Emergence of Microphysical Bulk Viscosity in Binary Neutron Star Postmerger Dynamics
In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dyn...
Saved in:
Published in | Astrophysical journal. Letters Vol. 967; no. 1; p. L14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Austin
The American Astronomical Society
01.05.2024
IOP Publishing American Astronomical Society |
Subjects | |
Online Access | Get full text |
ISSN | 2041-8205 2041-8213 |
DOI | 10.3847/2041-8213/ad454f |
Cover
Loading…
Abstract | In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor (
β
-)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation. |
---|---|
AbstractList | In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation. Abstract In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation. In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium. However, there can be deviations from this equilibrium during the merger of two neutron stars. We study the resulting out-of-equilibrium dynamics during the collision by incorporating direct and modified Urca processes (in the neutrino-transparent regime) into general-relativistic hydrodynamics simulations with a simplified neutrino transport scheme. We demonstrate how weak-interaction-driven bulk viscosity in postmerger simulations can emerge and assess the bulk viscous dynamics of the resulting flow. We further place limits on the impact of the postmerger gravitational-wave strain. Our results show that weak-interaction-driven bulk viscosity can potentially lead to a phase shift of the postmerger gravitational-wave spectrum, although the effect is currently on the same level as the numerical errors of our simulation. |
Author | Alford, Mark G. Zhang, Ziyuan Haber, Alexander Harris, Steven P. Most, Elias R. Noronha, Jorge |
Author_xml | – sequence: 1 givenname: Elias R. orcidid: 0000-0002-0491-1210 surname: Most fullname: Most, Elias R. organization: California Institute of Technology Walter Burke Institute for Theoretical Physics, Pasadena, CA 91125, USA – sequence: 2 givenname: Alexander orcidid: 0000-0002-5511-9565 surname: Haber fullname: Haber, Alexander organization: Washington University in St. Louis Physics Department, St. Louis, MO 63130, USA – sequence: 3 givenname: Steven P. orcidid: 0000-0002-0809-983X surname: Harris fullname: Harris, Steven P. organization: University of Washington Institute for Nuclear Theory, Seattle, WA 98195, USA – sequence: 4 givenname: Ziyuan orcidid: 0000-0003-4795-0882 surname: Zhang fullname: Zhang, Ziyuan organization: Washington University in St. Louis McDonnell Center for the Space Sciences, St. Louis, MO 63130, USA – sequence: 5 givenname: Mark G. orcidid: 0000-0001-9675-7005 surname: Alford fullname: Alford, Mark G. organization: Washington University in St. Louis Physics Department, St. Louis, MO 63130, USA – sequence: 6 givenname: Jorge orcidid: 0000-0002-9817-0272 surname: Noronha fullname: Noronha, Jorge organization: University of Illinois at Urbana-Champaign, Urbana Illinois Center for Advanced Studies of the Universe & Department of Physics, IL 61801, USA |
BackLink | https://www.osti.gov/biblio/2352306$$D View this record in Osti.gov |
BookMark | eNp9kc1vVCEUxYlpE9vq3iXRxJVj-Xo8urS1apNpNbG6JbwLtIxv4AnMYv57mT4zJka7gtz8zsm59xyjg5iiQ-gFJW-5Ev0pI4IuFKP81FjRCf8EHe1HB_s_6Z6i41JWhDAiqTpCt5drl-9cBIeTx9cBcprutyWAGfH5ZvyBv4cCqYS6xSHi8xBN3uIbt6k5Rfy1moy_pFIfPDJ-v41mHaA8Q4fejMU9__2eoG8fLm8vPi2Wnz9eXbxbLkD0oi68s3DWUwpKSAbglOiYooQN4GzvjBxEy2gHq_o2MN4ICZJZpXrKmVGE8RN0NfvaZFZ6ymHd0ulkgn4YpHynTa4BRqeZZx7sMBhvieDMKye9IL11fqCMgWheL2evtk7QBUJ1cA8pRgdVM94xTmSDXs3QlNPPjStVr9Imx7aj5qSTjEpOVaPITLVjlpKd30ejRO_K0rs29K4ZPZfVJPIvSQtgakixZhPGx4SvZ2FI058wZlqN-kz2muolFXqyO_DNP8D_-v4CQ322Uw |
CitedBy_id | crossref_primary_10_1103_PhysRevD_111_044074 crossref_primary_10_1007_s41114_024_00052_x crossref_primary_10_1103_PhysRevC_111_015802 crossref_primary_10_1063_5_0226258 crossref_primary_10_1103_PhysRevC_110_L052801 crossref_primary_10_1103_PhysRevD_110_043002 crossref_primary_10_1103_PhysRevD_111_043013 crossref_primary_10_3390_universe10070303 crossref_primary_10_1103_PhysRevD_110_024039 crossref_primary_10_1103_PhysRevD_110_063513 crossref_primary_10_1103_PhysRevD_110_123039 crossref_primary_10_1103_PhysRevLett_133_071901 crossref_primary_10_1103_PhysRevD_111_063002 crossref_primary_10_1007_JHEP12_2024_058 crossref_primary_10_1103_PhysRevD_111_014020 crossref_primary_10_1103_PhysRevD_111_063053 crossref_primary_10_1140_epja_s10050_024_01351_1 crossref_primary_10_1103_PhysRevD_110_123040 crossref_primary_10_1103_PhysRevLett_134_071402 crossref_primary_10_1103_PhysRevD_110_103001 crossref_primary_10_1093_mnras_stae2284 crossref_primary_10_1103_PhysRevD_110_103043 |
Cites_doi | 10.1103/PhysRevD.93.124051 10.1103/PhysRevLett.124.171103 10.1093/mnras/stw1227 10.1093/mnras/stab2793 10.1093/mnras/stac589 10.3847/1538-4357/aaf054 10.1103/PhysRevC.81.024905 10.1103/PhysRevD.107.103032 10.1103/PhysRevD.101.123007 10.1103/PhysRevD.101.084006 10.1016/j.nuclphysa.2010.02.010 10.1103/PhysRevD.39.3804 10.1088/0264-9381/29/11/115001 10.1140/epja/s10050-020-00073-4 10.1103/PhysRevD.102.043006 10.1103/PhysRevD.101.044019 10.3847/2041-8213/aaa402 10.3847/1538-4357/aabafd 10.1103/PhysRevD.100.104029 10.1103/RevModPhys.89.015007 10.1103/PhysRevLett.94.201101 10.1103/PhysRevC.80.054906 10.1140/epja/i2019-12810-7 10.1103/PhysRevD.85.114047 10.1103/PhysRevLett.129.032701 10.1103/PhysRevD.86.063001 10.1111/j.1365-2966.2004.07621.x 10.1103/PhysRevD.99.043010 10.1103/PhysRevD.88.064009 10.1103/PhysRevLett.113.091104 10.3847/2041-8213/aabcbf 10.1103/PhysRevC.88.044916 10.1088/0954-3899/37/12/125202 10.1103/PhysRevD.107.043034 10.3847/2041-8213/ab5794 10.1103/PhysRevD.101.084039 10.1103/PhysRevD.105.103016 10.1103/PhysRevD.46.3290 10.3390/universe7110399 10.3847/2041-8213/ac350d 10.1093/mnras/stad107 10.1103/PhysRevLett.120.041101 10.1093/ptep/pts011 10.3847/2041-8213/ab75f5 10.1103/PhysRevD.97.021501 10.1103/PhysRevD.88.084057 10.3847/2041-8213/abdfc6 10.1103/PhysRevD.104.124012 10.48550/arXiv.1907.04833 10.1103/PhysRevLett.66.2701 10.1103/PhysRevLett.122.061101 10.1103/PhysRevD.105.084021 10.1126/science.aaq0049 10.1103/PhysRevD.72.024028 10.1103/PhysRevD.81.084003 10.1103/PhysRevD.100.023015 10.1103/PhysRevLett.120.172703 10.1103/PhysRevLett.125.261104 10.1103/PhysRevC.109.015805 10.1103/PhysRevLett.119.161101 10.1103/PhysRevLett.111.131101 10.1016/S0370-1573(00)00131-9 10.1093/mnras/stz880 10.1103/PhysRevD.100.103021 10.1103/PhysRevLett.115.132301 10.3847/2041-8213/aaa401 10.1103/PhysRevD.107.043023 10.1093/mnras/stz2809 10.1103/PhysRevD.107.103031 10.1016/j.physrep.2015.12.005 10.1103/PhysRevD.104.103027 10.1103/PhysRevD.105.103022 10.1093/mnrasl/slaa168 10.1109/mcse.2014.80 10.1103/PhysRevC.97.034910 10.1086/175480 10.1103/PhysRevD.104.083029 10.3847/1538-4357/aa8039 10.1093/mnrasl/sly061 10.1103/PhysRevD.104.103006 10.3847/2041-8213/abdaae 10.1093/mnras/stz613 10.1088/0264-9381/32/17/175009 10.1103/PhysRevD.105.104019 10.3847/2041-8213/aa9c84 10.1103/PhysRevC.85.044909 10.1103/PhysRevLett.121.161101 10.3847/2041-8213/aa991c 10.1103/PhysRevC.102.065805 10.1103/PhysRevLett.122.061102 10.1007/s41114-019-0024-0 10.1103/PhysRevC.95.045807 10.1103/PhysRevLett.121.091102 10.3847/2041-8213/aa9994 10.1103/PhysRevD.106.063017 10.1103/PhysRevD.77.021502 10.1103/PhysRevD.104.063016 10.1088/1361-6633/aa67bb 10.1103/PhysRevC.81.034909 10.1103/PhysRevD.91.064059 10.3847/2041-8213/aa9029 10.1103/PhysRevD.79.124033 10.1017/pasa.2020.39 10.1088/0264-9381/33/18/184002 10.3847/2041-8213/aa90b6 10.3847/2041-8213/ab0210 10.1103/PhysRevLett.120.031102 10.1103/PhysRevD.93.124046 10.1103/PhysRevD.91.064001 10.1103/PhysRevD.106.044026 10.21468/SciPostPhys.13.5.109 10.1103/PhysRevC.98.065806 10.1103/PhysRevD.90.023002 10.1051/0004-6361:20077093 10.3847/2041-8213/ace5b2 10.1046/j.1365-8711.2003.06579.x 10.3847/2041-8213/aa8fc7 10.1103/PhysRevD.82.084043 10.1017/9781108651998 10.1051/0004-6361:20021112 10.1103/PhysRevC.100.035803 10.1103/PhysRevD.96.124005 10.1146/annurev-nucl-013120-114541 10.1103/PhysRevD.72.024021 10.1103/PhysRevD.97.104036 10.1088/0004-637X/790/1/19 10.3847/2041-8213/ac7c75 10.1103/PhysRevC.103.045810 10.1103/PhysRevD.109.064009 10.1140/epja/i2019-12759-5 10.1088/0004-637X/774/1/17 10.1088/0264-9381/27/19/194002 10.1103/PhysRevLett.120.261103 10.1103/PhysRevC.103.025808 10.3847/1538-4357/ab16da 10.1016/0003-4916(79)90130-1 10.1146/annurev-astro-081915-023322 10.1111/j.1365-2966.2011.19493.x 10.1103/PhysRevD.105.023018 10.1088/0004-637X/773/1/78 10.3847/2041-8213/aa905c 10.1103/PhysRevLett.115.091101 10.1088/1361-6382/abe588 10.1103/PhysRevD.100.103009 10.1103/PhysRevLett.125.141103 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). Published by the American Astronomical Society. 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). Published by the American Astronomical Society. – notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI DOA |
DOI | 10.3847/2041-8213/ad454f |
DatabaseName | Institute of Physics Open Access Journals (Activated by CARLI) IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journals (Activated by CARLI) url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2041-8213 |
ExternalDocumentID | oai_doaj_org_article_2f2fcdbbafd0432f8e6f407defb122c4 2352306 10_3847_2041_8213_ad454f apjlad454f |
GrantInformation_xml | – fundername: U.S. Department of Energy (DOE) grantid: DE-FG02-05ER41375. funderid: https://doi.org/10.13039/100000015 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0023861 funderid: https://doi.org/10.13039/100000015 – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0021301 funderid: https://doi.org/10.13039/100000015 – fundername: U.S. Department of Energy (DOE) grantid: DE-FG02-00ER41132 funderid: https://doi.org/10.13039/100000015 – fundername: National Science Foundation (NSF) grantid: PHY-2309210 funderid: https://doi.org/10.13039/100000001 – fundername: National Science Foundation (NSF) grantid: PHY-1430152 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | 1JI 2FS 4.4 6J9 AAFWJ AAGCD AAJIO ABDNZ ABHWH ACGFS ACHIP AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU EBS FRP GROUPED_DOAJ IJHAN IOP KOT N5L O3W O43 OK1 PJBAE RIN ROL SY9 T37 TSCCA ~02 AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M OTOTI |
ID | FETCH-LOGICAL-c474t-fedc9711c8462cce84528102bced7ea6b4061dbd87cedafa46c62d887132a8023 |
IEDL.DBID | O3W |
ISSN | 2041-8205 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Mon May 27 05:13:57 EDT 2024 Wed Aug 13 09:05:48 EDT 2025 Thu Apr 24 22:52:10 EDT 2025 Tue Jul 01 04:12:07 EDT 2025 Tue Aug 20 22:17:07 EDT 2024 Sun Aug 18 17:00:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-fedc9711c8462cce84528102bced7ea6b4061dbd87cedafa46c62d887132a8023 |
Notes | AAS53756 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 FG02-05ER41375.; FG02-00ER41132; SC0021301; SC0023861 USDOE |
ORCID | 0000-0002-0491-1210 0000-0002-9817-0272 0000-0003-4795-0882 0000-0001-9675-7005 0000-0002-5511-9565 0000-0002-0809-983X 0000000196757005 0000000204911210 000000020809983X 0000000255119565 0000000347950882 0000000298170272 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/2041-8213/ad454f |
PQID | 3056216318 |
PQPubID | 4562431 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2f2fcdbbafd0432f8e6f407defb122c4 osti_scitechconnect_2352306 crossref_citationtrail_10_3847_2041_8213_ad454f proquest_journals_3056216318 crossref_primary_10_3847_2041_8213_ad454f iop_journals_10_3847_2041_8213_ad454f |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Austin |
PublicationPlace_xml | – name: Austin – name: United States |
PublicationTitle | Astrophysical journal. Letters |
PublicationTitleAbbrev | APJL |
PublicationTitleAlternate | Astrophys. J. Lett |
PublicationYear | 2024 |
Publisher | The American Astronomical Society IOP Publishing American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing – name: American Astronomical Society |
References | Israel (apjlad454fbib68) 1979; 118 Perego (apjlad454fbib99) 2022; 129 Camelio (apjlad454fbib34) 2023b; 107 Gill (apjlad454fbib60) 2019; 876 Yakovlev (apjlad454fbib149) 2001; 354 Breschi (apjlad454fbib31) 2019; 100 Ruiz (apjlad454fbib121) 2018; 97 Radice (apjlad454fbib102) 2022; 512 Raithel (apjlad454fbib110) 2022; 933 Monnai (apjlad454fbib82) 2009; 80 Nedora (apjlad454fbib92) 2019; 886 Kölsch (apjlad454fbib72) 2022; 106 Raithel (apjlad454fbib108) 2021; 104 Breschi (apjlad454fbib30) 2024; 109 Etienne (apjlad454fbib50) 2015; 32 Landry (apjlad454fbib74) 2020; 101 Dexheimer (apjlad454fbib46) 2021; 103 Punturo (apjlad454fbib101) 2010; 27 Steiner (apjlad454fbib133) 2013; 774 Alford (apjlad454fbib10) 2018; 98 Bernuzzi (apjlad454fbib25) 2015; 115 Celora (apjlad454fbib36) 2022; 105 Bauswein (apjlad454fbib17) 2019; 122 Haensel (apjlad454fbib61) 2002; 394 Roberts (apjlad454fbib116) 2017; 95 Alford (apjlad454fbib5) 2019; 100 Alford (apjlad454fbib9) 2021; 7 Dusling (apjlad454fbib49) 2012; 85 Gavassino (apjlad454fbib59) 2023 Shibata (apjlad454fbib131) 2019; 100 Alford (apjlad454fbib6) 2021; 104 Romatschke (apjlad454fbib117) 2019 Shibata (apjlad454fbib130) 2005; 94 Oechslin (apjlad454fbib95) 2004; 349 Denicol (apjlad454fbib44) 2012; 85 Chatziioannou (apjlad454fbib38) 2020; 101 Towns (apjlad454fbib143) 2014; 16 Bauswein (apjlad454fbib24) 2014; 90 Nicholl (apjlad454fbib93) 2017; 848 Figura (apjlad454fbib53) 2020; 102 Wijngaarden (apjlad454fbib148) 2022; 105 Zlochower (apjlad454fbib154) 2005; 72 Rezzolla (apjlad454fbib114) 2018; 852 Most (apjlad454fbib83) 2021; 509 Ryu (apjlad454fbib122) 2015; 115 Hammond (apjlad454fbib63) 2023; 107 Radice (apjlad454fbib105) 2018a; 869 Ackley (apjlad454fbib4) 2020; 37 Ardevol-Pulpillo (apjlad454fbib14) 2019; 485 Bauswein (apjlad454fbib18) 2013a; 111 Rosswog (apjlad454fbib119) 2003; 342 Loffler (apjlad454fbib78) 2012; 29 Hernandez Vivanco (apjlad454fbib66) 2019; 100 Harris (apjlad454fbib64) 2020 Lehner (apjlad454fbib77) 2016; 33 Chatziioannou (apjlad454fbib37) 2022; 105 De (apjlad454fbib42) 2018; 121 Vretinaris (apjlad454fbib146) 2020; 101 Takami (apjlad454fbib135) 2014; 113 Most (apjlad454fbib89) 2021; 104 Arras (apjlad454fbib15) 2019; 486 Cowperthwaite (apjlad454fbib41) 2017; 848 Fujibayashi (apjlad454fbib55) 2018; 860 Raithel (apjlad454fbib109) 2019; 55 Margalit (apjlad454fbib80) 2017; 850 Bauswein (apjlad454fbib19) 2020; 125 Radice (apjlad454fbib104) 2016; 460 Baiotti (apjlad454fbib16) 2017; 80 Prakash (apjlad454fbib100) 2021; 104 Metzger (apjlad454fbib81) 2020; 23 Yang (apjlad454fbib151) 2024; 109 Bauswein (apjlad454fbib20) 2013b; 773 Flanagan (apjlad454fbib54) 2008; 77 Gavassino (apjlad454fbib58) 2021; 38 Ryu (apjlad454fbib123) 2018; 97 Most (apjlad454fbib86) 2019a; 122 Tews (apjlad454fbib140) 2021; 908 Yu (apjlad454fbib152) 2022; 106 Rosswog (apjlad454fbib118) 1999; 341 Bauswein (apjlad454fbib22) 2010; 82 Reitze (apjlad454fbib113) 2019; 51 Sekiguchi (apjlad454fbib128) 2015; 91 Annala (apjlad454fbib13) 2018; 120 Galeazzi (apjlad454fbib57) 2013; 88 Madsen (apjlad454fbib79) 1992; 46 Kashyap (apjlad454fbib70) 2022; 105 Bovard (apjlad454fbib28) 2017; 96 Chornock (apjlad454fbib40) 2017; 848 Bauswein (apjlad454fbib21) 2012; 86 Tootle (apjlad454fbib141) 2022; 13 Most (apjlad454fbib90) 2018; 120 Tootle (apjlad454fbib142) 2021; 922 Sawyer (apjlad454fbib125) 1989; 39 Most (apjlad454fbib88) 2020b; 499 Chatziioannou (apjlad454fbib39) 2018; 97 Radice (apjlad454fbib106) 2018b; 852 Read (apjlad454fbib111) 2009; 79 Zappa (apjlad454fbib153) 2023; 520 Denicol (apjlad454fbib45) 2021 Lattimer (apjlad454fbib75) 2016; 621 Tanvir (apjlad454fbib139) 2017; 848 Perego (apjlad454fbib98) 2019; 55 Drout (apjlad454fbib47) 2017; 358 Tan (apjlad454fbib138) 2020; 125 Radice (apjlad454fbib103) 2020; 70 Schmitt (apjlad454fbib126) 2018; Vol. 457 Abbott (apjlad454fbib2) 2018; 121 Kiuchi (apjlad454fbib71) 2020; 101 Villar (apjlad454fbib145) 2017; 851 Song (apjlad454fbib132) 2010; 81 Alford (apjlad454fbib12) 2010; 37 Abbott (apjlad454fbib1) 2017; 119 Bauswein (apjlad454fbib23) 2017; 850 Duez (apjlad454fbib48) 2005; 72 Yakovlev (apjlad454fbib150) 1995; 297 Takami (apjlad454fbib136) 2015; 91 Alford (apjlad454fbib7) 2018; 120 Rezzolla (apjlad454fbib115) 2016; 93 Fattoyev (apjlad454fbib51) 2020; 102 Breschi (apjlad454fbib32) 2022 Carson (apjlad454fbib35) 2019; 99 Most (apjlad454fbib84) 2020a; 56 Hammond (apjlad454fbib62) 2021; 104 Fields (apjlad454fbib52) 2023; 952 Oertel (apjlad454fbib96) 2017; 89 Bozek (apjlad454fbib29) 2010; 81 Fujibayashi (apjlad454fbib56) 2017; 846 Del Zanna (apjlad454fbib43) 2007; 473 Weih (apjlad454fbib147) 2020; 124 Bernuzzi (apjlad454fbib26) 2010; 81 Raithel (apjlad454fbib107) 2018; 857 Troja (apjlad454fbib144) 2018; 478 Bose (apjlad454fbib27) 2018; 120 Reisenegger (apjlad454fbib112) 1995; 442 Nathanail (apjlad454fbib91) 2021; 908 Lattimer (apjlad454fbib76) 1991; 66 Alford (apjlad454fbib11) 2019; 100 Camelio (apjlad454fbib33) 2023a; 107 Kaplan (apjlad454fbib69) 2014; 790 Alford (apjlad454fbib8) 2021; 103 Ruffert (apjlad454fbib120) 1996; 311 Tan (apjlad454fbib137) 2022; 105 Sekiguchi (apjlad454fbib127) 2012; 2012 Noronha-Hostler (apjlad454fbib94) 2013; 88 Özel (apjlad454fbib97) 2016; 54 Stergioulas (apjlad454fbib134) 2011; 418 Hempel (apjlad454fbib65) 2010; 837 Sa’d (apjlad454fbib124) 2009 Köppel (apjlad454fbib73) 2019; 872 Most (apjlad454fbib85) 2023; 107 Most (apjlad454fbib87) 2019b; 490 Abbott (apjlad454fbib3) 2020; 892 Hilditch (apjlad454fbib67) 2013; 88 Sekiguchi (apjlad454fbib129) 2016; 93 |
References_xml | – volume: 93 start-page: 124051 year: 2016 ident: apjlad454fbib115 publication-title: PhRvD doi: 10.1103/PhysRevD.93.124051 – volume: 124 start-page: 171103 year: 2020 ident: apjlad454fbib147 publication-title: PhRvL doi: 10.1103/PhysRevLett.124.171103 – volume: 460 start-page: 3255 year: 2016 ident: apjlad454fbib104 publication-title: MNRAS doi: 10.1093/mnras/stw1227 – volume: 509 start-page: 1096 year: 2021 ident: apjlad454fbib83 publication-title: MNRAS doi: 10.1093/mnras/stab2793 – volume: 512 start-page: 1499 year: 2022 ident: apjlad454fbib102 publication-title: MNRAS doi: 10.1093/mnras/stac589 – volume: 869 start-page: 130 year: 2018a ident: apjlad454fbib105 publication-title: ApJ doi: 10.3847/1538-4357/aaf054 – volume: 81 start-page: 024905 year: 2010 ident: apjlad454fbib132 publication-title: PhRvC doi: 10.1103/PhysRevC.81.024905 – volume: 107 start-page: 103032 year: 2023b ident: apjlad454fbib34 publication-title: PhysRevD doi: 10.1103/PhysRevD.107.103032 – volume: 101 start-page: 123007 year: 2020 ident: apjlad454fbib74 publication-title: PhRvD doi: 10.1103/PhysRevD.101.123007 – volume: 101 start-page: 084006 year: 2020 ident: apjlad454fbib71 publication-title: PhRvD doi: 10.1103/PhysRevD.101.084006 – volume: 837 start-page: 210 year: 2010 ident: apjlad454fbib65 publication-title: NuPhA doi: 10.1016/j.nuclphysa.2010.02.010 – volume: 39 start-page: 3804 year: 1989 ident: apjlad454fbib125 publication-title: PhRvD doi: 10.1103/PhysRevD.39.3804 – volume: 29 start-page: 115001 year: 2012 ident: apjlad454fbib78 publication-title: CQGra doi: 10.1088/0264-9381/29/11/115001 – volume: 56 start-page: 59 year: 2020a ident: apjlad454fbib84 publication-title: EPJA doi: 10.1140/epja/s10050-020-00073-4 – volume: 102 start-page: 043006 year: 2020 ident: apjlad454fbib53 publication-title: PhRvD doi: 10.1103/PhysRevD.102.043006 – volume: 101 start-page: 044019 year: 2020 ident: apjlad454fbib38 publication-title: PhRvD doi: 10.1103/PhysRevD.101.044019 – volume: 852 start-page: L29 year: 2018b ident: apjlad454fbib106 publication-title: ApJL doi: 10.3847/2041-8213/aaa402 – volume: 860 start-page: 64 year: 2018 ident: apjlad454fbib55 publication-title: ApJ doi: 10.3847/1538-4357/aabafd – volume: 100 start-page: 104029 year: 2019 ident: apjlad454fbib31 publication-title: PhRvD doi: 10.1103/PhysRevD.100.104029 – volume: 89 start-page: 015007 year: 2017 ident: apjlad454fbib96 publication-title: RvMP doi: 10.1103/RevModPhys.89.015007 – volume: 94 start-page: 201101 year: 2005 ident: apjlad454fbib130 publication-title: PhRvL doi: 10.1103/PhysRevLett.94.201101 – volume: 80 start-page: 054906 year: 2009 ident: apjlad454fbib82 publication-title: PhRvC doi: 10.1103/PhysRevC.80.054906 – volume: 55 start-page: 124 year: 2019 ident: apjlad454fbib98 publication-title: EPJA doi: 10.1140/epja/i2019-12810-7 – volume: 85 start-page: 114047 year: 2012 ident: apjlad454fbib44 publication-title: PhRvD doi: 10.1103/PhysRevD.85.114047 – year: 2020 ident: apjlad454fbib64 – volume: 129 start-page: 032701 year: 2022 ident: apjlad454fbib99 publication-title: PhRvL doi: 10.1103/PhysRevLett.129.032701 – volume: 86 start-page: 063001 year: 2012 ident: apjlad454fbib21 publication-title: PhRvD doi: 10.1103/PhysRevD.86.063001 – volume: 349 start-page: 1469 year: 2004 ident: apjlad454fbib95 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.07621.x – volume: 99 start-page: 043010 year: 2019 ident: apjlad454fbib35 publication-title: PhRvD doi: 10.1103/PhysRevD.99.043010 – volume: 88 start-page: 064009 year: 2013 ident: apjlad454fbib57 publication-title: PhRvD doi: 10.1103/PhysRevD.88.064009 – volume: 113 start-page: 091104 year: 2014 ident: apjlad454fbib135 publication-title: PhRvL doi: 10.1103/PhysRevLett.113.091104 – volume: 857 start-page: L23 year: 2018 ident: apjlad454fbib107 publication-title: ApJL doi: 10.3847/2041-8213/aabcbf – volume: 88 start-page: 044916 year: 2013 ident: apjlad454fbib94 publication-title: PhRvC doi: 10.1103/PhysRevC.88.044916 – volume: 37 start-page: 125202 year: 2010 ident: apjlad454fbib12 publication-title: JPhG doi: 10.1088/0954-3899/37/12/125202 – volume: 107 start-page: 043034 year: 2023 ident: apjlad454fbib85 publication-title: PhRvD doi: 10.1103/PhysRevD.107.043034 – volume: 886 start-page: L30 year: 2019 ident: apjlad454fbib92 publication-title: ApJL doi: 10.3847/2041-8213/ab5794 – volume: 101 start-page: 084039 year: 2020 ident: apjlad454fbib146 publication-title: PhRvD doi: 10.1103/PhysRevD.101.084039 – volume: 105 start-page: 103016 year: 2022 ident: apjlad454fbib36 publication-title: PhRvD doi: 10.1103/PhysRevD.105.103016 – volume: 46 start-page: 3290 year: 1992 ident: apjlad454fbib79 publication-title: PhRvD doi: 10.1103/PhysRevD.46.3290 – year: 2023 ident: apjlad454fbib59 – volume: 7 start-page: 399 year: 2021 ident: apjlad454fbib9 publication-title: Univ doi: 10.3390/universe7110399 – volume: 922 start-page: L19 year: 2021 ident: apjlad454fbib142 publication-title: ApJL doi: 10.3847/2041-8213/ac350d – volume: 520 start-page: 1481 year: 2023 ident: apjlad454fbib153 publication-title: MNRAS doi: 10.1093/mnras/stad107 – volume: 120 start-page: 041101 year: 2018 ident: apjlad454fbib7 publication-title: PhRvL doi: 10.1103/PhysRevLett.120.041101 – volume: 2012 start-page: 01A304 year: 2012 ident: apjlad454fbib127 publication-title: PTEP doi: 10.1093/ptep/pts011 – volume: 892 start-page: L3 year: 2020 ident: apjlad454fbib3 publication-title: ApJL doi: 10.3847/2041-8213/ab75f5 – volume: 97 start-page: 021501 year: 2018 ident: apjlad454fbib121 publication-title: PhRvD doi: 10.1103/PhysRevD.97.021501 – volume: 88 start-page: 084057 year: 2013 ident: apjlad454fbib67 publication-title: PhRvD doi: 10.1103/PhysRevD.88.084057 – volume: 908 start-page: L28 year: 2021 ident: apjlad454fbib91 publication-title: ApJL doi: 10.3847/2041-8213/abdfc6 – volume: 104 start-page: 124012 year: 2021 ident: apjlad454fbib89 publication-title: PhRvD doi: 10.1103/PhysRevD.104.124012 – volume: 51 start-page: 35 year: 2019 ident: apjlad454fbib113 publication-title: BAAS doi: 10.48550/arXiv.1907.04833 – volume: 66 start-page: 2701 year: 1991 ident: apjlad454fbib76 publication-title: PhRvL doi: 10.1103/PhysRevLett.66.2701 – volume: 122 start-page: 061101 year: 2019a ident: apjlad454fbib86 publication-title: PhRvL doi: 10.1103/PhysRevLett.122.061101 – volume: 341 start-page: 499 year: 1999 ident: apjlad454fbib118 publication-title: A&A – volume: 105 start-page: 084021 year: 2022 ident: apjlad454fbib37 publication-title: PhRvD doi: 10.1103/PhysRevD.105.084021 – volume: 358 start-page: 1570 year: 2017 ident: apjlad454fbib47 publication-title: Sci doi: 10.1126/science.aaq0049 – volume: 72 start-page: 024028 year: 2005 ident: apjlad454fbib48 publication-title: PhRvD doi: 10.1103/PhysRevD.72.024028 – volume: 81 start-page: 084003 year: 2010 ident: apjlad454fbib26 publication-title: PhRvD doi: 10.1103/PhysRevD.81.084003 – volume: 100 start-page: 023015 year: 2019 ident: apjlad454fbib131 publication-title: PhRvD doi: 10.1103/PhysRevD.100.023015 – volume: 120 start-page: 172703 year: 2018 ident: apjlad454fbib13 publication-title: PhRvL doi: 10.1103/PhysRevLett.120.172703 – volume: 125 start-page: 261104 year: 2020 ident: apjlad454fbib138 publication-title: PhRvL doi: 10.1103/PhysRevLett.125.261104 – volume: 109 start-page: 015805 year: 2024 ident: apjlad454fbib151 publication-title: PhRvC doi: 10.1103/PhysRevC.109.015805 – year: 2009 ident: apjlad454fbib124 – volume: 119 start-page: 161101 year: 2017 ident: apjlad454fbib1 publication-title: PhRvL doi: 10.1103/PhysRevLett.119.161101 – volume: 111 start-page: 131101 year: 2013a ident: apjlad454fbib18 publication-title: PhRvL doi: 10.1103/PhysRevLett.111.131101 – volume: 354 start-page: 1 year: 2001 ident: apjlad454fbib149 publication-title: PhR doi: 10.1016/S0370-1573(00)00131-9 – volume: 486 start-page: 1424 year: 2019 ident: apjlad454fbib15 publication-title: MNRAS doi: 10.1093/mnras/stz880 – volume: 100 start-page: 103021 year: 2019 ident: apjlad454fbib5 publication-title: PhRvD doi: 10.1103/PhysRevD.100.103021 – volume: 115 start-page: 132301 year: 2015 ident: apjlad454fbib122 publication-title: PhRvL doi: 10.1103/PhysRevLett.115.132301 – volume: 852 start-page: L25 year: 2018 ident: apjlad454fbib114 publication-title: ApJL doi: 10.3847/2041-8213/aaa401 – volume: 107 start-page: 043023 year: 2023 ident: apjlad454fbib63 publication-title: PhRvD doi: 10.1103/PhysRevD.107.043023 – volume: 490 start-page: 3588 year: 2019b ident: apjlad454fbib87 publication-title: MNRAS doi: 10.1093/mnras/stz2809 – volume: 107 start-page: 103031 year: 2023a ident: apjlad454fbib33 publication-title: PhRvD doi: 10.1103/PhysRevD.107.103031 – volume: 621 start-page: 127 year: 2016 ident: apjlad454fbib75 publication-title: PhR doi: 10.1016/j.physrep.2015.12.005 – volume: 104 start-page: 103027 year: 2021 ident: apjlad454fbib6 publication-title: PhRvD doi: 10.1103/PhysRevD.104.103027 – volume: 105 start-page: 103022 year: 2022 ident: apjlad454fbib70 publication-title: PhRvD doi: 10.1103/PhysRevD.105.103022 – volume: 499 start-page: L82 year: 2020b ident: apjlad454fbib88 publication-title: MNRAS doi: 10.1093/mnrasl/slaa168 – volume: 16 start-page: 62 year: 2014 ident: apjlad454fbib143 publication-title: CSE doi: 10.1109/mcse.2014.80 – volume: 97 start-page: 034910 year: 2018 ident: apjlad454fbib123 publication-title: PhRvC doi: 10.1103/PhysRevC.97.034910 – volume: 442 start-page: 749 year: 1995 ident: apjlad454fbib112 publication-title: ApJ doi: 10.1086/175480 – volume: 104 start-page: 083029 year: 2021 ident: apjlad454fbib100 publication-title: PhRvD doi: 10.1103/PhysRevD.104.083029 – volume: 846 start-page: 114 year: 2017 ident: apjlad454fbib56 publication-title: ApJ doi: 10.3847/1538-4357/aa8039 – volume: 478 start-page: L18 year: 2018 ident: apjlad454fbib144 publication-title: MNRAS doi: 10.1093/mnrasl/sly061 – volume: 104 start-page: 103006 year: 2021 ident: apjlad454fbib62 publication-title: PhRvD doi: 10.1103/PhysRevD.104.103006 – volume: 908 start-page: L1 year: 2021 ident: apjlad454fbib140 publication-title: ApJL doi: 10.3847/2041-8213/abdaae – volume: 485 start-page: 4754 year: 2019 ident: apjlad454fbib14 publication-title: MNRAS doi: 10.1093/mnras/stz613 – volume: 32 start-page: 175009 year: 2015 ident: apjlad454fbib50 publication-title: CQGra doi: 10.1088/0264-9381/32/17/175009 – volume: 105 start-page: 104019 year: 2022 ident: apjlad454fbib148 publication-title: PhRvD doi: 10.1103/PhysRevD.105.104019 – volume: 851 start-page: L21 year: 2017 ident: apjlad454fbib145 publication-title: ApJL doi: 10.3847/2041-8213/aa9c84 – volume: 85 start-page: 044909 year: 2012 ident: apjlad454fbib49 publication-title: PhRvC doi: 10.1103/PhysRevC.85.044909 – year: 2021 ident: apjlad454fbib45 – volume: 121 start-page: 161101 year: 2018 ident: apjlad454fbib2 publication-title: PhRvL doi: 10.1103/PhysRevLett.121.161101 – volume: 850 start-page: L19 year: 2017 ident: apjlad454fbib80 publication-title: ApJL doi: 10.3847/2041-8213/aa991c – volume: 102 start-page: 065805 year: 2020 ident: apjlad454fbib51 publication-title: PhRvC doi: 10.1103/PhysRevC.102.065805 – volume: 122 start-page: 061102 year: 2019 ident: apjlad454fbib17 publication-title: PhRvL doi: 10.1103/PhysRevLett.122.061102 – volume: 23 start-page: 1 year: 2020 ident: apjlad454fbib81 publication-title: LRR doi: 10.1007/s41114-019-0024-0 – volume: 297 start-page: 717 year: 1995 ident: apjlad454fbib150 publication-title: A&A – volume: 95 start-page: 045807 year: 2017 ident: apjlad454fbib116 publication-title: PhRvC doi: 10.1103/PhysRevC.95.045807 – volume: 121 start-page: 091102 year: 2018 ident: apjlad454fbib42 publication-title: PhRvL doi: 10.1103/PhysRevLett.121.091102 – volume: 311 start-page: 532 year: 1996 ident: apjlad454fbib120 publication-title: A&A – volume: 850 start-page: L34 year: 2017 ident: apjlad454fbib23 publication-title: ApJL doi: 10.3847/2041-8213/aa9994 – volume: 106 start-page: 063017 year: 2022 ident: apjlad454fbib152 publication-title: PhRvD doi: 10.1103/PhysRevD.106.063017 – volume: 77 start-page: 021502 year: 2008 ident: apjlad454fbib54 publication-title: PhRvD doi: 10.1103/PhysRevD.77.021502 – volume: 104 start-page: 063016 year: 2021 ident: apjlad454fbib108 publication-title: PhRvD doi: 10.1103/PhysRevD.104.063016 – volume: 80 start-page: 096901 year: 2017 ident: apjlad454fbib16 publication-title: RPPh doi: 10.1088/1361-6633/aa67bb – volume: 81 start-page: 034909 year: 2010 ident: apjlad454fbib29 publication-title: PhRvC doi: 10.1103/PhysRevC.81.034909 – volume: 91 start-page: 064059 year: 2015 ident: apjlad454fbib128 publication-title: PhRvD doi: 10.1103/PhysRevD.91.064059 – volume: 848 start-page: L18 year: 2017 ident: apjlad454fbib93 publication-title: ApJL doi: 10.3847/2041-8213/aa9029 – volume: 79 start-page: 124033 year: 2009 ident: apjlad454fbib111 publication-title: PhRvD doi: 10.1103/PhysRevD.79.124033 – volume: 37 start-page: e047 year: 2020 ident: apjlad454fbib4 publication-title: PASA doi: 10.1017/pasa.2020.39 – volume: 33 start-page: 184002 year: 2016 ident: apjlad454fbib77 publication-title: CQGra doi: 10.1088/0264-9381/33/18/184002 – volume: 848 start-page: L27 year: 2017 ident: apjlad454fbib139 publication-title: ApJL doi: 10.3847/2041-8213/aa90b6 – volume: 872 start-page: L16 year: 2019 ident: apjlad454fbib73 publication-title: ApJL doi: 10.3847/2041-8213/ab0210 – volume: 120 start-page: 031102 year: 2018 ident: apjlad454fbib27 publication-title: PhRvL doi: 10.1103/PhysRevLett.120.031102 – year: 2022 ident: apjlad454fbib32 – volume: 93 start-page: 124046 year: 2016 ident: apjlad454fbib129 publication-title: PhRvD doi: 10.1103/PhysRevD.93.124046 – volume: 91 start-page: 064001 year: 2015 ident: apjlad454fbib136 publication-title: PhRvD doi: 10.1103/PhysRevD.91.064001 – volume: 106 start-page: 044026 year: 2022 ident: apjlad454fbib72 publication-title: PhRvD doi: 10.1103/PhysRevD.106.044026 – volume: 13 start-page: 109 year: 2022 ident: apjlad454fbib141 publication-title: ScPP doi: 10.21468/SciPostPhys.13.5.109 – volume: 98 start-page: 065806 year: 2018 ident: apjlad454fbib10 publication-title: PhRvC doi: 10.1103/PhysRevC.98.065806 – volume: 90 start-page: 023002 year: 2014 ident: apjlad454fbib24 publication-title: PhRvD doi: 10.1103/PhysRevD.90.023002 – volume: 473 start-page: 11 year: 2007 ident: apjlad454fbib43 publication-title: A&A doi: 10.1051/0004-6361:20077093 – volume: 952 start-page: L36 year: 2023 ident: apjlad454fbib52 publication-title: ApJL doi: 10.3847/2041-8213/ace5b2 – volume: 342 start-page: 673 year: 2003 ident: apjlad454fbib119 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06579.x – volume: 848 start-page: L17 year: 2017 ident: apjlad454fbib41 publication-title: ApJL doi: 10.3847/2041-8213/aa8fc7 – volume: 82 start-page: 084043 year: 2010 ident: apjlad454fbib22 publication-title: PhRvD doi: 10.1103/PhysRevD.82.084043 – year: 2019 ident: apjlad454fbib117 doi: 10.1017/9781108651998 – volume: 394 start-page: 213 year: 2002 ident: apjlad454fbib61 publication-title: A&A doi: 10.1051/0004-6361:20021112 – volume: 100 start-page: 035803 year: 2019 ident: apjlad454fbib11 publication-title: PhRvC doi: 10.1103/PhysRevC.100.035803 – volume: 96 start-page: 124005 year: 2017 ident: apjlad454fbib28 publication-title: PhRvD doi: 10.1103/PhysRevD.96.124005 – volume: 70 start-page: 95 year: 2020 ident: apjlad454fbib103 publication-title: ARNPS doi: 10.1146/annurev-nucl-013120-114541 – volume: 72 start-page: 024021 year: 2005 ident: apjlad454fbib154 publication-title: PhRvD doi: 10.1103/PhysRevD.72.024021 – volume: 97 start-page: 104036 year: 2018 ident: apjlad454fbib39 publication-title: PhRvD doi: 10.1103/PhysRevD.97.104036 – volume: 790 start-page: 19 year: 2014 ident: apjlad454fbib69 publication-title: ApJ doi: 10.1088/0004-637X/790/1/19 – volume: 933 start-page: L39 year: 2022 ident: apjlad454fbib110 publication-title: ApJL doi: 10.3847/2041-8213/ac7c75 – volume: 103 start-page: 045810 year: 2021 ident: apjlad454fbib8 publication-title: PhRvC doi: 10.1103/PhysRevC.103.045810 – volume: 109 start-page: 064009 year: 2024 ident: apjlad454fbib30 publication-title: PhRvD doi: 10.1103/PhysRevD.109.064009 – volume: 55 start-page: 80 year: 2019 ident: apjlad454fbib109 publication-title: EPJA doi: 10.1140/epja/i2019-12759-5 – volume: 774 start-page: 17 year: 2013 ident: apjlad454fbib133 publication-title: ApJ doi: 10.1088/0004-637X/774/1/17 – volume: 27 start-page: 194002 year: 2010 ident: apjlad454fbib101 publication-title: CQGra doi: 10.1088/0264-9381/27/19/194002 – volume: 120 start-page: 261103 year: 2018 ident: apjlad454fbib90 publication-title: PhRvL doi: 10.1103/PhysRevLett.120.261103 – volume: 103 start-page: 025808 year: 2021 ident: apjlad454fbib46 publication-title: PhRvC doi: 10.1103/PhysRevC.103.025808 – volume: Vol. 457 start-page: 455 year: 2018 ident: apjlad454fbib126 – volume: 876 start-page: 139 year: 2019 ident: apjlad454fbib60 publication-title: ApJ doi: 10.3847/1538-4357/ab16da – volume: 118 start-page: 341 year: 1979 ident: apjlad454fbib68 publication-title: AnPhy doi: 10.1016/0003-4916(79)90130-1 – volume: 54 start-page: 401 year: 2016 ident: apjlad454fbib97 publication-title: ARA&A doi: 10.1146/annurev-astro-081915-023322 – volume: 418 start-page: 427 year: 2011 ident: apjlad454fbib134 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19493.x – volume: 105 start-page: 023018 year: 2022 ident: apjlad454fbib137 publication-title: PhRvD doi: 10.1103/PhysRevD.105.023018 – volume: 773 start-page: 78 year: 2013b ident: apjlad454fbib20 publication-title: ApJ doi: 10.1088/0004-637X/773/1/78 – volume: 848 start-page: L19 year: 2017 ident: apjlad454fbib40 publication-title: ApJL doi: 10.3847/2041-8213/aa905c – volume: 115 start-page: 091101 year: 2015 ident: apjlad454fbib25 publication-title: PhRvL doi: 10.1103/PhysRevLett.115.091101 – volume: 38 start-page: 075001 year: 2021 ident: apjlad454fbib58 publication-title: CQGra doi: 10.1088/1361-6382/abe588 – volume: 100 start-page: 103009 year: 2019 ident: apjlad454fbib66 publication-title: PhRvD doi: 10.1103/PhysRevD.100.103009 – volume: 125 start-page: 141103 year: 2020 ident: apjlad454fbib19 publication-title: PhRvL doi: 10.1103/PhysRevLett.125.141103 |
SSID | ssj0020618 |
Score | 2.5965014 |
Snippet | In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor (
β
-)equilibrium.... In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor (β-)equilibrium.... Abstract In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β... In nuclear matter in isolated neutron stars, the flavor content (e.g., proton fraction) is subject to weak interactions, establishing flavor ( β -)equilibrium.... |
SourceID | doaj osti proquest crossref iop |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | L14 |
SubjectTerms | Binary stars Collision dynamics Flavors Gravitational waves Hydrodynamics Neutrinos Neutron stars Nuclear astrophysics Nuclear matter Nuclear physics Star mergers Viscosity Wave spectra |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp14QbUEsr_rQVuIQbe04TnJkKQihlhNU3Cw_pW23m2ize-Dfd8b28hASXHpLrImTjMeeb5zJN4R8DroB2KrbonXBF4JpVhhjWWGFMNyWFiB-ZPu8lpe34uquuntS6gtzwhI9cFLcmAcerDNGB4fscaHxMkAQ4nwwjHMbmUDB562DqRxqgZeKtei-CVaAj6vSB8oSluJxbmMl8udWIjxzSJG3H9zMtOvhpINZ9mKNjo7nYptsZcRIT9OTvicbfv6B7J0OuIfd_b2nX2k8TlsUw0dyc57_qPS0C_QnJtz1eTDoZDX7Q39NB4upWvd0OqeT-D8uvfYr7I8C9lxQLOAb-1jQ76lg_bBDbi_Ob84ui1w7AbRci2URvLNtzZgFfMGt9Y2oeANgwljvaq-lQUfujGtqaNBBC2kld7DiQHSqkRRul2zOu7nfI7SGoQQPVgrRwnQ3jYYYTNfShFZWJrhmRMZrBSqbicWxvsVMQYCBKleocoUqV0nlI3LycEWfSDVekZ3gmDzIIR12bAAjUdlI1FtGMiJfYERVnp7DKzf79ExO979nqpW1YuoHE6p3IHGAVqEAnyDJrsVsJLtUvMTddTkih2tjeewEgzQOsJc1-__jXQ7IOw7AKiVdHpLN5WLljwAYLc1xnAP_AG9DCUk priority: 102 providerName: Directory of Open Access Journals |
Title | Emergence of Microphysical Bulk Viscosity in Binary Neutron Star Postmerger Dynamics |
URI | https://iopscience.iop.org/article/10.3847/2041-8213/ad454f https://www.proquest.com/docview/3056216318 https://www.osti.gov/biblio/2352306 https://doaj.org/article/2f2fcdbbafd0432f8e6f407defb122c4 |
Volume | 967 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKe-GCCm3VpQ98KJU4BLDjOI44daFVi6DtoYXeLD-lwrKJNruH_ntm7HRRBaq4RI41caLx2PONY39DyEE0CmCraYrGx1AIZlhhrWOFE8JyVzqA-Int81yeXovPN9XNCvmwPAvTdsPU_xaKmSg4qxDHdwlzKYTrghWKsxIJcCsRn5C1UkmFkddF-X0ZbYGjSunosvT7Kv-j_GcLD3xSou4HTwOvh5sWBtpf03TyPSfr5NkAGulR_sTnZCVMX5Dtox6Xsdtfd_SQpnJepeg3yNXxcKgy0DbSr7jnrhv6g44Xk5_0223vcLfWHb2d0nE6kkvPwwLbowA_ZxRz-KY2ZvRTzlnfb5Lrk-Orj6fFkD4BFF2LeRGDd03NmAOIwZ0LSlRcAZ6wLvg6GGnRl3vrVQ0VJhohneQeJh0IUA3ywm2R1Wk7DduE1tCb4MRKIRoY8VYZCMNMLW1sZGWjVyPy7l6B2g3c4pjiYqIhxkCVa1S5RpXrrPIRebN8osu8Go_IjrFPlnLIiJ0qwDr0YB2aRx6dt9ZEjyyDUQUZIVj1IVrGuRMj8hp6VA8jtH_kZa8eyJnux0Q3stZMf2FCdx4kdtAqNNgp8uw63JDk5pqXuMAuR2T33lj-NIJxGgfky9TL__yMHfKUA3zKWyt3yep8tgh7AH_mdj8tG8D17OJyP5n8b-WM_ww |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSIgL4qmGFuoDIHEIxY7jOMcu7apAWTi00Jvlp1RYNtFm99B_z4ydLqpAFbfEsh1rPPZ844y_IeRlNApgq2nL1sdQCmZYaa1jpRPCclc5gPiJ7XMmj8_Ex_P6fMxzmu7CdP249b-Fx0wUnEWI67uCvRTcdcFKxVmFBLi1iPu9j7fJnbqSEnM3fKm-bzwuMFYpJV1u8a7O_yn_2cs1u5To-8HawBDgpYPF9tdWnezP9AG5PwJHepCH-ZDcCotHZPtgwKPs7tclfU3Tcz6pGB6T06PxYmWgXaSfMe6uH-eETtbzn_TbxeAwYuuSXizoJF3LpbOwxv4oQNAlxTy-qY8lPcx564cn5Gx6dPr-uBxTKICwG7EqY_CubRhzADO4c0GJmivAFNYF3wQjLdpzb71qoMBEI6ST3MPGA06qQW64p2Rr0S3CNqENzCgYskqIFla9VQZcMdNIG1tZ2-hVQfavBKjdyC-OaS7mGvwMFLlGkWsUuc4iL8ibTYs-c2vcUHeCc7Kph6zYqQA0RI8aonnk0XlrTfTINBhVkBEcVh-iZZw7UZBXMKN6XKXDDR_bu1bP9D_mupWNZvqECQ36VpAd1AoNuopcuw6DktxK8woP2WVBdq-U5U8n6KtxQL9MPfvPYeyRu18Pp_rkw-zTDrnHAU3lSMtdsrVarsNzQEMr-yJp_G-b5QEM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+Microphysical+Bulk+Viscosity+in+Binary+Neutron+Star+Postmerger+Dynamics&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Most%2C+Elias+R.&rft.au=Haber%2C+Alexander&rft.au=Harris%2C+Steven+P.&rft.au=Zhang%2C+Ziyuan&rft.date=2024-05-01&rft.pub=The+American+Astronomical+Society&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=967&rft.issue=1&rft_id=info:doi/10.3847%2F2041-8213%2Fad454f&rft.externalDocID=apjlad454f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon |