Real-time preventive sensor maintenance using robust moving horizon estimation and economic model predictive control

Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed‐loop preventive maintenance of sensors...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 61; no. 10; pp. 3374 - 3389
Main Authors Lao, Liangfeng, Ellis, Matthew, Durand, Helen, Christofides, Panagiotis D.
Format Journal Article
LanguageEnglish
Published New York Blackwell Publishing Ltd 01.10.2015
American Institute of Chemical Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed‐loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed‐loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov‐based economic model predictive control (LEMPC) system. Closed‐loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE‐based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3374–3389, 2015
AbstractList Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed‐loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed‐loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov‐based economic model predictive control (LEMPC) system. Closed‐loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE‐based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3374–3389, 2015
Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed‐loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed‐loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov‐based economic model predictive control (LEMPC) system. Closed‐loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE‐based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. © 2015 American Institute of Chemical Engineers AIChE J , 61: 3374–3389, 2015
Conducting preventive maintenance of measurement sensors in real-time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed-loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed-loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov-based economic model predictive control (LEMPC) system. Closed-loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE-based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. copyright 2015 American Institute of Chemical Engineers AIChE J, 61: 3374-3389, 2015
Conducting preventive maintenance of measurement sensors in real-time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed-loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed-loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov-based economic model predictive control (LEMPC) system. Closed-loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE-based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors.
Author Ellis, Matthew
Christofides, Panagiotis D.
Durand, Helen
Lao, Liangfeng
Author_xml – sequence: 1
  givenname: Liangfeng
  surname: Lao
  fullname: Lao, Liangfeng
  organization: Dept. of Chemical and Biomolecular Engineering, University of California, CA, 90095-1592, Los Angeles
– sequence: 2
  givenname: Matthew
  surname: Ellis
  fullname: Ellis, Matthew
  organization: Dept. of Chemical and Biomolecular Engineering, University of California, CA, 90095-1592, Los Angeles
– sequence: 3
  givenname: Helen
  surname: Durand
  fullname: Durand, Helen
  organization: Dept. of Chemical and Biomolecular Engineering, University of California, CA, 90095-1592, Los Angeles
– sequence: 4
  givenname: Panagiotis D.
  surname: Christofides
  fullname: Christofides, Panagiotis D.
  email: pdc@seas.ucla.edu
  organization: Dept. of Chemical and Biomolecular Engineering, University of California, 90095-1592, Los Angeles, CA
BookMark eNp1kU9P3DAQxa0KpC7QA98gEpf2EBgn_pMc0ZbCSqsiARVHyzizxTSxF9vZln56vLu0BwQnezy_9zSet0d2nHdIyCGFYwpQnWhrjilrBXwgE8qZLHkLfIdMAICW-YF-JHsxPuSqkk01IekKdV8mO2CxDLhCl-wKi4gu-lAM2rqETjuDxRit-1kEfzfGVAx-ta7ufbB_vSswZgOdbL5q1xVovPODNRnrsF_7dtZsfHMjBd8fkN2F7iN-ejn3yY9vZzfTi3J-eT6bns5LwySHEjvsBHStaCrT1mzBKTJNoeINlQ2TQgt-JztoJAgUCwEtRYFGNtR0NW9brPfJ563vMvjHMU-pBhsN9r126MeoqOQ1axhwntGjV-iDH4PL02WKVjVIaOtMnWwpE3yMARfK2LT5eAra9oqCWqegcgpqk0JWfHmlWIa8q_D0Jvvi_tv2-PQ-qE5n03-KcquwMeGf_wodfikha8nV7fdzxTj_ekPFtWL1M-L7qJA
CODEN AICEAC
CitedBy_id crossref_primary_10_1016_j_dche_2022_100065
crossref_primary_10_1016_j_cherd_2019_01_028
crossref_primary_10_1016_j_conengprac_2022_105172
crossref_primary_10_1002_aic_17084
crossref_primary_10_1016_j_jprocont_2018_12_017
crossref_primary_10_1016_j_compind_2018_06_004
crossref_primary_10_1016_j_compchemeng_2021_107620
crossref_primary_10_1080_0951192X_2021_1963481
crossref_primary_10_3389_fceng_2022_810129
crossref_primary_10_1016_j_cherd_2020_01_027
crossref_primary_10_1016_j_jprocont_2019_09_002
crossref_primary_10_1016_j_cherd_2021_03_024
crossref_primary_10_1016_j_psep_2018_05_009
crossref_primary_10_1016_j_compchemeng_2017_10_006
crossref_primary_10_17130_ijmeb_1185714
crossref_primary_10_1002_aic_15222
crossref_primary_10_1002_aic_17545
crossref_primary_10_1016_j_resconrec_2020_105362
crossref_primary_10_3390_s21041470
Cites_doi 10.1137/S0363012993259981
10.1016/0167-6911(89)90028-5
10.1016/j.ces.2013.02.030
10.1002/aic.14673
10.1002/aic.11100
10.1109/ICCIndA.2011.6146685
10.1080/00207179308934406
10.1109/9.237658
10.1016/j.jprocont.2014.04.009
10.1016/j.automatica.2008.11.012
10.1016/j.jprocont.2014.03.009
10.1109/TCST.2005.859630
10.1016/j.jprocont.2014.03.010
10.1109/TAC.2008.929401
10.1016/j.jprocont.2014.05.009
10.1016/j.jprocont.2014.05.003
10.1016/j.jprocont.2012.03.001
10.1016/j.compchemeng.2012.06.037
10.1016/S0009-2509(03)00126-X
10.1002/aic.14427
10.1016/j.sysconle.2014.03.003
10.1002/aic.14074
10.1021/ie8003122
10.1007/s10107-004-0559-y
10.1109/TAC.2008.921012
10.1109/TAC.2002.808470
10.1002/aic.12672
10.1002/aic.11320
10.1007/978-1-4471-4808-1
ContentType Journal Article
Copyright 2015 American Institute of Chemical Engineers
Copyright American Institute of Chemical Engineers Oct 2015
Copyright_xml – notice: 2015 American Institute of Chemical Engineers
– notice: Copyright American Institute of Chemical Engineers Oct 2015
DBID BSCLL
AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.14960
DatabaseName Istex
CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
CrossRef
Technology Research Database
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1547-5905
EndPage 3389
ExternalDocumentID 3806807841
10_1002_aic_14960
AIC14960
ark_67375_WNG_455DT16S_4
Genre article
Feature
GrantInformation_xml – fundername: National Science Foundation
– fundername: Department of Energy
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UAO
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEUYN
AFWVQ
ALVPJ
AAYXX
ABJIA
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
7ST
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
L7M
SOI
ID FETCH-LOGICAL-c4750-eded60d9682c934f51e4a10258178476a65b7d08706e6f6091e6ec781cd3599e3
IEDL.DBID DR2
ISSN 0001-1541
IngestDate Fri Jul 11 09:53:35 EDT 2025
Fri Jul 25 11:07:58 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Tue Jul 01 01:40:35 EDT 2025
Wed Jan 22 16:20:24 EST 2025
Wed Oct 30 09:52:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4750-eded60d9682c934f51e4a10258178476a65b7d08706e6f6091e6ec781cd3599e3
Notes Department of Energy
istex:6C9CD452937EE9DEF91FB0BD656D27F5BF9CDB5F
ark:/67375/WNG-455DT16S-4
ArticleID:AIC14960
National Science Foundation
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1712307093
PQPubID 7879
PageCount 16
ParticipantIDs proquest_miscellaneous_1753484055
proquest_journals_1712307093
crossref_citationtrail_10_1002_aic_14960
crossref_primary_10_1002_aic_14960
wiley_primary_10_1002_aic_14960_AIC14960
istex_primary_ark_67375_WNG_455DT16S_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationTitleAlternate AIChE J
PublicationYear 2015
Publisher Blackwell Publishing Ltd
American Institute of Chemical Engineers
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Institute of Chemical Engineers
References Christofides PD, El-Farra NH. Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time-Delays. Berlin, Germany: Springer-Verlag, 2005.
Lao L, Ellis M, Christofides PD. Smart manufacturing: handling preventive actuator maintenance and economics using model predictive control. AIChE J. 2014;60:2179-2196.
Ellis M, Zhang J, Liu J, Christofides PD. Robust moving horizon estimation-based output feedback economic model predictive control. Syst Control Lett. 2014;68:101-109.
Muñoz de la Peña D, Christofides PD. Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Trans Autom Control. 2008;53:2076-2089.
Rao CV, Rawlings JB, Mayne DQ. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans Autom Control. 2003;48:246-258.
Rawlings JB, Ji L. Optimization-based state estimation: current status and some new results. J Process Control. 2012;22:1439-1444.
Ellis M, Christofides PD. Real-time economic model predictive control of nonlinear process systems. AIChE J. 2015;61:555-571.
Khalil HK. Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.
Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006;106:25-57.
Lao L, Ellis M, Christofides PD. Proactive fault-tolerant model predictive control. AIChE J. 2013;59:2810-2820.
Lin Y, Sontag ED, Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim. 1996;34:124-160.
Davis J, Edgar T, Porter J, Bernaden J, Sarli M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng. 2012;47:145-156.
Jäschke J, Yang X, Biegler LT. Fast economic model predictive control based on NLP-sensitivities. J Process Control. 2014;24:1260-1272.
Sontag ED. A 'universal' construction of Artstein's theorem on nonlinear stabilization. Syst Control Lett. 1989;13:117-123.
Ciccarella G, Dalla Mora M, Germani A. A Luenberger-like observer for nonlinear systems. Int J Control. 1993;57:537-556.
Ahrens JH, Khalil HK. High-gain observers in the presence of measurement noise: a switched-gain approach. Automatica. 2009;45:936-943.
Deshpande AP, Zamad U, Patwardhan SC. Online sensor/actuator failure isolation and reconfigurable control using the generalized likelihood ratio method. Ind Eng Chem Res. 2009;48:1522-1535.
Grüne L, Stieler M. Asymptotic stability and transient optimality of economic MPC without terminal conditions. J Process Control. 2014;24:1187-1196.
Ellis M, Durand H, Christofides PD. A tutorial review of economic model predictive control methods. J Process Control. 2014;24:1156-1178.
Müller MA, Angeli D, Allgöwer F. On the performance of economic model predictive control with self-tuning terminal cost. J Process Control. 2014;24:1179-1186.
Schenato L. Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans Autom Control. 2008;53:1311-1317.
El-Farra NH, Christofides PD. Bounded robust control of constrained multivariable nonlinear processes. Chem Eng Sci. 2003;58:3025-3047.
Khalil HK, Esfandiari F. Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans Autom Control. 1993;38:1412-1415.
Liu J. Moving horizon state estimation for nonlinear systems with bounded uncertainties. Chem Eng Sci. 2013;93:376-386.
Mhaskar P, Liu J, Christofides PD. Fault-Tolerant Process Control: Methods and Applications. London, England: Springer-Verlag, 2013.
Kim W, Ji K, Srivastava A. Network-based control with real-time prediction of delayed/lost sensor data. IEEE Trans Control Syst Technol. 2006;14:182-185.
Zhang J, Liu S, Liu J. Economic model predictive control with triggered evaluations: state and ouptut feedback. J Process Control. 2014;24:1197-1206.
Mhaskar P, Gani A, McFall C, Christofides PD, Davis JF. Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE J. 2007;53:654-668.
Christofides PD, Davis JF, El-Farra NH, Clark D, Harris KRD, Gipson JN. Smart plant operations: vision, progress and challenges. AIChE J. 2007;53:2734-2741.
Heidarinejad M, Liu J, Christofides PD. Economic model predictive control of nonlinear process systems using Lyapunov techniques. AIChE J. 2012;58:855-870.
Crowl DA, Louvar JF. Chemical Process Safety: Fundamentals with Applications, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2001.
2009; 45
2011
2006; 14
2003; 58
2013; 93
2014; 24
2014; 68
1994
2005
1993
2008; 53
2002
2007; 53
2012; 58
2014; 60
2009; 48
1996; 34
1993; 57
2013; 59
1993; 38
2001
2015; 61
2003; 48
2013
2012; 47
1989; 13
2012; 22
2006; 106
e_1_2_8_29_1
Khalil HK. (e_1_2_8_30_1) 2002
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Crowl DA (e_1_2_8_4_1) 2001
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
Christofides PD (e_1_2_8_28_1) 2005
e_1_2_8_33_1
References_xml – reference: Crowl DA, Louvar JF. Chemical Process Safety: Fundamentals with Applications, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2001.
– reference: Lin Y, Sontag ED, Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim. 1996;34:124-160.
– reference: Lao L, Ellis M, Christofides PD. Smart manufacturing: handling preventive actuator maintenance and economics using model predictive control. AIChE J. 2014;60:2179-2196.
– reference: Kim W, Ji K, Srivastava A. Network-based control with real-time prediction of delayed/lost sensor data. IEEE Trans Control Syst Technol. 2006;14:182-185.
– reference: Ahrens JH, Khalil HK. High-gain observers in the presence of measurement noise: a switched-gain approach. Automatica. 2009;45:936-943.
– reference: Christofides PD, Davis JF, El-Farra NH, Clark D, Harris KRD, Gipson JN. Smart plant operations: vision, progress and challenges. AIChE J. 2007;53:2734-2741.
– reference: Lao L, Ellis M, Christofides PD. Proactive fault-tolerant model predictive control. AIChE J. 2013;59:2810-2820.
– reference: Schenato L. Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans Autom Control. 2008;53:1311-1317.
– reference: Ciccarella G, Dalla Mora M, Germani A. A Luenberger-like observer for nonlinear systems. Int J Control. 1993;57:537-556.
– reference: Deshpande AP, Zamad U, Patwardhan SC. Online sensor/actuator failure isolation and reconfigurable control using the generalized likelihood ratio method. Ind Eng Chem Res. 2009;48:1522-1535.
– reference: Muñoz de la Peña D, Christofides PD. Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Trans Autom Control. 2008;53:2076-2089.
– reference: Ellis M, Durand H, Christofides PD. A tutorial review of economic model predictive control methods. J Process Control. 2014;24:1156-1178.
– reference: Liu J. Moving horizon state estimation for nonlinear systems with bounded uncertainties. Chem Eng Sci. 2013;93:376-386.
– reference: Rao CV, Rawlings JB, Mayne DQ. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans Autom Control. 2003;48:246-258.
– reference: Heidarinejad M, Liu J, Christofides PD. Economic model predictive control of nonlinear process systems using Lyapunov techniques. AIChE J. 2012;58:855-870.
– reference: Davis J, Edgar T, Porter J, Bernaden J, Sarli M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng. 2012;47:145-156.
– reference: Mhaskar P, Gani A, McFall C, Christofides PD, Davis JF. Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE J. 2007;53:654-668.
– reference: El-Farra NH, Christofides PD. Bounded robust control of constrained multivariable nonlinear processes. Chem Eng Sci. 2003;58:3025-3047.
– reference: Khalil HK, Esfandiari F. Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans Autom Control. 1993;38:1412-1415.
– reference: Christofides PD, El-Farra NH. Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time-Delays. Berlin, Germany: Springer-Verlag, 2005.
– reference: Grüne L, Stieler M. Asymptotic stability and transient optimality of economic MPC without terminal conditions. J Process Control. 2014;24:1187-1196.
– reference: Mhaskar P, Liu J, Christofides PD. Fault-Tolerant Process Control: Methods and Applications. London, England: Springer-Verlag, 2013.
– reference: Jäschke J, Yang X, Biegler LT. Fast economic model predictive control based on NLP-sensitivities. J Process Control. 2014;24:1260-1272.
– reference: Sontag ED. A 'universal' construction of Artstein's theorem on nonlinear stabilization. Syst Control Lett. 1989;13:117-123.
– reference: Müller MA, Angeli D, Allgöwer F. On the performance of economic model predictive control with self-tuning terminal cost. J Process Control. 2014;24:1179-1186.
– reference: Ellis M, Christofides PD. Real-time economic model predictive control of nonlinear process systems. AIChE J. 2015;61:555-571.
– reference: Zhang J, Liu S, Liu J. Economic model predictive control with triggered evaluations: state and ouptut feedback. J Process Control. 2014;24:1197-1206.
– reference: Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006;106:25-57.
– reference: Rawlings JB, Ji L. Optimization-based state estimation: current status and some new results. J Process Control. 2012;22:1439-1444.
– reference: Ellis M, Zhang J, Liu J, Christofides PD. Robust moving horizon estimation-based output feedback economic model predictive control. Syst Control Lett. 2014;68:101-109.
– reference: Khalil HK. Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002.
– year: 2011
– volume: 59
  start-page: 2810
  year: 2013
  end-page: 2820
  article-title: Proactive fault‐tolerant model predictive control
  publication-title: AIChE J
– volume: 24
  start-page: 1197
  year: 2014
  end-page: 1206
  article-title: Economic model predictive control with triggered evaluations: state and ouptut feedback
  publication-title: J Process Control
– volume: 34
  start-page: 124
  year: 1996
  end-page: 160
  article-title: A smooth converse Lyapunov theorem for robust stability
  publication-title: SIAM J Control Optim
– year: 2005
– volume: 45
  start-page: 936
  year: 2009
  end-page: 943
  article-title: High‐gain observers in the presence of measurement noise: a switched‐gain approach
  publication-title: Automatica
– volume: 47
  start-page: 145
  year: 2012
  end-page: 156
  article-title: Smart manufacturing, manufacturing intelligence and demand‐dynamic performance
  publication-title: Comput Chem Eng
– year: 2001
– volume: 14
  start-page: 182
  year: 2006
  end-page: 185
  article-title: Network‐based control with real‐time prediction of delayed/lost sensor data
  publication-title: IEEE Trans Control Syst Technol
– volume: 60
  start-page: 2179
  year: 2014
  end-page: 2196
  article-title: Smart manufacturing: handling preventive actuator maintenance and economics using model predictive control
  publication-title: AIChE J
– volume: 58
  start-page: 855
  year: 2012
  end-page: 870
  article-title: Economic model predictive control of nonlinear process systems using Lyapunov techniques
  publication-title: AIChE J
– volume: 48
  start-page: 1522
  year: 2009
  end-page: 1535
  article-title: Online sensor/actuator failure isolation and reconfigurable control using the generalized likelihood ratio method
  publication-title: Ind Eng Chem Res
– volume: 58
  start-page: 3025
  year: 2003
  end-page: 3047
  article-title: Bounded robust control of constrained multivariable nonlinear processes
  publication-title: Chem Eng Sci
– volume: 53
  start-page: 2076
  year: 2008
  end-page: 2089
  article-title: Lyapunov‐based model predictive control of nonlinear systems subject to data losses
  publication-title: IEEE Trans Autom Control
– year: 1994
– volume: 53
  start-page: 1311
  year: 2008
  end-page: 1317
  article-title: Optimal estimation in networked control systems subject to random delay and packet drop
  publication-title: IEEE Trans Autom Control
– volume: 53
  start-page: 654
  year: 2007
  end-page: 668
  article-title: Fault‐tolerant control of nonlinear process systems subject to sensor faults
  publication-title: AIChE J
– volume: 53
  start-page: 2734
  year: 2007
  end-page: 2741
  article-title: Smart plant operations: vision, progress and challenges
  publication-title: AIChE J
– volume: 22
  start-page: 1439
  year: 2012
  end-page: 1444
  article-title: Optimization‐based state estimation: current status and some new results
  publication-title: J Process Control
– volume: 48
  start-page: 246
  year: 2003
  end-page: 258
  article-title: Constrained state estimation for nonlinear discrete‐time systems: stability and moving horizon approximations
  publication-title: IEEE Trans Autom Control
– volume: 24
  start-page: 1187
  year: 2014
  end-page: 1196
  article-title: Asymptotic stability and transient optimality of economic MPC without terminal conditions
  publication-title: J Process Control
– volume: 68
  start-page: 101
  year: 2014
  end-page: 109
  article-title: Robust moving horizon estimation‐based output feedback economic model predictive control
  publication-title: Syst Control Lett
– year: 2002
– volume: 57
  start-page: 537
  year: 1993
  end-page: 556
  article-title: A Luenberger‐like observer for nonlinear systems
  publication-title: Int J Control
– volume: 13
  start-page: 117
  year: 1989
  end-page: 123
  article-title: A ‘universal’ construction of Artstein's theorem on nonlinear stabilization
  publication-title: Syst Control Lett
– volume: 38
  start-page: 1412
  year: 1993
  end-page: 1415
  article-title: Semiglobal stabilization of a class of nonlinear systems using output feedback
  publication-title: IEEE Trans Autom Control
– volume: 93
  start-page: 376
  year: 2013
  end-page: 386
  article-title: Moving horizon state estimation for nonlinear systems with bounded uncertainties
  publication-title: Chem Eng Sci
– volume: 24
  start-page: 1179
  year: 2014
  end-page: 1186
  article-title: On the performance of economic model predictive control with self‐tuning terminal cost
  publication-title: J Process Control
– volume: 24
  start-page: 1156
  year: 2014
  end-page: 1178
  article-title: A tutorial review of economic model predictive control methods
  publication-title: J Process Control
– volume: 24
  start-page: 1260
  year: 2014
  end-page: 1272
  article-title: Fast economic model predictive control based on NLP‐sensitivities
  publication-title: J Process Control
– year: 1993
– volume: 61
  start-page: 555
  year: 2015
  end-page: 571
  article-title: Real‐time economic model predictive control of nonlinear process systems
  publication-title: AIChE J
– year: 2013
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  article-title: On the implementation of an interior‐point filter line‐search algorithm for large‐scale nonlinear programming
  publication-title: Math Program
– ident: e_1_2_8_29_1
  doi: 10.1137/S0363012993259981
– ident: e_1_2_8_34_1
  doi: 10.1016/0167-6911(89)90028-5
– ident: e_1_2_8_19_1
  doi: 10.1016/j.ces.2013.02.030
– volume-title: Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time‐Delays
  year: 2005
  ident: e_1_2_8_28_1
– ident: e_1_2_8_33_1
  doi: 10.1002/aic.14673
– ident: e_1_2_8_8_1
  doi: 10.1002/aic.11100
– ident: e_1_2_8_5_1
  doi: 10.1109/ICCIndA.2011.6146685
– ident: e_1_2_8_3_1
– ident: e_1_2_8_13_1
  doi: 10.1080/00207179308934406
– ident: e_1_2_8_15_1
  doi: 10.1109/9.237658
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jprocont.2014.04.009
– ident: e_1_2_8_16_1
  doi: 10.1016/j.automatica.2008.11.012
– ident: e_1_2_8_22_1
  doi: 10.1016/j.jprocont.2014.03.009
– ident: e_1_2_8_7_1
  doi: 10.1109/TCST.2005.859630
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jprocont.2014.03.010
– ident: e_1_2_8_10_1
  doi: 10.1109/TAC.2008.929401
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jprocont.2014.05.009
– ident: e_1_2_8_21_1
  doi: 10.1016/j.jprocont.2014.05.003
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jprocont.2012.03.001
– ident: e_1_2_8_12_1
  doi: 10.1016/j.compchemeng.2012.06.037
– ident: e_1_2_8_2_1
– volume-title: Chemical Process Safety: Fundamentals with Applications
  year: 2001
  ident: e_1_2_8_4_1
– ident: e_1_2_8_14_1
  doi: 10.1016/S0009-2509(03)00126-X
– ident: e_1_2_8_27_1
  doi: 10.1002/aic.14427
– ident: e_1_2_8_23_1
  doi: 10.1016/j.sysconle.2014.03.003
– ident: e_1_2_8_26_1
  doi: 10.1002/aic.14074
– ident: e_1_2_8_6_1
  doi: 10.1021/ie8003122
– volume-title: Nonlinear Systems
  year: 2002
  ident: e_1_2_8_30_1
– ident: e_1_2_8_35_1
  doi: 10.1007/s10107-004-0559-y
– ident: e_1_2_8_9_1
  doi: 10.1109/TAC.2008.921012
– ident: e_1_2_8_17_1
  doi: 10.1109/TAC.2002.808470
– ident: e_1_2_8_31_1
  doi: 10.1002/aic.12672
– ident: e_1_2_8_11_1
  doi: 10.1002/aic.11320
– ident: e_1_2_8_32_1
  doi: 10.1007/978-1-4471-4808-1
SSID ssj0012782
Score 2.2657907
Snippet Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and...
Conducting preventive maintenance of measurement sensors in real-time during process operation under feedback control while ensuring the reliability and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3374
SubjectTerms Analytical chemistry
Closed loop systems
Control systems
Economic analysis
economic model predictive control
Economic models
Economics
Horizon
Maintenance
moving horizon estimation
Predictive control
Preventive maintenance
process control
process economics
sensor preventive maintenance
Sensors
smart manufacturing
Stability
state estimation
Title Real-time preventive sensor maintenance using robust moving horizon estimation and economic model predictive control
URI https://api.istex.fr/ark:/67375/WNG-455DT16S-4/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14960
https://www.proquest.com/docview/1712307093
https://www.proquest.com/docview/1753484055
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QUOvBELpTIIIS7bJo7tJOK0aikF0R76ED0gWbbjlFVpUmV3K9QTP4HfyC9hxnnQIpAQt0iZRI7HY3_jfPMZ4EXiC49AFdNUG2OCIrJobDkngo0w3kZF7kNt1e6e2jkS74_l8RK87mthWn2IYcONIiPM1xTgxs42fomGmqnDMEcAjvMvcbUIEO0P0lExT7NWKRzTZYQJca8qFPGN4clra9EKdevXa0DzKlwN6832bfjUt7SlmZyuL-Z23V3-JuL4n59yB251OJRN2oFzF5Z8dQ9uXlEnvA8X-wgif3z7TsfPs_NO6unCsxlmvnXDzgxJTZBeh2fEnj9hTW0Xszk7C5sU7HPdTC_ripGMR1sfyUxVMN9VQrNwBg-9t5iGOZd1rPkHcLT95nBzZ9wd0zB2AvHGGL1dKPSqyrjLE1HK2AuDuEVmcYprnzJK2rSI6IeqV6VCgOKVd2kWuyKRee6Th7Bc1ZV_BEykUVRmiUmts4JH3KrSOsQowhWmFCUfwaveYdp1GuZ0lMYX3aovc41dqUNXjuD5YHreCnf8yehl8PpgYZpTYrqlUn_ce6uFlFuHsTrQYgSr_bDQXZDPdJzGRKOP8mQEz4bbGJ70z8VUvl6QjUwEJtFSYtvDGPh7a_Tk3Wa4ePzvpk_gBkI42dILV2F53iz8U4RJc7sGK5Ot3Q8HayEufgKz8xC0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V9gAc-EcsFDAIIS7bxo7tJBKXqlC20O6hbEUvyLIdp12VJlV2t0I98Qg8I0_C2PmhRSAhbpEyjhyPx_7GnvkG4EXscodAFd1UQ9FB4Wk0NIz5ABuunYnyzIXcqt2xHO3z9wfiYAled7kwDT9Ef-DmLSOs197A_YH0-i_WUD21aOeIwK_Aiq_oHRyqvZ48irIkbbjC0WFGoEA7XqGIrfdNL-1GK35gv16CmhcBa9hxtm7C566vTaDJ8dpibtbs-W80jv_7M7fgRgtFyUYzd27DkivvwPULBIV34WwPceSPb999BXpy2rI9nTkyQ-e3qsmJ9mwTnrLDER9Af0jqyixmc3ISzinIUVVPz6uSeCaPJkWS6DInrk2GJqEMj_9uPg3LLmkD5-_B_tbbyeZo2FZqGFqOkGOICs8lKlamzGYxLwR1XCN0ESlNcPuTWgqT5JG_U3WykIhRnHQ2SanNY5FlLr4Py2VVugdAeBJFRRrrxFjDWcSMLIxFmMJtrgtesAG86jSmbEtj7qtpfFENATNTOJQqDOUAnveipw13x5-EXga19xK6PvbBbolQn8bvFBfizYTKj4oPYLWbF6q185miCfWR9FEWD-BZ_xot1F-76NJVCy8jYo5-tBDY9zAJ_t4btbG9GR4e_rvoU7g6muzuqJ3t8YdHcA0RnWiiDVdheV4v3GNETXPzJBjHTw30Ezs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJw4I1YKGAQQly2dRLbScSp6rK0PFaotKIHJMuvwKo0WWV3K9QTP4HfyC9h7DxoEUiIW6RMIsczE39jz3wD8CRx1iFQxTBVRxigsIwOdRz7BBumnKY2d6G26u1E7BywV4f8cAWed7UwDT9Ev-HmPSP8r72Dz2yx-Ys0VE0NujkC8AuwxgTNvEmP9nruqChOs4YqHONlxAlRRytE483-0XOL0Zqf16_nkOZZvBoWnPFV-NgNtckzOdpYLvSGOf2NxfE_v-UaXGmBKNlqLOc6rLjyBlw-Q094E072EEX--Pbd958ns5br6cSROYa-VU2Oleea8IQdjvj0-U-krvRyviDHYZeCfK7q6WlVEs_j0RRIElVa4tpSaBKa8Pj32mn46ZI2bf4WHIxf7G_vDNs-DUPDEHAMUd1WoFpFFps8YQWPHFMIXHgWpbj4CSW4Ti31J6pOFAIRihPOpFlkbMLz3CW3YbWsSncHCEspLbJEpdpoFtNYi0IbBCnMWFWwIh7As05h0rQk5r6XxhfZ0C_HEqdShqkcwONedNYwd_xJ6GnQei-h6iOf6pZy-WHyUjLOR_uReC_ZANY7s5Ctl89llEY-j57myQAe9bfRP_2hiypdtfQyPGEYRXOOYw828PfRyK3d7XBx999FH8LFd6OxfLM7eX0PLiGc402q4TqsLuqlu4-QaaEfBNf4CeoeEfM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real%E2%80%90time+preventive+sensor+maintenance+using+robust+moving+horizon+estimation+and+economic+model+predictive+control&rft.jtitle=AIChE+journal&rft.au=Lao%2C+Liangfeng&rft.au=Ellis%2C+Matthew&rft.au=Durand%2C+Helen&rft.au=Christofides%2C+Panagiotis+D.&rft.date=2015-10-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=61&rft.issue=10&rft.spage=3374&rft.epage=3389&rft_id=info:doi/10.1002%2Faic.14960&rft.externalDBID=10.1002%252Faic.14960&rft.externalDocID=AIC14960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon