Real-time preventive sensor maintenance using robust moving horizon estimation and economic model predictive control
Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed‐loop preventive maintenance of sensors...
Saved in:
Published in | AIChE journal Vol. 61; no. 10; pp. 3374 - 3389 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Blackwell Publishing Ltd
01.10.2015
American Institute of Chemical Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed‐loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed‐loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov‐based economic model predictive control (LEMPC) system. Closed‐loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE‐based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3374–3389, 2015 |
---|---|
AbstractList | Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed‐loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed‐loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov‐based economic model predictive control (LEMPC) system. Closed‐loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE‐based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3374–3389, 2015 Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed‐loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed‐loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov‐based economic model predictive control (LEMPC) system. Closed‐loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE‐based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. © 2015 American Institute of Chemical Engineers AIChE J , 61: 3374–3389, 2015 Conducting preventive maintenance of measurement sensors in real-time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed-loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed-loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov-based economic model predictive control (LEMPC) system. Closed-loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE-based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. copyright 2015 American Institute of Chemical Engineers AIChE J, 61: 3374-3389, 2015 Conducting preventive maintenance of measurement sensors in real-time during process operation under feedback control while ensuring the reliability and improving the economic performance of a process is a central problem of the research area focusing on closed-loop preventive maintenance of sensors and actuators. To address this problem, a robust moving horizon estimation (RMHE) scheme and an economic model predictive control system are combined to simultaneously achieve preventive sensor maintenance and optimal process economic performance with closed-loop stability. Specifically, given a preventive sensor maintenance schedule, a RMHE scheme is developed that accommodates varying numbers of sensors to continuously supply accurate state estimates to a Lyapunov-based economic model predictive control (LEMPC) system. Closed-loop stability for this control approach can be proven under fairly general observability and stabilizability assumptions to be made precise in the manuscript. Subsequently, a chemical process example incorporating this RMHE-based LEMPC scheme demonstrates its ability to maintain process stability and achieve optimal process economic performance as scheduled preventive maintenance is performed on the sensors. |
Author | Ellis, Matthew Christofides, Panagiotis D. Durand, Helen Lao, Liangfeng |
Author_xml | – sequence: 1 givenname: Liangfeng surname: Lao fullname: Lao, Liangfeng organization: Dept. of Chemical and Biomolecular Engineering, University of California, CA, 90095-1592, Los Angeles – sequence: 2 givenname: Matthew surname: Ellis fullname: Ellis, Matthew organization: Dept. of Chemical and Biomolecular Engineering, University of California, CA, 90095-1592, Los Angeles – sequence: 3 givenname: Helen surname: Durand fullname: Durand, Helen organization: Dept. of Chemical and Biomolecular Engineering, University of California, CA, 90095-1592, Los Angeles – sequence: 4 givenname: Panagiotis D. surname: Christofides fullname: Christofides, Panagiotis D. email: pdc@seas.ucla.edu organization: Dept. of Chemical and Biomolecular Engineering, University of California, 90095-1592, Los Angeles, CA |
BookMark | eNp1kU9P3DAQxa0KpC7QA98gEpf2EBgn_pMc0ZbCSqsiARVHyzizxTSxF9vZln56vLu0BwQnezy_9zSet0d2nHdIyCGFYwpQnWhrjilrBXwgE8qZLHkLfIdMAICW-YF-JHsxPuSqkk01IekKdV8mO2CxDLhCl-wKi4gu-lAM2rqETjuDxRit-1kEfzfGVAx-ta7ufbB_vSswZgOdbL5q1xVovPODNRnrsF_7dtZsfHMjBd8fkN2F7iN-ejn3yY9vZzfTi3J-eT6bns5LwySHEjvsBHStaCrT1mzBKTJNoeINlQ2TQgt-JztoJAgUCwEtRYFGNtR0NW9brPfJ563vMvjHMU-pBhsN9r126MeoqOQ1axhwntGjV-iDH4PL02WKVjVIaOtMnWwpE3yMARfK2LT5eAra9oqCWqegcgpqk0JWfHmlWIa8q_D0Jvvi_tv2-PQ-qE5n03-KcquwMeGf_wodfikha8nV7fdzxTj_ekPFtWL1M-L7qJA |
CODEN | AICEAC |
CitedBy_id | crossref_primary_10_1016_j_dche_2022_100065 crossref_primary_10_1016_j_cherd_2019_01_028 crossref_primary_10_1016_j_conengprac_2022_105172 crossref_primary_10_1002_aic_17084 crossref_primary_10_1016_j_jprocont_2018_12_017 crossref_primary_10_1016_j_compind_2018_06_004 crossref_primary_10_1016_j_compchemeng_2021_107620 crossref_primary_10_1080_0951192X_2021_1963481 crossref_primary_10_3389_fceng_2022_810129 crossref_primary_10_1016_j_cherd_2020_01_027 crossref_primary_10_1016_j_jprocont_2019_09_002 crossref_primary_10_1016_j_cherd_2021_03_024 crossref_primary_10_1016_j_psep_2018_05_009 crossref_primary_10_1016_j_compchemeng_2017_10_006 crossref_primary_10_17130_ijmeb_1185714 crossref_primary_10_1002_aic_15222 crossref_primary_10_1002_aic_17545 crossref_primary_10_1016_j_resconrec_2020_105362 crossref_primary_10_3390_s21041470 |
Cites_doi | 10.1137/S0363012993259981 10.1016/0167-6911(89)90028-5 10.1016/j.ces.2013.02.030 10.1002/aic.14673 10.1002/aic.11100 10.1109/ICCIndA.2011.6146685 10.1080/00207179308934406 10.1109/9.237658 10.1016/j.jprocont.2014.04.009 10.1016/j.automatica.2008.11.012 10.1016/j.jprocont.2014.03.009 10.1109/TCST.2005.859630 10.1016/j.jprocont.2014.03.010 10.1109/TAC.2008.929401 10.1016/j.jprocont.2014.05.009 10.1016/j.jprocont.2014.05.003 10.1016/j.jprocont.2012.03.001 10.1016/j.compchemeng.2012.06.037 10.1016/S0009-2509(03)00126-X 10.1002/aic.14427 10.1016/j.sysconle.2014.03.003 10.1002/aic.14074 10.1021/ie8003122 10.1007/s10107-004-0559-y 10.1109/TAC.2008.921012 10.1109/TAC.2002.808470 10.1002/aic.12672 10.1002/aic.11320 10.1007/978-1-4471-4808-1 |
ContentType | Journal Article |
Copyright | 2015 American Institute of Chemical Engineers Copyright American Institute of Chemical Engineers Oct 2015 |
Copyright_xml | – notice: 2015 American Institute of Chemical Engineers – notice: Copyright American Institute of Chemical Engineers Oct 2015 |
DBID | BSCLL AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
DOI | 10.1002/aic.14960 |
DatabaseName | Istex CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Economics |
EISSN | 1547-5905 |
EndPage | 3389 |
ExternalDocumentID | 3806807841 10_1002_aic_14960 AIC14960 ark_67375_WNG_455DT16S_4 |
Genre | article Feature |
GrantInformation_xml | – fundername: National Science Foundation – fundername: Department of Energy |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAIHA AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BSCLL BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEUYN AFWVQ ALVPJ AAYXX ABJIA ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION PHGZM PHGZT 7ST 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K L7M SOI |
ID | FETCH-LOGICAL-c4750-eded60d9682c934f51e4a10258178476a65b7d08706e6f6091e6ec781cd3599e3 |
IEDL.DBID | DR2 |
ISSN | 0001-1541 |
IngestDate | Fri Jul 11 09:53:35 EDT 2025 Fri Jul 25 11:07:58 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Tue Jul 01 01:40:35 EDT 2025 Wed Jan 22 16:20:24 EST 2025 Wed Oct 30 09:52:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4750-eded60d9682c934f51e4a10258178476a65b7d08706e6f6091e6ec781cd3599e3 |
Notes | Department of Energy istex:6C9CD452937EE9DEF91FB0BD656D27F5BF9CDB5F ark:/67375/WNG-455DT16S-4 ArticleID:AIC14960 National Science Foundation SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1712307093 |
PQPubID | 7879 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1753484055 proquest_journals_1712307093 crossref_citationtrail_10_1002_aic_14960 crossref_primary_10_1002_aic_14960 wiley_primary_10_1002_aic_14960_AIC14960 istex_primary_ark_67375_WNG_455DT16S_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2015 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October 2015 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | AIChE journal |
PublicationTitleAlternate | AIChE J |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd American Institute of Chemical Engineers |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Institute of Chemical Engineers |
References | Christofides PD, El-Farra NH. Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time-Delays. Berlin, Germany: Springer-Verlag, 2005. Lao L, Ellis M, Christofides PD. Smart manufacturing: handling preventive actuator maintenance and economics using model predictive control. AIChE J. 2014;60:2179-2196. Ellis M, Zhang J, Liu J, Christofides PD. Robust moving horizon estimation-based output feedback economic model predictive control. Syst Control Lett. 2014;68:101-109. Muñoz de la Peña D, Christofides PD. Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Trans Autom Control. 2008;53:2076-2089. Rao CV, Rawlings JB, Mayne DQ. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans Autom Control. 2003;48:246-258. Rawlings JB, Ji L. Optimization-based state estimation: current status and some new results. J Process Control. 2012;22:1439-1444. Ellis M, Christofides PD. Real-time economic model predictive control of nonlinear process systems. AIChE J. 2015;61:555-571. Khalil HK. Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002. Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006;106:25-57. Lao L, Ellis M, Christofides PD. Proactive fault-tolerant model predictive control. AIChE J. 2013;59:2810-2820. Lin Y, Sontag ED, Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim. 1996;34:124-160. Davis J, Edgar T, Porter J, Bernaden J, Sarli M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng. 2012;47:145-156. Jäschke J, Yang X, Biegler LT. Fast economic model predictive control based on NLP-sensitivities. J Process Control. 2014;24:1260-1272. Sontag ED. A 'universal' construction of Artstein's theorem on nonlinear stabilization. Syst Control Lett. 1989;13:117-123. Ciccarella G, Dalla Mora M, Germani A. A Luenberger-like observer for nonlinear systems. Int J Control. 1993;57:537-556. Ahrens JH, Khalil HK. High-gain observers in the presence of measurement noise: a switched-gain approach. Automatica. 2009;45:936-943. Deshpande AP, Zamad U, Patwardhan SC. Online sensor/actuator failure isolation and reconfigurable control using the generalized likelihood ratio method. Ind Eng Chem Res. 2009;48:1522-1535. Grüne L, Stieler M. Asymptotic stability and transient optimality of economic MPC without terminal conditions. J Process Control. 2014;24:1187-1196. Ellis M, Durand H, Christofides PD. A tutorial review of economic model predictive control methods. J Process Control. 2014;24:1156-1178. Müller MA, Angeli D, Allgöwer F. On the performance of economic model predictive control with self-tuning terminal cost. J Process Control. 2014;24:1179-1186. Schenato L. Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans Autom Control. 2008;53:1311-1317. El-Farra NH, Christofides PD. Bounded robust control of constrained multivariable nonlinear processes. Chem Eng Sci. 2003;58:3025-3047. Khalil HK, Esfandiari F. Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans Autom Control. 1993;38:1412-1415. Liu J. Moving horizon state estimation for nonlinear systems with bounded uncertainties. Chem Eng Sci. 2013;93:376-386. Mhaskar P, Liu J, Christofides PD. Fault-Tolerant Process Control: Methods and Applications. London, England: Springer-Verlag, 2013. Kim W, Ji K, Srivastava A. Network-based control with real-time prediction of delayed/lost sensor data. IEEE Trans Control Syst Technol. 2006;14:182-185. Zhang J, Liu S, Liu J. Economic model predictive control with triggered evaluations: state and ouptut feedback. J Process Control. 2014;24:1197-1206. Mhaskar P, Gani A, McFall C, Christofides PD, Davis JF. Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE J. 2007;53:654-668. Christofides PD, Davis JF, El-Farra NH, Clark D, Harris KRD, Gipson JN. Smart plant operations: vision, progress and challenges. AIChE J. 2007;53:2734-2741. Heidarinejad M, Liu J, Christofides PD. Economic model predictive control of nonlinear process systems using Lyapunov techniques. AIChE J. 2012;58:855-870. Crowl DA, Louvar JF. Chemical Process Safety: Fundamentals with Applications, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2001. 2009; 45 2011 2006; 14 2003; 58 2013; 93 2014; 24 2014; 68 1994 2005 1993 2008; 53 2002 2007; 53 2012; 58 2014; 60 2009; 48 1996; 34 1993; 57 2013; 59 1993; 38 2001 2015; 61 2003; 48 2013 2012; 47 1989; 13 2012; 22 2006; 106 e_1_2_8_29_1 Khalil HK. (e_1_2_8_30_1) 2002 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Crowl DA (e_1_2_8_4_1) 2001 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 Christofides PD (e_1_2_8_28_1) 2005 e_1_2_8_33_1 |
References_xml | – reference: Crowl DA, Louvar JF. Chemical Process Safety: Fundamentals with Applications, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2001. – reference: Lin Y, Sontag ED, Wang Y. A smooth converse Lyapunov theorem for robust stability. SIAM J Control Optim. 1996;34:124-160. – reference: Lao L, Ellis M, Christofides PD. Smart manufacturing: handling preventive actuator maintenance and economics using model predictive control. AIChE J. 2014;60:2179-2196. – reference: Kim W, Ji K, Srivastava A. Network-based control with real-time prediction of delayed/lost sensor data. IEEE Trans Control Syst Technol. 2006;14:182-185. – reference: Ahrens JH, Khalil HK. High-gain observers in the presence of measurement noise: a switched-gain approach. Automatica. 2009;45:936-943. – reference: Christofides PD, Davis JF, El-Farra NH, Clark D, Harris KRD, Gipson JN. Smart plant operations: vision, progress and challenges. AIChE J. 2007;53:2734-2741. – reference: Lao L, Ellis M, Christofides PD. Proactive fault-tolerant model predictive control. AIChE J. 2013;59:2810-2820. – reference: Schenato L. Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans Autom Control. 2008;53:1311-1317. – reference: Ciccarella G, Dalla Mora M, Germani A. A Luenberger-like observer for nonlinear systems. Int J Control. 1993;57:537-556. – reference: Deshpande AP, Zamad U, Patwardhan SC. Online sensor/actuator failure isolation and reconfigurable control using the generalized likelihood ratio method. Ind Eng Chem Res. 2009;48:1522-1535. – reference: Muñoz de la Peña D, Christofides PD. Lyapunov-based model predictive control of nonlinear systems subject to data losses. IEEE Trans Autom Control. 2008;53:2076-2089. – reference: Ellis M, Durand H, Christofides PD. A tutorial review of economic model predictive control methods. J Process Control. 2014;24:1156-1178. – reference: Liu J. Moving horizon state estimation for nonlinear systems with bounded uncertainties. Chem Eng Sci. 2013;93:376-386. – reference: Rao CV, Rawlings JB, Mayne DQ. Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations. IEEE Trans Autom Control. 2003;48:246-258. – reference: Heidarinejad M, Liu J, Christofides PD. Economic model predictive control of nonlinear process systems using Lyapunov techniques. AIChE J. 2012;58:855-870. – reference: Davis J, Edgar T, Porter J, Bernaden J, Sarli M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput Chem Eng. 2012;47:145-156. – reference: Mhaskar P, Gani A, McFall C, Christofides PD, Davis JF. Fault-tolerant control of nonlinear process systems subject to sensor faults. AIChE J. 2007;53:654-668. – reference: El-Farra NH, Christofides PD. Bounded robust control of constrained multivariable nonlinear processes. Chem Eng Sci. 2003;58:3025-3047. – reference: Khalil HK, Esfandiari F. Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans Autom Control. 1993;38:1412-1415. – reference: Christofides PD, El-Farra NH. Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time-Delays. Berlin, Germany: Springer-Verlag, 2005. – reference: Grüne L, Stieler M. Asymptotic stability and transient optimality of economic MPC without terminal conditions. J Process Control. 2014;24:1187-1196. – reference: Mhaskar P, Liu J, Christofides PD. Fault-Tolerant Process Control: Methods and Applications. London, England: Springer-Verlag, 2013. – reference: Jäschke J, Yang X, Biegler LT. Fast economic model predictive control based on NLP-sensitivities. J Process Control. 2014;24:1260-1272. – reference: Sontag ED. A 'universal' construction of Artstein's theorem on nonlinear stabilization. Syst Control Lett. 1989;13:117-123. – reference: Müller MA, Angeli D, Allgöwer F. On the performance of economic model predictive control with self-tuning terminal cost. J Process Control. 2014;24:1179-1186. – reference: Ellis M, Christofides PD. Real-time economic model predictive control of nonlinear process systems. AIChE J. 2015;61:555-571. – reference: Zhang J, Liu S, Liu J. Economic model predictive control with triggered evaluations: state and ouptut feedback. J Process Control. 2014;24:1197-1206. – reference: Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program. 2006;106:25-57. – reference: Rawlings JB, Ji L. Optimization-based state estimation: current status and some new results. J Process Control. 2012;22:1439-1444. – reference: Ellis M, Zhang J, Liu J, Christofides PD. Robust moving horizon estimation-based output feedback economic model predictive control. Syst Control Lett. 2014;68:101-109. – reference: Khalil HK. Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2002. – year: 2011 – volume: 59 start-page: 2810 year: 2013 end-page: 2820 article-title: Proactive fault‐tolerant model predictive control publication-title: AIChE J – volume: 24 start-page: 1197 year: 2014 end-page: 1206 article-title: Economic model predictive control with triggered evaluations: state and ouptut feedback publication-title: J Process Control – volume: 34 start-page: 124 year: 1996 end-page: 160 article-title: A smooth converse Lyapunov theorem for robust stability publication-title: SIAM J Control Optim – year: 2005 – volume: 45 start-page: 936 year: 2009 end-page: 943 article-title: High‐gain observers in the presence of measurement noise: a switched‐gain approach publication-title: Automatica – volume: 47 start-page: 145 year: 2012 end-page: 156 article-title: Smart manufacturing, manufacturing intelligence and demand‐dynamic performance publication-title: Comput Chem Eng – year: 2001 – volume: 14 start-page: 182 year: 2006 end-page: 185 article-title: Network‐based control with real‐time prediction of delayed/lost sensor data publication-title: IEEE Trans Control Syst Technol – volume: 60 start-page: 2179 year: 2014 end-page: 2196 article-title: Smart manufacturing: handling preventive actuator maintenance and economics using model predictive control publication-title: AIChE J – volume: 58 start-page: 855 year: 2012 end-page: 870 article-title: Economic model predictive control of nonlinear process systems using Lyapunov techniques publication-title: AIChE J – volume: 48 start-page: 1522 year: 2009 end-page: 1535 article-title: Online sensor/actuator failure isolation and reconfigurable control using the generalized likelihood ratio method publication-title: Ind Eng Chem Res – volume: 58 start-page: 3025 year: 2003 end-page: 3047 article-title: Bounded robust control of constrained multivariable nonlinear processes publication-title: Chem Eng Sci – volume: 53 start-page: 2076 year: 2008 end-page: 2089 article-title: Lyapunov‐based model predictive control of nonlinear systems subject to data losses publication-title: IEEE Trans Autom Control – year: 1994 – volume: 53 start-page: 1311 year: 2008 end-page: 1317 article-title: Optimal estimation in networked control systems subject to random delay and packet drop publication-title: IEEE Trans Autom Control – volume: 53 start-page: 654 year: 2007 end-page: 668 article-title: Fault‐tolerant control of nonlinear process systems subject to sensor faults publication-title: AIChE J – volume: 53 start-page: 2734 year: 2007 end-page: 2741 article-title: Smart plant operations: vision, progress and challenges publication-title: AIChE J – volume: 22 start-page: 1439 year: 2012 end-page: 1444 article-title: Optimization‐based state estimation: current status and some new results publication-title: J Process Control – volume: 48 start-page: 246 year: 2003 end-page: 258 article-title: Constrained state estimation for nonlinear discrete‐time systems: stability and moving horizon approximations publication-title: IEEE Trans Autom Control – volume: 24 start-page: 1187 year: 2014 end-page: 1196 article-title: Asymptotic stability and transient optimality of economic MPC without terminal conditions publication-title: J Process Control – volume: 68 start-page: 101 year: 2014 end-page: 109 article-title: Robust moving horizon estimation‐based output feedback economic model predictive control publication-title: Syst Control Lett – year: 2002 – volume: 57 start-page: 537 year: 1993 end-page: 556 article-title: A Luenberger‐like observer for nonlinear systems publication-title: Int J Control – volume: 13 start-page: 117 year: 1989 end-page: 123 article-title: A ‘universal’ construction of Artstein's theorem on nonlinear stabilization publication-title: Syst Control Lett – volume: 38 start-page: 1412 year: 1993 end-page: 1415 article-title: Semiglobal stabilization of a class of nonlinear systems using output feedback publication-title: IEEE Trans Autom Control – volume: 93 start-page: 376 year: 2013 end-page: 386 article-title: Moving horizon state estimation for nonlinear systems with bounded uncertainties publication-title: Chem Eng Sci – volume: 24 start-page: 1179 year: 2014 end-page: 1186 article-title: On the performance of economic model predictive control with self‐tuning terminal cost publication-title: J Process Control – volume: 24 start-page: 1156 year: 2014 end-page: 1178 article-title: A tutorial review of economic model predictive control methods publication-title: J Process Control – volume: 24 start-page: 1260 year: 2014 end-page: 1272 article-title: Fast economic model predictive control based on NLP‐sensitivities publication-title: J Process Control – year: 1993 – volume: 61 start-page: 555 year: 2015 end-page: 571 article-title: Real‐time economic model predictive control of nonlinear process systems publication-title: AIChE J – year: 2013 – volume: 106 start-page: 25 year: 2006 end-page: 57 article-title: On the implementation of an interior‐point filter line‐search algorithm for large‐scale nonlinear programming publication-title: Math Program – ident: e_1_2_8_29_1 doi: 10.1137/S0363012993259981 – ident: e_1_2_8_34_1 doi: 10.1016/0167-6911(89)90028-5 – ident: e_1_2_8_19_1 doi: 10.1016/j.ces.2013.02.030 – volume-title: Control of Nonlinear and Hybrid Process Systems: Designs for Uncertainty, Constraints and Time‐Delays year: 2005 ident: e_1_2_8_28_1 – ident: e_1_2_8_33_1 doi: 10.1002/aic.14673 – ident: e_1_2_8_8_1 doi: 10.1002/aic.11100 – ident: e_1_2_8_5_1 doi: 10.1109/ICCIndA.2011.6146685 – ident: e_1_2_8_3_1 – ident: e_1_2_8_13_1 doi: 10.1080/00207179308934406 – ident: e_1_2_8_15_1 doi: 10.1109/9.237658 – ident: e_1_2_8_24_1 doi: 10.1016/j.jprocont.2014.04.009 – ident: e_1_2_8_16_1 doi: 10.1016/j.automatica.2008.11.012 – ident: e_1_2_8_22_1 doi: 10.1016/j.jprocont.2014.03.009 – ident: e_1_2_8_7_1 doi: 10.1109/TCST.2005.859630 – ident: e_1_2_8_25_1 doi: 10.1016/j.jprocont.2014.03.010 – ident: e_1_2_8_10_1 doi: 10.1109/TAC.2008.929401 – ident: e_1_2_8_20_1 doi: 10.1016/j.jprocont.2014.05.009 – ident: e_1_2_8_21_1 doi: 10.1016/j.jprocont.2014.05.003 – ident: e_1_2_8_18_1 doi: 10.1016/j.jprocont.2012.03.001 – ident: e_1_2_8_12_1 doi: 10.1016/j.compchemeng.2012.06.037 – ident: e_1_2_8_2_1 – volume-title: Chemical Process Safety: Fundamentals with Applications year: 2001 ident: e_1_2_8_4_1 – ident: e_1_2_8_14_1 doi: 10.1016/S0009-2509(03)00126-X – ident: e_1_2_8_27_1 doi: 10.1002/aic.14427 – ident: e_1_2_8_23_1 doi: 10.1016/j.sysconle.2014.03.003 – ident: e_1_2_8_26_1 doi: 10.1002/aic.14074 – ident: e_1_2_8_6_1 doi: 10.1021/ie8003122 – volume-title: Nonlinear Systems year: 2002 ident: e_1_2_8_30_1 – ident: e_1_2_8_35_1 doi: 10.1007/s10107-004-0559-y – ident: e_1_2_8_9_1 doi: 10.1109/TAC.2008.921012 – ident: e_1_2_8_17_1 doi: 10.1109/TAC.2002.808470 – ident: e_1_2_8_31_1 doi: 10.1002/aic.12672 – ident: e_1_2_8_11_1 doi: 10.1002/aic.11320 – ident: e_1_2_8_32_1 doi: 10.1007/978-1-4471-4808-1 |
SSID | ssj0012782 |
Score | 2.2657907 |
Snippet | Conducting preventive maintenance of measurement sensors in real‐time during process operation under feedback control while ensuring the reliability and... Conducting preventive maintenance of measurement sensors in real-time during process operation under feedback control while ensuring the reliability and... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3374 |
SubjectTerms | Analytical chemistry Closed loop systems Control systems Economic analysis economic model predictive control Economic models Economics Horizon Maintenance moving horizon estimation Predictive control Preventive maintenance process control process economics sensor preventive maintenance Sensors smart manufacturing Stability state estimation |
Title | Real-time preventive sensor maintenance using robust moving horizon estimation and economic model predictive control |
URI | https://api.istex.fr/ark:/67375/WNG-455DT16S-4/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.14960 https://www.proquest.com/docview/1712307093 https://www.proquest.com/docview/1753484055 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QUOvBELpTIIIS7bJo7tJOK0aikF0R76ED0gWbbjlFVpUmV3K9QTP4HfyC9hxnnQIpAQt0iZRI7HY3_jfPMZ4EXiC49AFdNUG2OCIrJobDkngo0w3kZF7kNt1e6e2jkS74_l8RK87mthWn2IYcONIiPM1xTgxs42fomGmqnDMEcAjvMvcbUIEO0P0lExT7NWKRzTZYQJca8qFPGN4clra9EKdevXa0DzKlwN6832bfjUt7SlmZyuL-Z23V3-JuL4n59yB251OJRN2oFzF5Z8dQ9uXlEnvA8X-wgif3z7TsfPs_NO6unCsxlmvnXDzgxJTZBeh2fEnj9hTW0Xszk7C5sU7HPdTC_ripGMR1sfyUxVMN9VQrNwBg-9t5iGOZd1rPkHcLT95nBzZ9wd0zB2AvHGGL1dKPSqyrjLE1HK2AuDuEVmcYprnzJK2rSI6IeqV6VCgOKVd2kWuyKRee6Th7Bc1ZV_BEykUVRmiUmts4JH3KrSOsQowhWmFCUfwaveYdp1GuZ0lMYX3aovc41dqUNXjuD5YHreCnf8yehl8PpgYZpTYrqlUn_ce6uFlFuHsTrQYgSr_bDQXZDPdJzGRKOP8mQEz4bbGJ70z8VUvl6QjUwEJtFSYtvDGPh7a_Tk3Wa4ePzvpk_gBkI42dILV2F53iz8U4RJc7sGK5Ot3Q8HayEufgKz8xC0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6V9gAc-EcsFDAIIS7bxo7tJBKXqlC20O6hbEUvyLIdp12VJlV2t0I98Qg8I0_C2PmhRSAhbpEyjhyPx_7GnvkG4EXscodAFd1UQ9FB4Wk0NIz5ABuunYnyzIXcqt2xHO3z9wfiYAled7kwDT9Ef-DmLSOs197A_YH0-i_WUD21aOeIwK_Aiq_oHRyqvZ48irIkbbjC0WFGoEA7XqGIrfdNL-1GK35gv16CmhcBa9hxtm7C566vTaDJ8dpibtbs-W80jv_7M7fgRgtFyUYzd27DkivvwPULBIV34WwPceSPb999BXpy2rI9nTkyQ-e3qsmJ9mwTnrLDER9Af0jqyixmc3ISzinIUVVPz6uSeCaPJkWS6DInrk2GJqEMj_9uPg3LLmkD5-_B_tbbyeZo2FZqGFqOkGOICs8lKlamzGYxLwR1XCN0ESlNcPuTWgqT5JG_U3WykIhRnHQ2SanNY5FlLr4Py2VVugdAeBJFRRrrxFjDWcSMLIxFmMJtrgtesAG86jSmbEtj7qtpfFENATNTOJQqDOUAnveipw13x5-EXga19xK6PvbBbolQn8bvFBfizYTKj4oPYLWbF6q185miCfWR9FEWD-BZ_xot1F-76NJVCy8jYo5-tBDY9zAJ_t4btbG9GR4e_rvoU7g6muzuqJ3t8YdHcA0RnWiiDVdheV4v3GNETXPzJBjHTw30Ezs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkJw4I1YKGAQQly2dRLbScSp6rK0PFaotKIHJMuvwKo0WWV3K9QTP4HfyC9h7DxoEUiIW6RMIsczE39jz3wD8CRx1iFQxTBVRxigsIwOdRz7BBumnKY2d6G26u1E7BywV4f8cAWed7UwDT9Ev-HmPSP8r72Dz2yx-Ys0VE0NujkC8AuwxgTNvEmP9nruqChOs4YqHONlxAlRRytE483-0XOL0Zqf16_nkOZZvBoWnPFV-NgNtckzOdpYLvSGOf2NxfE_v-UaXGmBKNlqLOc6rLjyBlw-Q094E072EEX--Pbd958ns5br6cSROYa-VU2Oleea8IQdjvj0-U-krvRyviDHYZeCfK7q6WlVEs_j0RRIElVa4tpSaBKa8Pj32mn46ZI2bf4WHIxf7G_vDNs-DUPDEHAMUd1WoFpFFps8YQWPHFMIXHgWpbj4CSW4Ti31J6pOFAIRihPOpFlkbMLz3CW3YbWsSncHCEspLbJEpdpoFtNYi0IbBCnMWFWwIh7As05h0rQk5r6XxhfZ0C_HEqdShqkcwONedNYwd_xJ6GnQei-h6iOf6pZy-WHyUjLOR_uReC_ZANY7s5Ctl89llEY-j57myQAe9bfRP_2hiypdtfQyPGEYRXOOYw828PfRyK3d7XBx999FH8LFd6OxfLM7eX0PLiGc402q4TqsLuqlu4-QaaEfBNf4CeoeEfM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real%E2%80%90time+preventive+sensor+maintenance+using+robust+moving+horizon+estimation+and+economic+model+predictive+control&rft.jtitle=AIChE+journal&rft.au=Lao%2C+Liangfeng&rft.au=Ellis%2C+Matthew&rft.au=Durand%2C+Helen&rft.au=Christofides%2C+Panagiotis+D.&rft.date=2015-10-01&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=61&rft.issue=10&rft.spage=3374&rft.epage=3389&rft_id=info:doi/10.1002%2Faic.14960&rft.externalDBID=10.1002%252Faic.14960&rft.externalDocID=AIC14960 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |