Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment

There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to mo...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 13; pp. 19753 - 19768
Main Authors Singh, Sunil, Ahuja, Umang, Kumar, Munish, Kumar, Krishan, Sachdeva, Monika
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time.
AbstractList There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time.
There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time.There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time.
Author Kumar, Krishan
Ahuja, Umang
Sachdeva, Monika
Kumar, Munish
Singh, Sunil
Author_xml – sequence: 1
  givenname: Sunil
  surname: Singh
  fullname: Singh, Sunil
  organization: Department of Information Technology, University Institute of Engineering and Technology, Panjab University
– sequence: 2
  givenname: Umang
  surname: Ahuja
  fullname: Ahuja, Umang
  organization: Department of Information Technology, University Institute of Engineering and Technology, Panjab University
– sequence: 3
  givenname: Munish
  orcidid: 0000-0003-0115-1620
  surname: Kumar
  fullname: Kumar, Munish
  email: munishcse@gmail.com
  organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University
– sequence: 4
  givenname: Krishan
  surname: Kumar
  fullname: Kumar, Krishan
  organization: Department of Information Technology, University Institute of Engineering and Technology, Panjab University
– sequence: 5
  givenname: Monika
  surname: Sachdeva
  fullname: Sachdeva, Monika
  organization: Department of Computer Science and Engineering, I. K. G. Punjab Technical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33679209$$D View this record in MEDLINE/PubMed
BookMark eNp9kUuLFDEUhQsZcR76B1xIwI2baG6SqlRcCNI6OtB0g6jgKqRTN22NVclMUtXgvzdtj6POYiCQQL5z7uOcVkchBqyqp8BeAmPqVQZgklPGgQJTALR9UJ1ArQRVisNReYuWUVUzOK5Oc75kDJqay0fVsRCN0pzpk2p1bh2S0eYfpMMJ3dTHQObchy35tl6ud4LY0BFv84SJfKKL1YqMscMhvyaL9deLdxQ0wbDrUwwjhulx9dDbIeOTm_us-nL-_vPiI12uP1ws3i6pk0pO1KP0VnrFpG7ByXLqja69qL3j4DvQjHvfomAoeQPgkGnYdLjx3GkPHRdn1ZuD79W8GbFzpXSyg7lK_WjTTxNtb_7_Cf13s407ozQoaJpi8OLGIMXrGfNkxj47HAYbMM7ZcKk12y91jz6_g17GOYUynuG1YLzhHNpCPfu3o9tW_qy6APwAuBRzTuhvEWBmn6c55GlKnuZ3nmbv2t4RuX6y-5DKVP1wv1QcpLnUCVtMf9u-R_ULR4GyMw
CitedBy_id crossref_primary_10_1007_s11042_022_13491_x
crossref_primary_10_1016_j_asoc_2022_109207
crossref_primary_10_1109_TCE_2023_3245129
crossref_primary_10_3390_bdcc6040106
crossref_primary_10_36548_jscp_2021_2_005
crossref_primary_10_1007_s42600_023_00296_6
crossref_primary_10_1016_j_aei_2023_101942
crossref_primary_10_18287_2412_6179_CO_1039
crossref_primary_10_1007_s41870_024_02308_9
crossref_primary_10_3390_electronics10232996
crossref_primary_10_1007_s10278_024_01083_0
crossref_primary_10_1007_s11042_023_16107_0
crossref_primary_10_1016_j_marpetgeo_2024_106965
crossref_primary_10_1007_s42044_022_00114_9
crossref_primary_10_3390_app14198781
crossref_primary_10_1007_s11042_022_13927_4
crossref_primary_10_1007_s11042_022_13667_5
crossref_primary_10_32604_cmc_2022_025025
crossref_primary_10_1007_s11042_022_12999_6
crossref_primary_10_1093_jcde_qwac114
crossref_primary_10_1007_s11042_023_17634_6
crossref_primary_10_1080_02533839_2021_2012525
crossref_primary_10_1016_j_imavis_2021_104341
crossref_primary_10_1016_j_smhl_2023_100382
crossref_primary_10_1007_s00500_022_07289_0
crossref_primary_10_1088_1742_6596_2580_1_012016
crossref_primary_10_1080_19361610_2024_2302237
crossref_primary_10_1155_2022_2965638
crossref_primary_10_1007_s41315_025_00419_5
crossref_primary_10_2139_ssrn_4017019
crossref_primary_10_1007_s42979_023_02043_1
crossref_primary_10_1007_s10489_024_05409_x
crossref_primary_10_1016_j_procs_2023_01_165
crossref_primary_10_1007_s11042_022_12871_7
crossref_primary_10_1016_j_engappai_2024_109077
crossref_primary_10_32604_csse_2023_035869
crossref_primary_10_3390_life13030691
crossref_primary_10_1007_s11760_023_02490_6
crossref_primary_10_1002_adbi_202400034
crossref_primary_10_1016_j_compenvurbsys_2021_101692
crossref_primary_10_1080_03772063_2023_2220691
crossref_primary_10_1007_s00500_021_06098_1
crossref_primary_10_1007_s11760_022_02217_z
crossref_primary_10_32877_bt_v6i1_893
crossref_primary_10_1088_1755_1315_969_1_012016
crossref_primary_10_1155_2022_2621558
crossref_primary_10_1016_j_eswa_2023_122220
crossref_primary_10_1016_j_atech_2022_100128
crossref_primary_10_1007_s11042_022_12245_z
crossref_primary_10_3989_revindias_2023_019
crossref_primary_10_3390_bdcc8010009
crossref_primary_10_3390_healthcare10122396
crossref_primary_10_69955_ajoeee_24_v4i2_70
crossref_primary_10_1142_S0219467824500190
crossref_primary_10_1016_j_apor_2023_103833
crossref_primary_10_1007_s11042_023_14997_8
crossref_primary_10_3390_ijerph182010765
crossref_primary_10_1007_s11042_022_13697_z
crossref_primary_10_3390_life13020368
crossref_primary_10_1007_s10278_021_00564_w
crossref_primary_10_1016_j_ijleo_2022_169051
crossref_primary_10_34133_plantphenomics_0024
crossref_primary_10_1007_s11042_022_13801_3
crossref_primary_10_1016_j_procs_2022_12_009
crossref_primary_10_1007_s11042_022_12100_1
crossref_primary_10_1007_s11042_022_14073_7
crossref_primary_10_1007_s11042_022_12880_6
crossref_primary_10_1007_s11042_022_11934_z
crossref_primary_10_1007_s11042_023_14416_y
crossref_primary_10_1080_10942912_2023_2212876
crossref_primary_10_1007_s00521_025_11076_x
crossref_primary_10_1007_s11227_023_05588_3
crossref_primary_10_1109_TAI_2021_3139058
crossref_primary_10_1016_j_pmcj_2023_101874
crossref_primary_10_1109_ACCESS_2023_3284472
crossref_primary_10_34133_2022_9869518
crossref_primary_10_1038_s41598_022_13957_w
crossref_primary_10_1134_S1054661823020177
crossref_primary_10_1007_s11760_023_02717_6
crossref_primary_10_1007_s11042_022_12933_w
crossref_primary_10_1007_s11227_023_05653_x
crossref_primary_10_3390_computation10080136
crossref_primary_10_1007_s11042_022_12433_x
crossref_primary_10_1016_j_cmpb_2022_106888
crossref_primary_10_3103_S1060992X23010022
crossref_primary_10_3233_JIFS_221174
crossref_primary_10_1007_s11042_022_12413_1
crossref_primary_10_1007_s11042_022_12851_x
crossref_primary_10_1007_s11042_022_14325_6
crossref_primary_10_1097_PRS_0000000000010603
crossref_primary_10_1016_j_patcog_2022_108546
crossref_primary_10_1109_TAI_2023_3300668
crossref_primary_10_36548_jucct_2021_2_004
crossref_primary_10_3389_fpls_2022_889853
crossref_primary_10_1016_j_heliyon_2023_e13036
crossref_primary_10_1007_s11760_024_03645_9
crossref_primary_10_1007_s11042_023_16439_x
crossref_primary_10_1007_s11042_021_11773_4
crossref_primary_10_1007_s11277_022_09772_1
crossref_primary_10_1134_S1054661822020067
crossref_primary_10_2139_ssrn_3882472
crossref_primary_10_3390_plants13070972
crossref_primary_10_21595_jme_2023_23401
crossref_primary_10_3390_s22197641
crossref_primary_10_3390_app12189171
crossref_primary_10_1007_s11042_022_13380_3
crossref_primary_10_1108_DTA_02_2022_0076
crossref_primary_10_1007_s11042_023_16192_1
crossref_primary_10_3390_computers14030093
crossref_primary_10_3390_s21165460
crossref_primary_10_3390_systems11020107
crossref_primary_10_1007_s10044_023_01157_9
crossref_primary_10_1007_s11042_023_16770_3
crossref_primary_10_1007_s11042_023_15808_w
crossref_primary_10_3390_app132111709
crossref_primary_10_1007_s11042_023_14874_4
crossref_primary_10_32604_csse_2023_036973
crossref_primary_10_3390_s23156727
crossref_primary_10_1007_s11042_022_14075_5
Cites_doi 10.1109/CVPR.2009.5206848
10.1186/s40001-020-00430-5
10.1109/CVPR.2016.91
10.1109/TPAMI.2016.2577031
10.1109/JSEN.2018.2888815
10.1109/CVPR.2015.7298594
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s11042-021-10711-8
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 19768
ExternalDocumentID PMC7917166
33679209
10_1007_s11042_021_10711_8
Genre Journal Article
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-fe4fa4f704981c41c45b95f35fc21fd1902ff8e30e42611ce091bdebf2c9f1d23
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Thu Aug 21 17:42:23 EDT 2025
Fri Jul 11 04:39:57 EDT 2025
Sat Jul 26 00:00:49 EDT 2025
Thu Apr 03 07:04:05 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Tue Jul 01 04:13:08 EDT 2025
Fri Feb 21 02:48:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords COVID-19
Deep learning
YOLO v3
Face mask detection
Faster R-CNN
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-fe4fa4f704981c41c45b95f35fc21fd1902ff8e30e42611ce091bdebf2c9f1d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0115-1620
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7917166
PMID 33679209
PQID 2530262218
PQPubID 54626
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7917166
proquest_miscellaneous_2499007116
proquest_journals_2530262218
pubmed_primary_33679209
crossref_primary_10_1007_s11042_021_10711_8
crossref_citationtrail_10_1007_s11042_021_10711_8
springer_journals_10_1007_s11042_021_10711_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9
Jason B A Gentle Introduction to Transfer Learning for Deep Learning. https://machinelearningmastery.com/transfer-learning-for-deep-learning
MatuschekCMollFFangerauHFischerJCZänkerKvan GriensvenMSchneiderMKindgen-MillesDKnoefelWTLichtenbergATamaskovicsBDjiepmo-NjanangFJBudachWCorradiniSHäussingerDFeldtTJensenBPelkaROrthKPeiperMGrebeOMaasKGerberPAPedotoABölkeEHaussmannJFace masks: benefits and risks during the COVID-19 crisisEur J Med Res2020253210.1186/s40001-020-00430-5(2020)
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 248–255
ShaoqingRKaimingHGirshickRJianSFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell2015391137114910.1109/TPAMI.2016.2577031
Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017
W H Organization (2020) WH corona-viruses (COVID-19),” https://www.who.int/emergencies/diseases/novel-corona-virus-2019
SunLZhaoCYanZLiuPDuckettTStolkinRA novel weakly-supervised approach for RGB-D-based nuclear waste object detectionIEEE Sensors J2019193487350010.1109/JSEN.2018.2888815
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection, vol 2016. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp 779–788. https://doi.org/10.1109/CVPR.2016.91
10711_CR6
C Matuschek (10711_CR5) 2020; 25
10711_CR9
10711_CR2
10711_CR10
10711_CR3
R Shaoqing (10711_CR7) 2015; 39
10711_CR4
10711_CR1
L Sun (10711_CR8) 2019; 19
References_xml – reference: Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 248–255
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9
– reference: W H Organization (2020) WH corona-viruses (COVID-19),” https://www.who.int/emergencies/diseases/novel-corona-virus-2019
– reference: Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017
– reference: SunLZhaoCYanZLiuPDuckettTStolkinRA novel weakly-supervised approach for RGB-D-based nuclear waste object detectionIEEE Sensors J2019193487350010.1109/JSEN.2018.2888815
– reference: ShaoqingRKaimingHGirshickRJianSFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell2015391137114910.1109/TPAMI.2016.2577031
– reference: Jason B A Gentle Introduction to Transfer Learning for Deep Learning. https://machinelearningmastery.com/transfer-learning-for-deep-learning/
– reference: Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection, vol 2016. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp 779–788. https://doi.org/10.1109/CVPR.2016.91
– reference: MatuschekCMollFFangerauHFischerJCZänkerKvan GriensvenMSchneiderMKindgen-MillesDKnoefelWTLichtenbergATamaskovicsBDjiepmo-NjanangFJBudachWCorradiniSHäussingerDFeldtTJensenBPelkaROrthKPeiperMGrebeOMaasKGerberPAPedotoABölkeEHaussmannJFace masks: benefits and risks during the COVID-19 crisisEur J Med Res2020253210.1186/s40001-020-00430-5(2020)
– ident: 10711_CR1
  doi: 10.1109/CVPR.2009.5206848
– volume: 25
  start-page: 32
  year: 2020
  ident: 10711_CR5
  publication-title: Eur J Med Res
  doi: 10.1186/s40001-020-00430-5
– ident: 10711_CR6
  doi: 10.1109/CVPR.2016.91
– volume: 39
  start-page: 1137
  year: 2015
  ident: 10711_CR7
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 19
  start-page: 3487
  year: 2019
  ident: 10711_CR8
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2018.2888815
– ident: 10711_CR9
  doi: 10.1109/CVPR.2015.7298594
– ident: 10711_CR4
– ident: 10711_CR3
– ident: 10711_CR10
– ident: 10711_CR2
  doi: 10.1109/CVPR.2016.90
SSID ssj0016524
Score 2.6201677
Snippet There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19753
SubjectTerms Computer Communication Networks
Computer Science
Coronaviruses
COVID-19
Data Structures and Information Theory
Disease control
Environment models
Masks
Multimedia Information Systems
Object recognition
Special Purpose and Application-Based Systems
Viral diseases
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuLQHoLSlgaVypd5aS7ETxzE3tLCCqt2Vqm5FT1HiB6C2AbELv5-xN8nuAq2ElJsnzmPG8XyZmW8APhppeZo5Q6XVxgMUQcvSWVqZJFbaJVIEUp9vw-xknH45E2dNUdikzXZvQ5LhSz0vdmO-lMSnFCBkYYzmq7AuELv7RK4xP-xiB5loWtnmMcX9kDWlMk_PsbwdPfIxH6dKPoiXhm1osAUbjf9IDmcKfwUrtt6GzbY3A2mW6ja8XCAafA3DQakt-VtOfhNjpyH7qiY-5f2c_Bp9Hd0lpKwNcaVnTSDfaX84JKFFzuSA9Ec_T48oU2ShJO4NjAfHP_ontOmkQHUq0yl1NnVl6iTCgZzpFA9RKeES4TRnzqBTwJ3LbRJbj6iYtuhFVMZWjmvlmOHJW1irr2r7Doj_UyTiyqgMgZaTEvGIU1ZInLlSNqsiYO0LLXRDM-67Xfwp5gTJXgkFKqEISijyCD5151zPSDb-K91r9VQ0C25ScN_9KOPosETwoRvGpeLjH2Vtr25RBtGdd6lYFsHOTK3d5ZIkk4rHKgK5pPBOwNNwL4_UlxeBjlsqTzmEc35uTWN-W_9-it3nie_BC-7NNqRa9mBtenNr99Edmlbvg_XfA5s8_f4
  priority: 102
  providerName: Springer Nature
Title Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment
URI https://link.springer.com/article/10.1007/s11042-021-10711-8
https://www.ncbi.nlm.nih.gov/pubmed/33679209
https://www.proquest.com/docview/2530262218
https://www.proquest.com/docview/2499007116
https://pubmed.ncbi.nlm.nih.gov/PMC7917166
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUe-BgwAqMyEm9gUTsfjnlBbWk2vlI0UbQ9RYk_NgSkg3b8_fhSJ12ZmBQpD3acOOfz3fnufgfwXAvDo8RqKozSaKDEtCytoZUOh1LZUMQNqM-nPDmcR--P42N_4Lb0YZXtnths1Hqh8Iz8FcfyNgl3EunN-S-KVaPQu-pLaOxA323BadqD_niafz7q_AhJ7MvapkPqZCPzaTPr5DmGqSkYouBMIMZoui2aruibV8Mm__GdNiIpuwu3vS5JRmvi34Mbpt6FO22dBuLZdhduXQIdvA95VipDfpbL70SbVROJVRMMfz8lJ7OPsz8hKWtNbIkICuSITvKcNOVylq_JZPb13VvKJLmUHvcA5tn0y-SQ-qoKVEUiWlFrIltGVjjTIGUqcldcydiGsVWcWe0UBG5tasKhQeuKKeM0ikqbynIlLdM8fAi9elGbR0Dw1CgeVlomzuiyQjjbxEoTCzdyJU1SBcDaH1ooDzmOlS9-FBuwZCRC4YhQNEQo0gBedM-crwE3ru2939Kp8My3LDZLJYBnXbNjG_SFlLVZXLg-ztJD9YolAeytydq9LgwTIflQBiC2CN51QEju7Zb621kDzS0kwg-5MV-2S2PzWf-fxePrZ_EEbnJcpk2Y5T70Vr8vzFOnCq2qAeyk2cEA-qNsPM7xfnDyYTrwXOBa53z0F9-1B3E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAceJRXoICR4AQWsfNwgoQQ2rLs0m1WQi0qp5D40SIgW9gtiD_Fb2Qmr-1S0Vul3Ow4sWfsmfHMfAPw2Cgrw9gZrqw2ZKBEvCic5aUJ_FS7QEU1qM9OFo_2wnf70f4a_OlyYSissjsT64PazDTdkT-XVN4mliiRXh1951Q1iryrXQmNhi227e9faLLNX463kL5PpBy-2R2MeFtVgOtQhQvubOiK0ClUjROhQ3yiMo1cEDkthTMoIKVziQ18S9aF0BYlamls6aROnTAEdIBH_oUwQElOmenDt73XIo7aIrqJz1ESizZJp0nVE5QIQwERaHAJwZNVQXhKuz0dpPmPp7YWgMNrcKXVXNnrhtWuw5qtNuBqVxWCtYfEBlw-AXF4A7JhoS37Vsy_MGMXddxXxSjY_oB9nE6mPwNWVIa5gvAa2Hs-yDJWF-eZv2CD6YfxFhcpO5GMdxP2zmW1b8F6NavsHWB0RxX5pUljNPGcUmgJudRGCkcuUxuXHohuQXPdApxTnY2v-RKamYiQIxHymgh54sHT_p2jBt7jzN6bHZ3ydqvP8yVjevCob8ZNSp6XorKzY-yDdiUpcyL24HZD1v5zQRCrVPqpB2qF4H0HAgBfbak-H9ZA4ColsCMc81nHGsvf-v8s7p49i4dwcbS7M8kn42z7HlySxLJ1gOcmrC9-HNv7qIQtygc15zP4dN5b7S8R0T70
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBoUB5NFDASHACq3FeXiMhBLtddWnJVhVF5RQSPwAB2cJuQfw1fh0zeW2Xit4q5WbHiT1jz4xn5huAR0baIEqc4dJqQwZKzPPcWV6Y0FfahTKuQH3epMnOYfT6KD5agT9tLgyFVbZnYnVQm6mmO_KtgMrbJAFKpC3XhEXsD0cvjr9zqiBFnta2nEbNIrv29y8032bPx0Ok9eMgGG2_HezwpsIA15GM5tzZyOWRk6gm94WO8IkLFbswdjoQzqCwDJzr29C3ZGkIbVG6FsYWLtDKCUOgB3j8r0qyinqw-mo73T_ofBhJ3JTU7fsc5bJoUnbqxD1BaTEUHoHmlxC8vywWz-i6Z0M2__HbVuJwdA3WGj2WvawZ7zqs2HIdrrY1IlhzZKzDlVOAhzcgHeXasm_57Aszdl5FgZWMQu8_sveTvcnPkOWlYS4n9AZ2wAdpyqpSPbNnbDB5Nx5yodip1LybcHgh630LeuW0tBvA6MYq9gujEjT4nJRoFzllY4kjF8omhQeiXdBMN3DnVHXja7YAaiYiZEiErCJC1vfgSffOcQ32cW7vzZZOWbPxZ9mCTT142DXjliU_TF7a6Qn2QSuTVDuReHC7Jmv3uTBMpAp85YFcInjXgeDAl1vKz58qWHCpCPoIx3zassbit_4_izvnz-IBXMJtlu2N0927cDkgjq2iPTehN_9xYu-hRjYv7jesz-DDRe-2v4wURIY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+mask+detection+using+YOLOv3+and+faster+R-CNN+models%3A+COVID-19+environment&rft.jtitle=Multimedia+tools+and+applications&rft.au=Singh%2C+Sunil&rft.au=Ahuja%2C+Umang&rft.au=Kumar%2C+Munish&rft.au=Kumar%2C+Krishan&rft.date=2021-05-01&rft.issn=1380-7501&rft.spage=1&rft_id=info:doi/10.1007%2Fs11042-021-10711-8&rft_id=info%3Apmid%2F33679209&rft.externalDocID=33679209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon