XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections

The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more r...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 42; no. 2; p. 112123
Main Authors Domenjo-Vila, Eva, Casella, Valentina, Iwabuchi, Ryutaro, Fossum, Even, Pedragosa, Mireia, Castellví, Quim, Cebollada Rica, Paula, Kaisho, Tsuneyasu, Terahara, Kazutaka, Bocharov, Gennady, Argilaguet, Jordi, Meyerhans, Andreas
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.02.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets. [Display omitted] •XCR1+ DCs are more functional and less prone to LCMV infection than SIRPα+ DCs•Expanding XCR1+ DCs via Flt3L or delivering XCR1-targeting Ag improve virus control•Anti-PD-L1 treatment increases XCR1+ DC numbers and IL-12 production•XCR1+ DCs promote TEX functionality but are dispensable for TPEX proliferation burst Domenjo-Vila et al. show that XCR1+ DCs are crucial in augmenting exhausted CD8+ T cell effector functions during immunotherapeutic interventions in chronic virus infections. Increased T cell functionality leads to reduced virus loads. XCR1+ DCs should be among the preferential targets in immunotherapeutic cure strategies.
AbstractList The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.
The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.
The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (T ) cells but are indispensable to sustain the functionality of exhausted CD8+ T (T ) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of T and T subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.
The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets. [Display omitted] •XCR1+ DCs are more functional and less prone to LCMV infection than SIRPα+ DCs•Expanding XCR1+ DCs via Flt3L or delivering XCR1-targeting Ag improve virus control•Anti-PD-L1 treatment increases XCR1+ DC numbers and IL-12 production•XCR1+ DCs promote TEX functionality but are dispensable for TPEX proliferation burst Domenjo-Vila et al. show that XCR1+ DCs are crucial in augmenting exhausted CD8+ T cell effector functions during immunotherapeutic interventions in chronic virus infections. Increased T cell functionality leads to reduced virus loads. XCR1+ DCs should be among the preferential targets in immunotherapeutic cure strategies.
ArticleNumber 112123
Author Domenjo-Vila, Eva
Pedragosa, Mireia
Cebollada Rica, Paula
Kaisho, Tsuneyasu
Argilaguet, Jordi
Terahara, Kazutaka
Casella, Valentina
Iwabuchi, Ryutaro
Bocharov, Gennady
Fossum, Even
Castellví, Quim
Meyerhans, Andreas
Author_xml – sequence: 1
  givenname: Eva
  orcidid: 0000-0003-0678-4478
  surname: Domenjo-Vila
  fullname: Domenjo-Vila, Eva
  organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 2
  givenname: Valentina
  surname: Casella
  fullname: Casella, Valentina
  organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 3
  givenname: Ryutaro
  surname: Iwabuchi
  fullname: Iwabuchi, Ryutaro
  organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 4
  givenname: Even
  surname: Fossum
  fullname: Fossum, Even
  organization: Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
– sequence: 5
  givenname: Mireia
  orcidid: 0000-0001-5239-2120
  surname: Pedragosa
  fullname: Pedragosa, Mireia
  organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 6
  givenname: Quim
  surname: Castellví
  fullname: Castellví, Quim
  organization: Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 7
  givenname: Paula
  surname: Cebollada Rica
  fullname: Cebollada Rica, Paula
  organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 8
  givenname: Tsuneyasu
  surname: Kaisho
  fullname: Kaisho, Tsuneyasu
  organization: Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
– sequence: 9
  givenname: Kazutaka
  surname: Terahara
  fullname: Terahara, Kazutaka
  organization: Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
– sequence: 10
  givenname: Gennady
  orcidid: 0000-0002-5049-0656
  surname: Bocharov
  fullname: Bocharov, Gennady
  organization: Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
– sequence: 11
  givenname: Jordi
  surname: Argilaguet
  fullname: Argilaguet, Jordi
  email: jordi.argilaguet@irta.cat
  organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 12
  givenname: Andreas
  orcidid: 0000-0003-0620-5317
  surname: Meyerhans
  fullname: Meyerhans, Andreas
  email: andreas.meyerhans@upf.edu
  organization: Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36795562$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9qFDEUxoNUbK19A5G5FGS2SSZ_Gi8EWa0WCgVpwbtwNjmxWWYmazJb6Nv4LD6Z2U4txQubm4Twfd_hfL-XZG9MIxLymtEFo0wdrxcO-4ybBae8WzDGGe-ekQPOGWsZF3rv0XufHJWypvUoypgRL8h-p7SRUvEDcvV9-Y29az4tSwMZG5fjFB30TUi5ufz9q07p2wF9hAl9E4dhO6bpGjNsbpsUGned0xhdcxNz9cQxoJtiGssr8jxAX_Do_j4kV6efL5df2_OLL2fLj-etE1pMbfBOayaRBxBBKglKeGDIVdAOpNFGSNPR4OUK_IkHJQXzlJ10oIw0Dnl3SM7mXJ9gbTc5DpBvbYJo7z5S_mEh14V6tNQ7VF5RgxSF5trACjstgLuVYQGgZr2dszY5_dximewQy25_GDFti-Vaa0G7jrMqfXMv3a5qOQ-D_9ZaBWIWuJxKyRgeJIzaHUC7tjNAuwNoZ4DV9v4fm4sT7BqdMsT-KfOH2Yy18JuI2RYXcXQVXq5YaiPx_wF_AP2yt9I
CitedBy_id crossref_primary_10_3390_v16050799
crossref_primary_10_1038_s41419_023_06374_y
crossref_primary_10_1093_intimm_dxaf003
crossref_primary_10_1084_jem_20240776
crossref_primary_10_1002_advs_202413561
Cites_doi 10.1080/2162402X.2016.1183850
10.1084/jem.20102101
10.1016/j.celrep.2016.07.076
10.1073/pnas.1211910109
10.1016/j.immuni.2021.11.002
10.1084/jem.20071949
10.4049/jimmunol.1601881
10.4049/jimmunol.1202798
10.1038/ncomms15050
10.1038/s41590-020-0676-7
10.1084/jem.20190173
10.1016/j.celrep.2020.108078
10.1084/jem.20100223
10.1016/S0140-6736(17)31046-2
10.1002/eji.200839093
10.1002/eji.201445388
10.1038/s41586-019-1326-9
10.1073/pnas.1902701116
10.1038/s41467-020-19192-z
10.1016/j.immuni.2022.03.006
10.1084/jem.20150598
10.1038/s41591-022-02060-2
10.1016/j.cell.2018.01.004
10.4049/jimmunol.1302448
10.1016/j.it.2017.12.005
10.1016/j.ccell.2017.04.003
10.1101/gr.241372.118
10.1038/s41586-019-1325-x
10.1126/sciimmunol.aai8071
10.1073/pnas.1018525108
10.1128/JVI.77.8.4911-4927.2003
10.1016/j.immuni.2018.12.021
10.1371/journal.pone.0080008
10.1126/scitranslmed.aag2285
10.1073/pnas.1019706108
10.1073/pnas.1917298117
10.1371/journal.ppat.1003490
10.1038/s41586-019-1836-5
10.1172/JCI20243
10.1146/annurev-immunol-041015-055318
10.1038/nature04444
10.1038/nature19317
10.1073/pnas.1621418114
10.1016/j.immuni.2017.11.001
10.1001/jamaoncol.2020.0465
10.1371/journal.pone.0063818
10.1016/j.it.2015.02.008
10.1016/j.immuni.2016.03.012
10.1073/pnas.2116741119
10.1371/journal.ppat.1005270
10.1016/j.ymthe.2005.10.019
10.1016/j.immuni.2020.04.014
10.1038/nature19330
10.1172/JCI135528
10.1016/j.celrep.2018.01.072
10.1007/s12094-018-1981-6
10.1016/j.immuni.2018.04.026
10.1016/j.jhep.2019.09.031
10.1016/j.chom.2015.04.005
10.1016/j.immuni.2018.09.024
10.3390/jcm8122089
10.1038/s41590-019-0441-y
10.1016/j.cell.2015.08.004
10.1016/j.ccell.2016.06.003
10.1073/pnas.1905675116
10.1038/ni.3543
10.1073/pnas.1121623109
10.1073/pnas.1711345114
10.1016/j.chom.2012.04.017
10.3389/fimmu.2018.01042
10.1002/eji.201242887
10.1016/j.cell.2012.08.015
10.1084/jem.20180684
10.1038/nri1355
10.1038/s41590-020-0760-z
10.1038/s41586-020-2611-3
10.1001/jamaoncol.2019.2244
10.1016/j.immuni.2017.01.003
10.1002/eji.201445080
10.1038/s41591-019-0410-x
10.1038/nri.2017.112
10.1126/science.aaf0683
10.1126/scitranslmed.aad7118
10.1126/science.aaf1292
10.1038/s41590-019-0312-6
10.1126/science.aar4060
10.1016/j.immuni.2009.08.027
10.1016/0166-0934(91)90018-U
10.1200/JCO.2018.36.15_suppl.TPS2597
10.1038/s41577-019-0223-7
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1016/j.celrep.2023.112123
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID oai_doaj_org_article_0dce6d609e0e47279abe374a2cb91faa
36795562
10_1016_j_celrep_2023_112123
S2211124723001341
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
NPM
7X8
ID FETCH-LOGICAL-c474t-fdc7715e2fa4f565a64da1e26f7ca597945930fd5bad8da6541d0183a6959ce23
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:04:35 EDT 2025
Thu Jul 10 18:38:37 EDT 2025
Thu Mar 27 05:18:49 EDT 2025
Tue Jul 01 02:59:33 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Tue Jul 25 20:56:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords anti-PD-L1
CP: Immunology
LCMV
chronic infection
therapeutic vaccination
immunotherapy
T cell exhaustion
Flt3L
XCR1+ DCs
SIRPɑ+ DCs
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-fdc7715e2fa4f565a64da1e26f7ca597945930fd5bad8da6541d0183a6959ce23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5239-2120
0000-0002-5049-0656
0000-0003-0678-4478
0000-0003-0620-5317
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2023.112123
PMID 36795562
PQID 2777403321
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0dce6d609e0e47279abe374a2cb91faa
proquest_miscellaneous_2777403321
pubmed_primary_36795562
crossref_primary_10_1016_j_celrep_2023_112123
crossref_citationtrail_10_1016_j_celrep_2023_112123
elsevier_sciencedirect_doi_10_1016_j_celrep_2023_112123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-28
PublicationDateYYYYMMDD 2023-02-28
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kamphorst, Wieland, Nasti, Yang, Zhang, Barber, Konieczny, Daugherty, Koenig, Yu (bib65) 2017; 355
Crozat, Guiton, Contreras, Feuillet, Dutertre, Ventre, Vu Manh, Baranek, Storset, Marvel (bib35) 2010; 207
Macal, Lewis, Kunz, Flavell, Harker, Zúñiga (bib51) 2012; 11
Im, Hashimoto, Gerner, Lee, Kissick, Burger, Shan, Hale, Lee, Nasti (bib8) 2016; 537
Wykes, Lewin (bib24) 2018; 18
Miller, Sen, Al Abosy, Bi, Virkud, LaFleur, Yates, Lako, Felt, Naik (bib18) 2019; 20
Pauken, Wherry (bib21) 2015; 36
Quiel, Caucheteux, Laurence, Singh, Bocharov, Ben-Sasson, Grossman, Paul (bib74) 2011; 108
Ozga, Chow, Lopes, Servis, Di Pilato, Dehio, Lian, Mempel, Luster (bib62) 2022; 55
Gonzalez-Cao, Martinez-Picado, Karachaliou, Rosell, Meyerhans (bib82) 2019; 21
Iwabuchi, Ikeno, Kobayashi-Ishihara, Takeyama, Ato, Tsunetsugu-Yokota, Terahara (bib54) 2018; 9
Roberts, Broz, Binnewies, Headley, Nelson, Wolf, Kaisho, Bogunovic, Bhardwaj, Krummel (bib40) 2016; 30
Willingham, Volkmer, Gentles, Sahoo, Dalerba, Mitra, Wang, Contreras-Trujillo, Martin, Cohen (bib71) 2012; 109
Yamazaki, Sugiyama, Ohta, Hemmi, Hamada, Sasaki, Fukuda, Yano, Nobuoka, Hirashima (bib56) 2013; 190
Brummelman, Mazza, Alvisi, Colombo, Grilli, Mikulak, Mavilio, Alloisio, Ferrari, Lopci (bib17) 2018; 215
Gardiner, Lalezari, Lawitz, DiMicco, Ghalib, Reddy, Chang, Sulkowski, Marro, Anderson (bib83) 2013; 8
Blanch-Lombarte, Gálvez, Revollo, Jiménez-Moyano, Llibre, Manzano, Boada, Dalmau, E Speiser, Clotet (bib27) 2019; 8
Garris, Arlauckas, Kohler, Trefny, Garren, Piot, Engblom, Pfirschke, Siwicki, Gungabeesoon (bib60) 2018; 49
Utzschneider, Gabriel, Chisanga, Gloury, Gubser, Vasanthakumar, Shi, Kallies (bib5) 2020; 21
Alcántara-Hernández, Leylek, Wagar, Engleman, Keler, Marinkovich, Davis, Nolan, Idoyaga (bib38) 2017; 47
Böttcher, Bonavita, Chakravarty, Blees, Cabeza-Cabrerizo, Sammicheli, Rogers, Sahai, Zelenay, Reis E Sousa (bib36) 2018; 172
Rajdev, Chiao, Lensing, Little, Dittmer, Einstein, Haigentz, Sparano, Mitsuyasu (bib25) 2018; 36
Grossman, Min, Meier-Schellersheim, Paul (bib73) 2004; 4
Keppler, Theil, Vucikuja, Aichele (bib68) 2009; 39
Calabro, Liu, Gallman, Nascimento, Yu, Zhang, Chen, Zhang, Xu, Gowthaman (bib45) 2016; 16
Wherry, Blattman, Murali-Krishna, van der Most, Ahmed (bib55) 2003; 77
Oba, Long, Keler, Marsh, Minderman, Abrams, Liu, Ito (bib79) 2020; 11
Alfei, Kanev, Hofmann, Wu, Ghoneim, Roelli, Utzschneider, von Hoesslin, Cullen, Fan (bib2) 2019; 571
Sandu, Cerletti, Oetiker, Borsa, Wagen, Spadafora, Welten, Stolz, Oxenius, Claassen (bib10) 2020; 32
Gudjonsson, Lysén, Balan, Sundvold-Gjerstad, Arnold-Schrauf, Richter, Bækkevold, Dalod, Bogen, Fossum (bib87) 2017; 198
Ng, Oldstone (bib49) 2012; 109
Im, Konieczny, Hudson, Masopust, Ahmed (bib80) 2020; 117
Mylvaganam, Rios, Abdelaal, Iyer, Tharp, Mavigner, Hicks, Chahroudi, Ahmed, Bosinger (bib11) 2017; 114
El-Khoueiry, Sangro, Yau, Crocenzi, Kudo, Hsu, Kim, Choo, Trojan, Welling (bib84) 2017; 389
Brewitz, Eickhoff, Dähling, Quast, Bedoui, Kroczek, Kurts, Garbi, Barchet, Iannacone (bib32) 2017; 46
Pratumchai, Zak, Huang, Min, Oldstone, Teijaro (bib77) 2022; 119
Beltra, Manne, Abdel-Hakeem, Kurachi, Giles, Chen, Casella, Ngiow, Khan, Huang (bib9) 2020; 52
Leong, Chen, Ong, Wu, Man, Deleage, Minnich, Meckiff, Wei, Hou (bib13) 2016; 17
Spranger, Dai, Horton, Gajewski (bib41) 2017; 31
Peligero, Argilaguet, Güerri-Fernandez, Torres, Ligero, Colomer, Plana, Knobel, García, Meyerhans (bib85) 2015; 11
Zou, Wolchok, Chen (bib22) 2016; 8
He, Hou, Liu, Zhang, Bai, Han, Yang, Wei, Shen, Yang (bib12) 2016; 537
Fossum, Grødeland, Terhorst, Tveita, Vikse, Mjaaland, Henri, Malissen, Bogen (bib58) 2015; 45
Kallies, Zehn, Utzschneider (bib29) 2020; 20
Danilo, Chennupati, Silva, Siegert, Held (bib59) 2018; 22
Sevilla, McGavern, Teng, Kunz, Oldstone (bib50) 2004; 113
Sanchez-Paulete, Labiano, Rodriguez-Ruiz, Azpilikueta, Etxeberria, Bolaños, Lang, Rodriguez, Aznar, Jure-Kunkel, Melero (bib69) 2016; 46
Isogawa, Chung, Murata, Kakimi, Chisari (bib64) 2013; 9
Dähling, Mansilla, Knöpper, Grafen, Utzschneider, Ugur, Whitney, Bachem, Arampatzi, Imdahl (bib63) 2022; 55
Hui, Cheung, Zhu, Su, Taylor, Wallweber, Sasmal, Huang, Kim, Mellman, Vale (bib66) 2017; 355
Ferris, Durai, Wu, Theisen, Ward, Bern, Davidson, Bagadia, Liu, Briseño (bib33) 2020; 584
Dutertre, Jourdain, Rancez, Amraoui, Fossum, Bogen, Sanchez, Couëdel-Courteille, Richard, Dalod (bib39) 2014; 192
Kanev, Wu, Drews, Roelli, Wurmser, von Hösslin, Zehn (bib78) 2019; 116
Bailón, Llano, Cedeño, Escribà, Rosás-Umbert, Parera, Casadellà, Lopez, Pérez, Oriol-Tordera (bib86) 2022; 28
Bengsch, Ohtani, Khan, Setty, Manne, O’Brien, Gherardini, Herati, Huang, Chang (bib7) 2018; 48
Kurachi, Kurachi, Suenaga, Tsukui, Abe, Ueha, Tomura, Sugihara, Takamura, Kakimi, Matsushima (bib61) 2011; 208
McLane, Abdel-Hakeem, Wherry (bib1) 2019; 37
Jansen, Prokhnevska, Master, Sanda, Carlisle, Bilen, Cardenas, Wilkinson, Lake, Sowalsky (bib81) 2019; 576
Liu, Wen, Tang, Qin, Lin, Zhang, Wu, Ashton, Wu, Ding (bib46) 2016; 5
Veillette, Chen (bib72) 2018; 39
Gauttier, Pengam, Durand, Biteau, Mary, Morello, Néel, Porto, Teppaz, Thepenier (bib47) 2020; 130
Richter, Perriard, Oxenius (bib48) 2013; 43
Khan, Giles, McDonald, Manne, Ngiow, Patel, Werner, Huang, Alexander, Wu (bib3) 2019; 571
Ribas, Wolchok (bib23) 2018; 359
Seo, Chen, González-Avalos, Samaniego-Castruita, Das, Wang, López-Moyado, Georges, Zhang, Onodera (bib4) 2019; 116
Li, Tang, Guo, Chen, Gu, Zhou, Ye, Li, Wang, Liao (bib15) 2020; 72
Saito, Respatika, Komori, Washio, Nishimura, Kotani, Murata, Okazawa, Ohnishi, Kaneko (bib44) 2017; 114
Bocharov, Quiel, Luzyanina, Alon, Chiglintsev, Chereshnev, Meier-Schellersheim, Paul, Grossman (bib75) 2011; 108
Petrovas, Ferrando-Martinez, Gerner, Casazza, Pegu, Deleage, Cooper, Hataye, Andrews, Ambrozak (bib14) 2017; 9
Uldrick, Gonçalves, Abdul-Hay, Claeys, Emu, Ernstoff, Fling, Fong, Kaiser, Lacroix (bib26) 2019; 5
Argilaguet, Pedragosa, Esteve-Codina, Riera, Vidal, Peligero-Cruz, Casella, Andreu, Kaisho, Bocharov (bib37) 2019; 29
Huang, Zak, Pratumchai, Shaabani, Vartabedian, Nguyen, Wu, Xiao, Teijaro (bib76) 2019; 216
Fredriksen, Sandlie, Bogen (bib89) 2006; 13
Verma, Shrimali, Ahmad, Dai, Wang, Lu, Nandre, Gaur, Lopez, Sade-Feldman (bib30) 2019; 20
Dorner, Dorner, Zhou, Opitz, Mora, Güttler, Hutloff, Mages, Ranke, Schaefer (bib34) 2009; 31
Utzschneider, Alfei, Roelli, Barras, Chennupati, Darbre, Delorenzi, Pinschewer, Zehn (bib6) 2016; 213
Lai, Mardiana, House, Sek, Henderson, Giuffrida, Chen, Todd, Petley, Chan (bib70) 2020; 21
Grødeland, Mjaaland, Tunheim, Fredriksen, Bogen (bib90) 2013; 8
Siddiqui, Schaeuble, Chennupati, Fuertes Marraco, Calderon-Copete, Pais Ferreira, Carmona, Scarpellino, Gfeller, Pradervand (bib19) 2019; 50
Barber, Wherry, Masopust, Zhu, Allison, Sharpe, Freeman, Ahmed (bib20) 2006; 439
Silvin, Yu, Lahaye, Imperatore, Brault, Cardinaud, Becker, Kwan, Conrad, Maurin (bib53) 2017; 2
Ng, Sullivan, Teijaro, Lee, Welch, Rice, Sheehan, Schreiber, Oldstone (bib52) 2015; 17
Gonzalez-Cao, Morán, Dalmau, Garcia-Corbacho, Bracht, Bernabe, Juan, de Castro, Blanco, Drozdowskyj (bib28) 2020; 6
Eickhoff, Brewitz, Gerner, Klauschen, Komander, Hemmi, Garbi, Kaisho, Germain, Kastenmüller (bib31) 2015; 162
Salmon, Idoyaga, Rahman, Leboeuf, Remark, Jordan, Casanova-Acebes, Khudoynazarova, Agudo, Tung (bib42) 2016; 44
Battegay, Cooper, Althage, Bänziger, Hengartner, Zinkernagel (bib88) 1991; 33
Sung, Zhang, Moseman, Alvarez, Iannacone, Henrickson, de la Torre, Groom, Luster, von Andrian (bib67) 2012; 150
Hammerich, Marron, Upadhyay, Svensson-Arvelund, Dhainaut, Hussein, Zhan, Ostrowski, Yellin, Marsh (bib43) 2019; 25
Ha, Mueller, Wherry, Barber, Aubert, Sharpe, Freeman, Ahmed (bib57) 2008; 205
Wieland, Kemming, Schuch, Emmerich, Knolle, Neumann-Haefelin, Held, Zehn, Hofmann, Thimme (bib16) 2017; 8
He (10.1016/j.celrep.2023.112123_bib12) 2016; 537
Argilaguet (10.1016/j.celrep.2023.112123_bib37) 2019; 29
Calabro (10.1016/j.celrep.2023.112123_bib45) 2016; 16
Sanchez-Paulete (10.1016/j.celrep.2023.112123_bib69) 2016; 46
Ozga (10.1016/j.celrep.2023.112123_bib62) 2022; 55
Verma (10.1016/j.celrep.2023.112123_bib30) 2019; 20
Kallies (10.1016/j.celrep.2023.112123_bib29) 2020; 20
Peligero (10.1016/j.celrep.2023.112123_bib85) 2015; 11
Utzschneider (10.1016/j.celrep.2023.112123_bib6) 2016; 213
Leong (10.1016/j.celrep.2023.112123_bib13) 2016; 17
Willingham (10.1016/j.celrep.2023.112123_bib71) 2012; 109
Isogawa (10.1016/j.celrep.2023.112123_bib64) 2013; 9
Bocharov (10.1016/j.celrep.2023.112123_bib75) 2011; 108
Zou (10.1016/j.celrep.2023.112123_bib22) 2016; 8
Garris (10.1016/j.celrep.2023.112123_bib60) 2018; 49
Spranger (10.1016/j.celrep.2023.112123_bib41) 2017; 31
Saito (10.1016/j.celrep.2023.112123_bib44) 2017; 114
Grødeland (10.1016/j.celrep.2023.112123_bib90) 2013; 8
Miller (10.1016/j.celrep.2023.112123_bib18) 2019; 20
Fossum (10.1016/j.celrep.2023.112123_bib58) 2015; 45
Li (10.1016/j.celrep.2023.112123_bib15) 2020; 72
Kamphorst (10.1016/j.celrep.2023.112123_bib65) 2017; 355
Hammerich (10.1016/j.celrep.2023.112123_bib43) 2019; 25
Hui (10.1016/j.celrep.2023.112123_bib66) 2017; 355
Grossman (10.1016/j.celrep.2023.112123_bib73) 2004; 4
Wieland (10.1016/j.celrep.2023.112123_bib16) 2017; 8
Bailón (10.1016/j.celrep.2023.112123_bib86) 2022; 28
Ha (10.1016/j.celrep.2023.112123_bib57) 2008; 205
El-Khoueiry (10.1016/j.celrep.2023.112123_bib84) 2017; 389
Gonzalez-Cao (10.1016/j.celrep.2023.112123_bib82) 2019; 21
Richter (10.1016/j.celrep.2023.112123_bib48) 2013; 43
Ribas (10.1016/j.celrep.2023.112123_bib23) 2018; 359
Salmon (10.1016/j.celrep.2023.112123_bib42) 2016; 44
Keppler (10.1016/j.celrep.2023.112123_bib68) 2009; 39
Battegay (10.1016/j.celrep.2023.112123_bib88) 1991; 33
Ng (10.1016/j.celrep.2023.112123_bib52) 2015; 17
Sevilla (10.1016/j.celrep.2023.112123_bib50) 2004; 113
Pratumchai (10.1016/j.celrep.2023.112123_bib77) 2022; 119
Huang (10.1016/j.celrep.2023.112123_bib76) 2019; 216
Im (10.1016/j.celrep.2023.112123_bib80) 2020; 117
Gauttier (10.1016/j.celrep.2023.112123_bib47) 2020; 130
Macal (10.1016/j.celrep.2023.112123_bib51) 2012; 11
Quiel (10.1016/j.celrep.2023.112123_bib74) 2011; 108
Wykes (10.1016/j.celrep.2023.112123_bib24) 2018; 18
Wherry (10.1016/j.celrep.2023.112123_bib55) 2003; 77
Gonzalez-Cao (10.1016/j.celrep.2023.112123_bib28) 2020; 6
Lai (10.1016/j.celrep.2023.112123_bib70) 2020; 21
Khan (10.1016/j.celrep.2023.112123_bib3) 2019; 571
Bengsch (10.1016/j.celrep.2023.112123_bib7) 2018; 48
Brewitz (10.1016/j.celrep.2023.112123_bib32) 2017; 46
Mylvaganam (10.1016/j.celrep.2023.112123_bib11) 2017; 114
Utzschneider (10.1016/j.celrep.2023.112123_bib5) 2020; 21
Gudjonsson (10.1016/j.celrep.2023.112123_bib87) 2017; 198
Dorner (10.1016/j.celrep.2023.112123_bib34) 2009; 31
Liu (10.1016/j.celrep.2023.112123_bib46) 2016; 5
Veillette (10.1016/j.celrep.2023.112123_bib72) 2018; 39
Böttcher (10.1016/j.celrep.2023.112123_bib36) 2018; 172
Dähling (10.1016/j.celrep.2023.112123_bib63) 2022; 55
Crozat (10.1016/j.celrep.2023.112123_bib35) 2010; 207
Eickhoff (10.1016/j.celrep.2023.112123_bib31) 2015; 162
Kurachi (10.1016/j.celrep.2023.112123_bib61) 2011; 208
Oba (10.1016/j.celrep.2023.112123_bib79) 2020; 11
Blanch-Lombarte (10.1016/j.celrep.2023.112123_bib27) 2019; 8
Jansen (10.1016/j.celrep.2023.112123_bib81) 2019; 576
Im (10.1016/j.celrep.2023.112123_bib8) 2016; 537
Sung (10.1016/j.celrep.2023.112123_bib67) 2012; 150
Seo (10.1016/j.celrep.2023.112123_bib4) 2019; 116
Silvin (10.1016/j.celrep.2023.112123_bib53) 2017; 2
Yamazaki (10.1016/j.celrep.2023.112123_bib56) 2013; 190
Sandu (10.1016/j.celrep.2023.112123_bib10) 2020; 32
Kanev (10.1016/j.celrep.2023.112123_bib78) 2019; 116
Siddiqui (10.1016/j.celrep.2023.112123_bib19) 2019; 50
Pauken (10.1016/j.celrep.2023.112123_bib21) 2015; 36
Rajdev (10.1016/j.celrep.2023.112123_bib25) 2018; 36
Roberts (10.1016/j.celrep.2023.112123_bib40) 2016; 30
Ng (10.1016/j.celrep.2023.112123_bib49) 2012; 109
Fredriksen (10.1016/j.celrep.2023.112123_bib89) 2006; 13
Gardiner (10.1016/j.celrep.2023.112123_bib83) 2013; 8
Petrovas (10.1016/j.celrep.2023.112123_bib14) 2017; 9
Ferris (10.1016/j.celrep.2023.112123_bib33) 2020; 584
McLane (10.1016/j.celrep.2023.112123_bib1) 2019; 37
Uldrick (10.1016/j.celrep.2023.112123_bib26) 2019; 5
Alcántara-Hernández (10.1016/j.celrep.2023.112123_bib38) 2017; 47
Danilo (10.1016/j.celrep.2023.112123_bib59) 2018; 22
Brummelman (10.1016/j.celrep.2023.112123_bib17) 2018; 215
Beltra (10.1016/j.celrep.2023.112123_bib9) 2020; 52
Iwabuchi (10.1016/j.celrep.2023.112123_bib54) 2018; 9
Alfei (10.1016/j.celrep.2023.112123_bib2) 2019; 571
Barber (10.1016/j.celrep.2023.112123_bib20) 2006; 439
Dutertre (10.1016/j.celrep.2023.112123_bib39) 2014; 192
References_xml – volume: 537
  start-page: 417
  year: 2016
  end-page: 421
  ident: bib8
  article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy
  publication-title: Nature
– volume: 46
  start-page: 205
  year: 2017
  end-page: 219
  ident: bib32
  article-title: CD8 T cells orchestrate pDC-XCR1 dendritic cell spatial and functional cooperativity to optimize priming
  publication-title: Immunity
– volume: 11
  start-page: 617
  year: 2012
  end-page: 630
  ident: bib51
  article-title: Plasmacytoid dendritic cells are productively infected and activated through TLR-7 early after arenavirus infection
  publication-title: Cell Host Microbe
– volume: 20
  start-page: 128
  year: 2020
  end-page: 136
  ident: bib29
  article-title: Precursor exhausted T cells: key to successful immunotherapy?
  publication-title: Nat. Rev. Immunol.
– volume: 48
  start-page: 1029
  year: 2018
  end-page: 1045.e5
  ident: bib7
  article-title: Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells
  publication-title: Immunity
– volume: 44
  start-page: 924
  year: 2016
  end-page: 938
  ident: bib42
  article-title: Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition
  publication-title: Immunity
– volume: 43
  start-page: 649
  year: 2013
  end-page: 654
  ident: bib48
  article-title: Reversal of chronic to resolved infection by IL-10 blockade is LCMV strain dependent
  publication-title: Eur. J. Immunol.
– volume: 17
  start-page: 653
  year: 2015
  end-page: 661
  ident: bib52
  article-title: Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection
  publication-title: Cell Host Microbe
– volume: 208
  start-page: 1605
  year: 2011
  end-page: 1620
  ident: bib61
  article-title: Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration
  publication-title: J. Exp. Med.
– volume: 116
  start-page: 12410
  year: 2019
  end-page: 12415
  ident: bib4
  article-title: TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: e63818
  year: 2013
  ident: bib83
  article-title: A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection
  publication-title: PLoS One
– volume: 130
  start-page: 6109
  year: 2020
  end-page: 6123
  ident: bib47
  article-title: Selective SIRPα blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance
  publication-title: J. Clin. Invest.
– volume: 21
  start-page: 713
  year: 2019
  end-page: 720
  ident: bib82
  article-title: Cancer immunotherapy of patients with HIV infection
  publication-title: Clin. Transl. Oncol.
– volume: 355
  start-page: 1428
  year: 2017
  end-page: 1433
  ident: bib66
  article-title: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition
  publication-title: Science
– volume: 32
  start-page: 108078
  year: 2020
  ident: bib10
  article-title: Landscape of exhausted virus-specific CD8 T cells in chronic LCMV infection
  publication-title: Cell Rep.
– volume: 359
  start-page: 1350
  year: 2018
  end-page: 1355
  ident: bib23
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
– volume: 108
  start-page: 3318
  year: 2011
  end-page: 3323
  ident: bib75
  article-title: Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 77
  start-page: 4911
  year: 2003
  end-page: 4927
  ident: bib55
  article-title: Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment
  publication-title: J. Virol.
– volume: 571
  start-page: 265
  year: 2019
  end-page: 269
  ident: bib2
  article-title: TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection
  publication-title: Nature
– volume: 114
  start-page: E10151
  year: 2017
  end-page: E10160
  ident: bib44
  article-title: SIRPα+ dendritic cells regulate homeostasis of fibroblastic reticular cells via TNF receptor ligands in the adult spleen
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 113
  start-page: 737
  year: 2004
  end-page: 745
  ident: bib50
  article-title: Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion
  publication-title: J. Clin. Invest.
– volume: 5
  start-page: 1332
  year: 2019
  end-page: 1339
  ident: bib26
  article-title: assessment of the safety of pembrolizumab in patients with HIV and advanced cancer-A phase 1 study
  publication-title: JAMA Oncol.
– volume: 190
  start-page: 6071
  year: 2013
  end-page: 6082
  ident: bib56
  article-title: Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1
  publication-title: J. Immunol.
– volume: 21
  start-page: 914
  year: 2020
  end-page: 926
  ident: bib70
  article-title: Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity
  publication-title: Nat. Immunol.
– volume: 25
  start-page: 814
  year: 2019
  end-page: 824
  ident: bib43
  article-title: Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination
  publication-title: Nat. Med.
– volume: 571
  start-page: 211
  year: 2019
  end-page: 218
  ident: bib3
  article-title: TOX transcriptionally and epigenetically programs CD8 T cell exhaustion
  publication-title: Nature
– volume: 31
  start-page: 823
  year: 2009
  end-page: 833
  ident: bib34
  article-title: Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells
  publication-title: Immunity
– volume: 389
  start-page: 2492
  year: 2017
  end-page: 2502
  ident: bib84
  article-title: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial
  publication-title: Lancet
– volume: 8
  start-page: 2089
  year: 2019
  ident: bib27
  article-title: Enhancement of antiviral CD8 T-cell responses and complete remission of metastatic melanoma in an HIV-1-Infected subject treated with pembrolizumab
  publication-title: J. Clin. Med.
– volume: 584
  start-page: 624
  year: 2020
  end-page: 629
  ident: bib33
  article-title: cDC1 prime and are licensed by CD4 T cells to induce anti-tumour immunity
  publication-title: Nature
– volume: 31
  start-page: 711
  year: 2017
  end-page: 723.e4
  ident: bib41
  article-title: Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy
  publication-title: Cancer Cell
– volume: 198
  start-page: 2785
  year: 2017
  end-page: 2795
  ident: bib87
  article-title: Targeting influenza virus hemagglutinin to Xcr1 dendritic cells in the absence of receptor-mediated endocytosis enhances protective antibody responses
  publication-title: J. Immunol.
– volume: 37
  start-page: 457
  year: 2019
  end-page: 495
  ident: bib1
  article-title: CD8 T cell exhaustion during chronic viral infection and cancer
  publication-title: Annu. Rev. Immunol.
– volume: 192
  start-page: 4697
  year: 2014
  end-page: 4708
  ident: bib39
  article-title: TLR3-responsive, XCR1+, CD141(BDCA-3)+/CD8α+-equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques
  publication-title: J. Immunol.
– volume: 6
  start-page: 1063
  year: 2020
  end-page: 1067
  ident: bib28
  article-title: Assessment of the feasibility and safety of durvalumab for treatment of solid tumors in patients with HIV-1 infection: the phase 2 DURVAST study
  publication-title: JAMA Oncol.
– volume: 45
  start-page: 624
  year: 2015
  end-page: 635
  ident: bib58
  article-title: Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus
  publication-title: Eur. J. Immunol.
– volume: 72
  start-page: 420
  year: 2020
  end-page: 430
  ident: bib15
  article-title: CXCL13-mediated recruitment of intrahepatic CXCR5CD8 T cells favors viral control in chronic HBV infection
  publication-title: J. Hepatol.
– volume: 50
  start-page: 195
  year: 2019
  end-page: 211.e10
  ident: bib19
  article-title: Intratumoral Tcf1+ PD-1+ CD8 T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy
  publication-title: Immunity
– volume: 213
  start-page: 1819
  year: 2016
  end-page: 1834
  ident: bib6
  article-title: High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival
  publication-title: J. Exp. Med.
– volume: 11
  start-page: e1005270
  year: 2015
  ident: bib85
  article-title: PD-L1 blockade differentially impacts regulatory T cells from HIV-infected individuals depending on plasma viremia
  publication-title: PLoS Pathog.
– volume: 2
  start-page: eaai8071
  year: 2017
  ident: bib53
  article-title: Constitutive resistance to viral infection in human CD141 dendritic cells
  publication-title: Sci. Immunol.
– volume: 33
  start-page: 191
  year: 1991
  end-page: 198
  ident: bib88
  article-title: Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates
  publication-title: J. Virol. Methods
– volume: 4
  start-page: 387
  year: 2004
  end-page: 395
  ident: bib73
  article-title: Concomitant regulation of T-cell activation and homeostasis
  publication-title: Nat. Rev. Immunol.
– volume: 52
  start-page: 825
  year: 2020
  end-page: 841.e8
  ident: bib9
  article-title: Developmental relationships of four exhausted CD8 T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms
  publication-title: Immunity
– volume: 109
  start-page: 14116
  year: 2012
  end-page: 14121
  ident: bib49
  article-title: Infected CD8α- dendritic cells are the predominant source of IL-10 during establishment of persistent viral infection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 108
  start-page: 3312
  year: 2011
  end-page: 3317
  ident: bib74
  article-title: Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 1256
  year: 2020
  end-page: 1266
  ident: bib5
  article-title: Early precursor T cells establish and propagate T cell exhaustion in chronic infection
  publication-title: Nat. Immunol.
– volume: 8
  start-page: 328rv4
  year: 2016
  ident: bib22
  article-title: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations
  publication-title: Sci. Transl. Med.
– volume: 29
  start-page: 907
  year: 2019
  end-page: 919
  ident: bib37
  article-title: Systems analysis reveals complex biological processes during virus infection fate decisions
  publication-title: Genome Res.
– volume: 114
  start-page: 1976
  year: 2017
  end-page: 1981
  ident: bib11
  article-title: Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 1042
  year: 2018
  ident: bib54
  article-title: Introduction of human flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3 + CD4 + T cells
  publication-title: Front. Immunol.
– volume: 172
  start-page: 1022
  year: 2018
  end-page: 1037.e14
  ident: bib36
  article-title: NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control
  publication-title: Cell
– volume: 576
  start-page: 465
  year: 2019
  end-page: 470
  ident: bib81
  article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells
  publication-title: Nature
– volume: 17
  start-page: 1187
  year: 2016
  end-page: 1196
  ident: bib13
  article-title: CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles
  publication-title: Nat. Immunol.
– volume: 216
  start-page: 1791
  year: 2019
  end-page: 1808
  ident: bib76
  article-title: IL-27 promotes the expansion of self-renewing CD8+ T cells in persistent viral infection
  publication-title: J. Exp. Med.
– volume: 55
  start-page: 656
  year: 2022
  end-page: 670.e8
  ident: bib63
  article-title: Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches
  publication-title: Immunity
– volume: 109
  start-page: 6662
  year: 2012
  end-page: 6667
  ident: bib71
  article-title: The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 16
  start-page: 2472
  year: 2016
  end-page: 2485
  ident: bib45
  article-title: Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity
  publication-title: Cell Rep.
– volume: 5
  start-page: e1183850
  year: 2016
  ident: bib46
  article-title: Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity
  publication-title: OncoImmunology
– volume: 47
  start-page: 1037
  year: 2017
  end-page: 1050.e6
  ident: bib38
  article-title: High-Dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization
  publication-title: Immunity
– volume: 11
  start-page: 5415
  year: 2020
  ident: bib79
  article-title: Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s
  publication-title: Nat. Commun.
– volume: 36
  start-page: 265
  year: 2015
  end-page: 276
  ident: bib21
  article-title: Overcoming T cell exhaustion in infection and cancer
  publication-title: Trends Immunol.
– volume: 22
  start-page: 2107
  year: 2018
  end-page: 2117
  ident: bib59
  article-title: Suppression of tcf1 by inflammatory cytokines facilitates effector CD8 T cell differentiation
  publication-title: Cell Rep.
– volume: 20
  start-page: 1231
  year: 2019
  end-page: 1243
  ident: bib30
  article-title: PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+ CD38+ cells and anti-PD-1 resistance
  publication-title: Nat. Immunol.
– volume: 46
  start-page: 513
  year: 2016
  end-page: 522
  ident: bib69
  article-title: Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy
  publication-title: Eur. J. Immunol.
– volume: 215
  start-page: 2520
  year: 2018
  end-page: 2535
  ident: bib17
  article-title: High-dimensional single cell analysis identifies stem-like cytotoxic CD8 T cells infiltrating human tumors
  publication-title: J. Exp. Med.
– volume: 537
  start-page: 412
  year: 2016
  end-page: 428
  ident: bib12
  article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection
  publication-title: Nature
– volume: 150
  start-page: 1249
  year: 2012
  end-page: 1263
  ident: bib67
  article-title: Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes
  publication-title: Cell
– volume: 30
  start-page: 324
  year: 2016
  end-page: 336
  ident: bib40
  article-title: Critical role for CD103/CD141 dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma
  publication-title: Cancer Cell
– volume: 355
  start-page: 1423
  year: 2017
  end-page: 1427
  ident: bib65
  article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent
  publication-title: Science
– volume: 39
  start-page: 173
  year: 2018
  end-page: 184
  ident: bib72
  article-title: SIRPα-CD47 immune checkpoint blockade in anticancer therapy
  publication-title: Trends Immunol.
– volume: 20
  start-page: 326
  year: 2019
  end-page: 336
  ident: bib18
  article-title: Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade
  publication-title: Nat. Immunol.
– volume: 9
  start-page: e1003490
  year: 2013
  ident: bib64
  article-title: CD40 activation rescues antiviral CD8⁺ T cells from PD-1-mediated exhaustion
  publication-title: PLoS Pathog.
– volume: 49
  start-page: 1148
  year: 2018
  end-page: 1161.e7
  ident: bib60
  article-title: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12
  publication-title: Immunity
– volume: 9
  start-page: eaag2285
  year: 2017
  ident: bib14
  article-title: Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies
  publication-title: Sci. Transl. Med.
– volume: 8
  start-page: e80008
  year: 2013
  ident: bib90
  article-title: The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype
  publication-title: PLoS One
– volume: 13
  start-page: 776
  year: 2006
  end-page: 785
  ident: bib89
  article-title: DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells
  publication-title: Mol. Ther.
– volume: 55
  start-page: 82
  year: 2022
  end-page: 97.e8
  ident: bib62
  article-title: CXCL10 chemokine regulates heterogeneity of the CD8+ T cell response and viral set point during chronic infection
  publication-title: Immunity
– volume: 439
  start-page: 682
  year: 2006
  end-page: 687
  ident: bib20
  article-title: Restoring function in exhausted CD8 T cells during chronic viral infection
  publication-title: Nature
– volume: 36
  start-page: TPS2597
  year: 2018
  ident: bib25
  article-title: AMC 095 (AIDS malignancy Consortium): A phase I study of ipilimumab (IPI) and nivolumab (NIVO) in advanced HIV associated solid tumors (ST) with expansion cohorts in HIV associated solid tumors and classical Hodgkin lymphoma (cHL)
  publication-title: J. Clin. Oncol.
– volume: 162
  start-page: 1322
  year: 2015
  end-page: 1337
  ident: bib31
  article-title: Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions
  publication-title: Cell
– volume: 207
  start-page: 1283
  year: 2010
  end-page: 1292
  ident: bib35
  article-title: The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells
  publication-title: J. Exp. Med.
– volume: 116
  start-page: 20070
  year: 2019
  end-page: 20076
  ident: bib78
  article-title: Proliferation-competent Tcf1+ CD8 T cells in dysfunctional populations are CD4 T cell help independent
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 117
  start-page: 4292
  year: 2020
  end-page: 4299
  ident: bib80
  article-title: PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 205
  start-page: 543
  year: 2008
  end-page: 555
  ident: bib57
  article-title: Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection
  publication-title: J. Exp. Med.
– volume: 39
  start-page: 1774
  year: 2009
  end-page: 1783
  ident: bib68
  article-title: Effector T-cell differentiation during viral and bacterial infections: role of direct IL-12 signals for cell fate decision of CD8(+) T cells
  publication-title: Eur. J. Immunol.
– volume: 28
  start-page: 2611
  year: 2022
  end-page: 2621
  ident: bib86
  article-title: Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection: a randomized, placebo-controlled phase 1 trial
  publication-title: Nat. Med.
– volume: 119
  year: 2022
  ident: bib77
  article-title: B cell-derived IL-27 promotes control of persistent LCMV infection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 91
  year: 2018
  end-page: 104
  ident: bib24
  article-title: Immune checkpoint blockade in infectious diseases
  publication-title: Nat. Rev. Immunol.
– volume: 8
  start-page: 15050
  year: 2017
  ident: bib16
  article-title: TCF1 hepatitis C virus-specific CD8 T cells are maintained after cessation of chronic antigen stimulation
  publication-title: Nat. Commun.
– volume: 5
  start-page: e1183850
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib46
  article-title: Inhibition of SIRPα in dendritic cells potentiates potent antitumor immunity
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2016.1183850
– volume: 208
  start-page: 1605
  year: 2011
  ident: 10.1016/j.celrep.2023.112123_bib61
  article-title: Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20102101
– volume: 16
  start-page: 2472
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib45
  article-title: Differential intrasplenic migration of dendritic cell subsets tailors adaptive immunity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.07.076
– volume: 109
  start-page: 14116
  year: 2012
  ident: 10.1016/j.celrep.2023.112123_bib49
  article-title: Infected CD8α- dendritic cells are the predominant source of IL-10 during establishment of persistent viral infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1211910109
– volume: 55
  start-page: 82
  year: 2022
  ident: 10.1016/j.celrep.2023.112123_bib62
  article-title: CXCL10 chemokine regulates heterogeneity of the CD8+ T cell response and viral set point during chronic infection
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.11.002
– volume: 205
  start-page: 543
  year: 2008
  ident: 10.1016/j.celrep.2023.112123_bib57
  article-title: Enhancing therapeutic vaccination by blocking PD-1-mediated inhibitory signals during chronic infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20071949
– volume: 198
  start-page: 2785
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib87
  article-title: Targeting influenza virus hemagglutinin to Xcr1 dendritic cells in the absence of receptor-mediated endocytosis enhances protective antibody responses
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1601881
– volume: 190
  start-page: 6071
  year: 2013
  ident: 10.1016/j.celrep.2023.112123_bib56
  article-title: Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202798
– volume: 8
  start-page: 15050
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib16
  article-title: TCF1 hepatitis C virus-specific CD8 T cells are maintained after cessation of chronic antigen stimulation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15050
– volume: 21
  start-page: 914
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib70
  article-title: Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0676-7
– volume: 216
  start-page: 1791
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib76
  article-title: IL-27 promotes the expansion of self-renewing CD8+ T cells in persistent viral infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20190173
– volume: 32
  start-page: 108078
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib10
  article-title: Landscape of exhausted virus-specific CD8 T cells in chronic LCMV infection
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.108078
– volume: 207
  start-page: 1283
  year: 2010
  ident: 10.1016/j.celrep.2023.112123_bib35
  article-title: The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20100223
– volume: 389
  start-page: 2492
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib84
  article-title: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)31046-2
– volume: 39
  start-page: 1774
  year: 2009
  ident: 10.1016/j.celrep.2023.112123_bib68
  article-title: Effector T-cell differentiation during viral and bacterial infections: role of direct IL-12 signals for cell fate decision of CD8(+) T cells
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200839093
– volume: 46
  start-page: 513
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib69
  article-title: Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201445388
– volume: 571
  start-page: 265
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib2
  article-title: TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection
  publication-title: Nature
  doi: 10.1038/s41586-019-1326-9
– volume: 116
  start-page: 20070
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib78
  article-title: Proliferation-competent Tcf1+ CD8 T cells in dysfunctional populations are CD4 T cell help independent
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1902701116
– volume: 11
  start-page: 5415
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib79
  article-title: Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19192-z
– volume: 55
  start-page: 656
  year: 2022
  ident: 10.1016/j.celrep.2023.112123_bib63
  article-title: Type 1 conventional dendritic cells maintain and guide the differentiation of precursors of exhausted T cells in distinct cellular niches
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.03.006
– volume: 213
  start-page: 1819
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib6
  article-title: High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20150598
– volume: 28
  start-page: 2611
  year: 2022
  ident: 10.1016/j.celrep.2023.112123_bib86
  article-title: Safety, immunogenicity and effect on viral rebound of HTI vaccines in early treated HIV-1 infection: a randomized, placebo-controlled phase 1 trial
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-02060-2
– volume: 172
  start-page: 1022
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib36
  article-title: NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control
  publication-title: Cell
  doi: 10.1016/j.cell.2018.01.004
– volume: 192
  start-page: 4697
  year: 2014
  ident: 10.1016/j.celrep.2023.112123_bib39
  article-title: TLR3-responsive, XCR1+, CD141(BDCA-3)+/CD8α+-equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1302448
– volume: 39
  start-page: 173
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib72
  article-title: SIRPα-CD47 immune checkpoint blockade in anticancer therapy
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2017.12.005
– volume: 31
  start-page: 711
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib41
  article-title: Tumor-Residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2017.04.003
– volume: 29
  start-page: 907
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib37
  article-title: Systems analysis reveals complex biological processes during virus infection fate decisions
  publication-title: Genome Res.
  doi: 10.1101/gr.241372.118
– volume: 571
  start-page: 211
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib3
  article-title: TOX transcriptionally and epigenetically programs CD8 T cell exhaustion
  publication-title: Nature
  doi: 10.1038/s41586-019-1325-x
– volume: 2
  start-page: eaai8071
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib53
  article-title: Constitutive resistance to viral infection in human CD141 dendritic cells
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aai8071
– volume: 108
  start-page: 3312
  year: 2011
  ident: 10.1016/j.celrep.2023.112123_bib74
  article-title: Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1018525108
– volume: 77
  start-page: 4911
  year: 2003
  ident: 10.1016/j.celrep.2023.112123_bib55
  article-title: Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment
  publication-title: J. Virol.
  doi: 10.1128/JVI.77.8.4911-4927.2003
– volume: 50
  start-page: 195
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib19
  article-title: Intratumoral Tcf1+ PD-1+ CD8 T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.12.021
– volume: 8
  start-page: e80008
  year: 2013
  ident: 10.1016/j.celrep.2023.112123_bib90
  article-title: The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080008
– volume: 9
  start-page: eaag2285
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib14
  article-title: Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aag2285
– volume: 108
  start-page: 3318
  year: 2011
  ident: 10.1016/j.celrep.2023.112123_bib75
  article-title: Feedback regulation of proliferation vs. differentiation rates explains the dependence of CD4 T-cell expansion on precursor number
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1019706108
– volume: 117
  start-page: 4292
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib80
  article-title: PD-1+ stemlike CD8 T cells are resident in lymphoid tissues during persistent LCMV infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1917298117
– volume: 9
  start-page: e1003490
  year: 2013
  ident: 10.1016/j.celrep.2023.112123_bib64
  article-title: CD40 activation rescues antiviral CD8⁺ T cells from PD-1-mediated exhaustion
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003490
– volume: 576
  start-page: 465
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib81
  article-title: An intra-tumoral niche maintains and differentiates stem-like CD8 T cells
  publication-title: Nature
  doi: 10.1038/s41586-019-1836-5
– volume: 113
  start-page: 737
  year: 2004
  ident: 10.1016/j.celrep.2023.112123_bib50
  article-title: Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI20243
– volume: 37
  start-page: 457
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib1
  article-title: CD8 T cell exhaustion during chronic viral infection and cancer
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-041015-055318
– volume: 439
  start-page: 682
  year: 2006
  ident: 10.1016/j.celrep.2023.112123_bib20
  article-title: Restoring function in exhausted CD8 T cells during chronic viral infection
  publication-title: Nature
  doi: 10.1038/nature04444
– volume: 537
  start-page: 412
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib12
  article-title: Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection
  publication-title: Nature
  doi: 10.1038/nature19317
– volume: 114
  start-page: 1976
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib11
  article-title: Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1621418114
– volume: 47
  start-page: 1037
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib38
  article-title: High-Dimensional phenotypic mapping of human dendritic cells reveals interindividual variation and tissue specialization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.11.001
– volume: 6
  start-page: 1063
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib28
  article-title: Assessment of the feasibility and safety of durvalumab for treatment of solid tumors in patients with HIV-1 infection: the phase 2 DURVAST study
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.0465
– volume: 8
  start-page: e63818
  year: 2013
  ident: 10.1016/j.celrep.2023.112123_bib83
  article-title: A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0063818
– volume: 36
  start-page: 265
  year: 2015
  ident: 10.1016/j.celrep.2023.112123_bib21
  article-title: Overcoming T cell exhaustion in infection and cancer
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.02.008
– volume: 44
  start-page: 924
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib42
  article-title: Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.03.012
– volume: 119
  year: 2022
  ident: 10.1016/j.celrep.2023.112123_bib77
  article-title: B cell-derived IL-27 promotes control of persistent LCMV infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2116741119
– volume: 11
  start-page: e1005270
  year: 2015
  ident: 10.1016/j.celrep.2023.112123_bib85
  article-title: PD-L1 blockade differentially impacts regulatory T cells from HIV-infected individuals depending on plasma viremia
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005270
– volume: 13
  start-page: 776
  year: 2006
  ident: 10.1016/j.celrep.2023.112123_bib89
  article-title: DNA vaccines increase immunogenicity of idiotypic tumor antigen by targeting novel fusion proteins to antigen-presenting cells
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2005.10.019
– volume: 52
  start-page: 825
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib9
  article-title: Developmental relationships of four exhausted CD8 T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.04.014
– volume: 537
  start-page: 417
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib8
  article-title: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy
  publication-title: Nature
  doi: 10.1038/nature19330
– volume: 130
  start-page: 6109
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib47
  article-title: Selective SIRPα blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI135528
– volume: 22
  start-page: 2107
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib59
  article-title: Suppression of tcf1 by inflammatory cytokines facilitates effector CD8 T cell differentiation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.01.072
– volume: 21
  start-page: 713
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib82
  article-title: Cancer immunotherapy of patients with HIV infection
  publication-title: Clin. Transl. Oncol.
  doi: 10.1007/s12094-018-1981-6
– volume: 48
  start-page: 1029
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib7
  article-title: Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.04.026
– volume: 72
  start-page: 420
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib15
  article-title: CXCL13-mediated recruitment of intrahepatic CXCR5CD8 T cells favors viral control in chronic HBV infection
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2019.09.031
– volume: 17
  start-page: 653
  year: 2015
  ident: 10.1016/j.celrep.2023.112123_bib52
  article-title: Blockade of interferon Beta, but not interferon alpha, signaling controls persistent viral infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.04.005
– volume: 49
  start-page: 1148
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib60
  article-title: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.09.024
– volume: 8
  start-page: 2089
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib27
  article-title: Enhancement of antiviral CD8 T-cell responses and complete remission of metastatic melanoma in an HIV-1-Infected subject treated with pembrolizumab
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm8122089
– volume: 20
  start-page: 1231
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib30
  article-title: PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+ CD38+ cells and anti-PD-1 resistance
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0441-y
– volume: 162
  start-page: 1322
  year: 2015
  ident: 10.1016/j.celrep.2023.112123_bib31
  article-title: Robust anti-viral immunity requires multiple distinct T cell-dendritic cell interactions
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.004
– volume: 30
  start-page: 324
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib40
  article-title: Critical role for CD103/CD141 dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.003
– volume: 116
  start-page: 12410
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib4
  article-title: TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1905675116
– volume: 17
  start-page: 1187
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib13
  article-title: CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3543
– volume: 109
  start-page: 6662
  year: 2012
  ident: 10.1016/j.celrep.2023.112123_bib71
  article-title: The CD47-signal regulatory protein alpha (SIRPα) interaction is a therapeutic target for human solid tumors
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1121623109
– volume: 114
  start-page: E10151
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib44
  article-title: SIRPα+ dendritic cells regulate homeostasis of fibroblastic reticular cells via TNF receptor ligands in the adult spleen
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1711345114
– volume: 11
  start-page: 617
  year: 2012
  ident: 10.1016/j.celrep.2023.112123_bib51
  article-title: Plasmacytoid dendritic cells are productively infected and activated through TLR-7 early after arenavirus infection
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.04.017
– volume: 9
  start-page: 1042
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib54
  article-title: Introduction of human flt3-L and GM-CSF into humanized mice enhances the reconstitution and maturation of myeloid dendritic cells and the development of Foxp3 + CD4 + T cells
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01042
– volume: 43
  start-page: 649
  year: 2013
  ident: 10.1016/j.celrep.2023.112123_bib48
  article-title: Reversal of chronic to resolved infection by IL-10 blockade is LCMV strain dependent
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201242887
– volume: 150
  start-page: 1249
  year: 2012
  ident: 10.1016/j.celrep.2023.112123_bib67
  article-title: Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.015
– volume: 215
  start-page: 2520
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib17
  article-title: High-dimensional single cell analysis identifies stem-like cytotoxic CD8 T cells infiltrating human tumors
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20180684
– volume: 4
  start-page: 387
  year: 2004
  ident: 10.1016/j.celrep.2023.112123_bib73
  article-title: Concomitant regulation of T-cell activation and homeostasis
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1355
– volume: 21
  start-page: 1256
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib5
  article-title: Early precursor T cells establish and propagate T cell exhaustion in chronic infection
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0760-z
– volume: 584
  start-page: 624
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib33
  article-title: cDC1 prime and are licensed by CD4 T cells to induce anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/s41586-020-2611-3
– volume: 5
  start-page: 1332
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib26
  article-title: assessment of the safety of pembrolizumab in patients with HIV and advanced cancer-A phase 1 study
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2019.2244
– volume: 46
  start-page: 205
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib32
  article-title: CD8 T cells orchestrate pDC-XCR1 dendritic cell spatial and functional cooperativity to optimize priming
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.01.003
– volume: 45
  start-page: 624
  year: 2015
  ident: 10.1016/j.celrep.2023.112123_bib58
  article-title: Vaccine molecules targeting Xcr1 on cross-presenting DCs induce protective CD8+ T-cell responses against influenza virus
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201445080
– volume: 25
  start-page: 814
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib43
  article-title: Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0410-x
– volume: 18
  start-page: 91
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib24
  article-title: Immune checkpoint blockade in infectious diseases
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.112
– volume: 355
  start-page: 1423
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib65
  article-title: Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent
  publication-title: Science
  doi: 10.1126/science.aaf0683
– volume: 8
  start-page: 328rv4
  year: 2016
  ident: 10.1016/j.celrep.2023.112123_bib22
  article-title: PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad7118
– volume: 355
  start-page: 1428
  year: 2017
  ident: 10.1016/j.celrep.2023.112123_bib66
  article-title: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition
  publication-title: Science
  doi: 10.1126/science.aaf1292
– volume: 20
  start-page: 326
  year: 2019
  ident: 10.1016/j.celrep.2023.112123_bib18
  article-title: Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0312-6
– volume: 359
  start-page: 1350
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib23
  article-title: Cancer immunotherapy using checkpoint blockade
  publication-title: Science
  doi: 10.1126/science.aar4060
– volume: 31
  start-page: 823
  year: 2009
  ident: 10.1016/j.celrep.2023.112123_bib34
  article-title: Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.08.027
– volume: 33
  start-page: 191
  year: 1991
  ident: 10.1016/j.celrep.2023.112123_bib88
  article-title: Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates
  publication-title: J. Virol. Methods
  doi: 10.1016/0166-0934(91)90018-U
– volume: 36
  start-page: TPS2597
  year: 2018
  ident: 10.1016/j.celrep.2023.112123_bib25
  article-title: AMC 095 (AIDS malignancy Consortium): A phase I study of ipilimumab (IPI) and nivolumab (NIVO) in advanced HIV associated solid tumors (ST) with expansion cohorts in HIV associated solid tumors and classical Hodgkin lymphoma (cHL)
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2018.36.15_suppl.TPS2597
– volume: 20
  start-page: 128
  year: 2020
  ident: 10.1016/j.celrep.2023.112123_bib29
  article-title: Precursor exhausted T cells: key to successful immunotherapy?
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0223-7
SSID ssj0000601194
Score 2.3926861
Snippet The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic...
The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112123
SubjectTerms anti-PD-L1
chronic infection
CP: Immunology
Flt3L
immunotherapy
LCMV
SIRPɑ+ DCs
T cell exhaustion
therapeutic vaccination
XCR1+ DCs
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR1-f4IoI3CeadyXEdXRZBD7IDcwt5VMPK0CMzs4f9N_4Wf5mpTvewe5C5eG3SnaKqkvqSrvqKkPfI8mZNzqzzGpguLjI_53MWHZicIAoLeKH_7bu9WOqvK7O61eoLc8IaPXBT3EdeMthiuQcOugZbHxMop6PMyYsuDtCoxrxbh6m2ByOXGf5SlhJztqR2U93ckNyVYb0FpKuUCotohFR34tJA338nPP0Lfg5h6PwReTjiR3rW5D4l96B_TO63jpI3T8hytfghPtDPix2NW6B5bGRAKzSll39-4zU9G4pFKtCkV1gbMlZg3dBNR3NjyqWY-LumU55Wv3tKludfLhcXbOycwLJ2es-6kp0TBmQXdVchW7S6RAHSdi7HeoTw2njFu2JSLPMSsRd44XVxR-uNzyDVM3LSb3p4QaieJ8uzAANZ61RS4lkVl6zIFXg5BzOiJr2FPNKKY3eLdZjyx36Gpu2A2g5N2zPCDm_9arQaR8Z_QpMcxiIp9vCgukoYXSUcc5UZcZNBw4gvGm6on7o6Mv27yf6hLj80Vuxhc70L0lX8zJWSYkaeN8c4CKms86biy5f_Q_hX5AEK1KrpX5OT_fYa3lQ8tE9vB9f_C_lAByE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYhEOil9F23aVGhtyIsrV6rY-I0hEJ7aGPwTegxW1zMOtjOIf-mvyW_LJp9GHwogR5XSCsxMxp9EjPfEPIZWd6MTok1TgFT2Qbmal6zYEGnCEEYwAf97z_M1Vx9W-jFEZmNuTAYVjn4_t6nd956aJkO0pzeLJfTX1W5u5TTyRYQzZGWrPhhqeouiW9xvn9nQb4R0dVDxP4MB4wZdF2YV4LVBpC4spKYTiMqeXBCdUT-BwfVv4BodyBdPiNPByRJz_rFPidH0L4gJ31tybuXZL6Y_RRf6MVsS8MGaBpKGtACUun1_V98sGdd2kiBnHSJWSJDLtYdXTc09Zy5FEOAV3SM2Gq3r8j88uv17IoNNRRYUlbtWJOTtUJD1QTVFPAWjMpBQGUam0K5TDilneRN1jHkOgesCp552ebBOO0SVPI1OW7XLbwlVNXR8CRAQ1Iq5hh5ktlGI1KBYNbChMhRbj4NBONY52Llx0iyP76Xtkdp-17aE8L2o256go1H-p-jSvZ9kR67a1hvfvvBPjzPCUw23AGHYiDWhQjSqlCl6EQTwoTYUaH-wNrKr5aPTP9p1L8vGxGVFVpY3259ZQuS5lJWYkLe9IaxX6Q01umCNN_997zvyRP86pPpT8nxbnMLHwoc2sWPnb0_APj6BuQ
  priority: 102
  providerName: Elsevier
Title XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections
URI https://dx.doi.org/10.1016/j.celrep.2023.112123
https://www.ncbi.nlm.nih.gov/pubmed/36795562
https://www.proquest.com/docview/2777403321
https://doaj.org/article/0dce6d609e0e47279abe374a2cb91faa
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-O36cUTwTSppkiabBxFv9TiF80FuYd9CPqZyx9LV7h64_41_i3-ZmSZdOfA4fCm0pGk7k8n8ks78hpBXyPKmmhCq1kioZNSuMlM2rZyGJnhwtQLc0D_5oo7n8vOiWeyRsWZrEeD6n0s7rCc175dvfv7YvksG__ZvrFaAZQ_IPskF5sSk2fgGuZl8k8aaBicF8Oe5GTnO8Fcz5xjLxaUe8-mu6OiSvxpo_S-5ratg6eCeju6SOwVX0vd5INwje9DdJ7dypcntAzJfzL7Wr-mH2Zq6HmgoBQ5ogqz09Pcv3L6vhiSSBEDpGeaMlMysLV21NGQGXYoBwUs6xm9164dkfvTxdHZclYoKVZBabqo2Bq3rBnjrZJugnFMyuhq4anVwaWlhZGMEa2PjXZxGhzXCI0tG75RpTAAuHpH9btXBE0Ll1CsWamggSOmj9yyIqL2qQwJkWsOEiFFuNhS6cax6sbRjXNm5zdK2KG2bpT0h1e6u75lu45r2h6iSXVskyx4urPpvttieZTGAiooZYCATXjPOg9DS8eBN3To3IXpUqC24I-OJ1NXZNY9_OerfJrNEZbkOVhdry3XC1UwIXk_I4zwwdi8plDZNwp1P__Njn5HbeJYT6p-T_U1_AS8SJNr4g2ErIR0_LQ4PhhH_BxgKCYc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIgQXxLuhPIwEJ2TF9nrt7IEDTakS-jhAIuVm_JhFQVFSJamq_Bv-A_-AX4ZnH5FyQJWQevV619bMePzZO_MNIe-Q5U3nIbCyUMBUNI4VPd5jzkAePDihAS_0zy_0YKy-TPLJHvnd5sJgWGXj-2ufXnnrpqXbSLN7OZ12v8l0dkm7k0kgmiMtWRNZeQqb63RuW30cHiclv5fy5POoP2BNaQEWlFFrVsZgjMhBlk6VCdM4raITIHVpgksYu1B5kfEy5t7FXnRYLDvyZP1OF3kRANkOkt-_k9CHQW8wnBxtL3aQ4ERUBRhxggxn2KbsVXFlAWZLQKZMmWH-jpDZzpZYVQ7Y2Rn_hXyrHfDkIXnQQFf6qZbOI7IH88fkbl3McvOEjCf9r-IDPe6vqFsCDU0NBZpQMR39-YV_CFiVp5IwLp1iWkqT_LWhi5KGmqSXYszxjLYhYvPVUzK-Fck-I_vzxRwOCFU9r3kQkENQykfvecii8VqEhPmMgQ7JWrnZ0DCaY2GNmW1D137aWtoWpW1raXcI2751WTN63ND_CFWy7Yt83FXDYvnDNgZpeQygo-YFcEgWaQrnITPKyeALUTrXIaZVqN0x7_Sp6Q3Dv231b9PKR2W5OSyuVlaaBN15lknRIc9rw9hOMtOmyBO0ffHf474h9waj8zN7Nrw4PST38Umdyf-S7K-XV_AqYbG1f13ZPiXfb3ux_QXz_kRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=XCR1%2B+DCs+are+critical+for+T%C2%A0cell-mediated+immunotherapy+of+chronic+viral+infections&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Domenjo-Vila%2C+Eva&rft.au=Casella%2C+Valentina&rft.au=Iwabuchi%2C+Ryutaro&rft.au=Fossum%2C+Even&rft.date=2023-02-28&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=42&rft.issue=2&rft.spage=112123&rft_id=info:doi/10.1016%2Fj.celrep.2023.112123&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2023_112123
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon