenario‐based land‐use change assessment framework
  publication-title: Global Environmental Change
– year: 2005
– volume: 35
  start-page: 138
  year: 2015
  end-page: 147
  article-title: Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy
  publication-title: Global Environmental Change
– volume: 35
  start-page: 316
  issue: 1–2
  year: 2012
  end-page: 326
  article-title: Examining the potential impact of land use/cover changes on the ecosystem services of Baguio City, the Philippines: A scenario‐based analysis
  publication-title: Applied Geography
– volume: 52
  start-page: 259
  year: 2018
  end-page: 272
  article-title: Meeting global land restoration and protection targets: What would the world look like in 2050?
  publication-title: Global Environmental Change
– volume: 24
  start-page: 2791
  issue: 7
  year: 2018
  end-page: 2809
  article-title: Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide
  publication-title: Global Change Biology
– volume: 10
  start-page: 4307
  issue: 12
  year: 2018
  end-page: 4319
  article-title: Evaluation of integrated assessment model hindcast experiments: A case study of the GCAM 3.0 land use module
  publication-title: Geoscientific Model Development Discussion
– volume: 85
  start-page: 246
  year: 2016
  end-page: 265
  article-title: What are the effects of agro‐ecological zones and land use region boundaries on land resource projection using the global change assessment model?
  publication-title: Environmental Modelling & Software
– volume: 24
  start-page: 275
  issue: 4
  year: 2018
  end-page: 285
  article-title: On land‐use and land‐cover changes over Lidder Valley in changing environment
  publication-title: Annals of GIS
– volume: 53
  start-page: 172
  year: 2014
  end-page: 186
  article-title: Modeling urban vertical growth using cellular automata—Guangzhou as a case study
  publication-title: Applied Geography
– year: 1994
– volume: 114
  start-page: 763
  year: 2014
  end-page: 773
  article-title: Agriculture, land use, energy and carbon emission impacts of global biofuel mandates to mid‐century
  publication-title: Applied Energy
– year: 2014
– volume: 38
  year: 2011
  article-title: Future changes in tropospheric ozone under representative concentration pathways (rcps)
  publication-title: Geophysical Research Letters
– volume: 42
  start-page: 11
  issue: 1
  year: 2008
  end-page: 37
  article-title: Comparing the input, output, and validation maps for several models of land change
  publication-title: The Annals of Regional Science
– volume: 112
  start-page: 70
  year: 2019
  end-page: 81
  article-title: A novel algorithm for calculating transition potential in cellular automata models of land‐use/cover change
  publication-title: Environmental Modelling & Software
– volume: 16
  start-page: 323
  issue: 4
  year: 2002
  end-page: 343
  article-title: Neural‐network‐based cellular automata for simulating multiple land use changes using GIS
  publication-title: International Journal of Geographical Information Science
– volume: 111
  start-page: 3709
  issue: 10
  year: 2014
  end-page: 3714
  article-title: Climate change mitigation through livestock system transitions
  publication-title: Proceedings of the National Academy of Sciences
– volume: 9
  start-page: 3055
  issue: 9
  year: 2016
  end-page: 3069
  article-title: Downscaling land use and land cover from the global change assessment model for coupling with earth system models
  publication-title: Geoscientific Model Development
– volume: 5
  start-page: 1068
  issue: 11
  year: 2017
  end-page: 1083
  article-title: Future scenarios of land change based on empirical data and demographic trends
  publication-title: Earth's Future
– volume: 54
  start-page: 283
  issue: 3
  year: 2017
  end-page: 304
  article-title: Integrating the multi‐label land‐use concept and cellular automata with the artificial neural network‐based land transformation model: An integrated ML‐CA‐LTM modeling framework
  publication-title: GIScience & Remote Sensing
– volume: 6
  start-page: 685
  issue: 5
  year: 2014
  end-page: 699
  article-title: Land use representation in a global CGE model for long‐term simulation: CET vs. logit functions
  publication-title: Food Security
– volume: 42
  start-page: 331
  year: 2017
  end-page: 345
  article-title: Land‐use futures in the shared socio‐economic pathways
  publication-title: Global Environmental Change
– volume: 22
  start-page: 3967
  issue: 12
  year: 2016
  end-page: 3983
  article-title: Hotspots of uncertainty in land‐use and land‐cover change projections: A global‐scale model comparison
  publication-title: Global Change Biology
– volume: 168
  start-page: 94
  year: 2017
  end-page: 116
  article-title: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects
  publication-title: Landscape and Urban Planning
– volume: 20
  start-page: 113
  year: 2018
  end-page: 123
  article-title: Peak energy consumption and CO emissions in China's industrial sector
  publication-title: Energy Strategy Reviews
– volume: 417
  start-page: 963
  issue: 2
  year: 2014
  end-page: 969
  article-title: On the approximation by neural networks with bounded number of neurons in hidden layers
  publication-title: Journal of Mathematical Analysis and Applications
– volume: 19
  start-page: 3648
  issue: 12
  year: 2013
  end-page: 3667
  article-title: Land cover change or land‐use intensification: Simulating land system change with a global‐scale land change model
  publication-title: Global Change Biology
– volume: 15
  start-page: 2606
  issue: 12
  year: 2013
  end-page: 2634
  article-title: Simple urban simulation atop complicated models: Multi‐scale equation‐free computing of sprawl using geographic automata
  publication-title: Entropy
– volume: 11
  start-page: 29
  issue: 1
  year: 2007
  end-page: 45
  article-title: Toward optimal calibration of the SLEUTH land use change model
  publication-title: Transactions in GIS
– volume: 56
  start-page: 185
  issue: 1/2
  year: 2003
  end-page: 210
  article-title: Modeling agriculture and land use in an integrated assessment framework
  publication-title: Climatic Change
– volume: 50
  start-page: 41
  year: 2018
  end-page: 59
  article-title: Impacts of land‐use and management changes on cultural agroecosystem services and environmental conflicts—A global review
  publication-title: Global Environmental Change
– volume: 29
  start-page: 806
  issue: 5
  year: 2015
  end-page: 824
  article-title: A new discovery of transition rules for cellular automata by using cuckoo search algorithm
  publication-title: International Journal of Geographical Information Science
– volume: 33
  start-page: 61
  issue: 5
  year: 2012
  end-page: 79
  article-title: A land‐use systems approach to represent land‐use dynamics at continental and global scales
  publication-title: Environmental Modelling and Software
– volume: 107
  start-page: 1040
  issue: 5
  year: 2017
  end-page: 1059
  article-title: A new global land‐use and land‐cover change product at a 1‐km resolution for 2010 to 2100 based on human–environment interactions
  publication-title: Annals of the American Association of Geographers
– volume: 22
  start-page: 943
  issue: 9
  year: 2008
  end-page: 963
  article-title: Using neural networks and cellular automata for modelling intra‐urban land‐use dynamics
  publication-title: International Journal of Geographical Information Science
– volume: 24
  start-page: 1167
  issue: 9
  year: 2009
  end-page: 1181
  article-title: Combining top‐down and bottom‐up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the dyna‐CLUE model
  publication-title: Landscape Ecology
– volume: 6
  start-page: 396
  issue: 3
  year: 2018
  end-page: 409
  article-title: Biogeophysical impacts of land‐use change on climate extremes in low‐emission scenarios: Results from HAPPI‐land
  publication-title: Earth's Future
– volume: 08
  issue: 01
  year: 2017
  article-title: A hindcast experiment using the GCAM 3.0 agriculture and land‐use module
  publication-title: Climate Change Economics
– volume: 153
  start-page: 1
  issue: 6087
  year: 2012
  end-page: 15
  article-title: Spatially explicit land‐use and landcover scenarios for the Great Plains of the United States
  publication-title: Ecosystems & Environment
– volume: 109
  start-page: 117
  issue: 1–2
  year: 2011
  end-page: 161
  article-title: Harmonization of land‐use scenarios for the period 1500–2100: 600 years of global gridded annual land‐use transitions, wood harvest, and resulting secondary lands
  publication-title: Climatic Change
– volume: 110
  start-page: 38
  year: 2018
  end-page: 51
  article-title: Downscaling of climate model output for Alaskan stakeholders
  publication-title: Environmental Modelling & Software
– volume: 37
  start-page: 745
  issue: 7
  year: 2005
  end-page: 766
  article-title: Modelling and prediction in a complex world
  publication-title: Futures
– volume: 26
  start-page: 1041
  issue: 8
  year: 2011
  end-page: 1051
  article-title: An integrated approach to modelling land‐use change on continental and global scales
  publication-title: Environmental Modelling and Software
– volume: 58
  start-page: 284
  year: 2013
  end-page: 294
  article-title: Energy use and CO emissions of China's industrial sector from a global perspective
  publication-title: Energy Policy
– volume: 9
  start-page: 1
  issue: 6
  year: 2014
  end-page: 15
  article-title: Downscaling global land cover projections from an integrated assessment model for use in regional analyses: Results and evaluation for the US from 2005 to 2095
  publication-title: Environmental Research Letters
– volume: 4
  start-page: 1095
  issue: 12
  year: 2014
  end-page: 1098
  article-title: Land‐use protection for climate change mitigation
  publication-title: Nature Climate Change
– volume: 75
  start-page: 212
  year: 2016
  end-page: 229
  article-title: Applying Occam's razor to global agricultural land use change
  publication-title: Environmental Modelling and Software
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 7
  article-title: A comparison of two land use simulation models under the RCP4. 5 scenario in China
  publication-title: Advances in Meteorology
– year: 1995
– volume: 48
  start-page: 119
  year: 2018
  end-page: 135
  article-title: Exploring SSP land‐use dynamics using the IMAGE model: Regional and gridded scenarios of land‐use change and land‐based climate change mitigation
  publication-title: Global Environmental Change
– volume: 25
  start-page: 217
  issue: 2
  year: 2010
  end-page: 232
  article-title: Trajectories of land use change in Europe: A model‐based exploration of rural futures
  publication-title: Landscape Ecology
– year: 2017
– volume: 291
  start-page: 152
  year: 2014
  end-page: 174
  article-title: Spatial modeling of agricultural land‐use change at global scale
  publication-title: Ecological Modelling
– volume: 12
  start-page: 699
  issue: 7
  year: 1998
  end-page: 714
  article-title: Loose‐coupling a cellular automata model and GIS: Long‐term urban growth prediction for San Francisco and Washington/Baltimore
  publication-title: International Journal of Geographical Information Science
– volume: 25
  start-page: 57
  issue: 1
  year: 2019
  end-page: 70
  article-title: Monitoring the impacts of spatio‐temporal land‐use changes on the regional climate of city Faisalabad, Pakistan
  publication-title: Annals of GIS
– volume: 109
  start-page: 95
  issue: 1–2
  year: 2011
  end-page: 116
  article-title: RCP2.6: Exploring the possibility to keep global mean temperature increase below 2° C
  publication-title: Climatic Change
– volume: 208
  start-page: 511
  year: 2017
  end-page: 521
  article-title: Projecting state‐level air pollutant emissions using an integrated assessment model: GCAM‐USA
  publication-title: Applied Energy
– ident: e_1_2_7_19_1
  doi: 10.1016/j.gloenvcha.2018.02.016
– ident: e_1_2_7_6_1
  doi: 10.1016/j.futures.2004.11.003
– ident: e_1_2_7_55_1
  doi: 10.1007/s10980-009-9347-7
– ident: e_1_2_7_14_1
  doi: 10.1016/j.gloenvcha.2018.04.001
– ident: e_1_2_7_11_1
– ident: e_1_2_7_13_1
  doi: 10.1016/j.gloenvcha.2017.11.014
– ident: e_1_2_7_56_1
  doi: 10.1016/j.envsoft.2016.08.016
– ident: e_1_2_7_17_1
  doi: 10.1016/j.apgeog.2012.08.006
– ident: e_1_2_7_34_1
  doi: 10.1016/j.ecolmodel.2014.07.027
– ident: e_1_2_7_28_1
  doi: 10.1016/j.envsoft.2012.01.007
– ident: e_1_2_7_38_1
  doi: 10.1002/2014EF000290
– ident: e_1_2_7_29_1
  doi: 10.1080/24694452.2017.1303357
– ident: e_1_2_7_51_1
  doi: 10.3390/e15072606
– ident: e_1_2_7_58_1
  doi: 10.1016/j.envsoft.2018.03.021
– ident: e_1_2_7_35_1
  doi: 10.1038/nature08823
– ident: e_1_2_7_7_1
  doi: 10.1142/S2010007817500051
– ident: e_1_2_7_16_1
  doi: 10.1016/j.envsoft.2015.10.015
– ident: e_1_2_7_61_1
  doi: 10.1016/j.gloenvcha.2018.08.002
– ident: e_1_2_7_42_1
  doi: 10.1111/gcb.13337
– ident: e_1_2_7_27_1
– ident: e_1_2_7_65_1
  doi: 10.1016/j.esr.2018.02.001
– ident: e_1_2_7_2_1
  doi: 10.1111/gcb.14110
– ident: e_1_2_7_25_1
  doi: 10.1029/2010GL046402
– ident: e_1_2_7_41_1
  doi: 10.1038/nclimate2444
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1467-9671.2007.01031.x
– ident: e_1_2_7_10_1
  doi: 10.1080/136588198241617
– ident: e_1_2_7_18_1
  doi: 10.1007/s12571-014-0375-z
– ident: e_1_2_7_60_1
  doi: 10.1016/j.apenergy.2013.08.042
– ident: e_1_2_7_32_1
  doi: 10.1080/13658810701757510
– ident: e_1_2_7_15_1
  doi: 10.2172/1127203
– ident: e_1_2_7_45_1
  doi: 10.1023/A:1021344614845
– ident: e_1_2_7_8_1
  doi: 10.1080/13658816.2014.999245
– ident: e_1_2_7_31_1
  doi: 10.1016/j.apgeog.2014.06.007
– ident: e_1_2_7_62_1
– ident: e_1_2_7_47_1
  doi: 10.1016/j.apenergy.2017.09.122
– ident: e_1_2_7_3_1
  doi: 10.1016/j.gloenvcha.2015.08.011
– ident: e_1_2_7_36_1
  doi: 10.1080/15481603.2016.1265706
– ident: e_1_2_7_46_1
  doi: 10.1016/j.envsoft.2011.02.013
– ident: e_1_2_7_57_1
  doi: 10.1007/s10584-011-0152-3
– ident: e_1_2_7_66_1
  doi: 10.1016/j.apenergy.2018.01.025
– ident: e_1_2_7_30_1
  doi: 10.1080/13658810210137004
– ident: e_1_2_7_44_1
  doi: 10.1016/j.envsoft.2018.10.006
– ident: e_1_2_7_53_1
  doi: 10.1088/1748-9326/6/3/034019
– ident: e_1_2_7_59_1
  doi: 10.1088/1748-9326/9/6/064004
– ident: e_1_2_7_4_1
  doi: 10.1080/13658810701731168
– ident: e_1_2_7_5_1
  doi: 10.1080/19475683.2018.1543205
– ident: e_1_2_7_40_1
  doi: 10.1016/j.gloenvcha.2016.10.002
– ident: e_1_2_7_52_1
  doi: 10.1111/gcb.12331
– ident: e_1_2_7_21_1
  doi: 10.1002/2017EF000744
– ident: e_1_2_7_64_1
  doi: 10.1016/j.enpol.2013.03.014
– ident: e_1_2_7_20_1
  doi: 10.1073/pnas.1308044111
– ident: e_1_2_7_23_1
  doi: 10.1007/s10584-011-0153-2
– ident: e_1_2_7_49_1
  doi: 10.5194/gmd-10-4307-2017
– ident: e_1_2_7_37_1
  doi: 10.5194/gmd-9-3055-2016
– ident: e_1_2_7_48_1
  doi: 10.1002/2017EF000560
– ident: e_1_2_7_33_1
  doi: 10.1016/j.landurbplan.2017.09.019
– ident: e_1_2_7_26_1
  doi: 10.2172/1036082
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jmaa.2014.03.092
– ident: e_1_2_7_22_1
  doi: 10.1016/j.rse.2018.04.050
– ident: e_1_2_7_9_1
– ident: e_1_2_7_54_1
  doi: 10.1007/s10980-009-9355-7
– ident: e_1_2_7_50_1
  doi: 10.1016/j.agee.2012.02.019
– ident: e_1_2_7_39_1
  doi: 10.1007/s00168-007-0138-2
– ident: e_1_2_7_43_1
  doi: 10.1080/19475683.2018.1520300
– volume: 2013
  start-page: 1
  year: 2013
  ident: e_1_2_7_63_1
  article-title: A comparison of two land use simulation models under the RCP4. 5 scenario in China
  publication-title: Advances in Meteorology
  doi: 10.1155/2013/578350
  contributor:
    fullname: Wu F.
SSID ssj0000970357
Score 2.3255224
Snippet Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental changes,...
Abstract Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental...
Abstract Characterizing land use and land cover change (LUCC) is critical for understanding the interaction between human activities and global environmental...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 1102
SubjectTerms Agricultural production
Biodiversity
Carbon cycle
Cellular automata
cellular automata (CA)
Climate change
Computer simulation
Emission standards
Environmental changes
Geopolitics
global change assessment model (GCAM)
Heterogeneity
HyperText Markup Language
Land cover
Land use
Land use and land cover change (LUCC)
Modelling
Socioeconomic factors
Spatial data
Spatial heterogeneity
Spatial resolution
spatial sequential modeling
Temporal resolution
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9sIFtUDF0hb5ABekiDj-SHxC21VWBUFVoa7UW-RPhFRtymZ76G_pn8XjeLftpbfEduxIz_Y82-M3AJ-k4co1yhfSUlFwWpaFiR2rEEY577iqXVK8-XUuz5b8x5W4yhtuQ3ar3M6JaaJ2vcU98q9IlWuGBv3bzb8Co0bh6WoOofES9qq4UignsHfanl_83u2ylCo2LOrs8V5WKi72qWoX6USpeWKLkmT_E575mK0mc7PYh9eZJ5LZCOwBvPCrN3DYPlxLi5l5XA5v4R4jC__FpOQZnR4xyhneNSd65cjFOh3IIAqkD2RU-ic_MWs5-FQkvczRo5OMVw4GYu7I9ywnkSrafjfmk9lO1XNsLFUz99fX6NpKZrebPtJh_Q6Wi_ZyflbksAuF5XHxgoBZbgKrQ-0Ew8AcgjoqSx25BWtQ2lRHk9Zwq2wtTOWYFK52MgjvG6eDZYcwWfUr_x6ICcGFmKgNjbiH0JS2ktFYaks1pdZN4fMWgO5mVNfo0ql4pbrHQE3hFNHZlUFN7JTQr_90eYh1Qlokg4KZSPJkkMqJwDRvgmJclYFO4XiLbZcH6tA9dKspfEl4P_sjXbu4RPmAD8_XdQSv8KvRF-0YJpv1rT-J5GVjPuYe-h8wP-yW
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swECaadMkSpI8gbh7g0C4FhIjiQ-LoGDacoi08xEA2gc8gQGAXljPkt-TPhneiHWcJ0E06UpSA4-k-knffEfJdWaF9o0OhHJOFYGVZ2DSxCmm1D17o2iPjzZ-_ajoXv27lbd5wg1yYnh9iu-EGloH_azBwY7tMNgAcmclz6fEEj4aaPfIRSGOAO78Ss-0eS6nTa5HsM-GGphBVXefY9zTE5e4Ab7wSkve_QZy7uBUdz-SIHGbESIe9ij-RD2HxmRyPXxPUUmO20O4LeYYaw_cgwhhpvIR6Z5B1Ts3C09kKj2ZAH3QZac_5T39D07wL2AVvRhDbSfvkg47aJ3qdiSVwoM1zfTsdbvk9-5fhMKPw8ABBrnT4uF4mYGy-kvlkfDOaFrkAQ-FEWsaA6pywkdex9pJDiQ7JPFOlSSiDN0ByapJza4TTrpa28lxJX3sVZQiNN9HxY7K_WC7CCaE2Rh-T0FiWZkCMTekqldymccww5vyA_NgooP3X82y0eD5e6XZXUQNyBdrZ9gF2bBQsV3dtNrZWKgewUHKb4J6KSnsZuRFN1FzoMrIBOdvots0m27WwFqs5IMYB-Yn6fvdD2vHkBogEvv1P51NyAOI-Ru2M7K9Xj-E8gZq1vcCZ-wJr8O0T
  priority: 102
  providerName: Wiley-Blackwell
Title Spatial Sequential Modeling and Predication of Global Land Use and Land Cover Changes by Integrating a Global Change Assessment Model and Cellular Automata
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019EF001228
https://www.proquest.com/docview/2306732183
https://doaj.org/article/56c561053b2646f69d5f3a48f93490f1
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxEB4VeukFtRTUAI18oBekVdfrx66PIdqIIoqiikjcVn5KlVCCknDgt_Bn8dgbGi5w6W3X9tqWZ7zzjTz-BuBUGq5co3whLRUFp2VZmKhYhTDKecdV7RLjze9reTHjl7fidivVF8aEZXrgvHA_hbRo4gUz0XTLIJUTgWneBMW4KkN2fEq15Uylf7CKA4q6j3QvKxWdfKraSTpJal7ZoETV_wpfbqPUZGYmn2Gvx4dklOf1BT74-T4ctv-uo8XKfj-uvsITZhT-i0UpIjo9YnYzvGNO9NyR6TIdxODqk0UgmeGfXGHVbOVTk_QyxkhOkq8arIh5JL96GonU0ea7XE9GL2yeebDUzdjf3WFIKxk9rBcRBusDmE3am_FF0adbKCyPTgsKynITWB1qJxgm5BDUUVnqiClYg5SmOpqyhltla2Eqx6RwtZNBeN84HSw7hN35Yu6_ATEhuBALtaFR3iE0pa1kNJLaUk2pdQP4sRFAd59ZNbp0Gl6pbltQAzhH6by0QS7sVBA1pOs1pHtPQwZwspFt12_QVYeeV80QHw7gLMn7zYl07eQGaQOO_seEjuET9p0j1U5gd7188N8jtFmbIexUfDqEj-ft9fTPMOn0M7039PE
link.rule.ids 315,783,787,867,2109,11574,21400,27936,27937,33756,43817,46064,46488,50826,50935,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9MwGLZgO8AFMWCiY2w-wAUpIq4_Ep9QV6XqRldNqJV2s_yJkKZma7oDv4U_i1_H7bbLbont2JEe2-9j-_XzIvRFGCZdLX0hLOEFI2VZmNixCm6k847JyiXFm8u5mC7ZxTW_zhtuXXar3M6JaaJ2rYU98u9AlSsKBv3H7V0BUaPgdDWH0HiJ9kGqKi6-9s-a-dWv3S5LKWPDvMoe7-VQxsU-kc0knSjVT2xRkux_wjMfs9VkbiZv0ZvME_GoB_YAvfCrd-iwebiWFjPzuOzeo38QWfgPJCXP6PQIUc7grjnWK4ev1ulABlDAbcC90j-eQday86lIehmDRyfurxx02PzF51lOIlW0_a7Px6OdqmffWKpm7G9uwLUVj-43baTD-gNaTprFeFrksAuFZXHxAoBZZgKtQuU4hcAcnDgiSh25Ba1B2lRHk1YzK23FzdBRwV3lRODe104HSw_R3qpd-Y8ImxBciInakIh7CHVphyIaS22JJsS6Afq6BUDd9uoaKp2KD6V6DNQAnQE6uzKgiZ0S2vVvlYeY4sICGeTURJIngpCOB6pZHSRlsgxkgI632Ko8UDv10K0G6FvC-9kfUc1kAfIBR8_XdYpeTReXMzU7n__8hF5DDb1f2jHa26zv_edIZDbmJPfW_5J175A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyEuiFfF0gI-wAUparx-JD6h7ZKohbJaoa7Um-VnhVRtymZ76G_hz-JxvNv20ltiO46lGXs-e8bfIPRZGCZdLX0hLOEFI2VZmKhYBTfSecdk5RLjza-5OFmyHxf8Isc_9TmscrsmpoXadRbOyI8AKlcUDPpRyGERi-_tt-u_BWSQAk9rTqfxFO1VTNByhPaOm_ni9-7EpZRxELzK0e_lRMaNP5FNm7xL9QO7lOj7H2DO-8g1mZ72JXqRMSOeDkJ-hZ741Wu039xdUYuVeY72b9A_yDL8B4pSlHR6hIxncO8c65XDi3VyzoBEcBfwwPqPz6Bq2fvUJL3MILoTD9cPemxu8Wmmlkgdbb8b6vF0x_A5_Cx1M_NXVxDmiqc3my5CY_0WLdvmfHZS5BQMhWVxIwPCs8wEWoXKcQpJOjhxRJQ64gxaA82pjuatZlbaipuJo4K7yonAva-dDpbuo9GqW_l3CJsQXIiF2pCoAyHUpZ2IaDi1JZoQ68boy1YA6npg2lDJQz6R6r6gxugYpLNrA_zYqaBbX6o83RQXFoAhpyYCPhGEdDxQzeogKZNlIGN0uJWtypO2V3cqNkZfk7wfHYhq2nOgEnj_eF-f0LOoqOrsdP7zAD2HDoYQtUM02qxv_IeIaTbmY1bW_8br874
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Sequential+Modeling+and+Predication+of+Global+Land+Use+and+Land+Cover+Changes+by+Integrating+a+Global+Change+Assessment+Model+and+Cellular+Automata&rft.jtitle=Earth%27s+future&rft.au=Cao%2C+Min&rft.au=Zhu%2C+Yanhui&rft.au=Quan%2C+Jinling&rft.au=Zhou%2C+Sheng&rft.date=2019-09-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=7&rft.issue=9&rft.spage=1102&rft.epage=1116&rft_id=info:doi/10.1029%2F2019EF001228&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2019EF001228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon