The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17
The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patte...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 241; p. 113738 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.08.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between − 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens.
•Three CarE genes were involved in chlorpyrifos resistance of N. lugens.•Metabolic resistance of N. lugens to chlorpyrifos is extremely attributed to CarE17.•Potential binding sites for homeobox TFs were predicted from CarE17 promoter.•Lim1β and C15 induces CarE17 expression thus increasing chlorpyrifos resistance. |
---|---|
AbstractList | The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between - 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens. The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between - 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens.The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between - 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens. The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between − 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens. The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between − 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens. •Three CarE genes were involved in chlorpyrifos resistance of N. lugens.•Metabolic resistance of N. lugens to chlorpyrifos is extremely attributed to CarE17.•Potential binding sites for homeobox TFs were predicted from CarE17 promoter.•Lim1β and C15 induces CarE17 expression thus increasing chlorpyrifos resistance. |
ArticleNumber | 113738 |
Author | Li, Yimin Lu, Kai Sun, Zhongxiang Xiao, Tianxiang |
Author_xml | – sequence: 1 givenname: Kai surname: Lu fullname: Lu, Kai email: lukai@ahau.edu.cn organization: Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China – sequence: 2 givenname: Yimin surname: Li fullname: Li, Yimin organization: College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China – sequence: 3 givenname: Tianxiang surname: Xiao fullname: Xiao, Tianxiang organization: Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China – sequence: 4 givenname: Zhongxiang surname: Sun fullname: Sun, Zhongxiang email: szx@ynau.edu.cn organization: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35679727$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFN0DISzYZ_Bc7YYGERqWtVMGmrC3Hvm498sSD7RmRtydDWhYsYHUl65zvXp9zgc7GNAJCbylZU0Llh-0abILxuGaEsTWlXPHuBVpR0pOGCSrO0IpQoRrZUn6OLkrZEkI4adtX6Jy3UvWKqRUa7x8B76CaIcVgcYYSSjWjBZw8_hqi2Zt8NNXgeHiAseCasH2MKe-nHHwqOBS8M2GME3Y5HGHEw4TrjLQmD-nnFKFUyKYA3ph8RdVr9NKbWODN07xE379c3W9umrtv17ebz3eNFUrUxgOF3jPO-SBc30rqOilBcka6vrWq4-w0fOvAs54ywzruW8KoVKIbQPT8Et0uXJfMVu9z2Jk86WSC_v2Q8oM2uQYbQTsheUs85YxRAc71TDDpOrDcSk47ObPeL6x9Tj8O84f0LhQLMZoR0qFoJtV8IePkJH33JD0MO3B_Fj_nPQs-LgKbUykZvLahmhrSWLMJUVOiT-XqrV7K1ady9VLubBZ_mZ_5_7F9WmwwB34MkHWxAeaKXchg65xI-DfgFwi9vss |
CitedBy_id | crossref_primary_10_1002_ps_8054 crossref_primary_10_1016_j_scitotenv_2024_172035 crossref_primary_10_1016_j_ibmb_2025_104299 crossref_primary_10_1021_acs_jafc_4c10518 crossref_primary_10_1016_j_ijbiomac_2022_08_014 crossref_primary_10_1021_acs_jafc_4c03361 crossref_primary_10_1021_acs_jafc_3c00002 crossref_primary_10_1016_j_pestbp_2025_106369 crossref_primary_10_3390_ijms252010981 crossref_primary_10_1016_j_ijbiomac_2024_138108 crossref_primary_10_1016_j_jare_2024_09_015 crossref_primary_10_1016_j_pestbp_2024_106009 crossref_primary_10_1007_s44297_023_00012_x crossref_primary_10_3390_insects15060461 crossref_primary_10_3390_insects15100743 crossref_primary_10_1016_j_cub_2024_10_068 crossref_primary_10_1016_j_pestbp_2022_105321 crossref_primary_10_1016_j_pestbp_2024_106199 |
Cites_doi | 10.1021/acs.biochem.7b00774 10.1016/j.ibmb.2010.06.007 10.1002/ps.5282 10.1007/s00412-015-0543-8 10.1016/j.pestbp.2021.104781 10.1007/s00239-003-2492-8 10.1006/meth.2001.1262 10.1016/j.chemosphere.2020.127490 10.1016/j.ibmb.2017.11.007 10.1016/j.ibmb.2012.09.003 10.1242/dev.01161 10.1111/imb.12659 10.1016/j.cois.2020.11.004 10.1046/j.1365-2583.2000.00228.x 10.1016/j.ibmb.2014.05.003 10.1584/jpestics.30.75 10.1073/pnas.1515137113 10.1073/pnas.1304097110 10.1016/j.chemosphere.2020.128269 10.1016/j.ibmb.2019.103246 10.1371/journal.pgen.1009403 10.1002/ps.6808 10.1007/s11356-020-09279-x 10.1371/journal.pgen.1006718 10.1007/s13205-022-03137-y 10.1016/j.chemosphere.2019.125203 10.1111/1744-7917.12254 10.1016/j.pestbp.2021.104875 10.1016/S0167-4781(01)00344-X 10.1016/j.pestbp.2015.12.001 10.1002/ps.4816 10.1016/j.pestbp.2019.07.010 10.1146/annurev.ento.51.110104.151104 10.1073/pnas.1913603117 10.1007/s13355-013-0174-6 10.1111/imb.12173 10.1111/1744-7917.12927 10.1002/ps.2049 10.1016/j.pestbp.2019.06.004 10.1007/s12284-010-9050-y 10.1111/imb.12309 10.1016/j.jhazmat.2019.121698 10.1016/j.jinsphys.2015.01.007 10.1146/annurev-ento-112408-085356 10.1042/bj3490863 10.1111/1744-7917.12829 10.1016/j.pestbp.2021.104800 10.1016/j.pestbp.2021.104822 10.1111/j.1365-2583.2005.00582.x 10.1016/j.ibmb.2010.09.007 10.1111/1744-7917.12764 10.1242/dev.02689 10.1111/j.1365-2583.2010.01038.x 10.1016/j.pestbp.2015.10.016 10.1002/ps.4729 10.1016/j.ibmb.2016.10.009 10.1046/j.1365-2583.2000.00229.x |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 DOA |
DOI | 10.1016/j.ecoenv.2022.113738 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_d46350f132214edd92426d8ec3c63186 35679727 10_1016_j_ecoenv_2022_113738 S0147651322005784 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ H~9 IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K VH1 WUQ XPP ZMT ZU3 ZXP ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c474t-fe1e9f2333b4d9561d866e6320895c783295c7f5def2912a283f50216748be493 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:28:54 EDT 2025 Fri Jul 11 11:29:39 EDT 2025 Wed Feb 19 02:26:59 EST 2025 Tue Jul 01 04:00:35 EDT 2025 Thu Apr 24 23:04:59 EDT 2025 Fri Feb 23 02:40:32 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Homeobox Metabolic detoxification Insecticide resistance Regulatory mechanism Brown planthopper |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-fe1e9f2333b4d9561d866e6320895c783295c7f5def2912a283f50216748be493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651322005784 |
PMID | 35679727 |
PQID | 2675612306 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d46350f132214edd92426d8ec3c63186 proquest_miscellaneous_2675612306 pubmed_primary_35679727 crossref_citationtrail_10_1016_j_ecoenv_2022_113738 crossref_primary_10_1016_j_ecoenv_2022_113738 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2022_113738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Mao, Ren, Li, Cai, Qin, Wan, Jin, He, Li (bib35) 2021; 28 Yang, X., Deng, S., Wei, X., Yang, J., Zhao, Q., Yin, C., Du, T., Guo, Z., Xia, J., Yang, Z., Xie, W., Wang, S., Wu, Q., Yang, F., Zhou, X., Nauen, R., Bass, C., Zhang, Y., 2020. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. Proc. Natl. Acad. Sci. U. S. A. 117, 10246–10253. Malathi, Jalali, Gowda, Mohan, Venkatesan (bib34) 2017; 24 Liao, Xu, Gong, Wan, Li (bib22) 2021; 28 Vontas, Small, Hemingway (bib49) 2000; 9 Cheng, Li, Li, Song, Zeng, Lu (bib7) 2021; 263 Zhang, Zhang, Wang, Yang, Cang, Liu (bib59) 2016; 132 Bass, Puinean, Zimmer, Denholm, Field, Foster, Gutbrod, Nauen, Slater, Williamson (bib4) 2014; 51 Hu, Ren, Fan, Huang, Wang, Mohammed Esmail Abdalla, Bass, Subba Reddy, Su (bib16) 2020; 398 Wu, Yang, Yuan, Campbell, Teese, Russell, Oakeshott, Wu (bib55) 2011; 41 Li, Schuler, Berenbaum (bib20) 2007; 52 Mirza, Yarahmadi, Jalal-Abadi, Meraaten (bib38) 2020; 206 Zhang, Zhang, Yang, Jia, Guo, Ma, Zhu (bib58) 2011; 67 Liu, Ding, Zhang, Yang, Liu (bib24) 2010; 40 Lu, Li, Cheng, Li, Song, Zeng, Sun (bib29) 2021; 173 Vontas, Blass, Koutsos, David, Kafatos, Louis, Hemingway, Christophides, Ranson (bib48) 2005; 14 Wang, Jin, Liu, Gao, Deng, Wan, Li (bib52) 2021; 176 Zhao, Huang, Zhang (bib62) 2019; 115 Veres, Wyckhuys, Kiss, Tóth, Burgio, Pons, Avilla, Vidal, Razinger, Bazok (bib47) 2020; 27 Tang, Cheng, Li, Li, Ma, Zhou, Lu (bib44) 2020; 29 Wu, Zeng, Zheng, Mu, Zhang, Hu, Zhang, Gao, Shen (bib54) 2018; 8 Arrese, Soulages (bib3) 2010; 55 Lin, Park, Kirov, Rushlow (bib23) 2006; 133 Lu, Song, Zeng (bib31) 2021; 43 Lu, Wang, Chen, Zhang, Li, Li, Zhou (bib32) 2017; 203 Tang, Cheng, Li, Li, Ma, Zhou, Lu (bib45) 2020; 259 Tang, Xu, Liu, Zhou, Karthi, Yang, Li (bib46) 2022; 12 Dulbecco, Moriconi, Pedrini (bib9) 2021; 173 Hopkins, Fraser, Mabbitt, Carr, Oakeshott, Jackson (bib14) 2017; 56 Lu, Shu, Zhou, Zhang, Zhang, Chen, Yao, Zhou, Zhang (bib30) 2015; 73 Lu, Li, Cheng, Ni, Chen, Li, Tang, Sun, Li, Liu, Qin, Chen, Zeng, Song (bib28) 2019; 160 Liao, Jin, Zhang, Ali, Mao, Xu, Li, Wan (bib21) 2019; 75 Jackson, C.J., Liu, J.-W., Carr, P.D., Younus, F., Coppin, C., Meirelles, T., Lethier, M., Pandey, G., Ollis, D.L., Russell, R.J., 2013. Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. Proc. Natl. Acad. Sci. U. S. A. 110, 10177–10182. Hawkes, Hemingway (bib13) 2002; 1574 Daborn, Lumb, Harrop, Blasetti, Pasricha, Morin, Mitchell, Donnelly, Müller, Batterham (bib8) 2012; 42 Jena, Kim (bib18) 2010; 3 Livak, Schmittgen (bib25) 2001; 25 Proc. Natl. Acad. Sci. U. S. A. 113, 1321–1326. Pueyo, Couso (bib40) 2004; 131 Zhang, Yang, Sun, Liu (bib61) 2016; 79 Gong, Li, Li, Liu (bib12) 2022; 29 Small, Hemingway (bib43) 2000; 9 Chen, Zhang, Yao, Zhang, Dong, Tian, Chen, Zhang (bib6) 2010; 19 Matsumura, Sanada‐Morimura, Otuka, Sonoda, Van Thanh, Van Chien, Van Tuong, Loc, Liu, Zhu (bib37) 2018; 74 Mojica-Vazquez, Benetah, Baanannou, Bernat-Fabre, Deplancke, Cribbs, Bourbon, Boube (bib39) 2017; 13 Feng, Li, Liu (bib10) 2018; 92 Shi, Li, Zhou, Liao, Shi (bib42) 2021; 78 Li, Li, Zhu, Gao, Liang (bib19) 2018; 74 Marshall, Putterill, Plummer, Newcomb (bib36) 2003; 57 Wang, Huang, Lu, Jiang, Smagghe, Feng, Yuan, Wei, Wang (bib51) 2015; 24 Wheelock, Shan, Ottea (bib53) 2005; 30 Punyawattoe, Han, Sriratanasak, Arunmit, Chaiwong, Bullangpoti (bib41) 2013; 48 Lu, Xu, Meng, Wang, Niu, Wang (bib33) 2020; 242 Bürglin, Affolter (bib5) 2016; 125 Zhang, Yang, Li, Liu, Liu (bib60) 2017; 26 Wang, Lu, Meng, Huang, Wei, Jiang, Smagghe, Wang (bib50) 2016; 130 Amezian, Nauen, Le Goff (bib2) 2021; 174 Lu, Cheng, Li, Li, Zeng, Song (bib26) 2020; 387 Lu, Cheng, Li, Ni, Chen, Li, Tang, Li, Chen, Zeng, Song (bib27) 2019; 159 Field (bib11) 2000; 349 Yuan, Lu, Xun, Hu, Muhammad, Sha, Jin, Li, Wang (bib57) 2014; 9 Afschar, S., Toivonen, J.M., Hoffmann, J.M., Tain, L.S., Wieser, D., Finlayson, A.J., Driege, Y., Alic, N., Emran, S., Stinn, J., 2016. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Hu, Huang, Hu, Ren, Wei, Tian, Esmail Abdalla Elzaki, Bass, Su, Reddy Palli (bib15) 2021; 17 10.1016/j.ecoenv.2022.113738_bib1 Tang (10.1016/j.ecoenv.2022.113738_bib46) 2022; 12 Li (10.1016/j.ecoenv.2022.113738_bib20) 2007; 52 Mao (10.1016/j.ecoenv.2022.113738_bib35) 2021; 28 Feng (10.1016/j.ecoenv.2022.113738_bib10) 2018; 92 Wu (10.1016/j.ecoenv.2022.113738_bib54) 2018; 8 Matsumura (10.1016/j.ecoenv.2022.113738_bib37) 2018; 74 Bass (10.1016/j.ecoenv.2022.113738_bib4) 2014; 51 Lu (10.1016/j.ecoenv.2022.113738_bib32) 2017; 203 Veres (10.1016/j.ecoenv.2022.113738_bib47) 2020; 27 Liao (10.1016/j.ecoenv.2022.113738_bib21) 2019; 75 Pueyo (10.1016/j.ecoenv.2022.113738_bib40) 2004; 131 Wang (10.1016/j.ecoenv.2022.113738_bib52) 2021; 176 Field (10.1016/j.ecoenv.2022.113738_bib11) 2000; 349 Small (10.1016/j.ecoenv.2022.113738_bib43) 2000; 9 Tang (10.1016/j.ecoenv.2022.113738_bib44) 2020; 29 Marshall (10.1016/j.ecoenv.2022.113738_bib36) 2003; 57 Tang (10.1016/j.ecoenv.2022.113738_bib45) 2020; 259 Lu (10.1016/j.ecoenv.2022.113738_bib27) 2019; 159 Wu (10.1016/j.ecoenv.2022.113738_bib55) 2011; 41 10.1016/j.ecoenv.2022.113738_bib56 10.1016/j.ecoenv.2022.113738_bib17 Liu (10.1016/j.ecoenv.2022.113738_bib24) 2010; 40 Zhao (10.1016/j.ecoenv.2022.113738_bib62) 2019; 115 Hu (10.1016/j.ecoenv.2022.113738_bib16) 2020; 398 Vontas (10.1016/j.ecoenv.2022.113738_bib49) 2000; 9 Li (10.1016/j.ecoenv.2022.113738_bib19) 2018; 74 Arrese (10.1016/j.ecoenv.2022.113738_bib3) 2010; 55 Wang (10.1016/j.ecoenv.2022.113738_bib50) 2016; 130 Lu (10.1016/j.ecoenv.2022.113738_bib29) 2021; 173 Wang (10.1016/j.ecoenv.2022.113738_bib51) 2015; 24 Amezian (10.1016/j.ecoenv.2022.113738_bib2) 2021; 174 Shi (10.1016/j.ecoenv.2022.113738_bib42) 2021; 78 Liao (10.1016/j.ecoenv.2022.113738_bib22) 2021; 28 Mirza (10.1016/j.ecoenv.2022.113738_bib38) 2020; 206 Gong (10.1016/j.ecoenv.2022.113738_bib12) 2022; 29 Lu (10.1016/j.ecoenv.2022.113738_bib30) 2015; 73 Jena (10.1016/j.ecoenv.2022.113738_bib18) 2010; 3 Hu (10.1016/j.ecoenv.2022.113738_bib15) 2021; 17 Malathi (10.1016/j.ecoenv.2022.113738_bib34) 2017; 24 Mojica-Vazquez (10.1016/j.ecoenv.2022.113738_bib39) 2017; 13 Zhang (10.1016/j.ecoenv.2022.113738_bib59) 2016; 132 Lin (10.1016/j.ecoenv.2022.113738_bib23) 2006; 133 Chen (10.1016/j.ecoenv.2022.113738_bib6) 2010; 19 Hopkins (10.1016/j.ecoenv.2022.113738_bib14) 2017; 56 Daborn (10.1016/j.ecoenv.2022.113738_bib8) 2012; 42 Dulbecco (10.1016/j.ecoenv.2022.113738_bib9) 2021; 173 Zhang (10.1016/j.ecoenv.2022.113738_bib61) 2016; 79 Zhang (10.1016/j.ecoenv.2022.113738_bib60) 2017; 26 Wheelock (10.1016/j.ecoenv.2022.113738_bib53) 2005; 30 Zhang (10.1016/j.ecoenv.2022.113738_bib58) 2011; 67 Hawkes (10.1016/j.ecoenv.2022.113738_bib13) 2002; 1574 Lu (10.1016/j.ecoenv.2022.113738_bib26) 2020; 387 Livak (10.1016/j.ecoenv.2022.113738_bib25) 2001; 25 Lu (10.1016/j.ecoenv.2022.113738_bib31) 2021; 43 Lu (10.1016/j.ecoenv.2022.113738_bib33) 2020; 242 Vontas (10.1016/j.ecoenv.2022.113738_bib48) 2005; 14 Yuan (10.1016/j.ecoenv.2022.113738_bib57) 2014; 9 Cheng (10.1016/j.ecoenv.2022.113738_bib7) 2021; 263 Lu (10.1016/j.ecoenv.2022.113738_bib28) 2019; 160 Bürglin (10.1016/j.ecoenv.2022.113738_bib5) 2016; 125 Punyawattoe (10.1016/j.ecoenv.2022.113738_bib41) 2013; 48 |
References_xml | – volume: 43 start-page: 103 year: 2021 end-page: 107 ident: bib31 article-title: The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics publication-title: Curr. Opin. Insect Sci. – volume: 259 year: 2020 ident: bib45 article-title: Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, publication-title: Chemosphere – reference: Afschar, S., Toivonen, J.M., Hoffmann, J.M., Tain, L.S., Wieser, D., Finlayson, A.J., Driege, Y., Alic, N., Emran, S., Stinn, J., 2016. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant – volume: 3 start-page: 161 year: 2010 end-page: 171 ident: bib18 article-title: Current status of brown planthopper (BPH) resistance and genetics publication-title: Rice – volume: 75 start-page: 1646 year: 2019 end-page: 1654 ident: bib21 article-title: Characterization of sulfoxaflor resistance in the brown planthopper, publication-title: Pest Manag. Sci. – volume: 55 start-page: 207 year: 2010 end-page: 225 ident: bib3 article-title: Insect fat body: energy, metabolism, and regulation publication-title: Annu. Rev. Entomol. – volume: 173 year: 2021 ident: bib9 article-title: Knockdown of publication-title: Pestic. Biochem. Physiol. – volume: 159 start-page: 118 year: 2019 end-page: 126 ident: bib27 article-title: Copper-induced H publication-title: Pestic. Biochem. Physiol. – reference: . Proc. Natl. Acad. Sci. U. S. A. 113, 1321–1326. – volume: 42 start-page: 918 year: 2012 end-page: 924 ident: bib8 article-title: Using publication-title: Insect Biochem. Mol. Biol. – volume: 176 year: 2021 ident: bib52 article-title: Functional characterization of the transcription factors AhR and ARNT in publication-title: Pestic. Biochem. Physiol. – volume: 52 start-page: 231 year: 2007 end-page: 253 ident: bib20 article-title: Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics publication-title: Annu. Rev. Entomol. – volume: 17 year: 2021 ident: bib15 article-title: Changes in both trans-and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, publication-title: PLoS Genet – volume: 14 start-page: 509 year: 2005 end-page: 521 ident: bib48 article-title: Gene expression in insecticide resistant and susceptible publication-title: Insect Mol. Biol. – volume: 48 start-page: 205 year: 2013 end-page: 211 ident: bib41 article-title: Ethiprole resistance in publication-title: Appl. Entomol. Zool. – volume: 30 start-page: 75 year: 2005 end-page: 83 ident: bib53 article-title: Overview of carboxylesterases and their role in the metabolism of insecticides publication-title: J. Pestic. Sci. – volume: 125 start-page: 497 year: 2016 end-page: 521 ident: bib5 article-title: Homeodomain proteins: an update publication-title: Chromosoma – volume: 173 year: 2021 ident: bib29 article-title: Activation of the NR2E nuclear receptor HR83 leads to metabolic detoxification-mediated chlorpyrifos resistance in publication-title: Pestic. Biochem. Physiol. – volume: 349 start-page: 863 year: 2000 end-page: 868 ident: bib11 article-title: Methylation and expression of amplified esterase genes in the aphid publication-title: Biochem. J. – volume: 206 year: 2020 ident: bib38 article-title: Enzymes mediating resistance to chlorpyriphos in publication-title: Ecotox. Environ. Safe – volume: 24 start-page: 35 year: 2017 end-page: 46 ident: bib34 article-title: Establishing the role of detoxifying enzymes in field‐evolved resistance to various insecticides in the brown planthopper ( publication-title: Insect Sci. – volume: 13 year: 2017 ident: bib39 article-title: Tissue-specific enhancer repression through molecular integration of cell signaling inputs publication-title: PLoS Genet – volume: 19 start-page: 777 year: 2010 end-page: 786 ident: bib6 article-title: Feeding‐based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, publication-title: Insect Mol. Biol. – reference: Jackson, C.J., Liu, J.-W., Carr, P.D., Younus, F., Coppin, C., Meirelles, T., Lethier, M., Pandey, G., Ollis, D.L., Russell, R.J., 2013. Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. Proc. Natl. Acad. Sci. U. S. A. 110, 10177–10182. – volume: 41 start-page: 14 year: 2011 end-page: 21 ident: bib55 article-title: Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, publication-title: Insect Biochem. Mol. Biol. – volume: 26 start-page: 453 year: 2017 end-page: 460 ident: bib60 article-title: Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, publication-title: Insect Mol. Biol. – volume: 115 year: 2019 ident: bib62 article-title: Mutations in publication-title: Insect Biochem. Mol. Biol. – volume: 203 start-page: 12 year: 2017 end-page: 20 ident: bib32 article-title: Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in publication-title: Comp. Biochem. Physiol. C. – volume: 398 year: 2020 ident: bib16 article-title: Xenobiotic transcription factors CncC and maf regulate expression of publication-title: J. Hazard. Mater. – volume: 74 start-page: 456 year: 2018 end-page: 464 ident: bib37 article-title: Insecticide susceptibilities of the two rice planthoppers publication-title: Pest Manag. Sci. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib25 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 publication-title: Methods – volume: 174 year: 2021 ident: bib2 article-title: Transcriptional regulation of xenobiotic detoxification genes in insects-an overview publication-title: Pestic. Biochem. Physiol. – volume: 1574 start-page: 51 year: 2002 end-page: 62 ident: bib13 article-title: Analysis of the promoters for the β-esterase genes associated with insecticide resistance in the mosquito publication-title: BBA-Gene Struct. Expr. – volume: 160 start-page: 127 year: 2019 end-page: 135 ident: bib28 article-title: Copper exposure enhances publication-title: Pestic. Biochem. Physiol. – volume: 9 start-page: 655 year: 2000 end-page: 660 ident: bib49 article-title: Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, publication-title: Insect Mol. Biol. – volume: 92 start-page: 30 year: 2018 end-page: 39 ident: bib10 article-title: Carboxylesterase genes in pyrethroid resistant house flies, publication-title: Insect Biochem. Mol. Biol. – volume: 387 year: 2020 ident: bib26 article-title: Activation of CncC pathway by ROS burst regulates cytochrome P450 publication-title: J. Hazard. Mater. – volume: 131 start-page: 3107 year: 2004 end-page: 3120 ident: bib40 article-title: Chip-mediated partnerships of the homeodomain proteins Bar and Aristaless with the LIM-HOM proteins Apterous and Lim1 regulate distal leg development publication-title: Development – volume: 74 start-page: 1386 year: 2018 end-page: 1393 ident: bib19 article-title: Overexpression of cytochrome P450 publication-title: Pest Manag. Sci. – volume: 24 start-page: 467 year: 2015 end-page: 479 ident: bib51 article-title: Overexpression of two α‐esterase genes mediates metabolic resistance to malathion in the oriental fruit fly, publication-title: Insect Mol. Biol. – volume: 67 start-page: 183 year: 2011 end-page: 190 ident: bib58 article-title: Genomics‐based approaches to screening carboxylesterase‐like genes potentially involved in malathion resistance in oriental migratory locust ( publication-title: Pest Manag. Sci. – volume: 132 start-page: 59 year: 2016 end-page: 64 ident: bib59 article-title: Expression induction of P450 genes by imidacloprid in publication-title: Pestic. Biochem. Physiol. – volume: 29 start-page: 511 year: 2020 end-page: 522 ident: bib44 article-title: Adipokinetic hormone enhances CarE‐mediated chlorpyrifos resistance in the brown planthopper, publication-title: Insect Mol. Biol. – volume: 78 start-page: 1903 year: 2021 end-page: 1914 ident: bib42 article-title: Contribution of multiple overexpressed carboxylesterase genes to indoxacarb resistance in publication-title: Pest Manag. Sci. – volume: 12 start-page: 1 year: 2022 end-page: 8 ident: bib46 article-title: A review of physiological resistance to insecticide stress in publication-title: 3 Biotech – volume: 51 start-page: 41 year: 2014 end-page: 51 ident: bib4 article-title: The evolution of insecticide resistance in the peach potato aphid, publication-title: Insect Biochem. Mol. Biol. – volume: 130 start-page: 44 year: 2016 end-page: 51 ident: bib50 article-title: Functional characterization of an α-esterase gene involving malathion detoxification in publication-title: Pestic. Biochem. Physiol. – volume: 263 year: 2021 ident: bib7 article-title: Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in publication-title: Chemosphere – reference: Yang, X., Deng, S., Wei, X., Yang, J., Zhao, Q., Yin, C., Du, T., Guo, Z., Xia, J., Yang, Z., Xie, W., Wang, S., Wu, Q., Yang, F., Zhou, X., Nauen, R., Bass, C., Zhang, Y., 2020. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. Proc. Natl. Acad. Sci. U. S. A. 117, 10246–10253. – volume: 9 start-page: 647 year: 2000 end-page: 653 ident: bib43 article-title: Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, publication-title: Insect Mol. Biol. – volume: 56 start-page: 5512 year: 2017 end-page: 5525 ident: bib14 article-title: Structure of an insecticide sequestering carboxylesterase from the disease vector publication-title: Biochemistry – volume: 242 year: 2020 ident: bib33 article-title: Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly, publication-title: Chemosphere – volume: 79 start-page: 50 year: 2016 end-page: 56 ident: bib61 article-title: Metabolic imidacloprid resistance in the brown planthopper, publication-title: Insect Biochem. Mol. Biol. – volume: 133 start-page: 4805 year: 2006 end-page: 4813 ident: bib23 article-title: Threshold response of publication-title: Development – volume: 9 year: 2014 ident: bib57 article-title: Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, publication-title: PLoS ONE – volume: 28 start-page: 1049 year: 2021 end-page: 1060 ident: bib35 article-title: Carboxylesterase genes in nitenpyram‐resistant brown planthoppers, publication-title: Insect Sci. – volume: 40 start-page: 666 year: 2010 end-page: 671 ident: bib24 article-title: Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, publication-title: Insect Biochem. Mol. Biol. – volume: 27 start-page: 29867 year: 2020 end-page: 29899 ident: bib47 article-title: An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: alternatives in major cropping systems publication-title: Environ. Sci. Pollut. Res. – volume: 28 start-page: 115 year: 2021 end-page: 126 ident: bib22 article-title: Current susceptibilities of brown planthopper publication-title: Insect Sci. – volume: 8 start-page: 1 year: 2018 end-page: 11 ident: bib54 article-title: The evolution of insecticide resistance in the brown planthopper ( publication-title: Sci. Rep. – volume: 29 start-page: 199 year: 2022 end-page: 214 ident: bib12 article-title: Molecular and functional characterization of three novel carboxylesterases in the detoxification of permethrin in the mosquito, publication-title: Insect Sci. – volume: 73 start-page: 20 year: 2015 end-page: 29 ident: bib30 article-title: Molecular characterization and RNA interference analysis of vitellogenin receptor from publication-title: J. Insect Physiol. – volume: 57 start-page: 487 year: 2003 end-page: 500 ident: bib36 article-title: The carboxylesterase gene family from Arabidopsis thaliana publication-title: J. Mol. Evol. – volume: 56 start-page: 5512 year: 2017 ident: 10.1016/j.ecoenv.2022.113738_bib14 article-title: Structure of an insecticide sequestering carboxylesterase from the disease vector Culex quinquefasciatus: what makes an enzyme a good insecticide sponge? publication-title: Biochemistry doi: 10.1021/acs.biochem.7b00774 – volume: 40 start-page: 666 year: 2010 ident: 10.1016/j.ecoenv.2022.113738_bib24 article-title: Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2010.06.007 – volume: 75 start-page: 1646 year: 2019 ident: 10.1016/j.ecoenv.2022.113738_bib21 article-title: Characterization of sulfoxaflor resistance in the brown planthopper, Nilaparvata lugens (Stål) publication-title: Pest Manag. Sci. doi: 10.1002/ps.5282 – volume: 125 start-page: 497 year: 2016 ident: 10.1016/j.ecoenv.2022.113738_bib5 article-title: Homeodomain proteins: an update publication-title: Chromosoma doi: 10.1007/s00412-015-0543-8 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.ecoenv.2022.113738_bib54 article-title: The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012–2016 publication-title: Sci. Rep. – volume: 173 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib9 article-title: Knockdown of CYP4PR1, a cytochrome P450 gene highly expressed in the integument tissue of Triatoma infestans, increases susceptibility to deltamethrin in pyrethroid-resistant insects publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2021.104781 – volume: 57 start-page: 487 year: 2003 ident: 10.1016/j.ecoenv.2022.113738_bib36 article-title: The carboxylesterase gene family from Arabidopsis thaliana publication-title: J. Mol. Evol. doi: 10.1007/s00239-003-2492-8 – volume: 25 start-page: 402 year: 2001 ident: 10.1016/j.ecoenv.2022.113738_bib25 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 259 year: 2020 ident: 10.1016/j.ecoenv.2022.113738_bib45 article-title: Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugens publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127490 – volume: 92 start-page: 30 year: 2018 ident: 10.1016/j.ecoenv.2022.113738_bib10 article-title: Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2017.11.007 – volume: 203 start-page: 12 year: 2017 ident: 10.1016/j.ecoenv.2022.113738_bib32 article-title: Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in Nilaparvata lugens (Stål) publication-title: Comp. Biochem. Physiol. C. – volume: 42 start-page: 918 year: 2012 ident: 10.1016/j.ecoenv.2022.113738_bib8 article-title: Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2012.09.003 – volume: 131 start-page: 3107 year: 2004 ident: 10.1016/j.ecoenv.2022.113738_bib40 article-title: Chip-mediated partnerships of the homeodomain proteins Bar and Aristaless with the LIM-HOM proteins Apterous and Lim1 regulate distal leg development publication-title: Development doi: 10.1242/dev.01161 – volume: 29 start-page: 511 year: 2020 ident: 10.1016/j.ecoenv.2022.113738_bib44 article-title: Adipokinetic hormone enhances CarE‐mediated chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens publication-title: Insect Mol. Biol. doi: 10.1111/imb.12659 – volume: 43 start-page: 103 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib31 article-title: The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics publication-title: Curr. Opin. Insect Sci. doi: 10.1016/j.cois.2020.11.004 – volume: 9 start-page: 655 year: 2000 ident: 10.1016/j.ecoenv.2022.113738_bib49 article-title: Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stål) publication-title: Insect Mol. Biol. doi: 10.1046/j.1365-2583.2000.00228.x – volume: 51 start-page: 41 year: 2014 ident: 10.1016/j.ecoenv.2022.113738_bib4 article-title: The evolution of insecticide resistance in the peach potato aphid, Myzus persicae publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2014.05.003 – volume: 30 start-page: 75 year: 2005 ident: 10.1016/j.ecoenv.2022.113738_bib53 article-title: Overview of carboxylesterases and their role in the metabolism of insecticides publication-title: J. Pestic. Sci. doi: 10.1584/jpestics.30.75 – ident: 10.1016/j.ecoenv.2022.113738_bib1 doi: 10.1073/pnas.1515137113 – ident: 10.1016/j.ecoenv.2022.113738_bib17 doi: 10.1073/pnas.1304097110 – volume: 263 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib7 article-title: Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128269 – volume: 115 year: 2019 ident: 10.1016/j.ecoenv.2022.113738_bib62 article-title: Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2019.103246 – volume: 17 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib15 article-title: Changes in both trans-and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua publication-title: PLoS Genet doi: 10.1371/journal.pgen.1009403 – volume: 78 start-page: 1903 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib42 article-title: Contribution of multiple overexpressed carboxylesterase genes to indoxacarb resistance in Spodoptera litura publication-title: Pest Manag. Sci. doi: 10.1002/ps.6808 – volume: 27 start-page: 29867 year: 2020 ident: 10.1016/j.ecoenv.2022.113738_bib47 article-title: An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: alternatives in major cropping systems publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-09279-x – volume: 13 year: 2017 ident: 10.1016/j.ecoenv.2022.113738_bib39 article-title: Tissue-specific enhancer repression through molecular integration of cell signaling inputs publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006718 – volume: 398 year: 2020 ident: 10.1016/j.ecoenv.2022.113738_bib16 article-title: Xenobiotic transcription factors CncC and maf regulate expression of CYP321A16 and CYP332A1 that mediate chlorpyrifos resistance in Spodoptera exigua publication-title: J. Hazard. Mater. – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.ecoenv.2022.113738_bib46 article-title: A review of physiological resistance to insecticide stress in Nilaparvata lugens publication-title: 3 Biotech doi: 10.1007/s13205-022-03137-y – volume: 242 year: 2020 ident: 10.1016/j.ecoenv.2022.113738_bib33 article-title: Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125203 – volume: 24 start-page: 35 year: 2017 ident: 10.1016/j.ecoenv.2022.113738_bib34 article-title: Establishing the role of detoxifying enzymes in field‐evolved resistance to various insecticides in the brown planthopper (Nilaparvata lugens) in South India publication-title: Insect Sci. doi: 10.1111/1744-7917.12254 – volume: 176 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib52 article-title: Functional characterization of the transcription factors AhR and ARNT in Nilaparvata lugens publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2021.104875 – volume: 1574 start-page: 51 year: 2002 ident: 10.1016/j.ecoenv.2022.113738_bib13 article-title: Analysis of the promoters for the β-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus publication-title: BBA-Gene Struct. Expr. doi: 10.1016/S0167-4781(01)00344-X – volume: 130 start-page: 44 year: 2016 ident: 10.1016/j.ecoenv.2022.113738_bib50 article-title: Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel) publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2015.12.001 – volume: 74 start-page: 1386 year: 2018 ident: 10.1016/j.ecoenv.2022.113738_bib19 article-title: Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.) publication-title: Pest Manag. Sci. doi: 10.1002/ps.4816 – volume: 160 start-page: 127 year: 2019 ident: 10.1016/j.ecoenv.2022.113738_bib28 article-title: Copper exposure enhances Spodoptera litura larval tolerance to β-cypermethrin publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2019.07.010 – volume: 52 start-page: 231 year: 2007 ident: 10.1016/j.ecoenv.2022.113738_bib20 article-title: Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.ento.51.110104.151104 – ident: 10.1016/j.ecoenv.2022.113738_bib56 doi: 10.1073/pnas.1913603117 – volume: 48 start-page: 205 year: 2013 ident: 10.1016/j.ecoenv.2022.113738_bib41 article-title: Ethiprole resistance in Nilaparvata lugens (Hemiptera: Delphacidae): possible mechanisms and cross-resistance publication-title: Appl. Entomol. Zool. doi: 10.1007/s13355-013-0174-6 – volume: 24 start-page: 467 year: 2015 ident: 10.1016/j.ecoenv.2022.113738_bib51 article-title: Overexpression of two α‐esterase genes mediates metabolic resistance to malathion in the oriental fruit fly, Bactrocera dorsalis (Hendel) publication-title: Insect Mol. Biol. doi: 10.1111/imb.12173 – volume: 29 start-page: 199 year: 2022 ident: 10.1016/j.ecoenv.2022.113738_bib12 article-title: Molecular and functional characterization of three novel carboxylesterases in the detoxification of permethrin in the mosquito, Culex quinquefasciatus publication-title: Insect Sci. doi: 10.1111/1744-7917.12927 – volume: 206 year: 2020 ident: 10.1016/j.ecoenv.2022.113738_bib38 article-title: Enzymes mediating resistance to chlorpyriphos in Aphis fabae (Homoptera: Aphididae) publication-title: Ecotox. Environ. Safe – volume: 67 start-page: 183 year: 2011 ident: 10.1016/j.ecoenv.2022.113738_bib58 article-title: Genomics‐based approaches to screening carboxylesterase‐like genes potentially involved in malathion resistance in oriental migratory locust (Locusta migratoria manilensis) publication-title: Pest Manag. Sci. doi: 10.1002/ps.2049 – volume: 159 start-page: 118 year: 2019 ident: 10.1016/j.ecoenv.2022.113738_bib27 article-title: Copper-induced H2O2 accumulation confers larval tolerance to xanthotoxin by modulating CYP6B50 expression in Spodoptera litura publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2019.06.004 – volume: 3 start-page: 161 year: 2010 ident: 10.1016/j.ecoenv.2022.113738_bib18 article-title: Current status of brown planthopper (BPH) resistance and genetics publication-title: Rice doi: 10.1007/s12284-010-9050-y – volume: 26 start-page: 453 year: 2017 ident: 10.1016/j.ecoenv.2022.113738_bib60 article-title: Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål publication-title: Insect Mol. Biol. doi: 10.1111/imb.12309 – volume: 387 year: 2020 ident: 10.1016/j.ecoenv.2022.113738_bib26 article-title: Activation of CncC pathway by ROS burst regulates cytochrome P450 CYP6AB12 responsible for λ-cyhalothrin tolerance in Spodoptera litura publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121698 – volume: 73 start-page: 20 year: 2015 ident: 10.1016/j.ecoenv.2022.113738_bib30 article-title: Molecular characterization and RNA interference analysis of vitellogenin receptor from Nilaparvata lugens (Stål) publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2015.01.007 – volume: 55 start-page: 207 year: 2010 ident: 10.1016/j.ecoenv.2022.113738_bib3 article-title: Insect fat body: energy, metabolism, and regulation publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev-ento-112408-085356 – volume: 349 start-page: 863 year: 2000 ident: 10.1016/j.ecoenv.2022.113738_bib11 article-title: Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer) publication-title: Biochem. J. doi: 10.1042/bj3490863 – volume: 28 start-page: 1049 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib35 article-title: Carboxylesterase genes in nitenpyram‐resistant brown planthoppers, Nilaparvata lugens publication-title: Insect Sci. doi: 10.1111/1744-7917.12829 – volume: 173 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib29 article-title: Activation of the NR2E nuclear receptor HR83 leads to metabolic detoxification-mediated chlorpyrifos resistance in Nilaparvata lugens publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2021.104800 – volume: 174 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib2 article-title: Transcriptional regulation of xenobiotic detoxification genes in insects-an overview publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2021.104822 – volume: 14 start-page: 509 year: 2005 ident: 10.1016/j.ecoenv.2022.113738_bib48 article-title: Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2005.00582.x – volume: 41 start-page: 14 year: 2011 ident: 10.1016/j.ecoenv.2022.113738_bib55 article-title: Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2010.09.007 – volume: 28 start-page: 115 year: 2021 ident: 10.1016/j.ecoenv.2022.113738_bib22 article-title: Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China publication-title: Insect Sci. doi: 10.1111/1744-7917.12764 – volume: 133 start-page: 4805 year: 2006 ident: 10.1016/j.ecoenv.2022.113738_bib23 article-title: Threshold response of C15 to the Dpp gradient in Drosophila is established by the cumulative effect of Smad and Zen activators and negative cues publication-title: Development doi: 10.1242/dev.02689 – volume: 19 start-page: 777 year: 2010 ident: 10.1016/j.ecoenv.2022.113738_bib6 article-title: Feeding‐based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2010.01038.x – volume: 9 year: 2014 ident: 10.1016/j.ecoenv.2022.113738_bib57 article-title: Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR publication-title: PLoS ONE – volume: 132 start-page: 59 year: 2016 ident: 10.1016/j.ecoenv.2022.113738_bib59 article-title: Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: a genome-scale analysis publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2015.10.016 – volume: 74 start-page: 456 year: 2018 ident: 10.1016/j.ecoenv.2022.113738_bib37 article-title: Insecticide susceptibilities of the two rice planthoppers Nilaparvata lugens and Sogatella furcifera in East Asia, the Red River Delta, and the Mekong Delta publication-title: Pest Manag. Sci. doi: 10.1002/ps.4729 – volume: 79 start-page: 50 year: 2016 ident: 10.1016/j.ecoenv.2022.113738_bib61 article-title: Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2016.10.009 – volume: 9 start-page: 647 year: 2000 ident: 10.1016/j.ecoenv.2022.113738_bib43 article-title: Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens publication-title: Insect Mol. Biol. doi: 10.1046/j.1365-2583.2000.00229.x |
SSID | ssj0003055 |
Score | 2.4573758 |
Snippet | The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113738 |
SubjectTerms | Brown planthopper Homeobox Insecticide resistance Metabolic detoxification Regulatory mechanism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUCiU0qav7QsVejW1JVm2j23YEArNqYHchJ7UxbGD1xvqf98ZyV7SQ9lLwWAwsiw0I8038sw3hHzyeW2EZibThotMeCZgSRmZmbLmmBEueCTT-X4pL67Et-vy-l6pL4wJS_TAaeI-OwEmMQ_oNBXCO9egTXG1t9xK0MdItg02b3Wmlj0YeaxS8GKVybLga9JcjOwCv873d-AbMoYlTWJuyj2jFLn7_7JN_8Ke0QadPyVPFvBIv6RBPyMPfH9KHm4j8fR8Sh6nMziaUouekx50gN74CeSMj8GxRrAIUqZDoJdtB3YST2Q17fagRjs6DdT-BP_9dh7bMOxou6M3uu27mboRN0VqZgp4kVo9muH33EWSBbCC9EyP26J6Qa7Otz_OLrKlvkJmRSWmLPjCN4Fxzo1wmODqaim95Cyvm9JWsNbxFkrnA2sKpgGJhBIwAdYnMV40_CU56YfevyaU-wYubUKunahdaYzRoWHOlsHVuZUbwtcJVnYhH8caGJ1ao8x-qSQWhWJRSSwbkh3euk3kG0faf0XZHdoidXZ8AAqlFoVSxxRqQ6pV8mpBIQldQFftkc9_XBVFwSLFPy-698N-pxi4Zchzk0Pvr5IGHQbJS1k1gCLf_I_BvyWPcEApQvEdOZnGvX8PqGkyH-IC-QPAnBDG priority: 102 providerName: Directory of Open Access Journals |
Title | The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17 |
URI | https://dx.doi.org/10.1016/j.ecoenv.2022.113738 https://www.ncbi.nlm.nih.gov/pubmed/35679727 https://www.proquest.com/docview/2675612306 https://doaj.org/article/d46350f132214edd92426d8ec3c63186 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HiSCI6Pl1py4RfK3bTdKvx3PZY1XcJw_uLSRNopVeu3S7Yl_ub3cmaVfvQQ6EQmlI22xnMvOb7MwvhLyzca6FYjpSmotIWCZgSuk00knOsSJccE-m82WTri_Fp6vk6ogsp1oYTKscbX-w6d5ajy3z8WvOt1U1x7SkLE0wmsKKyhw5QQW0gE6_v_mT5oGMViGNMYuw91Q-53O8IMKzzU-IEhnDzU18lcpf7smz-N_yUv9Cod4bXTwmj0YYSc_DSJ-QI9uckPsrT0E9nJCHYTWOhiKjp6QBbaDXtgeJYzOE2Agb4bfS1tFNVYPHxLVZRes9KNSO9i0tv0Mkvx26yrU7Wu3otaqaeqCmQ_NI9UABOdJSdbr9NdSebgH8IV2qbrXInpHLi9XX5Toad1qISpGJPnJ2YQvHOOdaGCx1NXma2pSzOC-SMoNZjyeXGOtYsWAKMIlLAB3gTiXaioI_J8dN29iXhHJbwKG0i5URuUm01soVzJSJM3lcpqeETx9YliMNOe6GUcsp3-yHDGKRKBYZxHJKosNd20DDcUf_Dyi7Q18k0fYNbfdNjlokjQC0FTvUoIWwxhQIV0xuS16mYOpgqNkkeXlLJ-FR1R2vfzspioTpiv_BqMa2-51kEKAh400MT38RNOgwSJ6kWQF48uy_3_uKPMCrkKD4mhz33d6-AdDU65mfFTNy7_zj5_Vm5pcefgPxrRVj |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQSQlBe5WkkOIbN2s7rwAHKVlva7qmVejN2bENQmqySXSAX_hR_kBknWegBVUKqFCmS87A1M55HMvMNIa9smGqhmA6U5iIQlgnYUjoOdJRyrAgX3IPpHC_i-an4eBadbZFfYy0MplUOur_X6V5bDyOTgZqTZVFMMC0piSOMprCiMhVDZuWh7b5D3Na-PfgATH7N2P7sZG8eDK0FglwkYhU4O7WZY5xzLQzWdpo0jm3MWZhmUZ6AmOPJRcY6lk2ZAiPsIjCH2JpDW4EITKD3rwlQF9g24c3PP3klCKHV500mAS5vrNfzSWUQUtrqG4SljGE3FV8W85c99G0DLpjFf7m93vzt3yG3B7-VvutJc5ds2WqHXJ95zOtuh9zqP__RvqrpHqlA_Oi5XYGI4TDE9OinAnFp7eiiKMFE48dgRcs1SHBLVzXNv5R1s-yawtUtLVp6roqq7KhpUB9T3VFwVWmuGl3_6EqP7wAGmO6pZjZN7pPTK6H_A7Jd1ZV9RCi3GRxKu1AZkZpIa61cxkweOZOGebxL-EhgmQ-459h-o5RjgttX2bNFIltkz5ZdEmyeWva4H5fc_x55t7kXUbv9QN18loPYSiPAvQsdiuxUWGMy9I9ManOex6BbYanJyHl5YRPAq4pLpn85CooE_YA_fVRl63UrGUSECLETwtsf9hK0WSSP4iQDB_bxf8_7gtyYnxwfyaODxeETchOv9NmRT8n2qlnbZ-CxrfRzv0Mo-XTVW_I3pt9N4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+metabolic+resistance+of+Nilaparvata+lugens+to+chlorpyrifos+is+mainly+driven+by+the+carboxylesterase+CarE17&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Lu%2C+Kai&rft.au=Li%2C+Yimin&rft.au=Xiao%2C+Tianxiang&rft.au=Sun%2C+Zhongxiang&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0147-6513&rft.eissn=1090-2414&rft.volume=241&rft_id=info:doi/10.1016%2Fj.ecoenv.2022.113738&rft.externalDocID=S0147651322005784 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |