The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17

The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patte...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 241; p. 113738
Main Authors Lu, Kai, Li, Yimin, Xiao, Tianxiang, Sun, Zhongxiang
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.08.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between − 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens. •Three CarE genes were involved in chlorpyrifos resistance of N. lugens.•Metabolic resistance of N. lugens to chlorpyrifos is extremely attributed to CarE17.•Potential binding sites for homeobox TFs were predicted from CarE17 promoter.•Lim1β and C15 induces CarE17 expression thus increasing chlorpyrifos resistance.
AbstractList The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between - 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens.
The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between - 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens.The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between - 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens.
The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between − 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens.
The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the function of specific CarE gene in chlorpyrifos resistance and the transcriptional regulatory mechanism are obscure. Herein, the expression patterns of 29 CarE genes in the susceptible and chlorpyrifos-resistant strains were analyzed. Among them, CarE3, CarE17 and CarE19 were overexpressed in the resistant strain, and knockdown of either CarE gene by RNA interference significantly increased the susceptibility to chlorpyrifos. Remarkably, knockdown of CarE17 reduced the enzymatic activity of CarE by 88.63 % and showed a much greater effect on increasing chlorpyrifos toxicity than silencing other two CarE genes. Overexpression of CarE17 in Drosophila melanogaster decreased the toxicity of chlorpyrifos to transgenic fruit flies. Furthermore, the region between − 205 to + 256 of CarE17 promoter sequence showed the highest promoter activity, and 16 transcription factors (TFs) were predicted from this region. Among these TFs, Lim1β and C15 were overexpressed in the resistant strain. Knockdown of either TF resulted in reduced CarE17 expression and a decrease in resistance of N. lugens to chlorpyrifos. These results indicate that the constitutive overexpression of Lim1β and C15 induces CarE17 expression thus conferring chlorpyrifos resistance in N. lugens. •Three CarE genes were involved in chlorpyrifos resistance of N. lugens.•Metabolic resistance of N. lugens to chlorpyrifos is extremely attributed to CarE17.•Potential binding sites for homeobox TFs were predicted from CarE17 promoter.•Lim1β and C15 induces CarE17 expression thus increasing chlorpyrifos resistance.
ArticleNumber 113738
Author Li, Yimin
Lu, Kai
Sun, Zhongxiang
Xiao, Tianxiang
Author_xml – sequence: 1
  givenname: Kai
  surname: Lu
  fullname: Lu, Kai
  email: lukai@ahau.edu.cn
  organization: Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
– sequence: 2
  givenname: Yimin
  surname: Li
  fullname: Li, Yimin
  organization: College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
– sequence: 3
  givenname: Tianxiang
  surname: Xiao
  fullname: Xiao, Tianxiang
  organization: Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
– sequence: 4
  givenname: Zhongxiang
  surname: Sun
  fullname: Sun, Zhongxiang
  email: szx@ynau.edu.cn
  organization: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35679727$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFN0DISzYZ_Bc7YYGERqWtVMGmrC3Hvm498sSD7RmRtydDWhYsYHUl65zvXp9zgc7GNAJCbylZU0Llh-0abILxuGaEsTWlXPHuBVpR0pOGCSrO0IpQoRrZUn6OLkrZEkI4adtX6Jy3UvWKqRUa7x8B76CaIcVgcYYSSjWjBZw8_hqi2Zt8NNXgeHiAseCasH2MKe-nHHwqOBS8M2GME3Y5HGHEw4TrjLQmD-nnFKFUyKYA3ph8RdVr9NKbWODN07xE379c3W9umrtv17ebz3eNFUrUxgOF3jPO-SBc30rqOilBcka6vrWq4-w0fOvAs54ywzruW8KoVKIbQPT8Et0uXJfMVu9z2Jk86WSC_v2Q8oM2uQYbQTsheUs85YxRAc71TDDpOrDcSk47ObPeL6x9Tj8O84f0LhQLMZoR0qFoJtV8IePkJH33JD0MO3B_Fj_nPQs-LgKbUykZvLahmhrSWLMJUVOiT-XqrV7K1ady9VLubBZ_mZ_5_7F9WmwwB34MkHWxAeaKXchg65xI-DfgFwi9vss
CitedBy_id crossref_primary_10_1002_ps_8054
crossref_primary_10_1016_j_scitotenv_2024_172035
crossref_primary_10_1016_j_ibmb_2025_104299
crossref_primary_10_1021_acs_jafc_4c10518
crossref_primary_10_1016_j_ijbiomac_2022_08_014
crossref_primary_10_1021_acs_jafc_4c03361
crossref_primary_10_1021_acs_jafc_3c00002
crossref_primary_10_1016_j_pestbp_2025_106369
crossref_primary_10_3390_ijms252010981
crossref_primary_10_1016_j_ijbiomac_2024_138108
crossref_primary_10_1016_j_jare_2024_09_015
crossref_primary_10_1016_j_pestbp_2024_106009
crossref_primary_10_1007_s44297_023_00012_x
crossref_primary_10_3390_insects15060461
crossref_primary_10_3390_insects15100743
crossref_primary_10_1016_j_cub_2024_10_068
crossref_primary_10_1016_j_pestbp_2022_105321
crossref_primary_10_1016_j_pestbp_2024_106199
Cites_doi 10.1021/acs.biochem.7b00774
10.1016/j.ibmb.2010.06.007
10.1002/ps.5282
10.1007/s00412-015-0543-8
10.1016/j.pestbp.2021.104781
10.1007/s00239-003-2492-8
10.1006/meth.2001.1262
10.1016/j.chemosphere.2020.127490
10.1016/j.ibmb.2017.11.007
10.1016/j.ibmb.2012.09.003
10.1242/dev.01161
10.1111/imb.12659
10.1016/j.cois.2020.11.004
10.1046/j.1365-2583.2000.00228.x
10.1016/j.ibmb.2014.05.003
10.1584/jpestics.30.75
10.1073/pnas.1515137113
10.1073/pnas.1304097110
10.1016/j.chemosphere.2020.128269
10.1016/j.ibmb.2019.103246
10.1371/journal.pgen.1009403
10.1002/ps.6808
10.1007/s11356-020-09279-x
10.1371/journal.pgen.1006718
10.1007/s13205-022-03137-y
10.1016/j.chemosphere.2019.125203
10.1111/1744-7917.12254
10.1016/j.pestbp.2021.104875
10.1016/S0167-4781(01)00344-X
10.1016/j.pestbp.2015.12.001
10.1002/ps.4816
10.1016/j.pestbp.2019.07.010
10.1146/annurev.ento.51.110104.151104
10.1073/pnas.1913603117
10.1007/s13355-013-0174-6
10.1111/imb.12173
10.1111/1744-7917.12927
10.1002/ps.2049
10.1016/j.pestbp.2019.06.004
10.1007/s12284-010-9050-y
10.1111/imb.12309
10.1016/j.jhazmat.2019.121698
10.1016/j.jinsphys.2015.01.007
10.1146/annurev-ento-112408-085356
10.1042/bj3490863
10.1111/1744-7917.12829
10.1016/j.pestbp.2021.104800
10.1016/j.pestbp.2021.104822
10.1111/j.1365-2583.2005.00582.x
10.1016/j.ibmb.2010.09.007
10.1111/1744-7917.12764
10.1242/dev.02689
10.1111/j.1365-2583.2010.01038.x
10.1016/j.pestbp.2015.10.016
10.1002/ps.4729
10.1016/j.ibmb.2016.10.009
10.1046/j.1365-2583.2000.00229.x
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1016/j.ecoenv.2022.113738
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_d46350f132214edd92426d8ec3c63186
35679727
10_1016_j_ecoenv_2022_113738
S0147651322005784
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
H~9
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZU3
ZXP
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c474t-fe1e9f2333b4d9561d866e6320895c783295c7f5def2912a283f50216748be493
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:28:54 EDT 2025
Fri Jul 11 11:29:39 EDT 2025
Wed Feb 19 02:26:59 EST 2025
Tue Jul 01 04:00:35 EDT 2025
Thu Apr 24 23:04:59 EDT 2025
Fri Feb 23 02:40:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Homeobox
Metabolic detoxification
Insecticide resistance
Regulatory mechanism
Brown planthopper
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-fe1e9f2333b4d9561d866e6320895c783295c7f5def2912a283f50216748be493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0147651322005784
PMID 35679727
PQID 2675612306
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d46350f132214edd92426d8ec3c63186
proquest_miscellaneous_2675612306
pubmed_primary_35679727
crossref_citationtrail_10_1016_j_ecoenv_2022_113738
crossref_primary_10_1016_j_ecoenv_2022_113738
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2022_113738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Mao, Ren, Li, Cai, Qin, Wan, Jin, He, Li (bib35) 2021; 28
Yang, X., Deng, S., Wei, X., Yang, J., Zhao, Q., Yin, C., Du, T., Guo, Z., Xia, J., Yang, Z., Xie, W., Wang, S., Wu, Q., Yang, F., Zhou, X., Nauen, R., Bass, C., Zhang, Y., 2020. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. Proc. Natl. Acad. Sci. U. S. A. 117, 10246–10253.
Malathi, Jalali, Gowda, Mohan, Venkatesan (bib34) 2017; 24
Liao, Xu, Gong, Wan, Li (bib22) 2021; 28
Vontas, Small, Hemingway (bib49) 2000; 9
Cheng, Li, Li, Song, Zeng, Lu (bib7) 2021; 263
Zhang, Zhang, Wang, Yang, Cang, Liu (bib59) 2016; 132
Bass, Puinean, Zimmer, Denholm, Field, Foster, Gutbrod, Nauen, Slater, Williamson (bib4) 2014; 51
Hu, Ren, Fan, Huang, Wang, Mohammed Esmail Abdalla, Bass, Subba Reddy, Su (bib16) 2020; 398
Wu, Yang, Yuan, Campbell, Teese, Russell, Oakeshott, Wu (bib55) 2011; 41
Li, Schuler, Berenbaum (bib20) 2007; 52
Mirza, Yarahmadi, Jalal-Abadi, Meraaten (bib38) 2020; 206
Zhang, Zhang, Yang, Jia, Guo, Ma, Zhu (bib58) 2011; 67
Liu, Ding, Zhang, Yang, Liu (bib24) 2010; 40
Lu, Li, Cheng, Li, Song, Zeng, Sun (bib29) 2021; 173
Vontas, Blass, Koutsos, David, Kafatos, Louis, Hemingway, Christophides, Ranson (bib48) 2005; 14
Wang, Jin, Liu, Gao, Deng, Wan, Li (bib52) 2021; 176
Zhao, Huang, Zhang (bib62) 2019; 115
Veres, Wyckhuys, Kiss, Tóth, Burgio, Pons, Avilla, Vidal, Razinger, Bazok (bib47) 2020; 27
Tang, Cheng, Li, Li, Ma, Zhou, Lu (bib44) 2020; 29
Wu, Zeng, Zheng, Mu, Zhang, Hu, Zhang, Gao, Shen (bib54) 2018; 8
Arrese, Soulages (bib3) 2010; 55
Lin, Park, Kirov, Rushlow (bib23) 2006; 133
Lu, Song, Zeng (bib31) 2021; 43
Lu, Wang, Chen, Zhang, Li, Li, Zhou (bib32) 2017; 203
Tang, Cheng, Li, Li, Ma, Zhou, Lu (bib45) 2020; 259
Tang, Xu, Liu, Zhou, Karthi, Yang, Li (bib46) 2022; 12
Dulbecco, Moriconi, Pedrini (bib9) 2021; 173
Hopkins, Fraser, Mabbitt, Carr, Oakeshott, Jackson (bib14) 2017; 56
Lu, Shu, Zhou, Zhang, Zhang, Chen, Yao, Zhou, Zhang (bib30) 2015; 73
Lu, Li, Cheng, Ni, Chen, Li, Tang, Sun, Li, Liu, Qin, Chen, Zeng, Song (bib28) 2019; 160
Liao, Jin, Zhang, Ali, Mao, Xu, Li, Wan (bib21) 2019; 75
Jackson, C.J., Liu, J.-W., Carr, P.D., Younus, F., Coppin, C., Meirelles, T., Lethier, M., Pandey, G., Ollis, D.L., Russell, R.J., 2013. Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. Proc. Natl. Acad. Sci. U. S. A. 110, 10177–10182.
Hawkes, Hemingway (bib13) 2002; 1574
Daborn, Lumb, Harrop, Blasetti, Pasricha, Morin, Mitchell, Donnelly, Müller, Batterham (bib8) 2012; 42
Jena, Kim (bib18) 2010; 3
Livak, Schmittgen (bib25) 2001; 25
Proc. Natl. Acad. Sci. U. S. A. 113, 1321–1326.
Pueyo, Couso (bib40) 2004; 131
Zhang, Yang, Sun, Liu (bib61) 2016; 79
Gong, Li, Li, Liu (bib12) 2022; 29
Small, Hemingway (bib43) 2000; 9
Chen, Zhang, Yao, Zhang, Dong, Tian, Chen, Zhang (bib6) 2010; 19
Matsumura, Sanada‐Morimura, Otuka, Sonoda, Van Thanh, Van Chien, Van Tuong, Loc, Liu, Zhu (bib37) 2018; 74
Mojica-Vazquez, Benetah, Baanannou, Bernat-Fabre, Deplancke, Cribbs, Bourbon, Boube (bib39) 2017; 13
Feng, Li, Liu (bib10) 2018; 92
Shi, Li, Zhou, Liao, Shi (bib42) 2021; 78
Li, Li, Zhu, Gao, Liang (bib19) 2018; 74
Marshall, Putterill, Plummer, Newcomb (bib36) 2003; 57
Wang, Huang, Lu, Jiang, Smagghe, Feng, Yuan, Wei, Wang (bib51) 2015; 24
Wheelock, Shan, Ottea (bib53) 2005; 30
Punyawattoe, Han, Sriratanasak, Arunmit, Chaiwong, Bullangpoti (bib41) 2013; 48
Lu, Xu, Meng, Wang, Niu, Wang (bib33) 2020; 242
Bürglin, Affolter (bib5) 2016; 125
Zhang, Yang, Li, Liu, Liu (bib60) 2017; 26
Wang, Lu, Meng, Huang, Wei, Jiang, Smagghe, Wang (bib50) 2016; 130
Amezian, Nauen, Le Goff (bib2) 2021; 174
Lu, Cheng, Li, Li, Zeng, Song (bib26) 2020; 387
Lu, Cheng, Li, Ni, Chen, Li, Tang, Li, Chen, Zeng, Song (bib27) 2019; 159
Field (bib11) 2000; 349
Yuan, Lu, Xun, Hu, Muhammad, Sha, Jin, Li, Wang (bib57) 2014; 9
Afschar, S., Toivonen, J.M., Hoffmann, J.M., Tain, L.S., Wieser, D., Finlayson, A.J., Driege, Y., Alic, N., Emran, S., Stinn, J., 2016. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant
Hu, Huang, Hu, Ren, Wei, Tian, Esmail Abdalla Elzaki, Bass, Su, Reddy Palli (bib15) 2021; 17
10.1016/j.ecoenv.2022.113738_bib1
Tang (10.1016/j.ecoenv.2022.113738_bib46) 2022; 12
Li (10.1016/j.ecoenv.2022.113738_bib20) 2007; 52
Mao (10.1016/j.ecoenv.2022.113738_bib35) 2021; 28
Feng (10.1016/j.ecoenv.2022.113738_bib10) 2018; 92
Wu (10.1016/j.ecoenv.2022.113738_bib54) 2018; 8
Matsumura (10.1016/j.ecoenv.2022.113738_bib37) 2018; 74
Bass (10.1016/j.ecoenv.2022.113738_bib4) 2014; 51
Lu (10.1016/j.ecoenv.2022.113738_bib32) 2017; 203
Veres (10.1016/j.ecoenv.2022.113738_bib47) 2020; 27
Liao (10.1016/j.ecoenv.2022.113738_bib21) 2019; 75
Pueyo (10.1016/j.ecoenv.2022.113738_bib40) 2004; 131
Wang (10.1016/j.ecoenv.2022.113738_bib52) 2021; 176
Field (10.1016/j.ecoenv.2022.113738_bib11) 2000; 349
Small (10.1016/j.ecoenv.2022.113738_bib43) 2000; 9
Tang (10.1016/j.ecoenv.2022.113738_bib44) 2020; 29
Marshall (10.1016/j.ecoenv.2022.113738_bib36) 2003; 57
Tang (10.1016/j.ecoenv.2022.113738_bib45) 2020; 259
Lu (10.1016/j.ecoenv.2022.113738_bib27) 2019; 159
Wu (10.1016/j.ecoenv.2022.113738_bib55) 2011; 41
10.1016/j.ecoenv.2022.113738_bib56
10.1016/j.ecoenv.2022.113738_bib17
Liu (10.1016/j.ecoenv.2022.113738_bib24) 2010; 40
Zhao (10.1016/j.ecoenv.2022.113738_bib62) 2019; 115
Hu (10.1016/j.ecoenv.2022.113738_bib16) 2020; 398
Vontas (10.1016/j.ecoenv.2022.113738_bib49) 2000; 9
Li (10.1016/j.ecoenv.2022.113738_bib19) 2018; 74
Arrese (10.1016/j.ecoenv.2022.113738_bib3) 2010; 55
Wang (10.1016/j.ecoenv.2022.113738_bib50) 2016; 130
Lu (10.1016/j.ecoenv.2022.113738_bib29) 2021; 173
Wang (10.1016/j.ecoenv.2022.113738_bib51) 2015; 24
Amezian (10.1016/j.ecoenv.2022.113738_bib2) 2021; 174
Shi (10.1016/j.ecoenv.2022.113738_bib42) 2021; 78
Liao (10.1016/j.ecoenv.2022.113738_bib22) 2021; 28
Mirza (10.1016/j.ecoenv.2022.113738_bib38) 2020; 206
Gong (10.1016/j.ecoenv.2022.113738_bib12) 2022; 29
Lu (10.1016/j.ecoenv.2022.113738_bib30) 2015; 73
Jena (10.1016/j.ecoenv.2022.113738_bib18) 2010; 3
Hu (10.1016/j.ecoenv.2022.113738_bib15) 2021; 17
Malathi (10.1016/j.ecoenv.2022.113738_bib34) 2017; 24
Mojica-Vazquez (10.1016/j.ecoenv.2022.113738_bib39) 2017; 13
Zhang (10.1016/j.ecoenv.2022.113738_bib59) 2016; 132
Lin (10.1016/j.ecoenv.2022.113738_bib23) 2006; 133
Chen (10.1016/j.ecoenv.2022.113738_bib6) 2010; 19
Hopkins (10.1016/j.ecoenv.2022.113738_bib14) 2017; 56
Daborn (10.1016/j.ecoenv.2022.113738_bib8) 2012; 42
Dulbecco (10.1016/j.ecoenv.2022.113738_bib9) 2021; 173
Zhang (10.1016/j.ecoenv.2022.113738_bib61) 2016; 79
Zhang (10.1016/j.ecoenv.2022.113738_bib60) 2017; 26
Wheelock (10.1016/j.ecoenv.2022.113738_bib53) 2005; 30
Zhang (10.1016/j.ecoenv.2022.113738_bib58) 2011; 67
Hawkes (10.1016/j.ecoenv.2022.113738_bib13) 2002; 1574
Lu (10.1016/j.ecoenv.2022.113738_bib26) 2020; 387
Livak (10.1016/j.ecoenv.2022.113738_bib25) 2001; 25
Lu (10.1016/j.ecoenv.2022.113738_bib31) 2021; 43
Lu (10.1016/j.ecoenv.2022.113738_bib33) 2020; 242
Vontas (10.1016/j.ecoenv.2022.113738_bib48) 2005; 14
Yuan (10.1016/j.ecoenv.2022.113738_bib57) 2014; 9
Cheng (10.1016/j.ecoenv.2022.113738_bib7) 2021; 263
Lu (10.1016/j.ecoenv.2022.113738_bib28) 2019; 160
Bürglin (10.1016/j.ecoenv.2022.113738_bib5) 2016; 125
Punyawattoe (10.1016/j.ecoenv.2022.113738_bib41) 2013; 48
References_xml – volume: 43
  start-page: 103
  year: 2021
  end-page: 107
  ident: bib31
  article-title: The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics
  publication-title: Curr. Opin. Insect Sci.
– volume: 259
  year: 2020
  ident: bib45
  article-title: Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper,
  publication-title: Chemosphere
– reference: Afschar, S., Toivonen, J.M., Hoffmann, J.M., Tain, L.S., Wieser, D., Finlayson, A.J., Driege, Y., Alic, N., Emran, S., Stinn, J., 2016. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant
– volume: 3
  start-page: 161
  year: 2010
  end-page: 171
  ident: bib18
  article-title: Current status of brown planthopper (BPH) resistance and genetics
  publication-title: Rice
– volume: 75
  start-page: 1646
  year: 2019
  end-page: 1654
  ident: bib21
  article-title: Characterization of sulfoxaflor resistance in the brown planthopper,
  publication-title: Pest Manag. Sci.
– volume: 55
  start-page: 207
  year: 2010
  end-page: 225
  ident: bib3
  article-title: Insect fat body: energy, metabolism, and regulation
  publication-title: Annu. Rev. Entomol.
– volume: 173
  year: 2021
  ident: bib9
  article-title: Knockdown of
  publication-title: Pestic. Biochem. Physiol.
– volume: 159
  start-page: 118
  year: 2019
  end-page: 126
  ident: bib27
  article-title: Copper-induced H
  publication-title: Pestic. Biochem. Physiol.
– reference: . Proc. Natl. Acad. Sci. U. S. A. 113, 1321–1326.
– volume: 42
  start-page: 918
  year: 2012
  end-page: 924
  ident: bib8
  article-title: Using
  publication-title: Insect Biochem. Mol. Biol.
– volume: 176
  year: 2021
  ident: bib52
  article-title: Functional characterization of the transcription factors AhR and ARNT in
  publication-title: Pestic. Biochem. Physiol.
– volume: 52
  start-page: 231
  year: 2007
  end-page: 253
  ident: bib20
  article-title: Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics
  publication-title: Annu. Rev. Entomol.
– volume: 17
  year: 2021
  ident: bib15
  article-title: Changes in both trans-and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest,
  publication-title: PLoS Genet
– volume: 14
  start-page: 509
  year: 2005
  end-page: 521
  ident: bib48
  article-title: Gene expression in insecticide resistant and susceptible
  publication-title: Insect Mol. Biol.
– volume: 48
  start-page: 205
  year: 2013
  end-page: 211
  ident: bib41
  article-title: Ethiprole resistance in
  publication-title: Appl. Entomol. Zool.
– volume: 30
  start-page: 75
  year: 2005
  end-page: 83
  ident: bib53
  article-title: Overview of carboxylesterases and their role in the metabolism of insecticides
  publication-title: J. Pestic. Sci.
– volume: 125
  start-page: 497
  year: 2016
  end-page: 521
  ident: bib5
  article-title: Homeodomain proteins: an update
  publication-title: Chromosoma
– volume: 173
  year: 2021
  ident: bib29
  article-title: Activation of the NR2E nuclear receptor HR83 leads to metabolic detoxification-mediated chlorpyrifos resistance in
  publication-title: Pestic. Biochem. Physiol.
– volume: 349
  start-page: 863
  year: 2000
  end-page: 868
  ident: bib11
  article-title: Methylation and expression of amplified esterase genes in the aphid
  publication-title: Biochem. J.
– volume: 206
  year: 2020
  ident: bib38
  article-title: Enzymes mediating resistance to chlorpyriphos in
  publication-title: Ecotox. Environ. Safe
– volume: 24
  start-page: 35
  year: 2017
  end-page: 46
  ident: bib34
  article-title: Establishing the role of detoxifying enzymes in field‐evolved resistance to various insecticides in the brown planthopper (
  publication-title: Insect Sci.
– volume: 13
  year: 2017
  ident: bib39
  article-title: Tissue-specific enhancer repression through molecular integration of cell signaling inputs
  publication-title: PLoS Genet
– volume: 19
  start-page: 777
  year: 2010
  end-page: 786
  ident: bib6
  article-title: Feeding‐based RNA interference of a trehalose phosphate synthase gene in the brown planthopper,
  publication-title: Insect Mol. Biol.
– reference: Jackson, C.J., Liu, J.-W., Carr, P.D., Younus, F., Coppin, C., Meirelles, T., Lethier, M., Pandey, G., Ollis, D.L., Russell, R.J., 2013. Structure and function of an insect α-carboxylesterase (αEsterase7) associated with insecticide resistance. Proc. Natl. Acad. Sci. U. S. A. 110, 10177–10182.
– volume: 41
  start-page: 14
  year: 2011
  end-page: 21
  ident: bib55
  article-title: Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm,
  publication-title: Insect Biochem. Mol. Biol.
– volume: 26
  start-page: 453
  year: 2017
  end-page: 460
  ident: bib60
  article-title: Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper,
  publication-title: Insect Mol. Biol.
– volume: 115
  year: 2019
  ident: bib62
  article-title: Mutations in
  publication-title: Insect Biochem. Mol. Biol.
– volume: 203
  start-page: 12
  year: 2017
  end-page: 20
  ident: bib32
  article-title: Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in
  publication-title: Comp. Biochem. Physiol. C.
– volume: 398
  year: 2020
  ident: bib16
  article-title: Xenobiotic transcription factors CncC and maf regulate expression of
  publication-title: J. Hazard. Mater.
– volume: 74
  start-page: 456
  year: 2018
  end-page: 464
  ident: bib37
  article-title: Insecticide susceptibilities of the two rice planthoppers
  publication-title: Pest Manag. Sci.
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: bib25
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2
  publication-title: Methods
– volume: 174
  year: 2021
  ident: bib2
  article-title: Transcriptional regulation of xenobiotic detoxification genes in insects-an overview
  publication-title: Pestic. Biochem. Physiol.
– volume: 1574
  start-page: 51
  year: 2002
  end-page: 62
  ident: bib13
  article-title: Analysis of the promoters for the β-esterase genes associated with insecticide resistance in the mosquito
  publication-title: BBA-Gene Struct. Expr.
– volume: 160
  start-page: 127
  year: 2019
  end-page: 135
  ident: bib28
  article-title: Copper exposure enhances
  publication-title: Pestic. Biochem. Physiol.
– volume: 9
  start-page: 655
  year: 2000
  end-page: 660
  ident: bib49
  article-title: Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper,
  publication-title: Insect Mol. Biol.
– volume: 92
  start-page: 30
  year: 2018
  end-page: 39
  ident: bib10
  article-title: Carboxylesterase genes in pyrethroid resistant house flies,
  publication-title: Insect Biochem. Mol. Biol.
– volume: 387
  year: 2020
  ident: bib26
  article-title: Activation of CncC pathway by ROS burst regulates cytochrome P450
  publication-title: J. Hazard. Mater.
– volume: 131
  start-page: 3107
  year: 2004
  end-page: 3120
  ident: bib40
  article-title: Chip-mediated partnerships of the homeodomain proteins Bar and Aristaless with the LIM-HOM proteins Apterous and Lim1 regulate distal leg development
  publication-title: Development
– volume: 74
  start-page: 1386
  year: 2018
  end-page: 1393
  ident: bib19
  article-title: Overexpression of cytochrome P450
  publication-title: Pest Manag. Sci.
– volume: 24
  start-page: 467
  year: 2015
  end-page: 479
  ident: bib51
  article-title: Overexpression of two α‐esterase genes mediates metabolic resistance to malathion in the oriental fruit fly,
  publication-title: Insect Mol. Biol.
– volume: 67
  start-page: 183
  year: 2011
  end-page: 190
  ident: bib58
  article-title: Genomics‐based approaches to screening carboxylesterase‐like genes potentially involved in malathion resistance in oriental migratory locust (
  publication-title: Pest Manag. Sci.
– volume: 132
  start-page: 59
  year: 2016
  end-page: 64
  ident: bib59
  article-title: Expression induction of P450 genes by imidacloprid in
  publication-title: Pestic. Biochem. Physiol.
– volume: 29
  start-page: 511
  year: 2020
  end-page: 522
  ident: bib44
  article-title: Adipokinetic hormone enhances CarE‐mediated chlorpyrifos resistance in the brown planthopper,
  publication-title: Insect Mol. Biol.
– volume: 78
  start-page: 1903
  year: 2021
  end-page: 1914
  ident: bib42
  article-title: Contribution of multiple overexpressed carboxylesterase genes to indoxacarb resistance in
  publication-title: Pest Manag. Sci.
– volume: 12
  start-page: 1
  year: 2022
  end-page: 8
  ident: bib46
  article-title: A review of physiological resistance to insecticide stress in
  publication-title: 3 Biotech
– volume: 51
  start-page: 41
  year: 2014
  end-page: 51
  ident: bib4
  article-title: The evolution of insecticide resistance in the peach potato aphid,
  publication-title: Insect Biochem. Mol. Biol.
– volume: 130
  start-page: 44
  year: 2016
  end-page: 51
  ident: bib50
  article-title: Functional characterization of an α-esterase gene involving malathion detoxification in
  publication-title: Pestic. Biochem. Physiol.
– volume: 263
  year: 2021
  ident: bib7
  article-title: Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in
  publication-title: Chemosphere
– reference: Yang, X., Deng, S., Wei, X., Yang, J., Zhao, Q., Yin, C., Du, T., Guo, Z., Xia, J., Yang, Z., Xie, W., Wang, S., Wu, Q., Yang, F., Zhou, X., Nauen, R., Bass, C., Zhang, Y., 2020. MAPK-directed activation of the whitefly transcription factor CREB leads to P450-mediated imidacloprid resistance. Proc. Natl. Acad. Sci. U. S. A. 117, 10246–10253.
– volume: 9
  start-page: 647
  year: 2000
  end-page: 653
  ident: bib43
  article-title: Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper,
  publication-title: Insect Mol. Biol.
– volume: 56
  start-page: 5512
  year: 2017
  end-page: 5525
  ident: bib14
  article-title: Structure of an insecticide sequestering carboxylesterase from the disease vector
  publication-title: Biochemistry
– volume: 242
  year: 2020
  ident: bib33
  article-title: Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly,
  publication-title: Chemosphere
– volume: 79
  start-page: 50
  year: 2016
  end-page: 56
  ident: bib61
  article-title: Metabolic imidacloprid resistance in the brown planthopper,
  publication-title: Insect Biochem. Mol. Biol.
– volume: 133
  start-page: 4805
  year: 2006
  end-page: 4813
  ident: bib23
  article-title: Threshold response of
  publication-title: Development
– volume: 9
  year: 2014
  ident: bib57
  article-title: Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper,
  publication-title: PLoS ONE
– volume: 28
  start-page: 1049
  year: 2021
  end-page: 1060
  ident: bib35
  article-title: Carboxylesterase genes in nitenpyram‐resistant brown planthoppers,
  publication-title: Insect Sci.
– volume: 40
  start-page: 666
  year: 2010
  end-page: 671
  ident: bib24
  article-title: Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper,
  publication-title: Insect Biochem. Mol. Biol.
– volume: 27
  start-page: 29867
  year: 2020
  end-page: 29899
  ident: bib47
  article-title: An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: alternatives in major cropping systems
  publication-title: Environ. Sci. Pollut. Res.
– volume: 28
  start-page: 115
  year: 2021
  end-page: 126
  ident: bib22
  article-title: Current susceptibilities of brown planthopper
  publication-title: Insect Sci.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib54
  article-title: The evolution of insecticide resistance in the brown planthopper (
  publication-title: Sci. Rep.
– volume: 29
  start-page: 199
  year: 2022
  end-page: 214
  ident: bib12
  article-title: Molecular and functional characterization of three novel carboxylesterases in the detoxification of permethrin in the mosquito,
  publication-title: Insect Sci.
– volume: 73
  start-page: 20
  year: 2015
  end-page: 29
  ident: bib30
  article-title: Molecular characterization and RNA interference analysis of vitellogenin receptor from
  publication-title: J. Insect Physiol.
– volume: 57
  start-page: 487
  year: 2003
  end-page: 500
  ident: bib36
  article-title: The carboxylesterase gene family from Arabidopsis thaliana
  publication-title: J. Mol. Evol.
– volume: 56
  start-page: 5512
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113738_bib14
  article-title: Structure of an insecticide sequestering carboxylesterase from the disease vector Culex quinquefasciatus: what makes an enzyme a good insecticide sponge?
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.7b00774
– volume: 40
  start-page: 666
  year: 2010
  ident: 10.1016/j.ecoenv.2022.113738_bib24
  article-title: Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2010.06.007
– volume: 75
  start-page: 1646
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113738_bib21
  article-title: Characterization of sulfoxaflor resistance in the brown planthopper, Nilaparvata lugens (Stål)
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.5282
– volume: 125
  start-page: 497
  year: 2016
  ident: 10.1016/j.ecoenv.2022.113738_bib5
  article-title: Homeodomain proteins: an update
  publication-title: Chromosoma
  doi: 10.1007/s00412-015-0543-8
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.ecoenv.2022.113738_bib54
  article-title: The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012–2016
  publication-title: Sci. Rep.
– volume: 173
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib9
  article-title: Knockdown of CYP4PR1, a cytochrome P450 gene highly expressed in the integument tissue of Triatoma infestans, increases susceptibility to deltamethrin in pyrethroid-resistant insects
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2021.104781
– volume: 57
  start-page: 487
  year: 2003
  ident: 10.1016/j.ecoenv.2022.113738_bib36
  article-title: The carboxylesterase gene family from Arabidopsis thaliana
  publication-title: J. Mol. Evol.
  doi: 10.1007/s00239-003-2492-8
– volume: 25
  start-page: 402
  year: 2001
  ident: 10.1016/j.ecoenv.2022.113738_bib25
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 259
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113738_bib45
  article-title: Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugens
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127490
– volume: 92
  start-page: 30
  year: 2018
  ident: 10.1016/j.ecoenv.2022.113738_bib10
  article-title: Carboxylesterase genes in pyrethroid resistant house flies, Musca domestica
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2017.11.007
– volume: 203
  start-page: 12
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113738_bib32
  article-title: Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in Nilaparvata lugens (Stål)
  publication-title: Comp. Biochem. Physiol. C.
– volume: 42
  start-page: 918
  year: 2012
  ident: 10.1016/j.ecoenv.2022.113738_bib8
  article-title: Using Drosophila melanogaster to validate metabolism-based insecticide resistance from insect pests
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2012.09.003
– volume: 131
  start-page: 3107
  year: 2004
  ident: 10.1016/j.ecoenv.2022.113738_bib40
  article-title: Chip-mediated partnerships of the homeodomain proteins Bar and Aristaless with the LIM-HOM proteins Apterous and Lim1 regulate distal leg development
  publication-title: Development
  doi: 10.1242/dev.01161
– volume: 29
  start-page: 511
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113738_bib44
  article-title: Adipokinetic hormone enhances CarE‐mediated chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12659
– volume: 43
  start-page: 103
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib31
  article-title: The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics
  publication-title: Curr. Opin. Insect Sci.
  doi: 10.1016/j.cois.2020.11.004
– volume: 9
  start-page: 655
  year: 2000
  ident: 10.1016/j.ecoenv.2022.113738_bib49
  article-title: Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stål)
  publication-title: Insect Mol. Biol.
  doi: 10.1046/j.1365-2583.2000.00228.x
– volume: 51
  start-page: 41
  year: 2014
  ident: 10.1016/j.ecoenv.2022.113738_bib4
  article-title: The evolution of insecticide resistance in the peach potato aphid, Myzus persicae
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2014.05.003
– volume: 30
  start-page: 75
  year: 2005
  ident: 10.1016/j.ecoenv.2022.113738_bib53
  article-title: Overview of carboxylesterases and their role in the metabolism of insecticides
  publication-title: J. Pestic. Sci.
  doi: 10.1584/jpestics.30.75
– ident: 10.1016/j.ecoenv.2022.113738_bib1
  doi: 10.1073/pnas.1515137113
– ident: 10.1016/j.ecoenv.2022.113738_bib17
  doi: 10.1073/pnas.1304097110
– volume: 263
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib7
  article-title: Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128269
– volume: 115
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113738_bib62
  article-title: Mutations in NlInR1 affect normal growth and lifespan in the brown planthopper Nilaparvata lugens
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2019.103246
– volume: 17
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib15
  article-title: Changes in both trans-and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1009403
– volume: 78
  start-page: 1903
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib42
  article-title: Contribution of multiple overexpressed carboxylesterase genes to indoxacarb resistance in Spodoptera litura
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.6808
– volume: 27
  start-page: 29867
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113738_bib47
  article-title: An update of the Worldwide Integrated Assessment (WIA) on systemic pesticides. Part 4: alternatives in major cropping systems
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-09279-x
– volume: 13
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113738_bib39
  article-title: Tissue-specific enhancer repression through molecular integration of cell signaling inputs
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006718
– volume: 398
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113738_bib16
  article-title: Xenobiotic transcription factors CncC and maf regulate expression of CYP321A16 and CYP332A1 that mediate chlorpyrifos resistance in Spodoptera exigua
  publication-title: J. Hazard. Mater.
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.ecoenv.2022.113738_bib46
  article-title: A review of physiological resistance to insecticide stress in Nilaparvata lugens
  publication-title: 3 Biotech
  doi: 10.1007/s13205-022-03137-y
– volume: 242
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113738_bib33
  article-title: Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125203
– volume: 24
  start-page: 35
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113738_bib34
  article-title: Establishing the role of detoxifying enzymes in field‐evolved resistance to various insecticides in the brown planthopper (Nilaparvata lugens) in South India
  publication-title: Insect Sci.
  doi: 10.1111/1744-7917.12254
– volume: 176
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib52
  article-title: Functional characterization of the transcription factors AhR and ARNT in Nilaparvata lugens
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2021.104875
– volume: 1574
  start-page: 51
  year: 2002
  ident: 10.1016/j.ecoenv.2022.113738_bib13
  article-title: Analysis of the promoters for the β-esterase genes associated with insecticide resistance in the mosquito Culex quinquefasciatus
  publication-title: BBA-Gene Struct. Expr.
  doi: 10.1016/S0167-4781(01)00344-X
– volume: 130
  start-page: 44
  year: 2016
  ident: 10.1016/j.ecoenv.2022.113738_bib50
  article-title: Functional characterization of an α-esterase gene involving malathion detoxification in Bactrocera dorsalis (Hendel)
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2015.12.001
– volume: 74
  start-page: 1386
  year: 2018
  ident: 10.1016/j.ecoenv.2022.113738_bib19
  article-title: Overexpression of cytochrome P450 CYP6BG1 may contribute to chlorantraniliprole resistance in Plutella xylostella (L.)
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4816
– volume: 160
  start-page: 127
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113738_bib28
  article-title: Copper exposure enhances Spodoptera litura larval tolerance to β-cypermethrin
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2019.07.010
– volume: 52
  start-page: 231
  year: 2007
  ident: 10.1016/j.ecoenv.2022.113738_bib20
  article-title: Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev.ento.51.110104.151104
– ident: 10.1016/j.ecoenv.2022.113738_bib56
  doi: 10.1073/pnas.1913603117
– volume: 48
  start-page: 205
  year: 2013
  ident: 10.1016/j.ecoenv.2022.113738_bib41
  article-title: Ethiprole resistance in Nilaparvata lugens (Hemiptera: Delphacidae): possible mechanisms and cross-resistance
  publication-title: Appl. Entomol. Zool.
  doi: 10.1007/s13355-013-0174-6
– volume: 24
  start-page: 467
  year: 2015
  ident: 10.1016/j.ecoenv.2022.113738_bib51
  article-title: Overexpression of two α‐esterase genes mediates metabolic resistance to malathion in the oriental fruit fly, Bactrocera dorsalis (Hendel)
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12173
– volume: 29
  start-page: 199
  year: 2022
  ident: 10.1016/j.ecoenv.2022.113738_bib12
  article-title: Molecular and functional characterization of three novel carboxylesterases in the detoxification of permethrin in the mosquito, Culex quinquefasciatus
  publication-title: Insect Sci.
  doi: 10.1111/1744-7917.12927
– volume: 206
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113738_bib38
  article-title: Enzymes mediating resistance to chlorpyriphos in Aphis fabae (Homoptera: Aphididae)
  publication-title: Ecotox. Environ. Safe
– volume: 67
  start-page: 183
  year: 2011
  ident: 10.1016/j.ecoenv.2022.113738_bib58
  article-title: Genomics‐based approaches to screening carboxylesterase‐like genes potentially involved in malathion resistance in oriental migratory locust (Locusta migratoria manilensis)
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.2049
– volume: 159
  start-page: 118
  year: 2019
  ident: 10.1016/j.ecoenv.2022.113738_bib27
  article-title: Copper-induced H2O2 accumulation confers larval tolerance to xanthotoxin by modulating CYP6B50 expression in Spodoptera litura
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2019.06.004
– volume: 3
  start-page: 161
  year: 2010
  ident: 10.1016/j.ecoenv.2022.113738_bib18
  article-title: Current status of brown planthopper (BPH) resistance and genetics
  publication-title: Rice
  doi: 10.1007/s12284-010-9050-y
– volume: 26
  start-page: 453
  year: 2017
  ident: 10.1016/j.ecoenv.2022.113738_bib60
  article-title: Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12309
– volume: 387
  year: 2020
  ident: 10.1016/j.ecoenv.2022.113738_bib26
  article-title: Activation of CncC pathway by ROS burst regulates cytochrome P450 CYP6AB12 responsible for λ-cyhalothrin tolerance in Spodoptera litura
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121698
– volume: 73
  start-page: 20
  year: 2015
  ident: 10.1016/j.ecoenv.2022.113738_bib30
  article-title: Molecular characterization and RNA interference analysis of vitellogenin receptor from Nilaparvata lugens (Stål)
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2015.01.007
– volume: 55
  start-page: 207
  year: 2010
  ident: 10.1016/j.ecoenv.2022.113738_bib3
  article-title: Insect fat body: energy, metabolism, and regulation
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev-ento-112408-085356
– volume: 349
  start-page: 863
  year: 2000
  ident: 10.1016/j.ecoenv.2022.113738_bib11
  article-title: Methylation and expression of amplified esterase genes in the aphid Myzus persicae (Sulzer)
  publication-title: Biochem. J.
  doi: 10.1042/bj3490863
– volume: 28
  start-page: 1049
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib35
  article-title: Carboxylesterase genes in nitenpyram‐resistant brown planthoppers, Nilaparvata lugens
  publication-title: Insect Sci.
  doi: 10.1111/1744-7917.12829
– volume: 173
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib29
  article-title: Activation of the NR2E nuclear receptor HR83 leads to metabolic detoxification-mediated chlorpyrifos resistance in Nilaparvata lugens
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2021.104800
– volume: 174
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib2
  article-title: Transcriptional regulation of xenobiotic detoxification genes in insects-an overview
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2021.104822
– volume: 14
  start-page: 509
  year: 2005
  ident: 10.1016/j.ecoenv.2022.113738_bib48
  article-title: Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2005.00582.x
– volume: 41
  start-page: 14
  year: 2011
  ident: 10.1016/j.ecoenv.2022.113738_bib55
  article-title: Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2010.09.007
– volume: 28
  start-page: 115
  year: 2021
  ident: 10.1016/j.ecoenv.2022.113738_bib22
  article-title: Current susceptibilities of brown planthopper Nilaparvata lugens to triflumezopyrim and other frequently used insecticides in China
  publication-title: Insect Sci.
  doi: 10.1111/1744-7917.12764
– volume: 133
  start-page: 4805
  year: 2006
  ident: 10.1016/j.ecoenv.2022.113738_bib23
  article-title: Threshold response of C15 to the Dpp gradient in Drosophila is established by the cumulative effect of Smad and Zen activators and negative cues
  publication-title: Development
  doi: 10.1242/dev.02689
– volume: 19
  start-page: 777
  year: 2010
  ident: 10.1016/j.ecoenv.2022.113738_bib6
  article-title: Feeding‐based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2010.01038.x
– volume: 9
  year: 2014
  ident: 10.1016/j.ecoenv.2022.113738_bib57
  article-title: Selection and evaluation of potential reference genes for gene expression analysis in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) using reverse-transcription quantitative PCR
  publication-title: PLoS ONE
– volume: 132
  start-page: 59
  year: 2016
  ident: 10.1016/j.ecoenv.2022.113738_bib59
  article-title: Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: a genome-scale analysis
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2015.10.016
– volume: 74
  start-page: 456
  year: 2018
  ident: 10.1016/j.ecoenv.2022.113738_bib37
  article-title: Insecticide susceptibilities of the two rice planthoppers Nilaparvata lugens and Sogatella furcifera in East Asia, the Red River Delta, and the Mekong Delta
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4729
– volume: 79
  start-page: 50
  year: 2016
  ident: 10.1016/j.ecoenv.2022.113738_bib61
  article-title: Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2016.10.009
– volume: 9
  start-page: 647
  year: 2000
  ident: 10.1016/j.ecoenv.2022.113738_bib43
  article-title: Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens
  publication-title: Insect Mol. Biol.
  doi: 10.1046/j.1365-2583.2000.00229.x
SSID ssj0003055
Score 2.4573758
Snippet The involvement of carboxylesterases (CarEs) in resistance to chlorpyrifos has been confirmed by the synergism analysis in Nilaparvata lugens. However, the...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113738
SubjectTerms Brown planthopper
Homeobox
Insecticide resistance
Metabolic detoxification
Regulatory mechanism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUCiU0qav7QsVejW1JVm2j23YEArNqYHchJ7UxbGD1xvqf98ZyV7SQ9lLwWAwsiw0I8038sw3hHzyeW2EZibThotMeCZgSRmZmbLmmBEueCTT-X4pL67Et-vy-l6pL4wJS_TAaeI-OwEmMQ_oNBXCO9egTXG1t9xK0MdItg02b3Wmlj0YeaxS8GKVybLga9JcjOwCv873d-AbMoYlTWJuyj2jFLn7_7JN_8Ke0QadPyVPFvBIv6RBPyMPfH9KHm4j8fR8Sh6nMziaUouekx50gN74CeSMj8GxRrAIUqZDoJdtB3YST2Q17fagRjs6DdT-BP_9dh7bMOxou6M3uu27mboRN0VqZgp4kVo9muH33EWSBbCC9EyP26J6Qa7Otz_OLrKlvkJmRSWmLPjCN4Fxzo1wmODqaim95Cyvm9JWsNbxFkrnA2sKpgGJhBIwAdYnMV40_CU56YfevyaU-wYubUKunahdaYzRoWHOlsHVuZUbwtcJVnYhH8caGJ1ao8x-qSQWhWJRSSwbkh3euk3kG0faf0XZHdoidXZ8AAqlFoVSxxRqQ6pV8mpBIQldQFftkc9_XBVFwSLFPy-698N-pxi4Zchzk0Pvr5IGHQbJS1k1gCLf_I_BvyWPcEApQvEdOZnGvX8PqGkyH-IC-QPAnBDG
  priority: 102
  providerName: Directory of Open Access Journals
Title The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17
URI https://dx.doi.org/10.1016/j.ecoenv.2022.113738
https://www.ncbi.nlm.nih.gov/pubmed/35679727
https://www.proquest.com/docview/2675612306
https://doaj.org/article/d46350f132214edd92426d8ec3c63186
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HiSCI6Pl1py4RfK3bTdKvx3PZY1XcJw_uLSRNopVeu3S7Yl_ub3cmaVfvQQ6EQmlI22xnMvOb7MwvhLyzca6FYjpSmotIWCZgSuk00knOsSJccE-m82WTri_Fp6vk6ogsp1oYTKscbX-w6d5ajy3z8WvOt1U1x7SkLE0wmsKKyhw5QQW0gE6_v_mT5oGMViGNMYuw91Q-53O8IMKzzU-IEhnDzU18lcpf7smz-N_yUv9Cod4bXTwmj0YYSc_DSJ-QI9uckPsrT0E9nJCHYTWOhiKjp6QBbaDXtgeJYzOE2Agb4bfS1tFNVYPHxLVZRes9KNSO9i0tv0Mkvx26yrU7Wu3otaqaeqCmQ_NI9UABOdJSdbr9NdSebgH8IV2qbrXInpHLi9XX5Toad1qISpGJPnJ2YQvHOOdaGCx1NXma2pSzOC-SMoNZjyeXGOtYsWAKMIlLAB3gTiXaioI_J8dN29iXhHJbwKG0i5URuUm01soVzJSJM3lcpqeETx9YliMNOe6GUcsp3-yHDGKRKBYZxHJKosNd20DDcUf_Dyi7Q18k0fYNbfdNjlokjQC0FTvUoIWwxhQIV0xuS16mYOpgqNkkeXlLJ-FR1R2vfzspioTpiv_BqMa2-51kEKAh400MT38RNOgwSJ6kWQF48uy_3_uKPMCrkKD4mhz33d6-AdDU65mfFTNy7_zj5_Vm5pcefgPxrRVj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQSQlBe5WkkOIbN2s7rwAHKVlva7qmVejN2bENQmqySXSAX_hR_kBknWegBVUKqFCmS87A1M55HMvMNIa9smGqhmA6U5iIQlgnYUjoOdJRyrAgX3IPpHC_i-an4eBadbZFfYy0MplUOur_X6V5bDyOTgZqTZVFMMC0piSOMprCiMhVDZuWh7b5D3Na-PfgATH7N2P7sZG8eDK0FglwkYhU4O7WZY5xzLQzWdpo0jm3MWZhmUZ6AmOPJRcY6lk2ZAiPsIjCH2JpDW4EITKD3rwlQF9g24c3PP3klCKHV500mAS5vrNfzSWUQUtrqG4SljGE3FV8W85c99G0DLpjFf7m93vzt3yG3B7-VvutJc5ds2WqHXJ95zOtuh9zqP__RvqrpHqlA_Oi5XYGI4TDE9OinAnFp7eiiKMFE48dgRcs1SHBLVzXNv5R1s-yawtUtLVp6roqq7KhpUB9T3VFwVWmuGl3_6EqP7wAGmO6pZjZN7pPTK6H_A7Jd1ZV9RCi3GRxKu1AZkZpIa61cxkweOZOGebxL-EhgmQ-459h-o5RjgttX2bNFIltkz5ZdEmyeWva4H5fc_x55t7kXUbv9QN18loPYSiPAvQsdiuxUWGMy9I9ManOex6BbYanJyHl5YRPAq4pLpn85CooE_YA_fVRl63UrGUSECLETwtsf9hK0WSSP4iQDB_bxf8_7gtyYnxwfyaODxeETchOv9NmRT8n2qlnbZ-CxrfRzv0Mo-XTVW_I3pt9N4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+metabolic+resistance+of+Nilaparvata+lugens+to+chlorpyrifos+is+mainly+driven+by+the+carboxylesterase+CarE17&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Lu%2C+Kai&rft.au=Li%2C+Yimin&rft.au=Xiao%2C+Tianxiang&rft.au=Sun%2C+Zhongxiang&rft.date=2022-08-01&rft.pub=Elsevier+Inc&rft.issn=0147-6513&rft.eissn=1090-2414&rft.volume=241&rft_id=info:doi/10.1016%2Fj.ecoenv.2022.113738&rft.externalDocID=S0147651322005784
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon