Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment
There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to mo...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 13; pp. 19753 - 19768 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time. |
---|---|
AbstractList | There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time. There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time.There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing face masks at all times in public places during the coronavirus pandemic. This encourages us to explore face mask detection technology to monitor people wearing masks in public places. Most recent and advanced face mask detection approaches are designed using deep learning. In this article, two state-of-the-art object detection models, namely, YOLOv3 and faster R-CNN are used to achieve this task. The authors have trained both the models on a dataset that consists of images of people of two categories that are with and without face masks. This work proposes a technique that will draw bounding boxes (red or green) around the faces of people, based on whether a person is wearing a mask or not, and keeps the record of the ratio of people wearing face masks on the daily basis. The authors have also compared the performance of both the models i.e., their precision rate and inference time. |
Author | Kumar, Krishan Ahuja, Umang Sachdeva, Monika Kumar, Munish Singh, Sunil |
Author_xml | – sequence: 1 givenname: Sunil surname: Singh fullname: Singh, Sunil organization: Department of Information Technology, University Institute of Engineering and Technology, Panjab University – sequence: 2 givenname: Umang surname: Ahuja fullname: Ahuja, Umang organization: Department of Information Technology, University Institute of Engineering and Technology, Panjab University – sequence: 3 givenname: Munish orcidid: 0000-0003-0115-1620 surname: Kumar fullname: Kumar, Munish email: munishcse@gmail.com organization: Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University – sequence: 4 givenname: Krishan surname: Kumar fullname: Kumar, Krishan organization: Department of Information Technology, University Institute of Engineering and Technology, Panjab University – sequence: 5 givenname: Monika surname: Sachdeva fullname: Sachdeva, Monika organization: Department of Computer Science and Engineering, I. K. G. Punjab Technical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33679209$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUuLFDEUhQsZcR76B1xIwI2baG6SqlRcCNI6OtB0g6jgKqRTN22NVclMUtXgvzdtj6POYiCQQL5z7uOcVkchBqyqp8BeAmPqVQZgklPGgQJTALR9UJ1ArQRVisNReYuWUVUzOK5Oc75kDJqay0fVsRCN0pzpk2p1bh2S0eYfpMMJ3dTHQObchy35tl6ud4LY0BFv84SJfKKL1YqMscMhvyaL9deLdxQ0wbDrUwwjhulx9dDbIeOTm_us-nL-_vPiI12uP1ws3i6pk0pO1KP0VnrFpG7ByXLqja69qL3j4DvQjHvfomAoeQPgkGnYdLjx3GkPHRdn1ZuD79W8GbFzpXSyg7lK_WjTTxNtb_7_Cf13s407ozQoaJpi8OLGIMXrGfNkxj47HAYbMM7ZcKk12y91jz6_g17GOYUynuG1YLzhHNpCPfu3o9tW_qy6APwAuBRzTuhvEWBmn6c55GlKnuZ3nmbv2t4RuX6y-5DKVP1wv1QcpLnUCVtMf9u-R_ULR4GyMw |
CitedBy_id | crossref_primary_10_1007_s11042_022_13491_x crossref_primary_10_1016_j_asoc_2022_109207 crossref_primary_10_1109_TCE_2023_3245129 crossref_primary_10_3390_bdcc6040106 crossref_primary_10_36548_jscp_2021_2_005 crossref_primary_10_1007_s42600_023_00296_6 crossref_primary_10_1016_j_aei_2023_101942 crossref_primary_10_18287_2412_6179_CO_1039 crossref_primary_10_1007_s41870_024_02308_9 crossref_primary_10_3390_electronics10232996 crossref_primary_10_1007_s10278_024_01083_0 crossref_primary_10_1007_s11042_023_16107_0 crossref_primary_10_1016_j_marpetgeo_2024_106965 crossref_primary_10_1007_s42044_022_00114_9 crossref_primary_10_3390_app14198781 crossref_primary_10_1007_s11042_022_13927_4 crossref_primary_10_1007_s11042_022_13667_5 crossref_primary_10_32604_cmc_2022_025025 crossref_primary_10_1007_s11042_022_12999_6 crossref_primary_10_1093_jcde_qwac114 crossref_primary_10_1007_s11042_023_17634_6 crossref_primary_10_1080_02533839_2021_2012525 crossref_primary_10_1016_j_imavis_2021_104341 crossref_primary_10_1016_j_smhl_2023_100382 crossref_primary_10_1007_s00500_022_07289_0 crossref_primary_10_1088_1742_6596_2580_1_012016 crossref_primary_10_1080_19361610_2024_2302237 crossref_primary_10_1155_2022_2965638 crossref_primary_10_1007_s41315_025_00419_5 crossref_primary_10_2139_ssrn_4017019 crossref_primary_10_1007_s42979_023_02043_1 crossref_primary_10_1007_s10489_024_05409_x crossref_primary_10_1016_j_procs_2023_01_165 crossref_primary_10_1007_s11042_022_12871_7 crossref_primary_10_1016_j_engappai_2024_109077 crossref_primary_10_32604_csse_2023_035869 crossref_primary_10_3390_life13030691 crossref_primary_10_1007_s11760_023_02490_6 crossref_primary_10_1002_adbi_202400034 crossref_primary_10_1016_j_compenvurbsys_2021_101692 crossref_primary_10_1080_03772063_2023_2220691 crossref_primary_10_1007_s00500_021_06098_1 crossref_primary_10_1007_s11760_022_02217_z crossref_primary_10_32877_bt_v6i1_893 crossref_primary_10_1088_1755_1315_969_1_012016 crossref_primary_10_1155_2022_2621558 crossref_primary_10_1016_j_eswa_2023_122220 crossref_primary_10_1016_j_atech_2022_100128 crossref_primary_10_1007_s11042_022_12245_z crossref_primary_10_3989_revindias_2023_019 crossref_primary_10_3390_bdcc8010009 crossref_primary_10_3390_healthcare10122396 crossref_primary_10_69955_ajoeee_24_v4i2_70 crossref_primary_10_1142_S0219467824500190 crossref_primary_10_1016_j_apor_2023_103833 crossref_primary_10_1007_s11042_023_14997_8 crossref_primary_10_3390_ijerph182010765 crossref_primary_10_1007_s11042_022_13697_z crossref_primary_10_3390_life13020368 crossref_primary_10_1007_s10278_021_00564_w crossref_primary_10_1016_j_ijleo_2022_169051 crossref_primary_10_34133_plantphenomics_0024 crossref_primary_10_1007_s11042_022_13801_3 crossref_primary_10_1016_j_procs_2022_12_009 crossref_primary_10_1007_s11042_022_12100_1 crossref_primary_10_1007_s11042_022_14073_7 crossref_primary_10_1007_s11042_022_12880_6 crossref_primary_10_1007_s11042_022_11934_z crossref_primary_10_1007_s11042_023_14416_y crossref_primary_10_1080_10942912_2023_2212876 crossref_primary_10_1007_s00521_025_11076_x crossref_primary_10_1007_s11227_023_05588_3 crossref_primary_10_1109_TAI_2021_3139058 crossref_primary_10_1016_j_pmcj_2023_101874 crossref_primary_10_1109_ACCESS_2023_3284472 crossref_primary_10_34133_2022_9869518 crossref_primary_10_1038_s41598_022_13957_w crossref_primary_10_1134_S1054661823020177 crossref_primary_10_1007_s11760_023_02717_6 crossref_primary_10_1007_s11042_022_12933_w crossref_primary_10_1007_s11227_023_05653_x crossref_primary_10_3390_computation10080136 crossref_primary_10_1007_s11042_022_12433_x crossref_primary_10_1016_j_cmpb_2022_106888 crossref_primary_10_3103_S1060992X23010022 crossref_primary_10_3233_JIFS_221174 crossref_primary_10_1007_s11042_022_12413_1 crossref_primary_10_1007_s11042_022_12851_x crossref_primary_10_1007_s11042_022_14325_6 crossref_primary_10_1097_PRS_0000000000010603 crossref_primary_10_1016_j_patcog_2022_108546 crossref_primary_10_1109_TAI_2023_3300668 crossref_primary_10_36548_jucct_2021_2_004 crossref_primary_10_3389_fpls_2022_889853 crossref_primary_10_1016_j_heliyon_2023_e13036 crossref_primary_10_1007_s11760_024_03645_9 crossref_primary_10_1007_s11042_023_16439_x crossref_primary_10_1007_s11042_021_11773_4 crossref_primary_10_1007_s11277_022_09772_1 crossref_primary_10_1134_S1054661822020067 crossref_primary_10_2139_ssrn_3882472 crossref_primary_10_3390_plants13070972 crossref_primary_10_21595_jme_2023_23401 crossref_primary_10_3390_s22197641 crossref_primary_10_3390_app12189171 crossref_primary_10_1007_s11042_022_13380_3 crossref_primary_10_1108_DTA_02_2022_0076 crossref_primary_10_1007_s11042_023_16192_1 crossref_primary_10_3390_computers14030093 crossref_primary_10_3390_s21165460 crossref_primary_10_3390_systems11020107 crossref_primary_10_1007_s10044_023_01157_9 crossref_primary_10_1007_s11042_023_16770_3 crossref_primary_10_1007_s11042_023_15808_w crossref_primary_10_3390_app132111709 crossref_primary_10_1007_s11042_023_14874_4 crossref_primary_10_32604_csse_2023_036973 crossref_primary_10_3390_s23156727 crossref_primary_10_1007_s11042_022_14075_5 |
Cites_doi | 10.1109/CVPR.2009.5206848 10.1186/s40001-020-00430-5 10.1109/CVPR.2016.91 10.1109/TPAMI.2016.2577031 10.1109/JSEN.2018.2888815 10.1109/CVPR.2015.7298594 10.1109/CVPR.2016.90 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s11042-021-10711-8 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 19768 |
ExternalDocumentID | PMC7917166 33679209 10_1007_s11042_021_10711_8 |
Genre | Journal Article |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-fe4fa4f704981c41c45b95f35fc21fd1902ff8e30e42611ce091bdebf2c9f1d23 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 17:42:23 EDT 2025 Fri Jul 11 04:39:57 EDT 2025 Sat Jul 26 00:00:49 EDT 2025 Thu Apr 03 07:04:05 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Tue Jul 01 04:13:08 EDT 2025 Fri Feb 21 02:48:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | COVID-19 Deep learning YOLO v3 Face mask detection Faster R-CNN |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-fe4fa4f704981c41c45b95f35fc21fd1902ff8e30e42611ce091bdebf2c9f1d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0115-1620 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7917166 |
PMID | 33679209 |
PQID | 2530262218 |
PQPubID | 54626 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7917166 proquest_miscellaneous_2499007116 proquest_journals_2530262218 pubmed_primary_33679209 crossref_primary_10_1007_s11042_021_10711_8 crossref_citationtrail_10_1007_s11042_021_10711_8 springer_journals_10_1007_s11042_021_10711_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9 Jason B A Gentle Introduction to Transfer Learning for Deep Learning. https://machinelearningmastery.com/transfer-learning-for-deep-learning MatuschekCMollFFangerauHFischerJCZänkerKvan GriensvenMSchneiderMKindgen-MillesDKnoefelWTLichtenbergATamaskovicsBDjiepmo-NjanangFJBudachWCorradiniSHäussingerDFeldtTJensenBPelkaROrthKPeiperMGrebeOMaasKGerberPAPedotoABölkeEHaussmannJFace masks: benefits and risks during the COVID-19 crisisEur J Med Res2020253210.1186/s40001-020-00430-5(2020) He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 248–255 ShaoqingRKaimingHGirshickRJianSFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell2015391137114910.1109/TPAMI.2016.2577031 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017 W H Organization (2020) WH corona-viruses (COVID-19),” https://www.who.int/emergencies/diseases/novel-corona-virus-2019 SunLZhaoCYanZLiuPDuckettTStolkinRA novel weakly-supervised approach for RGB-D-based nuclear waste object detectionIEEE Sensors J2019193487350010.1109/JSEN.2018.2888815 Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection, vol 2016. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp 779–788. https://doi.org/10.1109/CVPR.2016.91 10711_CR6 C Matuschek (10711_CR5) 2020; 25 10711_CR9 10711_CR2 10711_CR10 10711_CR3 R Shaoqing (10711_CR7) 2015; 39 10711_CR4 10711_CR1 L Sun (10711_CR8) 2019; 19 |
References_xml | – reference: Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 248–255 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778 – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp 1–9 – reference: W H Organization (2020) WH corona-viruses (COVID-19),” https://www.who.int/emergencies/diseases/novel-corona-virus-2019 – reference: Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017 – reference: SunLZhaoCYanZLiuPDuckettTStolkinRA novel weakly-supervised approach for RGB-D-based nuclear waste object detectionIEEE Sensors J2019193487350010.1109/JSEN.2018.2888815 – reference: ShaoqingRKaimingHGirshickRJianSFaster R-CNN: towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell2015391137114910.1109/TPAMI.2016.2577031 – reference: Jason B A Gentle Introduction to Transfer Learning for Deep Learning. https://machinelearningmastery.com/transfer-learning-for-deep-learning/ – reference: Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection, vol 2016. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, pp 779–788. https://doi.org/10.1109/CVPR.2016.91 – reference: MatuschekCMollFFangerauHFischerJCZänkerKvan GriensvenMSchneiderMKindgen-MillesDKnoefelWTLichtenbergATamaskovicsBDjiepmo-NjanangFJBudachWCorradiniSHäussingerDFeldtTJensenBPelkaROrthKPeiperMGrebeOMaasKGerberPAPedotoABölkeEHaussmannJFace masks: benefits and risks during the COVID-19 crisisEur J Med Res2020253210.1186/s40001-020-00430-5(2020) – ident: 10711_CR1 doi: 10.1109/CVPR.2009.5206848 – volume: 25 start-page: 32 year: 2020 ident: 10711_CR5 publication-title: Eur J Med Res doi: 10.1186/s40001-020-00430-5 – ident: 10711_CR6 doi: 10.1109/CVPR.2016.91 – volume: 39 start-page: 1137 year: 2015 ident: 10711_CR7 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 19 start-page: 3487 year: 2019 ident: 10711_CR8 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2018.2888815 – ident: 10711_CR9 doi: 10.1109/CVPR.2015.7298594 – ident: 10711_CR4 – ident: 10711_CR3 – ident: 10711_CR10 – ident: 10711_CR2 doi: 10.1109/CVPR.2016.90 |
SSID | ssj0016524 |
Score | 2.6201677 |
Snippet | There are many solutions to prevent the spread of the COVID-19 virus and one of the most effective solutions is wearing a face mask. Almost everyone is wearing... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19753 |
SubjectTerms | Computer Communication Networks Computer Science Coronaviruses COVID-19 Data Structures and Information Theory Disease control Environment models Masks Multimedia Information Systems Object recognition Special Purpose and Application-Based Systems Viral diseases |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xuLQHoLSlgaVypd5aS7ETxzE3tLCCqt2Vqm5FT1HiB6C2AbELv5-xN8nuAq2ElJsnzmPG8XyZmW8APhppeZo5Q6XVxgMUQcvSWVqZJFbaJVIEUp9vw-xknH45E2dNUdikzXZvQ5LhSz0vdmO-lMSnFCBkYYzmq7AuELv7RK4xP-xiB5loWtnmMcX9kDWlMk_PsbwdPfIxH6dKPoiXhm1osAUbjf9IDmcKfwUrtt6GzbY3A2mW6ja8XCAafA3DQakt-VtOfhNjpyH7qiY-5f2c_Bp9Hd0lpKwNcaVnTSDfaX84JKFFzuSA9Ec_T48oU2ShJO4NjAfHP_ontOmkQHUq0yl1NnVl6iTCgZzpFA9RKeES4TRnzqBTwJ3LbRJbj6iYtuhFVMZWjmvlmOHJW1irr2r7Doj_UyTiyqgMgZaTEvGIU1ZInLlSNqsiYO0LLXRDM-67Xfwp5gTJXgkFKqEISijyCD5151zPSDb-K91r9VQ0C25ScN_9KOPosETwoRvGpeLjH2Vtr25RBtGdd6lYFsHOTK3d5ZIkk4rHKgK5pPBOwNNwL4_UlxeBjlsqTzmEc35uTWN-W_9-it3nie_BC-7NNqRa9mBtenNr99Edmlbvg_XfA5s8_f4 priority: 102 providerName: Springer Nature |
Title | Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment |
URI | https://link.springer.com/article/10.1007/s11042-021-10711-8 https://www.ncbi.nlm.nih.gov/pubmed/33679209 https://www.proquest.com/docview/2530262218 https://www.proquest.com/docview/2499007116 https://pubmed.ncbi.nlm.nih.gov/PMC7917166 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUe-BgwAqMyEm9gUTsfjnlBbWk2vlI0UbQ9RYk_NgSkg3b8_fhSJ12ZmBQpD3acOOfz3fnufgfwXAvDo8RqKozSaKDEtCytoZUOh1LZUMQNqM-nPDmcR--P42N_4Lb0YZXtnths1Hqh8Iz8FcfyNgl3EunN-S-KVaPQu-pLaOxA323BadqD_niafz7q_AhJ7MvapkPqZCPzaTPr5DmGqSkYouBMIMZoui2aruibV8Mm__GdNiIpuwu3vS5JRmvi34Mbpt6FO22dBuLZdhduXQIdvA95VipDfpbL70SbVROJVRMMfz8lJ7OPsz8hKWtNbIkICuSITvKcNOVylq_JZPb13VvKJLmUHvcA5tn0y-SQ-qoKVEUiWlFrIltGVjjTIGUqcldcydiGsVWcWe0UBG5tasKhQeuKKeM0ikqbynIlLdM8fAi9elGbR0Dw1CgeVlomzuiyQjjbxEoTCzdyJU1SBcDaH1ooDzmOlS9-FBuwZCRC4YhQNEQo0gBedM-crwE3ru2939Kp8My3LDZLJYBnXbNjG_SFlLVZXLg-ztJD9YolAeytydq9LgwTIflQBiC2CN51QEju7Zb621kDzS0kwg-5MV-2S2PzWf-fxePrZ_EEbnJcpk2Y5T70Vr8vzFOnCq2qAeyk2cEA-qNsPM7xfnDyYTrwXOBa53z0F9-1B3E |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAceJRXoICR4AQWsfNwgoQQ2rLs0m1WQi0qp5D40SIgW9gtiD_Fb2Qmr-1S0Vul3Ow4sWfsmfHMfAPw2Cgrw9gZrqw2ZKBEvCic5aUJ_FS7QEU1qM9OFo_2wnf70f4a_OlyYSissjsT64PazDTdkT-XVN4mliiRXh1951Q1iryrXQmNhi227e9faLLNX463kL5PpBy-2R2MeFtVgOtQhQvubOiK0ClUjROhQ3yiMo1cEDkthTMoIKVziQ18S9aF0BYlamls6aROnTAEdIBH_oUwQElOmenDt73XIo7aIrqJz1ESizZJp0nVE5QIQwERaHAJwZNVQXhKuz0dpPmPp7YWgMNrcKXVXNnrhtWuw5qtNuBqVxWCtYfEBlw-AXF4A7JhoS37Vsy_MGMXddxXxSjY_oB9nE6mPwNWVIa5gvAa2Hs-yDJWF-eZv2CD6YfxFhcpO5GMdxP2zmW1b8F6NavsHWB0RxX5pUljNPGcUmgJudRGCkcuUxuXHohuQXPdApxTnY2v-RKamYiQIxHymgh54sHT_p2jBt7jzN6bHZ3ydqvP8yVjevCob8ZNSp6XorKzY-yDdiUpcyL24HZD1v5zQRCrVPqpB2qF4H0HAgBfbak-H9ZA4ColsCMc81nHGsvf-v8s7p49i4dwcbS7M8kn42z7HlySxLJ1gOcmrC9-HNv7qIQtygc15zP4dN5b7S8R0T70 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBoUB5NFDASHACq3FeXiMhBLtddWnJVhVF5RQSPwAB2cJuQfw1fh0zeW2Xit4q5WbHiT1jz4xn5huAR0baIEqc4dJqQwZKzPPcWV6Y0FfahTKuQH3epMnOYfT6KD5agT9tLgyFVbZnYnVQm6mmO_KtgMrbJAFKpC3XhEXsD0cvjr9zqiBFnta2nEbNIrv29y8032bPx0Ok9eMgGG2_HezwpsIA15GM5tzZyOWRk6gm94WO8IkLFbswdjoQzqCwDJzr29C3ZGkIbVG6FsYWLtDKCUOgB3j8r0qyinqw-mo73T_ofBhJ3JTU7fsc5bJoUnbqxD1BaTEUHoHmlxC8vywWz-i6Z0M2__HbVuJwdA3WGj2WvawZ7zqs2HIdrrY1IlhzZKzDlVOAhzcgHeXasm_57Aszdl5FgZWMQu8_sveTvcnPkOWlYS4n9AZ2wAdpyqpSPbNnbDB5Nx5yodip1LybcHgh630LeuW0tBvA6MYq9gujEjT4nJRoFzllY4kjF8omhQeiXdBMN3DnVHXja7YAaiYiZEiErCJC1vfgSffOcQ32cW7vzZZOWbPxZ9mCTT142DXjliU_TF7a6Qn2QSuTVDuReHC7Jmv3uTBMpAp85YFcInjXgeDAl1vKz58qWHCpCPoIx3zassbit_4_izvnz-IBXMJtlu2N0927cDkgjq2iPTehN_9xYu-hRjYv7jesz-DDRe-2v4wURIY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+mask+detection+using+YOLOv3+and+faster+R-CNN+models%3A+COVID-19+environment&rft.jtitle=Multimedia+tools+and+applications&rft.au=Singh%2C+Sunil&rft.au=Ahuja%2C+Umang&rft.au=Kumar%2C+Munish&rft.au=Kumar%2C+Krishan&rft.date=2021-05-01&rft.issn=1380-7501&rft.spage=1&rft_id=info:doi/10.1007%2Fs11042-021-10711-8&rft_id=info%3Apmid%2F33679209&rft.externalDocID=33679209 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |