Mechanical ventilation enhances extrapulmonary sepsis-induced lung injury: role of WISP1–αvβ5 integrin pathway in TLR4-mediated inflammation and injury

High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV. We used a two-hit model of cecal ligati...

Full description

Saved in:
Bibliographic Details
Published inCritical care (London, England) Vol. 22; no. 1; pp. 302 - 11
Main Authors Ding, Xibing, Tong, Yao, Jin, Shuqing, Chen, Zhixia, Li, Tunliang, Billiar, Timothy R., Pitt, Bruce R., Li, Quan, Zhang, Li-Ming
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 16.11.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV. We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4 mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4 , MyD88 and TRIF mice were used to identify a WISP1-TLR4-integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment. MTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4 mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5. These data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1-TLR4-integrin β5 pathway contributes to this phenomenon.
AbstractList High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV. We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4 mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4 , MyD88 and TRIF mice were used to identify a WISP1-TLR4-integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment. MTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4 mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5. These data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1-TLR4-integrin β5 pathway contributes to this phenomenon.
Background High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV. Methods We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4−/− mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4−/−, MyD88−/− and TRIF−/− mice were used to identify a WISP1–TLR4–integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment. Results MTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4−/− mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5. Conclusions These data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1–TLR4–integrin β5 pathway contributes to this phenomenon.
High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV.BACKGROUNDHigh tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV.We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4-/- mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4-/-, MyD88-/- and TRIF-/- mice were used to identify a WISP1-TLR4-integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment.METHODSWe used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4-/- mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4-/-, MyD88-/- and TRIF-/- mice were used to identify a WISP1-TLR4-integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment.MTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4-/- mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5.RESULTSMTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4-/- mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5.These data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1-TLR4-integrin β5 pathway contributes to this phenomenon.CONCLUSIONSThese data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1-TLR4-integrin β5 pathway contributes to this phenomenon.
Abstract Background High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV. Methods We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4−/− mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK. A separate cohort of mice was pretreated with intratracheal neutralizing antibodies to WISP1, integrin β5 or IgG as control and the presented phenotyping repeated in a two-hit model; there were 10 mice per group in these first three experiments. Also, isolated peritoneal macrophages (PM) from wildtype and TLR4−/−, MyD88−/− and TRIF−/− mice were used to identify a WISP1–TLR4–integrin β5 pathway; and the requisite role of integrin β5 in WISP1-induced cytokine and chemokine production in LPS-primed PM was examined by siRNA treatment. Results MTV, that in itself did not cause ALI, exacerbated increases in alveolar-capillary permeability, histopathologic scoring and indices of pulmonary inflammation in mice that previously underwent CLP; the effects of this two-hit model were abrogated in TLR4−/− mice. Attendant with these findings was a significant increase in intrapulmonary WISP1 and integrin β5 in the two-hit model. Anti-WISP1 or anti-integrin β5 antibodies partially inhibited the two-hit phenotype. In PM, activation of TLR4 led to an increase in integrin β5 expression that was MyD88 and NF-κB dependent. Recombinant WISP1 increased LPS-induced cytokine release in PM that was inhibited by silencing either TLR4 or integrin β5. Conclusions These data show for the first time that otherwise noninjurious mechanical ventilation can exacerbate ALI due to extrapulmonary sepsis underscoring a potential interactive contribution of common events (sepsis and mechanical ventilation) in critical care, and that a WISP1–TLR4–integrin β5 pathway contributes to this phenomenon.
ArticleNumber 302
Audience Academic
Author Billiar, Timothy R.
Pitt, Bruce R.
Li, Quan
Chen, Zhixia
Zhang, Li-Ming
Li, Tunliang
Ding, Xibing
Tong, Yao
Jin, Shuqing
Author_xml – sequence: 1
  givenname: Xibing
  surname: Ding
  fullname: Ding, Xibing
– sequence: 2
  givenname: Yao
  surname: Tong
  fullname: Tong, Yao
– sequence: 3
  givenname: Shuqing
  surname: Jin
  fullname: Jin, Shuqing
– sequence: 4
  givenname: Zhixia
  surname: Chen
  fullname: Chen, Zhixia
– sequence: 5
  givenname: Tunliang
  surname: Li
  fullname: Li, Tunliang
– sequence: 6
  givenname: Timothy R.
  surname: Billiar
  fullname: Billiar, Timothy R.
– sequence: 7
  givenname: Bruce R.
  surname: Pitt
  fullname: Pitt, Bruce R.
– sequence: 8
  givenname: Quan
  surname: Li
  fullname: Li, Quan
– sequence: 9
  givenname: Li-Ming
  surname: Zhang
  fullname: Zhang, Li-Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30445996$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wAGxQJDZsUny3wwKpqriMNAgERSwtx3GmHjn21E4GZsc7sOQp4EH6EDwJns5QOhVCXsQ5_s9n_0f_YbHngzdF8RCCYwgFe5ogBpRUAIoKIcwrcKc4gJiRSlBM927s94vDlOYAQC4YvlfsY0AIrWt2UHx_Y_S58lYrVy6NH6xTgw2-ND5XtUml-TJEtRhdH7yKqzKZRbKpsr4dtWlLN_pZaf18jKtnZQzOlKErP00-vIO_vn67_LG8_Enz8WBm0fpyoYbzz2qVC-XZ9D2petNaNWSK9Z1Tfb-5Wfl2S7xf3O2US-bB9ntUfHz54uz0dTV9-2pyejKtNOEUVEQTwhgXFAEsGG8hbLmoUdvlXyGUwpSoBusGQUpMi3TNsTCqQXXLUENxh4-KyYbbBjWXi2j77FQGZeVVIcSZVHGw2hmJIeecClYr1BGuqSKiga1hSCjcCAIy6_mGtRib7E_nkUbldqC7J96ey1lYSoYIQFxkwJMtIIaL0aRB9jZp45zyJoxJIogpxBhzmqWPb0nnYYw-j0oiSiiDkAH2VzVT2UAedcj36jVUnlAmQH60QFl1_A9VXq3prc6x62yu7zQ8umn02uGfaGUB3Ah0DClF011LIJDr-MpNfGWOr1zHV66nx2_1aDtcxSK_xrr_dP4GITH1wQ
CitedBy_id crossref_primary_10_1002_jbt_22644
crossref_primary_10_1109_TBME_2024_3401713
crossref_primary_10_1097_SHK_0000000000001714
crossref_primary_10_1016_j_phymed_2023_154744
crossref_primary_10_1016_j_phrs_2021_105482
crossref_primary_10_1007_s10157_022_02218_9
crossref_primary_10_2147_JIR_S331939
crossref_primary_10_1016_j_mvr_2024_104658
crossref_primary_10_1042_CS20210663
crossref_primary_10_1016_j_ejphar_2023_176018
crossref_primary_10_1016_j_heliyon_2024_e29686
crossref_primary_10_1016_j_yexcr_2023_113909
crossref_primary_10_3390_biomedicines10010098
crossref_primary_10_1021_acs_jproteome_2c00851
crossref_primary_10_1007_s00011_023_01705_3
crossref_primary_10_3892_br_2021_1446
crossref_primary_10_3389_fmed_2022_792238
crossref_primary_10_1186_s42826_021_00108_x
crossref_primary_10_1007_s10753_019_01103_0
crossref_primary_10_3390_ijms251810049
crossref_primary_10_1016_j_bbadis_2024_167101
crossref_primary_10_1016_j_jep_2023_117047
crossref_primary_10_1097_SHK_0000000000002471
crossref_primary_10_1177_1535370221992703
crossref_primary_10_1097_SHK_0000000000001383
crossref_primary_10_3389_fphys_2021_714064
crossref_primary_10_1007_s11481_022_10054_7
crossref_primary_10_1016_j_intimp_2021_107529
crossref_primary_10_1111_1440_1681_13589
crossref_primary_10_3892_mmr_2021_12390
crossref_primary_10_1080_08941939_2019_1634165
crossref_primary_10_1016_j_bbi_2024_12_019
crossref_primary_10_1016_j_cyto_2020_155346
crossref_primary_10_1093_jpp_rgaa039
crossref_primary_10_1016_j_fitote_2024_106175
crossref_primary_10_3389_fimmu_2021_693874
Cites_doi 10.1371/journal.pone.0074633
10.1016/j.chest.2016.07.019
10.1097/SHK.0000000000001260
10.1097/CCM.0b013e3182676322
10.1152/ajplung.00072.2010
10.1097/ALN.0b013e3181eaaef9
10.1186/1471-2253-11-26
10.1097/CCM.0b013e3182711b1e
10.1038/labinvest.3700440
10.1677/joe.0.1780169
10.1186/ar4151
10.1097/CCM.0b013e3181bc7c17
10.1152/ajplung.00312.2014
10.1097/CCM.0b013e318267606f
10.1074/jbc.M110.137273
10.1038/srep20547
10.1164/ajrccm.165.2.2108087
10.1152/ajplung.00154.2002
10.1097/00000542-200502000-00015
10.1007/s00134-011-2234-0
10.1152/ajplung.00004.2004
10.1007/s00134-010-1799-3
10.1513/pats.201112-052AW
10.1038/srep28841
10.1152/ajplung.00073.2011
10.1152/jappl.2001.91.2.811
10.4049/jimmunol.175.5.3369
10.1056/NEJMra1208707
10.1186/cc13830
10.1165/rcmb.2012-0127OC
10.1016/j.tim.2011.01.001
10.1097/SHK.0b013e318188b720
10.1242/jcs.03270
10.1007/s10753-015-0218-x
10.1016/j.biocel.2010.11.013
10.2119/molmed.2015.00233
10.1165/rcmb.2006-0238OC
10.1097/SHK.0000000000000313
10.1016/j.biocel.2008.07.025
10.1097/CCM.0b013e3181f1fcf7
10.1097/ALN.0b013e318182aef1
10.1097/00003246-199406000-00007
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13054-018-2237-0
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1364-8535
1466-609X
1366-609X
EndPage 11
ExternalDocumentID oai_doaj_org_article_317775869a2f47c5a48b1de628a3b840
PMC6240278
A568040382
30445996
10_1186_s13054_018_2237_0
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
China
GeographicLocations_xml – name: China
– name: United States
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81270135; 81772114
– fundername: NIH HHS
  grantid: R01-GM-108639
– fundername: NIH HHS
  grantid: R01-GM-50441
– fundername: ;
  grantid: R01-GM-108639; R01-GM-50441
– fundername: ;
  grantid: 81270135; 81772114
GroupedDBID ---
0R~
29F
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABUWG
ACGFS
ACJQM
ADBBV
ADUKV
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
E3Z
EBD
EBLON
EBS
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
SJN
SMD
SOJ
SV3
TR2
U2A
UKHRP
WOQ
YOC
-5E
-5G
-BR
3V.
ACRMQ
ADINQ
C24
NPM
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4750-4c4466785203867d11d7892df03888aa354ab3cb2154ed2c9738eab29d62b53f3
IEDL.DBID DOA
ISSN 1364-8535
1466-609X
IngestDate Wed Aug 27 01:04:57 EDT 2025
Thu Aug 21 18:02:18 EDT 2025
Fri Jul 11 04:54:18 EDT 2025
Fri Jul 25 08:07:19 EDT 2025
Tue Jun 17 21:06:18 EDT 2025
Tue Jun 10 20:32:16 EDT 2025
Wed Feb 19 02:34:22 EST 2025
Tue Jul 01 03:54:46 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Acute lung injury
Integrin
Peritoneal macrophages
Toll-like receptor 4
Lipopolysaccharide
Sepsis
Mechanical ventilation
WISP1
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4750-4c4466785203867d11d7892df03888aa354ab3cb2154ed2c9738eab29d62b53f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/317775869a2f47c5a48b1de628a3b840
PMID 30445996
PQID 2545611606
PQPubID 44362
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_317775869a2f47c5a48b1de628a3b840
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240278
proquest_miscellaneous_2135133375
proquest_journals_2545611606
gale_infotracmisc_A568040382
gale_infotracacademiconefile_A568040382
pubmed_primary_30445996
crossref_primary_10_1186_s13054_018_2237_0
crossref_citationtrail_10_1186_s13054_018_2237_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-16
PublicationDateYYYYMMDD 2018-11-16
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-16
  day: 16
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Critical care (London, England)
PublicationTitleAlternate Crit Care
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References L Gattinoni (2237_CR30) 2010; 38
O Rentsendorj (2237_CR7) 2011; 301
DR Brigstock (2237_CR36) 2003; 178
M Vaneker (2237_CR35) 2008; 109
G Su (2237_CR26) 2007; 36
S Jin (2237_CR42) 2016; 22
M Yang (2237_CR39) 2016; 39
M Konigshoff (2237_CR37) 2009; 119
J Villar (2237_CR20) 2010; 36
MA Hegeman (2237_CR33) 2013; 2013
L Dejager (2237_CR15) 2011; 19
S Dhanireddy (2237_CR2) 2006; 86
RL Zemans (2237_CR44) 2013; 304
Z Chen (2237_CR22) 2016; 6
B Berschneider (2237_CR38) 2011; 43
HC Muller-Redetzky (2237_CR3) 2014; 18
T Nakamura (2237_CR19) 2001; 91
2237_CR28
G Hu (2237_CR5) 2010; 38
N Yehya (2237_CR18) 2015; 308
WA Altemeier (2237_CR4) 2005; 175
RL Heise (2237_CR41) 2011; 286
S Uematsu (2237_CR17) 2013; 41
WA Altemeier (2237_CR11) 2004; 287
J Villar (2237_CR14) 1994; 22
D Sheppard (2237_CR25) 2012; 9
CC Chen (2237_CR45) 2009; 41
HH Li (2237_CR21) 2012; 47
AS Slutsky (2237_CR1) 2013; 369
G Su (2237_CR27) 2013; 41
J Villar (2237_CR43) 2011; 37
H Li (2237_CR34) 2010; 113
IH Chaudry (2237_CR13) 1979; 85
MA Matthay (2237_CR31) 2002; 283
S Klee (2237_CR40) 2016; 6
JA Frank (2237_CR8) 2002; 165
PS Makena (2237_CR10) 2010; 299
F Bregeon (2237_CR12) 2005; 102
N Nin (2237_CR16) 2009; 31
GF Curley (2237_CR29) 2016; 150
KN Iskander (2237_CR32) 2013; 41
A Leask (2237_CR24) 2006; 119
JW Kuiper (2237_CR9) 2011; 11
X Ding (2237_CR23) 2015; 43
CH Hou (2237_CR46) 2013; 15
N Ding (2237_CR6) 2013; 8
References_xml – volume: 8
  start-page: e74633
  issue: 9
  year: 2013
  ident: 2237_CR6
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074633
– volume: 85
  start-page: 205
  year: 1979
  ident: 2237_CR13
  publication-title: Surgery
– volume: 150
  start-page: 1109
  year: 2016
  ident: 2237_CR29
  publication-title: Chest
  doi: 10.1016/j.chest.2016.07.019
– ident: 2237_CR28
  doi: 10.1097/SHK.0000000000001260
– volume: 41
  start-page: 159
  year: 2013
  ident: 2237_CR32
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3182676322
– volume: 299
  start-page: 1467
  year: 2010
  ident: 2237_CR10
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00072.2010
– volume: 113
  start-page: 619
  year: 2010
  ident: 2237_CR34
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e3181eaaef9
– volume: 11
  start-page: 26
  year: 2011
  ident: 2237_CR9
  publication-title: BMC Anesthesiol
  doi: 10.1186/1471-2253-11-26
– volume: 41
  start-page: 546
  year: 2013
  ident: 2237_CR27
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3182711b1e
– volume: 86
  start-page: 790
  year: 2006
  ident: 2237_CR2
  publication-title: Lab Investig
  doi: 10.1038/labinvest.3700440
– volume: 178
  start-page: 169
  year: 2003
  ident: 2237_CR36
  publication-title: J Endocrinol
  doi: 10.1677/joe.0.1780169
– volume: 15
  start-page: R19
  year: 2013
  ident: 2237_CR46
  publication-title: Arthritis Res Ther
  doi: 10.1186/ar4151
– volume: 38
  start-page: 194
  year: 2010
  ident: 2237_CR5
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3181bc7c17
– volume: 308
  start-page: L443
  year: 2015
  ident: 2237_CR18
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00312.2014
– volume: 41
  start-page: 151
  year: 2013
  ident: 2237_CR17
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e318267606f
– volume: 286
  start-page: 14735
  year: 2011
  ident: 2237_CR41
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.137273
– volume: 6
  start-page: 20547
  year: 2016
  ident: 2237_CR40
  publication-title: Sci Rep
  doi: 10.1038/srep20547
– volume: 165
  start-page: 242
  year: 2002
  ident: 2237_CR8
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/ajrccm.165.2.2108087
– volume: 283
  start-page: L678
  year: 2002
  ident: 2237_CR31
  publication-title: Am J Physiol Lung Cell Mol Physiol.
  doi: 10.1152/ajplung.00154.2002
– volume: 102
  start-page: 331
  year: 2005
  ident: 2237_CR12
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200502000-00015
– volume: 37
  start-page: 1201
  year: 2011
  ident: 2237_CR43
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-011-2234-0
– volume: 287
  start-page: L533
  year: 2004
  ident: 2237_CR11
  publication-title: Am J Physiol Lung Cell Mol Physiol
  doi: 10.1152/ajplung.00004.2004
– volume: 36
  start-page: 1049
  year: 2010
  ident: 2237_CR20
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-010-1799-3
– volume: 9
  start-page: 126
  year: 2012
  ident: 2237_CR25
  publication-title: Proc Am Thorac Soc
  doi: 10.1513/pats.201112-052AW
– volume: 6
  start-page: 28841
  year: 2016
  ident: 2237_CR22
  publication-title: Sci Rep
  doi: 10.1038/srep28841
– volume: 301
  start-page: L161
  year: 2011
  ident: 2237_CR7
  publication-title: Am J Physiol Lung Cell Mol Physiol.
  doi: 10.1152/ajplung.00073.2011
– volume: 91
  start-page: 811
  year: 2001
  ident: 2237_CR19
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/jappl.2001.91.2.811
– volume: 175
  start-page: 3369
  year: 2005
  ident: 2237_CR4
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.5.3369
– volume: 369
  start-page: 2126
  year: 2013
  ident: 2237_CR1
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1208707
– volume: 18
  start-page: R73
  year: 2014
  ident: 2237_CR3
  publication-title: Crit Care
  doi: 10.1186/cc13830
– volume: 47
  start-page: 528
  year: 2012
  ident: 2237_CR21
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2012-0127OC
– volume: 119
  start-page: 772
  year: 2009
  ident: 2237_CR37
  publication-title: J Clin Invest
– volume: 2013
  start-page: 435236
  year: 2013
  ident: 2237_CR33
  publication-title: Crit Care Res Pract
– volume: 19
  start-page: 198
  year: 2011
  ident: 2237_CR15
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2011.01.001
– volume: 31
  start-page: 429
  year: 2009
  ident: 2237_CR16
  publication-title: Shock
  doi: 10.1097/SHK.0b013e318188b720
– volume: 119
  start-page: 4803
  year: 2006
  ident: 2237_CR24
  publication-title: J Cell Sci
  doi: 10.1242/jcs.03270
– volume: 39
  start-page: 16
  year: 2016
  ident: 2237_CR39
  publication-title: Inflammation
  doi: 10.1007/s10753-015-0218-x
– volume: 43
  start-page: 306
  year: 2011
  ident: 2237_CR38
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2010.11.013
– volume: 22
  start-page: 54
  year: 2016
  ident: 2237_CR42
  publication-title: Mol Med
  doi: 10.2119/molmed.2015.00233
– volume: 36
  start-page: 377
  year: 2007
  ident: 2237_CR26
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2006-0238OC
– volume: 304
  start-page: L415
  year: 2013
  ident: 2237_CR44
  publication-title: Am J Physiol
– volume: 43
  start-page: 352
  issue: 4
  year: 2015
  ident: 2237_CR23
  publication-title: Shock
  doi: 10.1097/SHK.0000000000000313
– volume: 41
  start-page: 771
  year: 2009
  ident: 2237_CR45
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2008.07.025
– volume: 38
  start-page: S539
  year: 2010
  ident: 2237_CR30
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0b013e3181f1fcf7
– volume: 109
  start-page: 465
  year: 2008
  ident: 2237_CR35
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0b013e318182aef1
– volume: 22
  start-page: 914
  year: 1994
  ident: 2237_CR14
  publication-title: Crit Care Med
  doi: 10.1097/00003246-199406000-00007
SSID ssj0017863
Score 2.4687135
Snippet High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces...
Background High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV)...
Abstract Background High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 302
SubjectTerms Acute lung injury
Antibodies
Artificial respiration
Chemokines
Complications and side effects
Critical care
Cytokines
Experiments
Flow cytometry
Health aspects
Histopathology
Inflammation
Injuries
Integrin
Integrins
Kinases
Lipopolysaccharide
Lungs
Mechanical ventilation
Microscopy
Neutrophils
Peritoneal macrophages
Permeability
Sepsis
TLR4
Ventilation
Ventilators
Wnt proteins
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3datRAFB60gngj_pu2ygiCIIQm8x9vpIqliiuiLe7dMJNM2pUlu266Su98By99Cn2QPoRP4jnJ7Nog9HZmEjI5Z75zzpw_Qh6rUOfMaby5l3UKHCJTn-UOrNYahAeAg-6yXEfv1P6heDOW43jh1sawyhUmdkBdzUq8I99hnajPQd9-Pv-SYtco9K7GFhqXyRUsXYYhXXq8NrhybbpOajlXIgWxJKNXMzdqpwXslhh_AXzCuE6zgVzqyvf_D9LnpNQwgvKcSNq7Qa5HXZLu9sS_SS6F5ha5Oore8tvk5yhgXi-SgXZhjX3cGw3NMdK6pQDMCzdfTmFvbnFK2zBvJ20KVjrQu6JTwAE6aT7DX39GMQqRzmr66fXH9_mf7z_Ofn09-y1pX21i0lDsbPzNncIAPXj7QaRdRgposzBQA9P1CZLUNVV84x1yuPfq4OV-GpsxpKUArSIVJXp-tZEs40bpKs8rbQpW1VhOxjjHpXCelx5UCBEqVhaam-A8KyrFvOQ1v0s2mlkT7hMalGfeZGDTu0LwWnlZZBVofkZrzzNfJyRbkcKWsVI5NsyY2s5iMcr21LNAPYvUs1lCnq4fmfdlOi5a_ALpu16IFba7gdniyMYDa0Gv0mBLqcKxWuhSOmF8XgXFjOMerOKEPEHusIgD8HGli-kMsEWsqGV3pTIAkNywhGwPVsL5LYfTK_6yET9a-4_bE_JoPY1PYkxcE2ZLWIPNFTnnWibkXs-O6y3xTAgsvJMQPWDUwZ6HM83kuKsurtDfps3mxZ-1Ra4xPDwYEKm2ycbJYhkegHp24h92Z_Av42Q47A
  priority: 102
  providerName: ProQuest
Title Mechanical ventilation enhances extrapulmonary sepsis-induced lung injury: role of WISP1–αvβ5 integrin pathway in TLR4-mediated inflammation and injury
URI https://www.ncbi.nlm.nih.gov/pubmed/30445996
https://www.proquest.com/docview/2545611606
https://www.proquest.com/docview/2135133375
https://pubmed.ncbi.nlm.nih.gov/PMC6240278
https://doaj.org/article/317775869a2f47c5a48b1de628a3b840
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datRAFB60gngj_jdalxEEQQhN5j_edaWlilvK2uLizTCTTOjKki6brtI738FLn0IfpA_hk3hOkl02CHrjzV7MTJbMnG_OT84fIc9VKFPmNH65l2UMCJGxT1IHVmsJwgOYg26yXEdH6vBUvJ3IyUarL4wJa8sDtwe3C_JNg06rMsdKoXPphPFpERQzjnuwTpD7gsxbGVOd_0AbxTsfZmrUbg2cWmK0BaCCcR0nPSnUFOv_kyVvyKR-vOSGADq4Q253miPda9_4LrkWqnvk5qjzjd8n30cBs3jx0GkTxNhGudFQnSFlawpseOHmyxkAzy0uaR3m9bSOwSYH6hZ0BreeTqtPcMavKMYc0vOSfnjz_jj99fXb1Y_PVz8lbWtLTCuKfYy_uEsYoCfvxiJu8k9Ad4WBEiDWpkNSVxXdPz4gpwf7J68P4671QpwL0CFikaOfVxvJEm6ULtK00CZjRYnFY4xzXArnee5BYRChYHmmuQnOs6xQzEte8odkqzqvwjahQXnmTQIWvMsEL5WXWVKAnme09jzxZUSSFSls3tUlx_YYM9vYJ0bZlnoWqGeRejaJyMv1I_O2KMffFg-RvuuFWE-7GQCU2Q5l9l8oi8gLRIfFWw8vl7sueQG2iPWz7J5UBtghNywiO72VcFvz_vQKX7bjFrVljRqbgi0ZkWfraXwSI-CqcL6ENdhKkXOuZUQetXBcb4knQmCZnYjoHlB7e-7PVNOzppa4Qu-aNo__xyE9IbcYXjEMklQ7ZOtisQxPQWW78ANyXU_0gNwY7h8djwfNXYXf8fDjbzBPQjI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3datRAFB5qC-qN-G-06giKIIQm87-CSKstre2WUlvs3TiTTOxKya6b1tI738FL30HQB-lD-CSek2TXBqF3vZ2ZhEzOmfOdM-ePkKcqFClzGm_uZREDh8jYJ6kDq7UA8ADhoOss1_6mWt0V7_bk3gz5OcmFwbDKiUysBXU-zPCOfIHVUJ-Cvv169CXGrlHoXZ200GjYYj2cHIPJVr1aewv0fcbYyvLOm9W47SoQZwLgMRYZujC1kSzhRuk8TXNteiwvsC6KcY5L4TzPPGChCDnLepqb4Dzr5Yp5yQsO771E5gQHU2aWzC0tb25tT_0W2tS921KuRAxAKFs_amrUQgVoITHiAziTcR0nHSSsGwb8DwtncLEbs3kGBFeuk2ut9koXG3a7QWZCeZNc7rf--VvkRz9gJjESntaBlE2kHQ3lPnJXRQEKxm50dAB_041PaBVG1aCKB2UOHJbTA5A8dFB-Bjq_pBj3SIcF_bD2fiv98-376a-vp78lbepbDEqKvZSP3QkM0J2NbRHXOTCgP8NAAWzepGRSV-btG2-T3Qsh1B0yWw7LcI_QoDzzJgmeuZ7ghfKyl-SgaxqtPU98EZFkQgqbtbXRsUXHga1tJKNsQz0L1LNIPZtE5MX0kVFTGOS8xUtI3-lCrOldDwzHn2wrIixochqsN9VzrBA6k04Yn-ZBMeO4Bzs8Is-ROyxKHvi4zLUJFLBFrOFlF6UyIJK5YRGZ76wEiZF1pyf8ZVuJVdl_5ysiT6bT-CRG4ZVheARrsJ0j51zLiNxt2HG6JZ4IgaV-IqI7jNrZc3emHOzX9cwVevi0uX_-Zz0mV1Z3-ht2Y21z_QG5yvAgYTimmiezh-Oj8BCUw0P_qD2RlHy8aCHwFwwadQU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+ventilation+enhances+extrapulmonary+sepsis-induced+lung+injury%3A+role+of+WISP1%E2%80%93%CE%B1v%CE%B25+integrin+pathway+in+TLR4-mediated+inflammation+and+injury&rft.jtitle=Critical+care+%28London%2C+England%29&rft.au=Ding%2C+Xibing&rft.au=Tong%2C+Yao&rft.au=Jin%2C+Shuqing&rft.au=Chen%2C+Zhixia&rft.date=2018-11-16&rft.pub=BioMed+Central&rft.issn=1364-8535&rft.eissn=1466-609X&rft.volume=22&rft_id=info:doi/10.1186%2Fs13054-018-2237-0&rft_id=info%3Apmid%2F30445996&rft.externalDocID=PMC6240278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8535&client=summon