XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections
The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more r...
Saved in:
Published in | Cell reports (Cambridge) Vol. 42; no. 2; p. 112123 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.02.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.
[Display omitted]
•XCR1+ DCs are more functional and less prone to LCMV infection than SIRPα+ DCs•Expanding XCR1+ DCs via Flt3L or delivering XCR1-targeting Ag improve virus control•Anti-PD-L1 treatment increases XCR1+ DC numbers and IL-12 production•XCR1+ DCs promote TEX functionality but are dispensable for TPEX proliferation burst
Domenjo-Vila et al. show that XCR1+ DCs are crucial in augmenting exhausted CD8+ T cell effector functions during immunotherapeutic interventions in chronic virus infections. Increased T cell functionality leads to reduced virus loads. XCR1+ DCs should be among the preferential targets in immunotherapeutic cure strategies. |
---|---|
AbstractList | The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets. The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets. The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (T ) cells but are indispensable to sustain the functionality of exhausted CD8+ T (T ) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of T and T subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets. The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets. [Display omitted] •XCR1+ DCs are more functional and less prone to LCMV infection than SIRPα+ DCs•Expanding XCR1+ DCs via Flt3L or delivering XCR1-targeting Ag improve virus control•Anti-PD-L1 treatment increases XCR1+ DC numbers and IL-12 production•XCR1+ DCs promote TEX functionality but are dispensable for TPEX proliferation burst Domenjo-Vila et al. show that XCR1+ DCs are crucial in augmenting exhausted CD8+ T cell effector functions during immunotherapeutic interventions in chronic virus infections. Increased T cell functionality leads to reduced virus loads. XCR1+ DCs should be among the preferential targets in immunotherapeutic cure strategies. |
ArticleNumber | 112123 |
Author | Domenjo-Vila, Eva Pedragosa, Mireia Cebollada Rica, Paula Kaisho, Tsuneyasu Argilaguet, Jordi Terahara, Kazutaka Casella, Valentina Iwabuchi, Ryutaro Bocharov, Gennady Fossum, Even Castellví, Quim Meyerhans, Andreas |
Author_xml | – sequence: 1 givenname: Eva orcidid: 0000-0003-0678-4478 surname: Domenjo-Vila fullname: Domenjo-Vila, Eva organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain – sequence: 2 givenname: Valentina surname: Casella fullname: Casella, Valentina organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain – sequence: 3 givenname: Ryutaro surname: Iwabuchi fullname: Iwabuchi, Ryutaro organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 4 givenname: Even surname: Fossum fullname: Fossum, Even organization: Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway – sequence: 5 givenname: Mireia orcidid: 0000-0001-5239-2120 surname: Pedragosa fullname: Pedragosa, Mireia organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain – sequence: 6 givenname: Quim surname: Castellví fullname: Castellví, Quim organization: Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 7 givenname: Paula surname: Cebollada Rica fullname: Cebollada Rica, Paula organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain – sequence: 8 givenname: Tsuneyasu surname: Kaisho fullname: Kaisho, Tsuneyasu organization: Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan – sequence: 9 givenname: Kazutaka surname: Terahara fullname: Terahara, Kazutaka organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan – sequence: 10 givenname: Gennady orcidid: 0000-0002-5049-0656 surname: Bocharov fullname: Bocharov, Gennady organization: Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia – sequence: 11 givenname: Jordi surname: Argilaguet fullname: Argilaguet, Jordi email: jordi.argilaguet@irta.cat organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain – sequence: 12 givenname: Andreas orcidid: 0000-0003-0620-5317 surname: Meyerhans fullname: Meyerhans, Andreas email: andreas.meyerhans@upf.edu organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36795562$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd9qFDEUxoNUbK19A5G5FGS2SSZ_Gi8EWa0WCgVpwbtwNjmxWWYmazJb6Nv4LD6Z2U4txQubm4Twfd_hfL-XZG9MIxLymtEFo0wdrxcO-4ybBae8WzDGGe-ekQPOGWsZF3rv0XufHJWypvUoypgRL8h-p7SRUvEDcvV9-Y29az4tSwMZG5fjFB30TUi5ufz9q07p2wF9hAl9E4dhO6bpGjNsbpsUGned0xhdcxNz9cQxoJtiGssr8jxAX_Do_j4kV6efL5df2_OLL2fLj-etE1pMbfBOayaRBxBBKglKeGDIVdAOpNFGSNPR4OUK_IkHJQXzlJ10oIw0Dnl3SM7mXJ9gbTc5DpBvbYJo7z5S_mEh14V6tNQ7VF5RgxSF5trACjstgLuVYQGgZr2dszY5_dximewQy25_GDFti-Vaa0G7jrMqfXMv3a5qOQ-D_9ZaBWIWuJxKyRgeJIzaHUC7tjNAuwNoZ4DV9v4fm4sT7BqdMsT-KfOH2Yy18JuI2RYXcXQVXq5YaiPx_wF_AP2yt9I |
CitedBy_id | crossref_primary_10_3390_v16050799 crossref_primary_10_1038_s41419_023_06374_y crossref_primary_10_1093_intimm_dxaf003 crossref_primary_10_1084_jem_20240776 crossref_primary_10_1002_advs_202413561 |
Cites_doi | 10.1080/2162402X.2016.1183850 10.1084/jem.20102101 10.1016/j.celrep.2016.07.076 10.1073/pnas.1211910109 10.1016/j.immuni.2021.11.002 10.1084/jem.20071949 10.4049/jimmunol.1601881 10.4049/jimmunol.1202798 10.1038/ncomms15050 10.1038/s41590-020-0676-7 10.1084/jem.20190173 10.1016/j.celrep.2020.108078 10.1084/jem.20100223 10.1016/S0140-6736(17)31046-2 10.1002/eji.200839093 10.1002/eji.201445388 10.1038/s41586-019-1326-9 10.1073/pnas.1902701116 10.1038/s41467-020-19192-z 10.1016/j.immuni.2022.03.006 10.1084/jem.20150598 10.1038/s41591-022-02060-2 10.1016/j.cell.2018.01.004 10.4049/jimmunol.1302448 10.1016/j.it.2017.12.005 10.1016/j.ccell.2017.04.003 10.1101/gr.241372.118 10.1038/s41586-019-1325-x 10.1126/sciimmunol.aai8071 10.1073/pnas.1018525108 10.1128/JVI.77.8.4911-4927.2003 10.1016/j.immuni.2018.12.021 10.1371/journal.pone.0080008 10.1126/scitranslmed.aag2285 10.1073/pnas.1019706108 10.1073/pnas.1917298117 10.1371/journal.ppat.1003490 10.1038/s41586-019-1836-5 10.1172/JCI20243 10.1146/annurev-immunol-041015-055318 10.1038/nature04444 10.1038/nature19317 10.1073/pnas.1621418114 10.1016/j.immuni.2017.11.001 10.1001/jamaoncol.2020.0465 10.1371/journal.pone.0063818 10.1016/j.it.2015.02.008 10.1016/j.immuni.2016.03.012 10.1073/pnas.2116741119 10.1371/journal.ppat.1005270 10.1016/j.ymthe.2005.10.019 10.1016/j.immuni.2020.04.014 10.1038/nature19330 10.1172/JCI135528 10.1016/j.celrep.2018.01.072 10.1007/s12094-018-1981-6 10.1016/j.immuni.2018.04.026 10.1016/j.jhep.2019.09.031 10.1016/j.chom.2015.04.005 10.1016/j.immuni.2018.09.024 10.3390/jcm8122089 10.1038/s41590-019-0441-y 10.1016/j.cell.2015.08.004 10.1016/j.ccell.2016.06.003 10.1073/pnas.1905675116 10.1038/ni.3543 10.1073/pnas.1121623109 10.1073/pnas.1711345114 10.1016/j.chom.2012.04.017 10.3389/fimmu.2018.01042 10.1002/eji.201242887 10.1016/j.cell.2012.08.015 10.1084/jem.20180684 10.1038/nri1355 10.1038/s41590-020-0760-z 10.1038/s41586-020-2611-3 10.1001/jamaoncol.2019.2244 10.1016/j.immuni.2017.01.003 10.1002/eji.201445080 10.1038/s41591-019-0410-x 10.1038/nri.2017.112 10.1126/science.aaf0683 10.1126/scitranslmed.aad7118 10.1126/science.aaf1292 10.1038/s41590-019-0312-6 10.1126/science.aar4060 10.1016/j.immuni.2009.08.027 10.1016/0166-0934(91)90018-U 10.1200/JCO.2018.36.15_suppl.TPS2597 10.1038/s41577-019-0223-7 |
ContentType | Journal Article |
Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2023.112123 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_0dce6d609e0e47279abe374a2cb91faa 36795562 10_1016_j_celrep_2023_112123 S2211124723001341 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG NPM 7X8 |
ID | FETCH-LOGICAL-c474t-fdc7715e2fa4f565a64da1e26f7ca597945930fd5bad8da6541d0183a6959ce23 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:04:35 EDT 2025 Thu Jul 10 18:38:37 EDT 2025 Thu Mar 27 05:18:49 EDT 2025 Tue Jul 01 02:59:33 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Tue Jul 25 20:56:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | anti-PD-L1 CP: Immunology LCMV chronic infection therapeutic vaccination immunotherapy T cell exhaustion Flt3L XCR1+ DCs SIRPɑ+ DCs |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-fdc7715e2fa4f565a64da1e26f7ca597945930fd5bad8da6541d0183a6959ce23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5239-2120 0000-0002-5049-0656 0000-0003-0678-4478 0000-0003-0620-5317 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2023.112123 |
PMID | 36795562 |
PQID | 2777403321 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0dce6d609e0e47279abe374a2cb91faa proquest_miscellaneous_2777403321 pubmed_primary_36795562 crossref_primary_10_1016_j_celrep_2023_112123 crossref_citationtrail_10_1016_j_celrep_2023_112123 elsevier_sciencedirect_doi_10_1016_j_celrep_2023_112123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Kamphorst, Wieland, Nasti, Yang, Zhang, Barber, Konieczny, Daugherty, Koenig, Yu (bib65) 2017; 355 Crozat, Guiton, Contreras, Feuillet, Dutertre, Ventre, Vu Manh, Baranek, Storset, Marvel (bib35) 2010; 207 Macal, Lewis, Kunz, Flavell, Harker, Zúñiga (bib51) 2012; 11 Im, Hashimoto, Gerner, Lee, Kissick, Burger, Shan, Hale, Lee, Nasti (bib8) 2016; 537 Wykes, Lewin (bib24) 2018; 18 Miller, Sen, Al Abosy, Bi, Virkud, LaFleur, Yates, Lako, Felt, Naik (bib18) 2019; 20 Pauken, Wherry (bib21) 2015; 36 Quiel, Caucheteux, Laurence, Singh, Bocharov, Ben-Sasson, Grossman, Paul (bib74) 2011; 108 Ozga, Chow, Lopes, Servis, Di Pilato, Dehio, Lian, Mempel, Luster (bib62) 2022; 55 Gonzalez-Cao, Martinez-Picado, Karachaliou, Rosell, Meyerhans (bib82) 2019; 21 Iwabuchi, Ikeno, Kobayashi-Ishihara, Takeyama, Ato, Tsunetsugu-Yokota, Terahara (bib54) 2018; 9 Roberts, Broz, Binnewies, Headley, Nelson, Wolf, Kaisho, Bogunovic, Bhardwaj, Krummel (bib40) 2016; 30 Willingham, Volkmer, Gentles, Sahoo, Dalerba, Mitra, Wang, Contreras-Trujillo, Martin, Cohen (bib71) 2012; 109 Yamazaki, Sugiyama, Ohta, Hemmi, Hamada, Sasaki, Fukuda, Yano, Nobuoka, Hirashima (bib56) 2013; 190 Brummelman, Mazza, Alvisi, Colombo, Grilli, Mikulak, Mavilio, Alloisio, Ferrari, Lopci (bib17) 2018; 215 Gardiner, Lalezari, Lawitz, DiMicco, Ghalib, Reddy, Chang, Sulkowski, Marro, Anderson (bib83) 2013; 8 Blanch-Lombarte, Gálvez, Revollo, Jiménez-Moyano, Llibre, Manzano, Boada, Dalmau, E Speiser, Clotet (bib27) 2019; 8 Garris, Arlauckas, Kohler, Trefny, Garren, Piot, Engblom, Pfirschke, Siwicki, Gungabeesoon (bib60) 2018; 49 Utzschneider, Gabriel, Chisanga, Gloury, Gubser, Vasanthakumar, Shi, Kallies (bib5) 2020; 21 Alcántara-Hernández, Leylek, Wagar, Engleman, Keler, Marinkovich, Davis, Nolan, Idoyaga (bib38) 2017; 47 Böttcher, Bonavita, Chakravarty, Blees, Cabeza-Cabrerizo, Sammicheli, Rogers, Sahai, Zelenay, Reis E Sousa (bib36) 2018; 172 Rajdev, Chiao, Lensing, Little, Dittmer, Einstein, Haigentz, Sparano, Mitsuyasu (bib25) 2018; 36 Grossman, Min, Meier-Schellersheim, Paul (bib73) 2004; 4 Keppler, Theil, Vucikuja, Aichele (bib68) 2009; 39 Calabro, Liu, Gallman, Nascimento, Yu, Zhang, Chen, Zhang, Xu, Gowthaman (bib45) 2016; 16 Wherry, Blattman, Murali-Krishna, van der Most, Ahmed (bib55) 2003; 77 Oba, Long, Keler, Marsh, Minderman, Abrams, Liu, Ito (bib79) 2020; 11 Alfei, Kanev, Hofmann, Wu, Ghoneim, Roelli, Utzschneider, von Hoesslin, Cullen, Fan (bib2) 2019; 571 Sandu, Cerletti, Oetiker, Borsa, Wagen, Spadafora, Welten, Stolz, Oxenius, Claassen (bib10) 2020; 32 Gudjonsson, Lysén, Balan, Sundvold-Gjerstad, Arnold-Schrauf, Richter, Bækkevold, Dalod, Bogen, Fossum (bib87) 2017; 198 Ng, Oldstone (bib49) 2012; 109 Im, Konieczny, Hudson, Masopust, Ahmed (bib80) 2020; 117 Mylvaganam, Rios, Abdelaal, Iyer, Tharp, Mavigner, Hicks, Chahroudi, Ahmed, Bosinger (bib11) 2017; 114 El-Khoueiry, Sangro, Yau, Crocenzi, Kudo, Hsu, Kim, Choo, Trojan, Welling (bib84) 2017; 389 Brewitz, Eickhoff, Dähling, Quast, Bedoui, Kroczek, Kurts, Garbi, Barchet, Iannacone (bib32) 2017; 46 Pratumchai, Zak, Huang, Min, Oldstone, Teijaro (bib77) 2022; 119 Beltra, Manne, Abdel-Hakeem, Kurachi, Giles, Chen, Casella, Ngiow, Khan, Huang (bib9) 2020; 52 Leong, Chen, Ong, Wu, Man, Deleage, Minnich, Meckiff, Wei, Hou (bib13) 2016; 17 Spranger, Dai, Horton, Gajewski (bib41) 2017; 31 Peligero, Argilaguet, Güerri-Fernandez, Torres, Ligero, Colomer, Plana, Knobel, García, Meyerhans (bib85) 2015; 11 Zou, Wolchok, Chen (bib22) 2016; 8 He, Hou, Liu, Zhang, Bai, Han, Yang, Wei, Shen, Yang (bib12) 2016; 537 Fossum, Grødeland, Terhorst, Tveita, Vikse, Mjaaland, Henri, Malissen, Bogen (bib58) 2015; 45 Kallies, Zehn, Utzschneider (bib29) 2020; 20 Danilo, Chennupati, Silva, Siegert, Held (bib59) 2018; 22 Sevilla, McGavern, Teng, Kunz, Oldstone (bib50) 2004; 113 Sanchez-Paulete, Labiano, Rodriguez-Ruiz, Azpilikueta, Etxeberria, Bolaños, Lang, Rodriguez, Aznar, Jure-Kunkel, Melero (bib69) 2016; 46 Isogawa, Chung, Murata, Kakimi, Chisari (bib64) 2013; 9 Dähling, Mansilla, Knöpper, Grafen, Utzschneider, Ugur, Whitney, Bachem, Arampatzi, Imdahl (bib63) 2022; 55 Hui, Cheung, Zhu, Su, Taylor, Wallweber, Sasmal, Huang, Kim, Mellman, Vale (bib66) 2017; 355 Ferris, Durai, Wu, Theisen, Ward, Bern, Davidson, Bagadia, Liu, Briseño (bib33) 2020; 584 Dutertre, Jourdain, Rancez, Amraoui, Fossum, Bogen, Sanchez, Couëdel-Courteille, Richard, Dalod (bib39) 2014; 192 Kanev, Wu, Drews, Roelli, Wurmser, von Hösslin, Zehn (bib78) 2019; 116 Bailón, Llano, Cedeño, Escribà, Rosás-Umbert, Parera, Casadellà, Lopez, Pérez, Oriol-Tordera (bib86) 2022; 28 Bengsch, Ohtani, Khan, Setty, Manne, O’Brien, Gherardini, Herati, Huang, Chang (bib7) 2018; 48 Kurachi, Kurachi, Suenaga, Tsukui, Abe, Ueha, Tomura, Sugihara, Takamura, Kakimi, Matsushima (bib61) 2011; 208 McLane, Abdel-Hakeem, Wherry (bib1) 2019; 37 Jansen, Prokhnevska, Master, Sanda, Carlisle, Bilen, Cardenas, Wilkinson, Lake, Sowalsky (bib81) 2019; 576 Liu, Wen, Tang, Qin, Lin, Zhang, Wu, Ashton, Wu, Ding (bib46) 2016; 5 Veillette, Chen (bib72) 2018; 39 Gauttier, Pengam, Durand, Biteau, Mary, Morello, Néel, Porto, Teppaz, Thepenier (bib47) 2020; 130 Richter, Perriard, Oxenius (bib48) 2013; 43 Khan, Giles, McDonald, Manne, Ngiow, Patel, Werner, Huang, Alexander, Wu (bib3) 2019; 571 Ribas, Wolchok (bib23) 2018; 359 Seo, Chen, González-Avalos, Samaniego-Castruita, Das, Wang, López-Moyado, Georges, Zhang, Onodera (bib4) 2019; 116 Li, Tang, Guo, Chen, Gu, Zhou, Ye, Li, Wang, Liao (bib15) 2020; 72 Saito, Respatika, Komori, Washio, Nishimura, Kotani, Murata, Okazawa, Ohnishi, Kaneko (bib44) 2017; 114 Bocharov, Quiel, Luzyanina, Alon, Chiglintsev, Chereshnev, Meier-Schellersheim, Paul, Grossman (bib75) 2011; 108 Petrovas, Ferrando-Martinez, Gerner, Casazza, Pegu, Deleage, Cooper, Hataye, Andrews, Ambrozak (bib14) 2017; 9 Uldrick, Gonçalves, Abdul-Hay, Claeys, Emu, Ernstoff, Fling, Fong, Kaiser, Lacroix (bib26) 2019; 5 Argilaguet, Pedragosa, Esteve-Codina, Riera, Vidal, Peligero-Cruz, Casella, Andreu, Kaisho, Bocharov (bib37) 2019; 29 Huang, Zak, Pratumchai, Shaabani, Vartabedian, Nguyen, Wu, Xiao, Teijaro (bib76) 2019; 216 Fredriksen, Sandlie, Bogen (bib89) 2006; 13 Verma, Shrimali, Ahmad, Dai, Wang, Lu, Nandre, Gaur, Lopez, Sade-Feldman (bib30) 2019; 20 Dorner, Dorner, Zhou, Opitz, Mora, Güttler, Hutloff, Mages, Ranke, Schaefer (bib34) 2009; 31 Utzschneider, Alfei, Roelli, Barras, Chennupati, Darbre, Delorenzi, Pinschewer, Zehn (bib6) 2016; 213 Lai, Mardiana, House, Sek, Henderson, Giuffrida, Chen, Todd, Petley, Chan (bib70) 2020; 21 Grødeland, Mjaaland, Tunheim, Fredriksen, Bogen (bib90) 2013; 8 Siddiqui, Schaeuble, Chennupati, Fuertes Marraco, Calderon-Copete, Pais Ferreira, Carmona, Scarpellino, Gfeller, Pradervand (bib19) 2019; 50 Barber, Wherry, Masopust, Zhu, Allison, Sharpe, Freeman, Ahmed (bib20) 2006; 439 Silvin, Yu, Lahaye, Imperatore, Brault, Cardinaud, Becker, Kwan, Conrad, Maurin (bib53) 2017; 2 Ng, Sullivan, Teijaro, Lee, Welch, Rice, Sheehan, Schreiber, Oldstone (bib52) 2015; 17 Gonzalez-Cao, Morán, Dalmau, Garcia-Corbacho, Bracht, Bernabe, Juan, de Castro, Blanco, Drozdowskyj (bib28) 2020; 6 Eickhoff, Brewitz, Gerner, Klauschen, Komander, Hemmi, Garbi, Kaisho, Germain, Kastenmüller (bib31) 2015; 162 Salmon, Idoyaga, Rahman, Leboeuf, Remark, Jordan, Casanova-Acebes, Khudoynazarova, Agudo, Tung (bib42) 2016; 44 Battegay, Cooper, Althage, Bänziger, Hengartner, Zinkernagel (bib88) 1991; 33 Sung, Zhang, Moseman, Alvarez, Iannacone, Henrickson, de la Torre, Groom, Luster, von Andrian (bib67) 2012; 150 Hammerich, Marron, Upadhyay, Svensson-Arvelund, Dhainaut, Hussein, Zhan, Ostrowski, Yellin, Marsh (bib43) 2019; 25 Ha, Mueller, Wherry, Barber, Aubert, Sharpe, Freeman, Ahmed (bib57) 2008; 205 Wieland, Kemming, Schuch, Emmerich, Knolle, Neumann-Haefelin, Held, Zehn, Hofmann, Thimme (bib16) 2017; 8 He (10.1016/j.celrep.2023.112123_bib12) 2016; 537 Argilaguet (10.1016/j.celrep.2023.112123_bib37) 2019; 29 Calabro (10.1016/j.celrep.2023.112123_bib45) 2016; 16 Sanchez-Paulete (10.1016/j.celrep.2023.112123_bib69) 2016; 46 Ozga (10.1016/j.celrep.2023.112123_bib62) 2022; 55 Verma (10.1016/j.celrep.2023.112123_bib30) 2019; 20 Kallies (10.1016/j.celrep.2023.112123_bib29) 2020; 20 Peligero (10.1016/j.celrep.2023.112123_bib85) 2015; 11 Utzschneider (10.1016/j.celrep.2023.112123_bib6) 2016; 213 Leong (10.1016/j.celrep.2023.112123_bib13) 2016; 17 Willingham (10.1016/j.celrep.2023.112123_bib71) 2012; 109 Isogawa (10.1016/j.celrep.2023.112123_bib64) 2013; 9 Bocharov (10.1016/j.celrep.2023.112123_bib75) 2011; 108 Zou (10.1016/j.celrep.2023.112123_bib22) 2016; 8 Garris (10.1016/j.celrep.2023.112123_bib60) 2018; 49 Spranger (10.1016/j.celrep.2023.112123_bib41) 2017; 31 Saito (10.1016/j.celrep.2023.112123_bib44) 2017; 114 Grødeland (10.1016/j.celrep.2023.112123_bib90) 2013; 8 Miller (10.1016/j.celrep.2023.112123_bib18) 2019; 20 Fossum (10.1016/j.celrep.2023.112123_bib58) 2015; 45 Li (10.1016/j.celrep.2023.112123_bib15) 2020; 72 Kamphorst (10.1016/j.celrep.2023.112123_bib65) 2017; 355 Hammerich (10.1016/j.celrep.2023.112123_bib43) 2019; 25 Hui (10.1016/j.celrep.2023.112123_bib66) 2017; 355 Grossman (10.1016/j.celrep.2023.112123_bib73) 2004; 4 Wieland (10.1016/j.celrep.2023.112123_bib16) 2017; 8 Bailón (10.1016/j.celrep.2023.112123_bib86) 2022; 28 Ha (10.1016/j.celrep.2023.112123_bib57) 2008; 205 El-Khoueiry (10.1016/j.celrep.2023.112123_bib84) 2017; 389 Gonzalez-Cao (10.1016/j.celrep.2023.112123_bib82) 2019; 21 Richter (10.1016/j.celrep.2023.112123_bib48) 2013; 43 Ribas (10.1016/j.celrep.2023.112123_bib23) 2018; 359 Salmon (10.1016/j.celrep.2023.112123_bib42) 2016; 44 Keppler (10.1016/j.celrep.2023.112123_bib68) 2009; 39 Battegay (10.1016/j.celrep.2023.112123_bib88) 1991; 33 Ng (10.1016/j.celrep.2023.112123_bib52) 2015; 17 Sevilla (10.1016/j.celrep.2023.112123_bib50) 2004; 113 Pratumchai (10.1016/j.celrep.2023.112123_bib77) 2022; 119 Huang (10.1016/j.celrep.2023.112123_bib76) 2019; 216 Im (10.1016/j.celrep.2023.112123_bib80) 2020; 117 Gauttier (10.1016/j.celrep.2023.112123_bib47) 2020; 130 Macal (10.1016/j.celrep.2023.112123_bib51) 2012; 11 Quiel (10.1016/j.celrep.2023.112123_bib74) 2011; 108 Wykes (10.1016/j.celrep.2023.112123_bib24) 2018; 18 Wherry (10.1016/j.celrep.2023.112123_bib55) 2003; 77 Gonzalez-Cao (10.1016/j.celrep.2023.112123_bib28) 2020; 6 Lai (10.1016/j.celrep.2023.112123_bib70) 2020; 21 Khan (10.1016/j.celrep.2023.112123_bib3) 2019; 571 Bengsch (10.1016/j.celrep.2023.112123_bib7) 2018; 48 Brewitz (10.1016/j.celrep.2023.112123_bib32) 2017; 46 Mylvaganam (10.1016/j.celrep.2023.112123_bib11) 2017; 114 Utzschneider (10.1016/j.celrep.2023.112123_bib5) 2020; 21 Gudjonsson (10.1016/j.celrep.2023.112123_bib87) 2017; 198 Dorner (10.1016/j.celrep.2023.112123_bib34) 2009; 31 Liu (10.1016/j.celrep.2023.112123_bib46) 2016; 5 Veillette (10.1016/j.celrep.2023.112123_bib72) 2018; 39 Böttcher (10.1016/j.celrep.2023.112123_bib36) 2018; 172 Dähling (10.1016/j.celrep.2023.112123_bib63) 2022; 55 Crozat (10.1016/j.celrep.2023.112123_bib35) 2010; 207 Eickhoff (10.1016/j.celrep.2023.112123_bib31) 2015; 162 Kurachi (10.1016/j.celrep.2023.112123_bib61) 2011; 208 Oba (10.1016/j.celrep.2023.112123_bib79) 2020; 11 Blanch-Lombarte (10.1016/j.celrep.2023.112123_bib27) 2019; 8 Jansen (10.1016/j.celrep.2023.112123_bib81) 2019; 576 Im (10.1016/j.celrep.2023.112123_bib8) 2016; 537 Sung (10.1016/j.celrep.2023.112123_bib67) 2012; 150 Seo (10.1016/j.celrep.2023.112123_bib4) 2019; 116 Silvin (10.1016/j.celrep.2023.112123_bib53) 2017; 2 Yamazaki (10.1016/j.celrep.2023.112123_bib56) 2013; 190 Sandu (10.1016/j.celrep.2023.112123_bib10) 2020; 32 Kanev (10.1016/j.celrep.2023.112123_bib78) 2019; 116 Siddiqui (10.1016/j.celrep.2023.112123_bib19) 2019; 50 Pauken (10.1016/j.celrep.2023.112123_bib21) 2015; 36 Rajdev (10.1016/j.celrep.2023.112123_bib25) 2018; 36 Roberts (10.1016/j.celrep.2023.112123_bib40) 2016; 30 Ng (10.1016/j.celrep.2023.112123_bib49) 2012; 109 Fredriksen (10.1016/j.celrep.2023.112123_bib89) 2006; 13 Gardiner (10.1016/j.celrep.2023.112123_bib83) 2013; 8 Petrovas (10.1016/j.celrep.2023.112123_bib14) 2017; 9 Ferris (10.1016/j.celrep.2023.112123_bib33) 2020; 584 McLane (10.1016/j.celrep.2023.112123_bib1) 2019; 37 Uldrick (10.1016/j.celrep.2023.112123_bib26) 2019; 5 Alcántara-Hernández (10.1016/j.celrep.2023.112123_bib38) 2017; 47 Danilo (10.1016/j.celrep.2023.112123_bib59) 2018; 22 Brummelman (10.1016/j.celrep.2023.112123_bib17) 2018; 215 Beltra (10.1016/j.celrep.2023.112123_bib9) 2020; 52 Iwabuchi (10.1016/j.celrep.2023.112123_bib54) 2018; 9 Alfei (10.1016/j.celrep.2023.112123_bib2) 2019; 571 Barber (10.1016/j.celrep.2023.112123_bib20) 2006; 439 Dutertre (10.1016/j.celrep.2023.112123_bib39) 2014; 192 |
References_xml | – volume: 537 start-page: 417 year: 2016 end-page: 421 ident: bib8 article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy publication-title: Nature – volume: 46 start-page: 205 year: 2017 end-page: 219 ident: bib32 article-title: CD8 T cells orchestrate pDC-XCR1 dendritic cell spatial and functional cooperativity to optimize priming publication-title: Immunity – volume: 11 start-page: 617 year: 2012 end-page: 630 ident: bib51 article-title: Plasmacytoid dendritic cells are productively infected and activated through TLR-7 early after arenavirus infection publication-title: Cell Host Microbe – volume: 20 start-page: 128 year: 2020 end-page: 136 ident: bib29 article-title: Precursor exhausted T cells: key to successful immunotherapy? publication-title: Nat. Rev. Immunol. – volume: 48 start-page: 1029 year: 2018 end-page: 1045.e5 ident: bib7 article-title: Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells publication-title: Immunity – volume: 44 start-page: 924 year: 2016 end-page: 938 ident: bib42 article-title: Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition publication-title: Immunity – volume: 43 start-page: 649 year: 2013 end-page: 654 ident: bib48 article-title: Reversal of chronic to resolved infection by IL-10 blockade is LCMV strain dependent publication-title: Eur. J. Immunol. – volume: 17 start-page: 653 year: 2015 end-page: 661 ident: bib52 article-title: Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection publication-title: Cell Host Microbe – volume: 208 start-page: 1605 year: 2011 end-page: 1620 ident: bib61 article-title: Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration publication-title: J. Exp. Med. – volume: 116 start-page: 12410 year: 2019 end-page: 12415 ident: bib4 article-title: TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: e63818 year: 2013 ident: bib83 article-title: A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection publication-title: PLoS One – volume: 130 start-page: 6109 year: 2020 end-page: 6123 ident: bib47 article-title: Selective SIRPα blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance publication-title: J. Clin. Invest. – volume: 21 start-page: 713 year: 2019 end-page: 720 ident: bib82 article-title: Cancer immunotherapy of patients with HIV infection publication-title: Clin. Transl. Oncol. – volume: 355 start-page: 1428 year: 2017 end-page: 1433 ident: bib66 article-title: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition publication-title: Science – volume: 32 start-page: 108078 year: 2020 ident: bib10 article-title: Landscape of exhausted virus-specific CD8 T cells in chronic LCMV infection publication-title: Cell Rep. – volume: 359 start-page: 1350 year: 2018 end-page: 1355 ident: bib23 article-title: Cancer immunotherapy using checkpoint blockade publication-title: Science – volume: 108 start-page: 3318 year: 2011 end-page: 3323 ident: bib75 article-title: Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number publication-title: Proc. Natl. Acad. Sci. USA – volume: 77 start-page: 4911 year: 2003 end-page: 4927 ident: bib55 article-title: Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment publication-title: J. Virol. – volume: 571 start-page: 265 year: 2019 end-page: 269 ident: bib2 article-title: TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection publication-title: Nature – volume: 114 start-page: E10151 year: 2017 end-page: E10160 ident: bib44 article-title: SIRPα+ dendritic cells regulate homeostasis of fibroblastic reticular cells via TNF receptor ligands in the adult spleen publication-title: Proc. Natl. Acad. Sci. USA – volume: 113 start-page: 737 year: 2004 end-page: 745 ident: bib50 article-title: Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion publication-title: J. Clin. Invest. – volume: 5 start-page: 1332 year: 2019 end-page: 1339 ident: bib26 article-title: assessment of the safety of pembrolizumab in patients with HIV and advanced cancer-A phase 1 study publication-title: JAMA Oncol. – volume: 190 start-page: 6071 year: 2013 end-page: 6082 ident: bib56 article-title: Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1 publication-title: J. Immunol. – volume: 21 start-page: 914 year: 2020 end-page: 926 ident: bib70 article-title: Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity publication-title: Nat. Immunol. – volume: 25 start-page: 814 year: 2019 end-page: 824 ident: bib43 article-title: Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination publication-title: Nat. Med. – volume: 571 start-page: 211 year: 2019 end-page: 218 ident: bib3 article-title: TOX transcriptionally and epigenetically programs CD8 T cell exhaustion publication-title: Nature – volume: 31 start-page: 823 year: 2009 end-page: 833 ident: bib34 article-title: Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells publication-title: Immunity – volume: 389 start-page: 2492 year: 2017 end-page: 2502 ident: bib84 article-title: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial publication-title: Lancet – volume: 8 start-page: 2089 year: 2019 ident: bib27 article-title: Enhancement of antiviral CD8 T-cell responses and complete remission of metastatic melanoma in an HIV-1-Infected subject treated with pembrolizumab publication-title: J. Clin. Med. – volume: 584 start-page: 624 year: 2020 end-page: 629 ident: bib33 article-title: cDC1 prime and are licensed by CD4 T cells to induce anti-tumour immunity publication-title: Nature – volume: 31 start-page: 711 year: 2017 end-page: 723.e4 ident: bib41 article-title: Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy publication-title: Cancer Cell – volume: 198 start-page: 2785 year: 2017 end-page: 2795 ident: bib87 article-title: Targeting influenza virus hemagglutinin to Xcr1 dendritic cells in the absence of receptor-mediated endocytosis enhances protective antibody responses publication-title: J. Immunol. – volume: 37 start-page: 457 year: 2019 end-page: 495 ident: bib1 article-title: CD8 T cell exhaustion during chronic viral infection and cancer publication-title: Annu. Rev. Immunol. – volume: 192 start-page: 4697 year: 2014 end-page: 4708 ident: bib39 article-title: TLR3-responsive, XCR1+, CD141(BDCA-3)+/CD8α+-equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques publication-title: J. Immunol. – volume: 6 start-page: 1063 year: 2020 end-page: 1067 ident: bib28 article-title: Assessment of the feasibility and safety of durvalumab for treatment of solid tumors in patients with HIV-1 infection: the phase 2 DURVAST study publication-title: JAMA Oncol. – volume: 45 start-page: 624 year: 2015 end-page: 635 ident: bib58 article-title: Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus publication-title: Eur. J. Immunol. – volume: 72 start-page: 420 year: 2020 end-page: 430 ident: bib15 article-title: CXCL13-mediated recruitment of intrahepatic CXCR5CD8 T cells favors viral control in chronic HBV infection publication-title: J. Hepatol. – volume: 50 start-page: 195 year: 2019 end-page: 211.e10 ident: bib19 article-title: Intratumoral Tcf1+ PD-1+ CD8 T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy publication-title: Immunity – volume: 213 start-page: 1819 year: 2016 end-page: 1834 ident: bib6 article-title: High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival publication-title: J. Exp. Med. – volume: 11 start-page: e1005270 year: 2015 ident: bib85 article-title: PD-L1 blockade differentially impacts regulatory T cells from HIV-infected individuals depending on plasma viremia publication-title: PLoS Pathog. – volume: 2 start-page: eaai8071 year: 2017 ident: bib53 article-title: Constitutive resistance to viral infection in human CD141 dendritic cells publication-title: Sci. Immunol. – volume: 33 start-page: 191 year: 1991 end-page: 198 ident: bib88 article-title: Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates publication-title: J. Virol. Methods – volume: 4 start-page: 387 year: 2004 end-page: 395 ident: bib73 article-title: Concomitant regulation of T-cell activation and homeostasis publication-title: Nat. Rev. Immunol. – volume: 52 start-page: 825 year: 2020 end-page: 841.e8 ident: bib9 article-title: Developmental relationships of four exhausted CD8 T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms publication-title: Immunity – volume: 109 start-page: 14116 year: 2012 end-page: 14121 ident: bib49 article-title: Infected CD8α- dendritic cells are the predominant source of IL-10 during establishment of persistent viral infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 108 start-page: 3312 year: 2011 end-page: 3317 ident: bib74 article-title: Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 1256 year: 2020 end-page: 1266 ident: bib5 article-title: Early precursor T cells establish and propagate T cell exhaustion in chronic infection publication-title: Nat. Immunol. – volume: 8 start-page: 328rv4 year: 2016 ident: bib22 article-title: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations publication-title: Sci. Transl. Med. – volume: 29 start-page: 907 year: 2019 end-page: 919 ident: bib37 article-title: Systems analysis reveals complex biological processes during virus infection fate decisions publication-title: Genome Res. – volume: 114 start-page: 1976 year: 2017 end-page: 1981 ident: bib11 article-title: Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 1042 year: 2018 ident: bib54 article-title: Introduction of human flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3 + CD4 + T cells publication-title: Front. Immunol. – volume: 172 start-page: 1022 year: 2018 end-page: 1037.e14 ident: bib36 article-title: NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control publication-title: Cell – volume: 576 start-page: 465 year: 2019 end-page: 470 ident: bib81 article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells publication-title: Nature – volume: 17 start-page: 1187 year: 2016 end-page: 1196 ident: bib13 article-title: CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles publication-title: Nat. Immunol. – volume: 216 start-page: 1791 year: 2019 end-page: 1808 ident: bib76 article-title: IL-27 promotes the expansion of self-renewing CD8+ T cells in persistent viral infection publication-title: J. Exp. Med. – volume: 55 start-page: 656 year: 2022 end-page: 670.e8 ident: bib63 article-title: Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches publication-title: Immunity – volume: 109 start-page: 6662 year: 2012 end-page: 6667 ident: bib71 article-title: The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors publication-title: Proc. Natl. Acad. Sci. USA – volume: 16 start-page: 2472 year: 2016 end-page: 2485 ident: bib45 article-title: Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity publication-title: Cell Rep. – volume: 5 start-page: e1183850 year: 2016 ident: bib46 article-title: Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity publication-title: OncoImmunology – volume: 47 start-page: 1037 year: 2017 end-page: 1050.e6 ident: bib38 article-title: High-Dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization publication-title: Immunity – volume: 11 start-page: 5415 year: 2020 ident: bib79 article-title: Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s publication-title: Nat. Commun. – volume: 36 start-page: 265 year: 2015 end-page: 276 ident: bib21 article-title: Overcoming T cell exhaustion in infection and cancer publication-title: Trends Immunol. – volume: 22 start-page: 2107 year: 2018 end-page: 2117 ident: bib59 article-title: Suppression of tcf1 by inflammatory cytokines facilitates effector CD8 T cell differentiation publication-title: Cell Rep. – volume: 20 start-page: 1231 year: 2019 end-page: 1243 ident: bib30 article-title: PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+ CD38+ cells and anti-PD-1 resistance publication-title: Nat. Immunol. – volume: 46 start-page: 513 year: 2016 end-page: 522 ident: bib69 article-title: Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy publication-title: Eur. J. Immunol. – volume: 215 start-page: 2520 year: 2018 end-page: 2535 ident: bib17 article-title: High-dimensional single cell analysis identifies stem-like cytotoxic CD8 T cells infiltrating human tumors publication-title: J. Exp. Med. – volume: 537 start-page: 412 year: 2016 end-page: 428 ident: bib12 article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection publication-title: Nature – volume: 150 start-page: 1249 year: 2012 end-page: 1263 ident: bib67 article-title: Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes publication-title: Cell – volume: 30 start-page: 324 year: 2016 end-page: 336 ident: bib40 article-title: Critical role for CD103/CD141 dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma publication-title: Cancer Cell – volume: 355 start-page: 1423 year: 2017 end-page: 1427 ident: bib65 article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent publication-title: Science – volume: 39 start-page: 173 year: 2018 end-page: 184 ident: bib72 article-title: SIRPα-CD47 immune checkpoint blockade in anticancer therapy publication-title: Trends Immunol. – volume: 20 start-page: 326 year: 2019 end-page: 336 ident: bib18 article-title: Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade publication-title: Nat. Immunol. – volume: 9 start-page: e1003490 year: 2013 ident: bib64 article-title: CD40 activation rescues antiviral CD8⁺ T cells from PD-1-mediated exhaustion publication-title: PLoS Pathog. – volume: 49 start-page: 1148 year: 2018 end-page: 1161.e7 ident: bib60 article-title: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12 publication-title: Immunity – volume: 9 start-page: eaag2285 year: 2017 ident: bib14 article-title: Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies publication-title: Sci. Transl. Med. – volume: 8 start-page: e80008 year: 2013 ident: bib90 article-title: The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype publication-title: PLoS One – volume: 13 start-page: 776 year: 2006 end-page: 785 ident: bib89 article-title: DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells publication-title: Mol. Ther. – volume: 55 start-page: 82 year: 2022 end-page: 97.e8 ident: bib62 article-title: CXCL10 chemokine regulates heterogeneity of the CD8+ T cell response and viral set point during chronic infection publication-title: Immunity – volume: 439 start-page: 682 year: 2006 end-page: 687 ident: bib20 article-title: Restoring function in exhausted CD8 T cells during chronic viral infection publication-title: Nature – volume: 36 start-page: TPS2597 year: 2018 ident: bib25 article-title: AMC 095 (AIDS malignancy Consortium): A phase I study of ipilimumab (IPI) and nivolumab (NIVO) in advanced HIV associated solid tumors (ST) with expansion cohorts in HIV associated solid tumors and classical Hodgkin lymphoma (cHL) publication-title: J. Clin. Oncol. – volume: 162 start-page: 1322 year: 2015 end-page: 1337 ident: bib31 article-title: Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions publication-title: Cell – volume: 207 start-page: 1283 year: 2010 end-page: 1292 ident: bib35 article-title: The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells publication-title: J. Exp. Med. – volume: 116 start-page: 20070 year: 2019 end-page: 20076 ident: bib78 article-title: Proliferation-competent Tcf1+ CD8 T cells in dysfunctional populations are CD4 T cell help independent publication-title: Proc. Natl. Acad. Sci. USA – volume: 117 start-page: 4292 year: 2020 end-page: 4299 ident: bib80 article-title: PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 205 start-page: 543 year: 2008 end-page: 555 ident: bib57 article-title: Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection publication-title: J. Exp. Med. – volume: 39 start-page: 1774 year: 2009 end-page: 1783 ident: bib68 article-title: Effector T-cell differentiation during viral and bacterial infections: role of direct IL-12 signals for cell fate decision of CD8(+) T cells publication-title: Eur. J. Immunol. – volume: 28 start-page: 2611 year: 2022 end-page: 2621 ident: bib86 article-title: Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection: a randomized, placebo-controlled phase 1 trial publication-title: Nat. Med. – volume: 119 year: 2022 ident: bib77 article-title: B cell-derived IL-27 promotes control of persistent LCMV infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 91 year: 2018 end-page: 104 ident: bib24 article-title: Immune checkpoint blockade in infectious diseases publication-title: Nat. Rev. Immunol. – volume: 8 start-page: 15050 year: 2017 ident: bib16 article-title: TCF1 hepatitis C virus-specific CD8 T cells are maintained after cessation of chronic antigen stimulation publication-title: Nat. Commun. – volume: 5 start-page: e1183850 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib46 article-title: Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity publication-title: OncoImmunology doi: 10.1080/2162402X.2016.1183850 – volume: 208 start-page: 1605 year: 2011 ident: 10.1016/j.celrep.2023.112123_bib61 article-title: Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration publication-title: J. Exp. Med. doi: 10.1084/jem.20102101 – volume: 16 start-page: 2472 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib45 article-title: Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.076 – volume: 109 start-page: 14116 year: 2012 ident: 10.1016/j.celrep.2023.112123_bib49 article-title: Infected CD8α- dendritic cells are the predominant source of IL-10 during establishment of persistent viral infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1211910109 – volume: 55 start-page: 82 year: 2022 ident: 10.1016/j.celrep.2023.112123_bib62 article-title: CXCL10 chemokine regulates heterogeneity of the CD8+ T cell response and viral set point during chronic infection publication-title: Immunity doi: 10.1016/j.immuni.2021.11.002 – volume: 205 start-page: 543 year: 2008 ident: 10.1016/j.celrep.2023.112123_bib57 article-title: Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection publication-title: J. Exp. Med. doi: 10.1084/jem.20071949 – volume: 198 start-page: 2785 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib87 article-title: Targeting influenza virus hemagglutinin to Xcr1 dendritic cells in the absence of receptor-mediated endocytosis enhances protective antibody responses publication-title: J. Immunol. doi: 10.4049/jimmunol.1601881 – volume: 190 start-page: 6071 year: 2013 ident: 10.1016/j.celrep.2023.112123_bib56 article-title: Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1 publication-title: J. Immunol. doi: 10.4049/jimmunol.1202798 – volume: 8 start-page: 15050 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib16 article-title: TCF1 hepatitis C virus-specific CD8 T cells are maintained after cessation of chronic antigen stimulation publication-title: Nat. Commun. doi: 10.1038/ncomms15050 – volume: 21 start-page: 914 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib70 article-title: Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0676-7 – volume: 216 start-page: 1791 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib76 article-title: IL-27 promotes the expansion of self-renewing CD8+ T cells in persistent viral infection publication-title: J. Exp. Med. doi: 10.1084/jem.20190173 – volume: 32 start-page: 108078 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib10 article-title: Landscape of exhausted virus-specific CD8 T cells in chronic LCMV infection publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108078 – volume: 207 start-page: 1283 year: 2010 ident: 10.1016/j.celrep.2023.112123_bib35 article-title: The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20100223 – volume: 389 start-page: 2492 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib84 article-title: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial publication-title: Lancet doi: 10.1016/S0140-6736(17)31046-2 – volume: 39 start-page: 1774 year: 2009 ident: 10.1016/j.celrep.2023.112123_bib68 article-title: Effector T-cell differentiation during viral and bacterial infections: role of direct IL-12 signals for cell fate decision of CD8(+) T cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.200839093 – volume: 46 start-page: 513 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib69 article-title: Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy publication-title: Eur. J. Immunol. doi: 10.1002/eji.201445388 – volume: 571 start-page: 265 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib2 article-title: TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection publication-title: Nature doi: 10.1038/s41586-019-1326-9 – volume: 116 start-page: 20070 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib78 article-title: Proliferation-competent Tcf1+ CD8 T cells in dysfunctional populations are CD4 T cell help independent publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1902701116 – volume: 11 start-page: 5415 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib79 article-title: Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s publication-title: Nat. Commun. doi: 10.1038/s41467-020-19192-z – volume: 55 start-page: 656 year: 2022 ident: 10.1016/j.celrep.2023.112123_bib63 article-title: Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches publication-title: Immunity doi: 10.1016/j.immuni.2022.03.006 – volume: 213 start-page: 1819 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib6 article-title: High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival publication-title: J. Exp. Med. doi: 10.1084/jem.20150598 – volume: 28 start-page: 2611 year: 2022 ident: 10.1016/j.celrep.2023.112123_bib86 article-title: Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection: a randomized, placebo-controlled phase 1 trial publication-title: Nat. Med. doi: 10.1038/s41591-022-02060-2 – volume: 172 start-page: 1022 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib36 article-title: NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control publication-title: Cell doi: 10.1016/j.cell.2018.01.004 – volume: 192 start-page: 4697 year: 2014 ident: 10.1016/j.celrep.2023.112123_bib39 article-title: TLR3-responsive, XCR1+, CD141(BDCA-3)+/CD8α+-equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques publication-title: J. Immunol. doi: 10.4049/jimmunol.1302448 – volume: 39 start-page: 173 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib72 article-title: SIRPα-CD47 immune checkpoint blockade in anticancer therapy publication-title: Trends Immunol. doi: 10.1016/j.it.2017.12.005 – volume: 31 start-page: 711 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib41 article-title: Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2017.04.003 – volume: 29 start-page: 907 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib37 article-title: Systems analysis reveals complex biological processes during virus infection fate decisions publication-title: Genome Res. doi: 10.1101/gr.241372.118 – volume: 571 start-page: 211 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib3 article-title: TOX transcriptionally and epigenetically programs CD8 T cell exhaustion publication-title: Nature doi: 10.1038/s41586-019-1325-x – volume: 2 start-page: eaai8071 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib53 article-title: Constitutive resistance to viral infection in human CD141 dendritic cells publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aai8071 – volume: 108 start-page: 3312 year: 2011 ident: 10.1016/j.celrep.2023.112123_bib74 article-title: Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1018525108 – volume: 77 start-page: 4911 year: 2003 ident: 10.1016/j.celrep.2023.112123_bib55 article-title: Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment publication-title: J. Virol. doi: 10.1128/JVI.77.8.4911-4927.2003 – volume: 50 start-page: 195 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib19 article-title: Intratumoral Tcf1+ PD-1+ CD8 T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy publication-title: Immunity doi: 10.1016/j.immuni.2018.12.021 – volume: 8 start-page: e80008 year: 2013 ident: 10.1016/j.celrep.2023.112123_bib90 article-title: The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype publication-title: PLoS One doi: 10.1371/journal.pone.0080008 – volume: 9 start-page: eaag2285 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib14 article-title: Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aag2285 – volume: 108 start-page: 3318 year: 2011 ident: 10.1016/j.celrep.2023.112123_bib75 article-title: Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1019706108 – volume: 117 start-page: 4292 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib80 article-title: PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1917298117 – volume: 9 start-page: e1003490 year: 2013 ident: 10.1016/j.celrep.2023.112123_bib64 article-title: CD40 activation rescues antiviral CD8⁺ T cells from PD-1-mediated exhaustion publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003490 – volume: 576 start-page: 465 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib81 article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells publication-title: Nature doi: 10.1038/s41586-019-1836-5 – volume: 113 start-page: 737 year: 2004 ident: 10.1016/j.celrep.2023.112123_bib50 article-title: Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion publication-title: J. Clin. Invest. doi: 10.1172/JCI20243 – volume: 37 start-page: 457 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib1 article-title: CD8 T cell exhaustion during chronic viral infection and cancer publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-041015-055318 – volume: 439 start-page: 682 year: 2006 ident: 10.1016/j.celrep.2023.112123_bib20 article-title: Restoring function in exhausted CD8 T cells during chronic viral infection publication-title: Nature doi: 10.1038/nature04444 – volume: 537 start-page: 412 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib12 article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection publication-title: Nature doi: 10.1038/nature19317 – volume: 114 start-page: 1976 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib11 article-title: Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1621418114 – volume: 47 start-page: 1037 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib38 article-title: High-Dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization publication-title: Immunity doi: 10.1016/j.immuni.2017.11.001 – volume: 6 start-page: 1063 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib28 article-title: Assessment of the feasibility and safety of durvalumab for treatment of solid tumors in patients with HIV-1 infection: the phase 2 DURVAST study publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2020.0465 – volume: 8 start-page: e63818 year: 2013 ident: 10.1016/j.celrep.2023.112123_bib83 article-title: A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection publication-title: PLoS One doi: 10.1371/journal.pone.0063818 – volume: 36 start-page: 265 year: 2015 ident: 10.1016/j.celrep.2023.112123_bib21 article-title: Overcoming T cell exhaustion in infection and cancer publication-title: Trends Immunol. doi: 10.1016/j.it.2015.02.008 – volume: 44 start-page: 924 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib42 article-title: Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition publication-title: Immunity doi: 10.1016/j.immuni.2016.03.012 – volume: 119 year: 2022 ident: 10.1016/j.celrep.2023.112123_bib77 article-title: B cell-derived IL-27 promotes control of persistent LCMV infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2116741119 – volume: 11 start-page: e1005270 year: 2015 ident: 10.1016/j.celrep.2023.112123_bib85 article-title: PD-L1 blockade differentially impacts regulatory T cells from HIV-infected individuals depending on plasma viremia publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005270 – volume: 13 start-page: 776 year: 2006 ident: 10.1016/j.celrep.2023.112123_bib89 article-title: DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2005.10.019 – volume: 52 start-page: 825 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib9 article-title: Developmental relationships of four exhausted CD8 T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms publication-title: Immunity doi: 10.1016/j.immuni.2020.04.014 – volume: 537 start-page: 417 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib8 article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy publication-title: Nature doi: 10.1038/nature19330 – volume: 130 start-page: 6109 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib47 article-title: Selective SIRPα blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance publication-title: J. Clin. Invest. doi: 10.1172/JCI135528 – volume: 22 start-page: 2107 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib59 article-title: Suppression of tcf1 by inflammatory cytokines facilitates effector CD8 T cell differentiation publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.072 – volume: 21 start-page: 713 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib82 article-title: Cancer immunotherapy of patients with HIV infection publication-title: Clin. Transl. Oncol. doi: 10.1007/s12094-018-1981-6 – volume: 48 start-page: 1029 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib7 article-title: Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells publication-title: Immunity doi: 10.1016/j.immuni.2018.04.026 – volume: 72 start-page: 420 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib15 article-title: CXCL13-mediated recruitment of intrahepatic CXCR5CD8 T cells favors viral control in chronic HBV infection publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.09.031 – volume: 17 start-page: 653 year: 2015 ident: 10.1016/j.celrep.2023.112123_bib52 article-title: Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.04.005 – volume: 49 start-page: 1148 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib60 article-title: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12 publication-title: Immunity doi: 10.1016/j.immuni.2018.09.024 – volume: 8 start-page: 2089 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib27 article-title: Enhancement of antiviral CD8 T-cell responses and complete remission of metastatic melanoma in an HIV-1-Infected subject treated with pembrolizumab publication-title: J. Clin. Med. doi: 10.3390/jcm8122089 – volume: 20 start-page: 1231 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib30 article-title: PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+ CD38+ cells and anti-PD-1 resistance publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0441-y – volume: 162 start-page: 1322 year: 2015 ident: 10.1016/j.celrep.2023.112123_bib31 article-title: Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions publication-title: Cell doi: 10.1016/j.cell.2015.08.004 – volume: 30 start-page: 324 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib40 article-title: Critical role for CD103/CD141 dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.003 – volume: 116 start-page: 12410 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib4 article-title: TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1905675116 – volume: 17 start-page: 1187 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib13 article-title: CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles publication-title: Nat. Immunol. doi: 10.1038/ni.3543 – volume: 109 start-page: 6662 year: 2012 ident: 10.1016/j.celrep.2023.112123_bib71 article-title: The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1121623109 – volume: 114 start-page: E10151 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib44 article-title: SIRPα+ dendritic cells regulate homeostasis of fibroblastic reticular cells via TNF receptor ligands in the adult spleen publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1711345114 – volume: 11 start-page: 617 year: 2012 ident: 10.1016/j.celrep.2023.112123_bib51 article-title: Plasmacytoid dendritic cells are productively infected and activated through TLR-7 early after arenavirus infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.04.017 – volume: 9 start-page: 1042 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib54 article-title: Introduction of human flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3 + CD4 + T cells publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01042 – volume: 43 start-page: 649 year: 2013 ident: 10.1016/j.celrep.2023.112123_bib48 article-title: Reversal of chronic to resolved infection by IL-10 blockade is LCMV strain dependent publication-title: Eur. J. Immunol. doi: 10.1002/eji.201242887 – volume: 150 start-page: 1249 year: 2012 ident: 10.1016/j.celrep.2023.112123_bib67 article-title: Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes publication-title: Cell doi: 10.1016/j.cell.2012.08.015 – volume: 215 start-page: 2520 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib17 article-title: High-dimensional single cell analysis identifies stem-like cytotoxic CD8 T cells infiltrating human tumors publication-title: J. Exp. Med. doi: 10.1084/jem.20180684 – volume: 4 start-page: 387 year: 2004 ident: 10.1016/j.celrep.2023.112123_bib73 article-title: Concomitant regulation of T-cell activation and homeostasis publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1355 – volume: 21 start-page: 1256 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib5 article-title: Early precursor T cells establish and propagate T cell exhaustion in chronic infection publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0760-z – volume: 584 start-page: 624 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib33 article-title: cDC1 prime and are licensed by CD4 T cells to induce anti-tumour immunity publication-title: Nature doi: 10.1038/s41586-020-2611-3 – volume: 5 start-page: 1332 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib26 article-title: assessment of the safety of pembrolizumab in patients with HIV and advanced cancer-A phase 1 study publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2019.2244 – volume: 46 start-page: 205 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib32 article-title: CD8 T cells orchestrate pDC-XCR1 dendritic cell spatial and functional cooperativity to optimize priming publication-title: Immunity doi: 10.1016/j.immuni.2017.01.003 – volume: 45 start-page: 624 year: 2015 ident: 10.1016/j.celrep.2023.112123_bib58 article-title: Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus publication-title: Eur. J. Immunol. doi: 10.1002/eji.201445080 – volume: 25 start-page: 814 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib43 article-title: Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination publication-title: Nat. Med. doi: 10.1038/s41591-019-0410-x – volume: 18 start-page: 91 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib24 article-title: Immune checkpoint blockade in infectious diseases publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.112 – volume: 355 start-page: 1423 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib65 article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent publication-title: Science doi: 10.1126/science.aaf0683 – volume: 8 start-page: 328rv4 year: 2016 ident: 10.1016/j.celrep.2023.112123_bib22 article-title: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad7118 – volume: 355 start-page: 1428 year: 2017 ident: 10.1016/j.celrep.2023.112123_bib66 article-title: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition publication-title: Science doi: 10.1126/science.aaf1292 – volume: 20 start-page: 326 year: 2019 ident: 10.1016/j.celrep.2023.112123_bib18 article-title: Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0312-6 – volume: 359 start-page: 1350 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib23 article-title: Cancer immunotherapy using checkpoint blockade publication-title: Science doi: 10.1126/science.aar4060 – volume: 31 start-page: 823 year: 2009 ident: 10.1016/j.celrep.2023.112123_bib34 article-title: Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells publication-title: Immunity doi: 10.1016/j.immuni.2009.08.027 – volume: 33 start-page: 191 year: 1991 ident: 10.1016/j.celrep.2023.112123_bib88 article-title: Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates publication-title: J. Virol. Methods doi: 10.1016/0166-0934(91)90018-U – volume: 36 start-page: TPS2597 year: 2018 ident: 10.1016/j.celrep.2023.112123_bib25 article-title: AMC 095 (AIDS malignancy Consortium): A phase I study of ipilimumab (IPI) and nivolumab (NIVO) in advanced HIV associated solid tumors (ST) with expansion cohorts in HIV associated solid tumors and classical Hodgkin lymphoma (cHL) publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2018.36.15_suppl.TPS2597 – volume: 20 start-page: 128 year: 2020 ident: 10.1016/j.celrep.2023.112123_bib29 article-title: Precursor exhausted T cells: key to successful immunotherapy? publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0223-7 |
SSID | ssj0000601194 |
Score | 2.3926861 |
Snippet | The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic... The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112123 |
SubjectTerms | anti-PD-L1 chronic infection CP: Immunology Flt3L immunotherapy LCMV SIRPɑ+ DCs T cell exhaustion therapeutic vaccination XCR1+ DCs |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR1-f4IoI3CeadyXEdXRZBD7IDcwt5VMPK0CMzs4f9N_4Wf5mpTvewe5C5eG3SnaKqkvqSrvqKkPfI8mZNzqzzGpguLjI_53MWHZicIAoLeKH_7bu9WOqvK7O61eoLc8IaPXBT3EdeMthiuQcOugZbHxMop6PMyYsuDtCoxrxbh6m2ByOXGf5SlhJztqR2U93ckNyVYb0FpKuUCotohFR34tJA338nPP0Lfg5h6PwReTjiR3rW5D4l96B_TO63jpI3T8hytfghPtDPix2NW6B5bGRAKzSll39-4zU9G4pFKtCkV1gbMlZg3dBNR3NjyqWY-LumU55Wv3tKludfLhcXbOycwLJ2es-6kp0TBmQXdVchW7S6RAHSdi7HeoTw2njFu2JSLPMSsRd44XVxR-uNzyDVM3LSb3p4QaieJ8uzAANZ61RS4lkVl6zIFXg5BzOiJr2FPNKKY3eLdZjyx36Gpu2A2g5N2zPCDm_9arQaR8Z_QpMcxiIp9vCgukoYXSUcc5UZcZNBw4gvGm6on7o6Mv27yf6hLj80Vuxhc70L0lX8zJWSYkaeN8c4CKms86biy5f_Q_hX5AEK1KrpX5OT_fYa3lQ8tE9vB9f_C_lAByE priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhEOil9F23aVGhtyIsrV6rY-I0hEJ7aGPwTegxW1zMOtjOIf-mvyW_LJp9GHwogR5XSCsxMxp9EjPfEPIZWd6MTok1TgFT2Qbmal6zYEGnCEEYwAf97z_M1Vx9W-jFEZmNuTAYVjn4_t6nd956aJkO0pzeLJfTX1W5u5TTyRYQzZGWrPhhqeouiW9xvn9nQb4R0dVDxP4MB4wZdF2YV4LVBpC4spKYTiMqeXBCdUT-BwfVv4BodyBdPiNPByRJz_rFPidH0L4gJ31tybuXZL6Y_RRf6MVsS8MGaBpKGtACUun1_V98sGdd2kiBnHSJWSJDLtYdXTc09Zy5FEOAV3SM2Gq3r8j88uv17IoNNRRYUlbtWJOTtUJD1QTVFPAWjMpBQGUam0K5TDilneRN1jHkOgesCp552ebBOO0SVPI1OW7XLbwlVNXR8CRAQ1Iq5hh5ktlGI1KBYNbChMhRbj4NBONY52Llx0iyP76Xtkdp-17aE8L2o256go1H-p-jSvZ9kR67a1hvfvvBPjzPCUw23AGHYiDWhQjSqlCl6EQTwoTYUaH-wNrKr5aPTP9p1L8vGxGVFVpY3259ZQuS5lJWYkLe9IaxX6Q01umCNN_997zvyRP86pPpT8nxbnMLHwoc2sWPnb0_APj6BuQ priority: 102 providerName: Elsevier |
Title | XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections |
URI | https://dx.doi.org/10.1016/j.celrep.2023.112123 https://www.ncbi.nlm.nih.gov/pubmed/36795562 https://www.proquest.com/docview/2777403321 https://doaj.org/article/0dce6d609e0e47279abe374a2cb91faa |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-O36cUTwTSppkiabBxFv9TiF80FuYd9CPqZyx9LV7h64_41_i3-ZmSZdOfA4fCm0pGk7k8n8ks78hpBXyPKmmhCq1kioZNSuMlM2rZyGJnhwtQLc0D_5oo7n8vOiWeyRsWZrEeD6n0s7rCc175dvfv7YvksG__ZvrFaAZQ_IPskF5sSk2fgGuZl8k8aaBicF8Oe5GTnO8Fcz5xjLxaUe8-mu6OiSvxpo_S-5ratg6eCeju6SOwVX0vd5INwje9DdJ7dypcntAzJfzL7Wr-mH2Zq6HmgoBQ5ogqz09Pcv3L6vhiSSBEDpGeaMlMysLV21NGQGXYoBwUs6xm9164dkfvTxdHZclYoKVZBabqo2Bq3rBnjrZJugnFMyuhq4anVwaWlhZGMEa2PjXZxGhzXCI0tG75RpTAAuHpH9btXBE0Ll1CsWamggSOmj9yyIqL2qQwJkWsOEiFFuNhS6cax6sbRjXNm5zdK2KG2bpT0h1e6u75lu45r2h6iSXVskyx4urPpvttieZTGAiooZYCATXjPOg9DS8eBN3To3IXpUqC24I-OJ1NXZNY9_OerfJrNEZbkOVhdry3XC1UwIXk_I4zwwdi8plDZNwp1P__Njn5HbeJYT6p-T_U1_AS8SJNr4g2ErIR0_LQ4PhhH_BxgKCYc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIgQXxLuhPIwEJ2TF9nrt7IEDTakS-jhAIuVm_JhFQVFSJamq_Bv-A_-AX4ZnH5FyQJWQevV619bMePzZO_MNIe-Q5U3nIbCyUMBUNI4VPd5jzkAePDihAS_0zy_0YKy-TPLJHvnd5sJgWGXj-2ufXnnrpqXbSLN7OZ12v8l0dkm7k0kgmiMtWRNZeQqb63RuW30cHiclv5fy5POoP2BNaQEWlFFrVsZgjMhBlk6VCdM4raITIHVpgksYu1B5kfEy5t7FXnRYLDvyZP1OF3kRANkOkt-_k9CHQW8wnBxtL3aQ4ERUBRhxggxn2KbsVXFlAWZLQKZMmWH-jpDZzpZYVQ7Y2Rn_hXyrHfDkIXnQQFf6qZbOI7IH88fkbl3McvOEjCf9r-IDPe6vqFsCDU0NBZpQMR39-YV_CFiVp5IwLp1iWkqT_LWhi5KGmqSXYszxjLYhYvPVUzK-Fck-I_vzxRwOCFU9r3kQkENQykfvecii8VqEhPmMgQ7JWrnZ0DCaY2GNmW1D137aWtoWpW1raXcI2751WTN63ND_CFWy7Yt83FXDYvnDNgZpeQygo-YFcEgWaQrnITPKyeALUTrXIaZVqN0x7_Sp6Q3Dv231b9PKR2W5OSyuVlaaBN15lknRIc9rw9hOMtOmyBO0ffHf474h9waj8zN7Nrw4PST38Umdyf-S7K-XV_AqYbG1f13ZPiXfb3ux_QXz_kRk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XCR1%2B+DCs+are+critical+for+T%C2%A0cell-mediated+immunotherapy+of+chronic+viral+infections&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Domenjo-Vila%2C+Eva&rft.au=Casella%2C+Valentina&rft.au=Iwabuchi%2C+Ryutaro&rft.au=Fossum%2C+Even&rft.date=2023-02-28&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=42&rft.issue=2&rft.spage=112123&rft_id=info:doi/10.1016%2Fj.celrep.2023.112123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2023_112123 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |