Emergence of Microphysical Bulk Viscosity in Binary Neutron Star Postmerger Dynamics

In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dyn...

Full description

Saved in:
Bibliographic Details
Published inAstrophysical journal. Letters Vol. 967; no. 1; p. L14
Main Authors Most, Elias R., Haber, Alexander, Harris, Steven P., Zhang, Ziyuan, Alford, Mark G., Noronha, Jorge
Format Journal Article
LanguageEnglish
Published Austin The American Astronomical Society 01.05.2024
IOP Publishing
American Astronomical Society
Subjects
Online AccessGet full text
ISSN2041-8205
2041-8213
DOI10.3847/2041-8213/ad454f

Cover

Loading…
Abstract In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation.
AbstractList In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation.
Abstract In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation.
In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation.
Author Alford, Mark G.
Zhang, Ziyuan
Haber, Alexander
Harris, Steven P.
Most, Elias R.
Noronha, Jorge
Author_xml – sequence: 1
  givenname: Elias R.
  orcidid: 0000-0002-0491-1210
  surname: Most
  fullname: Most, Elias R.
  organization: California Institute of Technology Walter Burke Institute for Theoretical Physics, Pasadena, CA 91125, USA
– sequence: 2
  givenname: Alexander
  orcidid: 0000-0002-5511-9565
  surname: Haber
  fullname: Haber, Alexander
  organization: Washington University in St. Louis Physics Department, St. Louis, MO 63130​, USA
– sequence: 3
  givenname: Steven P.
  orcidid: 0000-0002-0809-983X
  surname: Harris
  fullname: Harris, Steven P.
  organization: University of Washington Institute for Nuclear Theory, Seattle, WA 98195, USA
– sequence: 4
  givenname: Ziyuan
  orcidid: 0000-0003-4795-0882
  surname: Zhang
  fullname: Zhang, Ziyuan
  organization: Washington University in St. Louis McDonnell Center for the Space Sciences, St. Louis, MO 63130, USA
– sequence: 5
  givenname: Mark G.
  orcidid: 0000-0001-9675-7005
  surname: Alford
  fullname: Alford, Mark G.
  organization: Washington University in St. Louis Physics Department, St. Louis, MO 63130​, USA
– sequence: 6
  givenname: Jorge
  orcidid: 0000-0002-9817-0272
  surname: Noronha
  fullname: Noronha, Jorge
  organization: University of Illinois at Urbana-Champaign, Urbana Illinois Center for Advanced Studies of the Universe & Department of Physics, IL 61801, USA
BackLink https://www.osti.gov/biblio/2352306$$D View this record in Osti.gov
BookMark eNp9kc1vVCEUxYlpE9vq3iXRxJVj-Xo8urS1apNpNbG6JbwLtIxv4AnMYv57mT4zJka7gtz8zsm59xyjg5iiQ-gFJW-5Ev0pI4IuFKP81FjRCf8EHe1HB_s_6Z6i41JWhDAiqTpCt5drl-9cBIeTx9cBcprutyWAGfH5ZvyBv4cCqYS6xSHi8xBN3uIbt6k5Rfy1moy_pFIfPDJ-v41mHaA8Q4fejMU9__2eoG8fLm8vPi2Wnz9eXbxbLkD0oi68s3DWUwpKSAbglOiYooQN4GzvjBxEy2gHq_o2MN4ICZJZpXrKmVGE8RN0NfvaZFZ6ymHd0ulkgn4YpHynTa4BRqeZZx7sMBhvieDMKye9IL11fqCMgWheL2evtk7QBUJ1cA8pRgdVM94xTmSDXs3QlNPPjStVr9Imx7aj5qSTjEpOVaPITLVjlpKd30ejRO_K0rs29K4ZPZfVJPIvSQtgakixZhPGx4SvZ2FI058wZlqN-kz2muolFXqyO_DNP8D_-v4CQ322Uw
CitedBy_id crossref_primary_10_1103_PhysRevD_111_044074
crossref_primary_10_1007_s41114_024_00052_x
crossref_primary_10_1103_PhysRevC_111_015802
crossref_primary_10_1063_5_0226258
crossref_primary_10_1103_PhysRevC_110_L052801
crossref_primary_10_1103_PhysRevD_110_043002
crossref_primary_10_1103_PhysRevD_111_043013
crossref_primary_10_3390_universe10070303
crossref_primary_10_1103_PhysRevD_110_024039
crossref_primary_10_1103_PhysRevD_110_063513
crossref_primary_10_1103_PhysRevD_110_123039
crossref_primary_10_1103_PhysRevLett_133_071901
crossref_primary_10_1103_PhysRevD_111_063002
crossref_primary_10_1007_JHEP12_2024_058
crossref_primary_10_1103_PhysRevD_111_014020
crossref_primary_10_1103_PhysRevD_111_063053
crossref_primary_10_1140_epja_s10050_024_01351_1
crossref_primary_10_1103_PhysRevD_110_123040
crossref_primary_10_1103_PhysRevLett_134_071402
crossref_primary_10_1103_PhysRevD_110_103001
crossref_primary_10_1093_mnras_stae2284
crossref_primary_10_1103_PhysRevD_110_103043
Cites_doi 10.1103/PhysRevD.93.124051
10.1103/PhysRevLett.124.171103
10.1093/mnras/stw1227
10.1093/mnras/stab2793
10.1093/mnras/stac589
10.3847/1538-4357/aaf054
10.1103/PhysRevC.81.024905
10.1103/PhysRevD.107.103032
10.1103/PhysRevD.101.123007
10.1103/PhysRevD.101.084006
10.1016/j.nuclphysa.2010.02.010
10.1103/PhysRevD.39.3804
10.1088/0264-9381/29/11/115001
10.1140/epja/s10050-020-00073-4
10.1103/PhysRevD.102.043006
10.1103/PhysRevD.101.044019
10.3847/2041-8213/aaa402
10.3847/1538-4357/aabafd
10.1103/PhysRevD.100.104029
10.1103/RevModPhys.89.015007
10.1103/PhysRevLett.94.201101
10.1103/PhysRevC.80.054906
10.1140/epja/i2019-12810-7
10.1103/PhysRevD.85.114047
10.1103/PhysRevLett.129.032701
10.1103/PhysRevD.86.063001
10.1111/j.1365-2966.2004.07621.x
10.1103/PhysRevD.99.043010
10.1103/PhysRevD.88.064009
10.1103/PhysRevLett.113.091104
10.3847/2041-8213/aabcbf
10.1103/PhysRevC.88.044916
10.1088/0954-3899/37/12/125202
10.1103/PhysRevD.107.043034
10.3847/2041-8213/ab5794
10.1103/PhysRevD.101.084039
10.1103/PhysRevD.105.103016
10.1103/PhysRevD.46.3290
10.3390/universe7110399
10.3847/2041-8213/ac350d
10.1093/mnras/stad107
10.1103/PhysRevLett.120.041101
10.1093/ptep/pts011
10.3847/2041-8213/ab75f5
10.1103/PhysRevD.97.021501
10.1103/PhysRevD.88.084057
10.3847/2041-8213/abdfc6
10.1103/PhysRevD.104.124012
10.48550/arXiv.1907.04833
10.1103/PhysRevLett.66.2701
10.1103/PhysRevLett.122.061101
10.1103/PhysRevD.105.084021
10.1126/science.aaq0049
10.1103/PhysRevD.72.024028
10.1103/PhysRevD.81.084003
10.1103/PhysRevD.100.023015
10.1103/PhysRevLett.120.172703
10.1103/PhysRevLett.125.261104
10.1103/PhysRevC.109.015805
10.1103/PhysRevLett.119.161101
10.1103/PhysRevLett.111.131101
10.1016/S0370-1573(00)00131-9
10.1093/mnras/stz880
10.1103/PhysRevD.100.103021
10.1103/PhysRevLett.115.132301
10.3847/2041-8213/aaa401
10.1103/PhysRevD.107.043023
10.1093/mnras/stz2809
10.1103/PhysRevD.107.103031
10.1016/j.physrep.2015.12.005
10.1103/PhysRevD.104.103027
10.1103/PhysRevD.105.103022
10.1093/mnrasl/slaa168
10.1109/mcse.2014.80
10.1103/PhysRevC.97.034910
10.1086/175480
10.1103/PhysRevD.104.083029
10.3847/1538-4357/aa8039
10.1093/mnrasl/sly061
10.1103/PhysRevD.104.103006
10.3847/2041-8213/abdaae
10.1093/mnras/stz613
10.1088/0264-9381/32/17/175009
10.1103/PhysRevD.105.104019
10.3847/2041-8213/aa9c84
10.1103/PhysRevC.85.044909
10.1103/PhysRevLett.121.161101
10.3847/2041-8213/aa991c
10.1103/PhysRevC.102.065805
10.1103/PhysRevLett.122.061102
10.1007/s41114-019-0024-0
10.1103/PhysRevC.95.045807
10.1103/PhysRevLett.121.091102
10.3847/2041-8213/aa9994
10.1103/PhysRevD.106.063017
10.1103/PhysRevD.77.021502
10.1103/PhysRevD.104.063016
10.1088/1361-6633/aa67bb
10.1103/PhysRevC.81.034909
10.1103/PhysRevD.91.064059
10.3847/2041-8213/aa9029
10.1103/PhysRevD.79.124033
10.1017/pasa.2020.39
10.1088/0264-9381/33/18/184002
10.3847/2041-8213/aa90b6
10.3847/2041-8213/ab0210
10.1103/PhysRevLett.120.031102
10.1103/PhysRevD.93.124046
10.1103/PhysRevD.91.064001
10.1103/PhysRevD.106.044026
10.21468/SciPostPhys.13.5.109
10.1103/PhysRevC.98.065806
10.1103/PhysRevD.90.023002
10.1051/0004-6361:20077093
10.3847/2041-8213/ace5b2
10.1046/j.1365-8711.2003.06579.x
10.3847/2041-8213/aa8fc7
10.1103/PhysRevD.82.084043
10.1017/9781108651998
10.1051/0004-6361:20021112
10.1103/PhysRevC.100.035803
10.1103/PhysRevD.96.124005
10.1146/annurev-nucl-013120-114541
10.1103/PhysRevD.72.024021
10.1103/PhysRevD.97.104036
10.1088/0004-637X/790/1/19
10.3847/2041-8213/ac7c75
10.1103/PhysRevC.103.045810
10.1103/PhysRevD.109.064009
10.1140/epja/i2019-12759-5
10.1088/0004-637X/774/1/17
10.1088/0264-9381/27/19/194002
10.1103/PhysRevLett.120.261103
10.1103/PhysRevC.103.025808
10.3847/1538-4357/ab16da
10.1016/0003-4916(79)90130-1
10.1146/annurev-astro-081915-023322
10.1111/j.1365-2966.2011.19493.x
10.1103/PhysRevD.105.023018
10.1088/0004-637X/773/1/78
10.3847/2041-8213/aa905c
10.1103/PhysRevLett.115.091101
10.1088/1361-6382/abe588
10.1103/PhysRevD.100.103009
10.1103/PhysRevLett.125.141103
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OTOTI
DOA
DOI 10.3847/2041-8213/ad454f
DatabaseName Institute of Physics Open Access Journals (Activated by CARLI)
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journals (Activated by CARLI)
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2041-8213
ExternalDocumentID oai_doaj_org_article_2f2fcdbbafd0432f8e6f407defb122c4
2352306
10_3847_2041_8213_ad454f
apjlad454f
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  grantid: DE-FG02-05ER41375.
  funderid: https://doi.org/10.13039/100000015
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0023861
  funderid: https://doi.org/10.13039/100000015
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0021301
  funderid: https://doi.org/10.13039/100000015
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-FG02-00ER41132
  funderid: https://doi.org/10.13039/100000015
– fundername: National Science Foundation (NSF)
  grantid: PHY-2309210
  funderid: https://doi.org/10.13039/100000001
– fundername: National Science Foundation (NSF)
  grantid: PHY-1430152
  funderid: https://doi.org/10.13039/100000001
GroupedDBID 1JI
2FS
4.4
6J9
AAFWJ
AAGCD
AAJIO
ABDNZ
ABHWH
ACGFS
ACHIP
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
EBS
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
N5L
O3W
O43
OK1
PJBAE
RIN
ROL
SY9
T37
TSCCA
~02
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
OTOTI
ID FETCH-LOGICAL-c474t-fedc9711c8462cce84528102bced7ea6b4061dbd87cedafa46c62d887132a8023
IEDL.DBID O3W
ISSN 2041-8205
IngestDate Wed Aug 27 01:31:20 EDT 2025
Mon May 27 05:13:57 EDT 2024
Wed Aug 13 09:05:48 EDT 2025
Thu Apr 24 22:52:10 EDT 2025
Tue Jul 01 04:12:07 EDT 2025
Tue Aug 20 22:17:07 EDT 2024
Sun Aug 18 17:00:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-fedc9711c8462cce84528102bced7ea6b4061dbd87cedafa46c62d887132a8023
Notes AAS53756
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
FG02-05ER41375.; FG02-00ER41132; SC0021301; SC0023861
USDOE
ORCID 0000-0002-0491-1210
0000-0002-9817-0272
0000-0003-4795-0882
0000-0001-9675-7005
0000-0002-5511-9565
0000-0002-0809-983X
0000000196757005
0000000204911210
000000020809983X
0000000255119565
0000000347950882
0000000298170272
OpenAccessLink https://iopscience.iop.org/article/10.3847/2041-8213/ad454f
PQID 3056216318
PQPubID 4562431
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_2f2fcdbbafd0432f8e6f407defb122c4
osti_scitechconnect_2352306
crossref_citationtrail_10_3847_2041_8213_ad454f
proquest_journals_3056216318
crossref_primary_10_3847_2041_8213_ad454f
iop_journals_10_3847_2041_8213_ad454f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Austin
PublicationPlace_xml – name: Austin
– name: United States
PublicationTitle Astrophysical journal. Letters
PublicationTitleAbbrev APJL
PublicationTitleAlternate Astrophys. J. Lett
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
American Astronomical Society
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
– name: American Astronomical Society
References Israel (apjlad454fbib68) 1979; 118
Perego (apjlad454fbib99) 2022; 129
Camelio (apjlad454fbib34) 2023b; 107
Gill (apjlad454fbib60) 2019; 876
Yakovlev (apjlad454fbib149) 2001; 354
Breschi (apjlad454fbib31) 2019; 100
Ruiz (apjlad454fbib121) 2018; 97
Radice (apjlad454fbib102) 2022; 512
Raithel (apjlad454fbib110) 2022; 933
Monnai (apjlad454fbib82) 2009; 80
Nedora (apjlad454fbib92) 2019; 886
Kölsch (apjlad454fbib72) 2022; 106
Raithel (apjlad454fbib108) 2021; 104
Breschi (apjlad454fbib30) 2024; 109
Etienne (apjlad454fbib50) 2015; 32
Landry (apjlad454fbib74) 2020; 101
Dexheimer (apjlad454fbib46) 2021; 103
Punturo (apjlad454fbib101) 2010; 27
Steiner (apjlad454fbib133) 2013; 774
Alford (apjlad454fbib10) 2018; 98
Bernuzzi (apjlad454fbib25) 2015; 115
Celora (apjlad454fbib36) 2022; 105
Bauswein (apjlad454fbib17) 2019; 122
Haensel (apjlad454fbib61) 2002; 394
Roberts (apjlad454fbib116) 2017; 95
Alford (apjlad454fbib5) 2019; 100
Alford (apjlad454fbib9) 2021; 7
Dusling (apjlad454fbib49) 2012; 85
Gavassino (apjlad454fbib59) 2023
Shibata (apjlad454fbib131) 2019; 100
Alford (apjlad454fbib6) 2021; 104
Romatschke (apjlad454fbib117) 2019
Shibata (apjlad454fbib130) 2005; 94
Oechslin (apjlad454fbib95) 2004; 349
Denicol (apjlad454fbib44) 2012; 85
Chatziioannou (apjlad454fbib38) 2020; 101
Towns (apjlad454fbib143) 2014; 16
Bauswein (apjlad454fbib24) 2014; 90
Nicholl (apjlad454fbib93) 2017; 848
Figura (apjlad454fbib53) 2020; 102
Wijngaarden (apjlad454fbib148) 2022; 105
Zlochower (apjlad454fbib154) 2005; 72
Rezzolla (apjlad454fbib114) 2018; 852
Most (apjlad454fbib83) 2021; 509
Ryu (apjlad454fbib122) 2015; 115
Hammond (apjlad454fbib63) 2023; 107
Radice (apjlad454fbib105) 2018a; 869
Ackley (apjlad454fbib4) 2020; 37
Ardevol-Pulpillo (apjlad454fbib14) 2019; 485
Bauswein (apjlad454fbib18) 2013a; 111
Rosswog (apjlad454fbib119) 2003; 342
Loffler (apjlad454fbib78) 2012; 29
Hernandez Vivanco (apjlad454fbib66) 2019; 100
Harris (apjlad454fbib64) 2020
Lehner (apjlad454fbib77) 2016; 33
Chatziioannou (apjlad454fbib37) 2022; 105
De (apjlad454fbib42) 2018; 121
Vretinaris (apjlad454fbib146) 2020; 101
Takami (apjlad454fbib135) 2014; 113
Most (apjlad454fbib89) 2021; 104
Arras (apjlad454fbib15) 2019; 486
Cowperthwaite (apjlad454fbib41) 2017; 848
Fujibayashi (apjlad454fbib55) 2018; 860
Raithel (apjlad454fbib109) 2019; 55
Margalit (apjlad454fbib80) 2017; 850
Bauswein (apjlad454fbib19) 2020; 125
Radice (apjlad454fbib104) 2016; 460
Baiotti (apjlad454fbib16) 2017; 80
Prakash (apjlad454fbib100) 2021; 104
Metzger (apjlad454fbib81) 2020; 23
Yang (apjlad454fbib151) 2024; 109
Bauswein (apjlad454fbib20) 2013b; 773
Flanagan (apjlad454fbib54) 2008; 77
Gavassino (apjlad454fbib58) 2021; 38
Ryu (apjlad454fbib123) 2018; 97
Most (apjlad454fbib86) 2019a; 122
Tews (apjlad454fbib140) 2021; 908
Yu (apjlad454fbib152) 2022; 106
Rosswog (apjlad454fbib118) 1999; 341
Bauswein (apjlad454fbib22) 2010; 82
Reitze (apjlad454fbib113) 2019; 51
Sekiguchi (apjlad454fbib128) 2015; 91
Annala (apjlad454fbib13) 2018; 120
Galeazzi (apjlad454fbib57) 2013; 88
Madsen (apjlad454fbib79) 1992; 46
Kashyap (apjlad454fbib70) 2022; 105
Bovard (apjlad454fbib28) 2017; 96
Chornock (apjlad454fbib40) 2017; 848
Bauswein (apjlad454fbib21) 2012; 86
Tootle (apjlad454fbib141) 2022; 13
Most (apjlad454fbib90) 2018; 120
Tootle (apjlad454fbib142) 2021; 922
Sawyer (apjlad454fbib125) 1989; 39
Most (apjlad454fbib88) 2020b; 499
Chatziioannou (apjlad454fbib39) 2018; 97
Radice (apjlad454fbib106) 2018b; 852
Read (apjlad454fbib111) 2009; 79
Zappa (apjlad454fbib153) 2023; 520
Denicol (apjlad454fbib45) 2021
Lattimer (apjlad454fbib75) 2016; 621
Tanvir (apjlad454fbib139) 2017; 848
Perego (apjlad454fbib98) 2019; 55
Drout (apjlad454fbib47) 2017; 358
Tan (apjlad454fbib138) 2020; 125
Radice (apjlad454fbib103) 2020; 70
Schmitt (apjlad454fbib126) 2018; Vol. 457
Abbott (apjlad454fbib2) 2018; 121
Kiuchi (apjlad454fbib71) 2020; 101
Villar (apjlad454fbib145) 2017; 851
Song (apjlad454fbib132) 2010; 81
Alford (apjlad454fbib12) 2010; 37
Abbott (apjlad454fbib1) 2017; 119
Bauswein (apjlad454fbib23) 2017; 850
Duez (apjlad454fbib48) 2005; 72
Yakovlev (apjlad454fbib150) 1995; 297
Takami (apjlad454fbib136) 2015; 91
Alford (apjlad454fbib7) 2018; 120
Rezzolla (apjlad454fbib115) 2016; 93
Fattoyev (apjlad454fbib51) 2020; 102
Breschi (apjlad454fbib32) 2022
Carson (apjlad454fbib35) 2019; 99
Most (apjlad454fbib84) 2020a; 56
Hammond (apjlad454fbib62) 2021; 104
Fields (apjlad454fbib52) 2023; 952
Oertel (apjlad454fbib96) 2017; 89
Bozek (apjlad454fbib29) 2010; 81
Fujibayashi (apjlad454fbib56) 2017; 846
Del Zanna (apjlad454fbib43) 2007; 473
Weih (apjlad454fbib147) 2020; 124
Bernuzzi (apjlad454fbib26) 2010; 81
Raithel (apjlad454fbib107) 2018; 857
Troja (apjlad454fbib144) 2018; 478
Bose (apjlad454fbib27) 2018; 120
Reisenegger (apjlad454fbib112) 1995; 442
Nathanail (apjlad454fbib91) 2021; 908
Lattimer (apjlad454fbib76) 1991; 66
Alford (apjlad454fbib11) 2019; 100
Camelio (apjlad454fbib33) 2023a; 107
Kaplan (apjlad454fbib69) 2014; 790
Alford (apjlad454fbib8) 2021; 103
Ruffert (apjlad454fbib120) 1996; 311
Tan (apjlad454fbib137) 2022; 105
Sekiguchi (apjlad454fbib127) 2012; 2012
Noronha-Hostler (apjlad454fbib94) 2013; 88
Özel (apjlad454fbib97) 2016; 54
Stergioulas (apjlad454fbib134) 2011; 418
Hempel (apjlad454fbib65) 2010; 837
Sa’d (apjlad454fbib124) 2009
Köppel (apjlad454fbib73) 2019; 872
Most (apjlad454fbib85) 2023; 107
Most (apjlad454fbib87) 2019b; 490
Abbott (apjlad454fbib3) 2020; 892
Hilditch (apjlad454fbib67) 2013; 88
Sekiguchi (apjlad454fbib129) 2016; 93
References_xml – volume: 93
  start-page: 124051
  year: 2016
  ident: apjlad454fbib115
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.93.124051
– volume: 124
  start-page: 171103
  year: 2020
  ident: apjlad454fbib147
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.124.171103
– volume: 460
  start-page: 3255
  year: 2016
  ident: apjlad454fbib104
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1227
– volume: 509
  start-page: 1096
  year: 2021
  ident: apjlad454fbib83
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2793
– volume: 512
  start-page: 1499
  year: 2022
  ident: apjlad454fbib102
  publication-title: MNRAS
  doi: 10.1093/mnras/stac589
– volume: 869
  start-page: 130
  year: 2018a
  ident: apjlad454fbib105
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf054
– volume: 81
  start-page: 024905
  year: 2010
  ident: apjlad454fbib132
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.81.024905
– volume: 107
  start-page: 103032
  year: 2023b
  ident: apjlad454fbib34
  publication-title: PhysRevD
  doi: 10.1103/PhysRevD.107.103032
– volume: 101
  start-page: 123007
  year: 2020
  ident: apjlad454fbib74
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.101.123007
– volume: 101
  start-page: 084006
  year: 2020
  ident: apjlad454fbib71
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.101.084006
– volume: 837
  start-page: 210
  year: 2010
  ident: apjlad454fbib65
  publication-title: NuPhA
  doi: 10.1016/j.nuclphysa.2010.02.010
– volume: 39
  start-page: 3804
  year: 1989
  ident: apjlad454fbib125
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.39.3804
– volume: 29
  start-page: 115001
  year: 2012
  ident: apjlad454fbib78
  publication-title: CQGra
  doi: 10.1088/0264-9381/29/11/115001
– volume: 56
  start-page: 59
  year: 2020a
  ident: apjlad454fbib84
  publication-title: EPJA
  doi: 10.1140/epja/s10050-020-00073-4
– volume: 102
  start-page: 043006
  year: 2020
  ident: apjlad454fbib53
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.102.043006
– volume: 101
  start-page: 044019
  year: 2020
  ident: apjlad454fbib38
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.101.044019
– volume: 852
  start-page: L29
  year: 2018b
  ident: apjlad454fbib106
  publication-title: ApJL
  doi: 10.3847/2041-8213/aaa402
– volume: 860
  start-page: 64
  year: 2018
  ident: apjlad454fbib55
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabafd
– volume: 100
  start-page: 104029
  year: 2019
  ident: apjlad454fbib31
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.100.104029
– volume: 89
  start-page: 015007
  year: 2017
  ident: apjlad454fbib96
  publication-title: RvMP
  doi: 10.1103/RevModPhys.89.015007
– volume: 94
  start-page: 201101
  year: 2005
  ident: apjlad454fbib130
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.94.201101
– volume: 80
  start-page: 054906
  year: 2009
  ident: apjlad454fbib82
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.80.054906
– volume: 55
  start-page: 124
  year: 2019
  ident: apjlad454fbib98
  publication-title: EPJA
  doi: 10.1140/epja/i2019-12810-7
– volume: 85
  start-page: 114047
  year: 2012
  ident: apjlad454fbib44
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.85.114047
– year: 2020
  ident: apjlad454fbib64
– volume: 129
  start-page: 032701
  year: 2022
  ident: apjlad454fbib99
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.129.032701
– volume: 86
  start-page: 063001
  year: 2012
  ident: apjlad454fbib21
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.86.063001
– volume: 349
  start-page: 1469
  year: 2004
  ident: apjlad454fbib95
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07621.x
– volume: 99
  start-page: 043010
  year: 2019
  ident: apjlad454fbib35
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.99.043010
– volume: 88
  start-page: 064009
  year: 2013
  ident: apjlad454fbib57
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.88.064009
– volume: 113
  start-page: 091104
  year: 2014
  ident: apjlad454fbib135
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.113.091104
– volume: 857
  start-page: L23
  year: 2018
  ident: apjlad454fbib107
  publication-title: ApJL
  doi: 10.3847/2041-8213/aabcbf
– volume: 88
  start-page: 044916
  year: 2013
  ident: apjlad454fbib94
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.88.044916
– volume: 37
  start-page: 125202
  year: 2010
  ident: apjlad454fbib12
  publication-title: JPhG
  doi: 10.1088/0954-3899/37/12/125202
– volume: 107
  start-page: 043034
  year: 2023
  ident: apjlad454fbib85
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.107.043034
– volume: 886
  start-page: L30
  year: 2019
  ident: apjlad454fbib92
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab5794
– volume: 101
  start-page: 084039
  year: 2020
  ident: apjlad454fbib146
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.101.084039
– volume: 105
  start-page: 103016
  year: 2022
  ident: apjlad454fbib36
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.105.103016
– volume: 46
  start-page: 3290
  year: 1992
  ident: apjlad454fbib79
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.46.3290
– year: 2023
  ident: apjlad454fbib59
– volume: 7
  start-page: 399
  year: 2021
  ident: apjlad454fbib9
  publication-title: Univ
  doi: 10.3390/universe7110399
– volume: 922
  start-page: L19
  year: 2021
  ident: apjlad454fbib142
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac350d
– volume: 520
  start-page: 1481
  year: 2023
  ident: apjlad454fbib153
  publication-title: MNRAS
  doi: 10.1093/mnras/stad107
– volume: 120
  start-page: 041101
  year: 2018
  ident: apjlad454fbib7
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.120.041101
– volume: 2012
  start-page: 01A304
  year: 2012
  ident: apjlad454fbib127
  publication-title: PTEP
  doi: 10.1093/ptep/pts011
– volume: 892
  start-page: L3
  year: 2020
  ident: apjlad454fbib3
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab75f5
– volume: 97
  start-page: 021501
  year: 2018
  ident: apjlad454fbib121
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.97.021501
– volume: 88
  start-page: 084057
  year: 2013
  ident: apjlad454fbib67
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.88.084057
– volume: 908
  start-page: L28
  year: 2021
  ident: apjlad454fbib91
  publication-title: ApJL
  doi: 10.3847/2041-8213/abdfc6
– volume: 104
  start-page: 124012
  year: 2021
  ident: apjlad454fbib89
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.104.124012
– volume: 51
  start-page: 35
  year: 2019
  ident: apjlad454fbib113
  publication-title: BAAS
  doi: 10.48550/arXiv.1907.04833
– volume: 66
  start-page: 2701
  year: 1991
  ident: apjlad454fbib76
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.66.2701
– volume: 122
  start-page: 061101
  year: 2019a
  ident: apjlad454fbib86
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.122.061101
– volume: 341
  start-page: 499
  year: 1999
  ident: apjlad454fbib118
  publication-title: A&A
– volume: 105
  start-page: 084021
  year: 2022
  ident: apjlad454fbib37
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.105.084021
– volume: 358
  start-page: 1570
  year: 2017
  ident: apjlad454fbib47
  publication-title: Sci
  doi: 10.1126/science.aaq0049
– volume: 72
  start-page: 024028
  year: 2005
  ident: apjlad454fbib48
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.72.024028
– volume: 81
  start-page: 084003
  year: 2010
  ident: apjlad454fbib26
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.81.084003
– volume: 100
  start-page: 023015
  year: 2019
  ident: apjlad454fbib131
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.100.023015
– volume: 120
  start-page: 172703
  year: 2018
  ident: apjlad454fbib13
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.120.172703
– volume: 125
  start-page: 261104
  year: 2020
  ident: apjlad454fbib138
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.125.261104
– volume: 109
  start-page: 015805
  year: 2024
  ident: apjlad454fbib151
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.109.015805
– year: 2009
  ident: apjlad454fbib124
– volume: 119
  start-page: 161101
  year: 2017
  ident: apjlad454fbib1
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.119.161101
– volume: 111
  start-page: 131101
  year: 2013a
  ident: apjlad454fbib18
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.111.131101
– volume: 354
  start-page: 1
  year: 2001
  ident: apjlad454fbib149
  publication-title: PhR
  doi: 10.1016/S0370-1573(00)00131-9
– volume: 486
  start-page: 1424
  year: 2019
  ident: apjlad454fbib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stz880
– volume: 100
  start-page: 103021
  year: 2019
  ident: apjlad454fbib5
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.100.103021
– volume: 115
  start-page: 132301
  year: 2015
  ident: apjlad454fbib122
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.115.132301
– volume: 852
  start-page: L25
  year: 2018
  ident: apjlad454fbib114
  publication-title: ApJL
  doi: 10.3847/2041-8213/aaa401
– volume: 107
  start-page: 043023
  year: 2023
  ident: apjlad454fbib63
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.107.043023
– volume: 490
  start-page: 3588
  year: 2019b
  ident: apjlad454fbib87
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2809
– volume: 107
  start-page: 103031
  year: 2023a
  ident: apjlad454fbib33
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.107.103031
– volume: 621
  start-page: 127
  year: 2016
  ident: apjlad454fbib75
  publication-title: PhR
  doi: 10.1016/j.physrep.2015.12.005
– volume: 104
  start-page: 103027
  year: 2021
  ident: apjlad454fbib6
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.104.103027
– volume: 105
  start-page: 103022
  year: 2022
  ident: apjlad454fbib70
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.105.103022
– volume: 499
  start-page: L82
  year: 2020b
  ident: apjlad454fbib88
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa168
– volume: 16
  start-page: 62
  year: 2014
  ident: apjlad454fbib143
  publication-title: CSE
  doi: 10.1109/mcse.2014.80
– volume: 97
  start-page: 034910
  year: 2018
  ident: apjlad454fbib123
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.97.034910
– volume: 442
  start-page: 749
  year: 1995
  ident: apjlad454fbib112
  publication-title: ApJ
  doi: 10.1086/175480
– volume: 104
  start-page: 083029
  year: 2021
  ident: apjlad454fbib100
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.104.083029
– volume: 846
  start-page: 114
  year: 2017
  ident: apjlad454fbib56
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8039
– volume: 478
  start-page: L18
  year: 2018
  ident: apjlad454fbib144
  publication-title: MNRAS
  doi: 10.1093/mnrasl/sly061
– volume: 104
  start-page: 103006
  year: 2021
  ident: apjlad454fbib62
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.104.103006
– volume: 908
  start-page: L1
  year: 2021
  ident: apjlad454fbib140
  publication-title: ApJL
  doi: 10.3847/2041-8213/abdaae
– volume: 485
  start-page: 4754
  year: 2019
  ident: apjlad454fbib14
  publication-title: MNRAS
  doi: 10.1093/mnras/stz613
– volume: 32
  start-page: 175009
  year: 2015
  ident: apjlad454fbib50
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/17/175009
– volume: 105
  start-page: 104019
  year: 2022
  ident: apjlad454fbib148
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.105.104019
– volume: 851
  start-page: L21
  year: 2017
  ident: apjlad454fbib145
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9c84
– volume: 85
  start-page: 044909
  year: 2012
  ident: apjlad454fbib49
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.85.044909
– year: 2021
  ident: apjlad454fbib45
– volume: 121
  start-page: 161101
  year: 2018
  ident: apjlad454fbib2
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.121.161101
– volume: 850
  start-page: L19
  year: 2017
  ident: apjlad454fbib80
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa991c
– volume: 102
  start-page: 065805
  year: 2020
  ident: apjlad454fbib51
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.102.065805
– volume: 122
  start-page: 061102
  year: 2019
  ident: apjlad454fbib17
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.122.061102
– volume: 23
  start-page: 1
  year: 2020
  ident: apjlad454fbib81
  publication-title: LRR
  doi: 10.1007/s41114-019-0024-0
– volume: 297
  start-page: 717
  year: 1995
  ident: apjlad454fbib150
  publication-title: A&A
– volume: 95
  start-page: 045807
  year: 2017
  ident: apjlad454fbib116
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.95.045807
– volume: 121
  start-page: 091102
  year: 2018
  ident: apjlad454fbib42
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.121.091102
– volume: 311
  start-page: 532
  year: 1996
  ident: apjlad454fbib120
  publication-title: A&A
– volume: 850
  start-page: L34
  year: 2017
  ident: apjlad454fbib23
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9994
– volume: 106
  start-page: 063017
  year: 2022
  ident: apjlad454fbib152
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.106.063017
– volume: 77
  start-page: 021502
  year: 2008
  ident: apjlad454fbib54
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.77.021502
– volume: 104
  start-page: 063016
  year: 2021
  ident: apjlad454fbib108
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.104.063016
– volume: 80
  start-page: 096901
  year: 2017
  ident: apjlad454fbib16
  publication-title: RPPh
  doi: 10.1088/1361-6633/aa67bb
– volume: 81
  start-page: 034909
  year: 2010
  ident: apjlad454fbib29
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.81.034909
– volume: 91
  start-page: 064059
  year: 2015
  ident: apjlad454fbib128
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.91.064059
– volume: 848
  start-page: L18
  year: 2017
  ident: apjlad454fbib93
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9029
– volume: 79
  start-page: 124033
  year: 2009
  ident: apjlad454fbib111
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.79.124033
– volume: 37
  start-page: e047
  year: 2020
  ident: apjlad454fbib4
  publication-title: PASA
  doi: 10.1017/pasa.2020.39
– volume: 33
  start-page: 184002
  year: 2016
  ident: apjlad454fbib77
  publication-title: CQGra
  doi: 10.1088/0264-9381/33/18/184002
– volume: 848
  start-page: L27
  year: 2017
  ident: apjlad454fbib139
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa90b6
– volume: 872
  start-page: L16
  year: 2019
  ident: apjlad454fbib73
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab0210
– volume: 120
  start-page: 031102
  year: 2018
  ident: apjlad454fbib27
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.120.031102
– year: 2022
  ident: apjlad454fbib32
– volume: 93
  start-page: 124046
  year: 2016
  ident: apjlad454fbib129
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.93.124046
– volume: 91
  start-page: 064001
  year: 2015
  ident: apjlad454fbib136
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.91.064001
– volume: 106
  start-page: 044026
  year: 2022
  ident: apjlad454fbib72
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.106.044026
– volume: 13
  start-page: 109
  year: 2022
  ident: apjlad454fbib141
  publication-title: ScPP
  doi: 10.21468/SciPostPhys.13.5.109
– volume: 98
  start-page: 065806
  year: 2018
  ident: apjlad454fbib10
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.98.065806
– volume: 90
  start-page: 023002
  year: 2014
  ident: apjlad454fbib24
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.90.023002
– volume: 473
  start-page: 11
  year: 2007
  ident: apjlad454fbib43
  publication-title: A&A
  doi: 10.1051/0004-6361:20077093
– volume: 952
  start-page: L36
  year: 2023
  ident: apjlad454fbib52
  publication-title: ApJL
  doi: 10.3847/2041-8213/ace5b2
– volume: 342
  start-page: 673
  year: 2003
  ident: apjlad454fbib119
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06579.x
– volume: 848
  start-page: L17
  year: 2017
  ident: apjlad454fbib41
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa8fc7
– volume: 82
  start-page: 084043
  year: 2010
  ident: apjlad454fbib22
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.82.084043
– year: 2019
  ident: apjlad454fbib117
  doi: 10.1017/9781108651998
– volume: 394
  start-page: 213
  year: 2002
  ident: apjlad454fbib61
  publication-title: A&A
  doi: 10.1051/0004-6361:20021112
– volume: 100
  start-page: 035803
  year: 2019
  ident: apjlad454fbib11
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.100.035803
– volume: 96
  start-page: 124005
  year: 2017
  ident: apjlad454fbib28
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.96.124005
– volume: 70
  start-page: 95
  year: 2020
  ident: apjlad454fbib103
  publication-title: ARNPS
  doi: 10.1146/annurev-nucl-013120-114541
– volume: 72
  start-page: 024021
  year: 2005
  ident: apjlad454fbib154
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.72.024021
– volume: 97
  start-page: 104036
  year: 2018
  ident: apjlad454fbib39
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.97.104036
– volume: 790
  start-page: 19
  year: 2014
  ident: apjlad454fbib69
  publication-title: ApJ
  doi: 10.1088/0004-637X/790/1/19
– volume: 933
  start-page: L39
  year: 2022
  ident: apjlad454fbib110
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac7c75
– volume: 103
  start-page: 045810
  year: 2021
  ident: apjlad454fbib8
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.103.045810
– volume: 109
  start-page: 064009
  year: 2024
  ident: apjlad454fbib30
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.109.064009
– volume: 55
  start-page: 80
  year: 2019
  ident: apjlad454fbib109
  publication-title: EPJA
  doi: 10.1140/epja/i2019-12759-5
– volume: 774
  start-page: 17
  year: 2013
  ident: apjlad454fbib133
  publication-title: ApJ
  doi: 10.1088/0004-637X/774/1/17
– volume: 27
  start-page: 194002
  year: 2010
  ident: apjlad454fbib101
  publication-title: CQGra
  doi: 10.1088/0264-9381/27/19/194002
– volume: 120
  start-page: 261103
  year: 2018
  ident: apjlad454fbib90
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.120.261103
– volume: 103
  start-page: 025808
  year: 2021
  ident: apjlad454fbib46
  publication-title: PhRvC
  doi: 10.1103/PhysRevC.103.025808
– volume: Vol. 457
  start-page: 455
  year: 2018
  ident: apjlad454fbib126
– volume: 876
  start-page: 139
  year: 2019
  ident: apjlad454fbib60
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab16da
– volume: 118
  start-page: 341
  year: 1979
  ident: apjlad454fbib68
  publication-title: AnPhy
  doi: 10.1016/0003-4916(79)90130-1
– volume: 54
  start-page: 401
  year: 2016
  ident: apjlad454fbib97
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081915-023322
– volume: 418
  start-page: 427
  year: 2011
  ident: apjlad454fbib134
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19493.x
– volume: 105
  start-page: 023018
  year: 2022
  ident: apjlad454fbib137
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.105.023018
– volume: 773
  start-page: 78
  year: 2013b
  ident: apjlad454fbib20
  publication-title: ApJ
  doi: 10.1088/0004-637X/773/1/78
– volume: 848
  start-page: L19
  year: 2017
  ident: apjlad454fbib40
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa905c
– volume: 115
  start-page: 091101
  year: 2015
  ident: apjlad454fbib25
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.115.091101
– volume: 38
  start-page: 075001
  year: 2021
  ident: apjlad454fbib58
  publication-title: CQGra
  doi: 10.1088/1361-6382/abe588
– volume: 100
  start-page: 103009
  year: 2019
  ident: apjlad454fbib66
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.100.103009
– volume: 125
  start-page: 141103
  year: 2020
  ident: apjlad454fbib19
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.125.141103
SSID ssj0020618
Score 2.5965014
Snippet In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium....
In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor (β-)equilibrium....
Abstract In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β...
In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium....
SourceID doaj
osti
proquest
crossref
iop
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage L14
SubjectTerms Binary stars
Collision dynamics
Flavors
Gravitational waves
Hydrodynamics
Neutrinos
Neutron stars
Nuclear astrophysics
Nuclear matter
Nuclear physics
Star mergers
Viscosity
Wave spectra
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp14QbUEsr_rQVuIQbe04TnJkKQihlhNU3Cw_pW23m2ize-Dfd8b28hASXHpLrImTjMeeb5zJN4R8DroB2KrbonXBF4JpVhhjWWGFMNyWFiB-ZPu8lpe34uquuntS6gtzwhI9cFLcmAcerDNGB4fscaHxMkAQ4nwwjHMbmUDB562DqRxqgZeKtei-CVaAj6vSB8oSluJxbmMl8udWIjxzSJG3H9zMtOvhpINZ9mKNjo7nYptsZcRIT9OTvicbfv6B7J0OuIfd_b2nX2k8TlsUw0dyc57_qPS0C_QnJtz1eTDoZDX7Q39NB4upWvd0OqeT-D8uvfYr7I8C9lxQLOAb-1jQ76lg_bBDbi_Ob84ui1w7AbRci2URvLNtzZgFfMGt9Y2oeANgwljvaq-lQUfujGtqaNBBC2kld7DiQHSqkRRul2zOu7nfI7SGoQQPVgrRwnQ3jYYYTNfShFZWJrhmRMZrBSqbicWxvsVMQYCBKleocoUqV0nlI3LycEWfSDVekZ3gmDzIIR12bAAjUdlI1FtGMiJfYERVnp7DKzf79ExO979nqpW1YuoHE6p3IHGAVqEAnyDJrsVsJLtUvMTddTkih2tjeewEgzQOsJc1-__jXQ7IOw7AKiVdHpLN5WLljwAYLc1xnAP_AG9DCUk
  priority: 102
  providerName: Directory of Open Access Journals
Title Emergence of Microphysical Bulk Viscosity in Binary Neutron Star Postmerger Dynamics
URI https://iopscience.iop.org/article/10.3847/2041-8213/ad454f
https://www.proquest.com/docview/3056216318
https://www.osti.gov/biblio/2352306
https://doaj.org/article/2f2fcdbbafd0432f8e6f407defb122c4
Volume 967
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe-GCCm3VpQ98KJU4BLDjOI44daFVi6DtoYXeLD-lwrKJNruH_ntm7HRRBaq4RI41caLx2PONY39DyEE0CmCraYrGx1AIZlhhrWOFE8JyVzqA-Int81yeXovPN9XNCvmwPAvTdsPU_xaKmSg4qxDHdwlzKYTrghWKsxIJcCsRn5C1UkmFkddF-X0ZbYGjSunosvT7Kv-j_GcLD3xSou4HTwOvh5sWBtpf03TyPSfr5NkAGulR_sTnZCVMX5Dtox6Xsdtfd_SQpnJepeg3yNXxcKgy0DbSr7jnrhv6g44Xk5_0223vcLfWHb2d0nE6kkvPwwLbowA_ZxRz-KY2ZvRTzlnfb5Lrk-Orj6fFkD4BFF2LeRGDd03NmAOIwZ0LSlRcAZ6wLvg6GGnRl3vrVQ0VJhohneQeJh0IUA3ywm2R1Wk7DduE1tCb4MRKIRoY8VYZCMNMLW1sZGWjVyPy7l6B2g3c4pjiYqIhxkCVa1S5RpXrrPIRebN8osu8Go_IjrFPlnLIiJ0qwDr0YB2aRx6dt9ZEjyyDUQUZIVj1IVrGuRMj8hp6VA8jtH_kZa8eyJnux0Q3stZMf2FCdx4kdtAqNNgp8uw63JDk5pqXuMAuR2T33lj-NIJxGgfky9TL__yMHfKUA3zKWyt3yep8tgh7AH_mdj8tG8D17OJyP5n8b-WM_ww
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4qmGFuoDIHEIxY7jOMcu7apAWTi00Jvlp1RYNtFm99B_z4ydLqpAFbfEsh1rPPZ844y_IeRlNApgq2nL1sdQCmZYaa1jpRPCclc5gPiJ7XMmj8_Ex_P6fMxzmu7CdP249b-Fx0wUnEWI67uCvRTcdcFKxVmFBLi1iPu9j7fJnbqSEnM3fKm-bzwuMFYpJV1u8a7O_yn_2cs1u5To-8HawBDgpYPF9tdWnezP9AG5PwJHepCH-ZDcCotHZPtgwKPs7tclfU3Tcz6pGB6T06PxYmWgXaSfMe6uH-eETtbzn_TbxeAwYuuSXizoJF3LpbOwxv4oQNAlxTy-qY8lPcx564cn5Gx6dPr-uBxTKICwG7EqY_CubRhzADO4c0GJmivAFNYF3wQjLdpzb71qoMBEI6ST3MPGA06qQW64p2Rr0S3CNqENzCgYskqIFla9VQZcMdNIG1tZ2-hVQfavBKjdyC-OaS7mGvwMFLlGkWsUuc4iL8ibTYs-c2vcUHeCc7Kph6zYqQA0RI8aonnk0XlrTfTINBhVkBEcVh-iZZw7UZBXMKN6XKXDDR_bu1bP9D_mupWNZvqECQ36VpAd1AoNuopcuw6DktxK8woP2WVBdq-U5U8n6KtxQL9MPfvPYeyRu18Pp_rkw-zTDrnHAU3lSMtdsrVarsNzQEMr-yJp_G-b5QEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+Microphysical+Bulk+Viscosity+in+Binary+Neutron+Star+Postmerger+Dynamics&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Most%2C+Elias+R.&rft.au=Haber%2C+Alexander&rft.au=Harris%2C+Steven+P.&rft.au=Zhang%2C+Ziyuan&rft.date=2024-05-01&rft.pub=The+American+Astronomical+Society&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=967&rft.issue=1&rft_id=info:doi/10.3847%2F2041-8213%2Fad454f&rft.externalDocID=apjlad454f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon