A novel UWB flexible antenna with dual notch bands for wearable biomedical devices

This study presents a novel UWB flexible antenna with dual band-notched design for wearable biomedical devices. The proposed antenna is designed on Kapton Polyimide-based flexible substrate. This includes a CPW fed circular and triangle structure. The dual notched bands are realized by using two tri...

Full description

Saved in:
Bibliographic Details
Published inAnalog integrated circuits and signal processing Vol. 114; no. 3; pp. 439 - 450
Main Author Dilruba Geyikoglu, Miraç
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0925-1030
1573-1979
DOI10.1007/s10470-023-02146-y

Cover

Loading…
Abstract This study presents a novel UWB flexible antenna with dual band-notched design for wearable biomedical devices. The proposed antenna is designed on Kapton Polyimide-based flexible substrate. This includes a CPW fed circular and triangle structure. The dual notched bands are realized by using two triangular-shaped spiral slots defected ground structures. The first notched band (2.4–3.7 GHz) is generated for rejecting WLAN and WiMAX, the second notch (5.15–5.725 GHz) is generated for rejecting HyperLAN/2. The designed UWB antenna has approximately a bandwith of 159% (2.05–14 GHz) in simulation. Thus, the designed UWB antenna meets FCC standards. The antenna has an omnidirectional radiation pattern with a maximum gain of 12.7 dB in 8.4 GHz. The proposed antenna is fabricated with the low-cost airbrush printed technique. In this technique, a higher gain value is obtained by controlling the thickness of the conductive layer. Effect of flexibility on the antenna performance is tested for different configurations in the simulation and anechoic chamber environments. According to the results obtained, the overall performance is not affected except for the shift in frequency. Since the antenna has a UWB structure, the frequency shift that occurs in bending is at a tolerable level. The proposed UWB antenna is suitable for wearable biomedical devices, with a high UWB performance.
AbstractList This study presents a novel UWB flexible antenna with dual band-notched design for wearable biomedical devices. The proposed antenna is designed on Kapton Polyimide-based flexible substrate. This includes a CPW fed circular and triangle structure. The dual notched bands are realized by using two triangular-shaped spiral slots defected ground structures. The first notched band (2.4-3.7 GHz) is generated for rejecting WLAN and WiMAX, the second notch (5.15-5.725 GHz) is generated for rejecting HyperLAN/2. The designed UWB antenna has approximately a bandwith of 159% (2.05-14 GHz) in simulation. Thus, the designed UWB antenna meets FCC standards. The antenna has an omnidirectional radiation pattern with a maximum gain of 12.7 dB in 8.4 GHz. The proposed antenna is fabricated with the low-cost airbrush printed technique. In this technique, a higher gain value is obtained by controlling the thickness of the conductive layer. Effect of flexibility on the antenna performance is tested for different configurations in the simulation and anechoic chamber environments. According to the results obtained, the overall performance is not affected except for the shift in frequency. Since the antenna has a UWB structure, the frequency shift that occurs in bending is at a tolerable level. The proposed UWB antenna is suitable for wearable biomedical devices, with a high UWB performance.This study presents a novel UWB flexible antenna with dual band-notched design for wearable biomedical devices. The proposed antenna is designed on Kapton Polyimide-based flexible substrate. This includes a CPW fed circular and triangle structure. The dual notched bands are realized by using two triangular-shaped spiral slots defected ground structures. The first notched band (2.4-3.7 GHz) is generated for rejecting WLAN and WiMAX, the second notch (5.15-5.725 GHz) is generated for rejecting HyperLAN/2. The designed UWB antenna has approximately a bandwith of 159% (2.05-14 GHz) in simulation. Thus, the designed UWB antenna meets FCC standards. The antenna has an omnidirectional radiation pattern with a maximum gain of 12.7 dB in 8.4 GHz. The proposed antenna is fabricated with the low-cost airbrush printed technique. In this technique, a higher gain value is obtained by controlling the thickness of the conductive layer. Effect of flexibility on the antenna performance is tested for different configurations in the simulation and anechoic chamber environments. According to the results obtained, the overall performance is not affected except for the shift in frequency. Since the antenna has a UWB structure, the frequency shift that occurs in bending is at a tolerable level. The proposed UWB antenna is suitable for wearable biomedical devices, with a high UWB performance.
This study presents a novel UWB flexible antenna with dual band-notched design for wearable biomedical devices. The proposed antenna is designed on Kapton Polyimide-based flexible substrate. This includes a CPW fed circular and triangle structure. The dual notched bands are realized by using two triangular-shaped spiral slots defected ground structures. The first notched band (2.4-3.7 GHz) is generated for rejecting WLAN and WiMAX, the second notch (5.15-5.725 GHz) is generated for rejecting HyperLAN/2. The designed UWB antenna has approximately a bandwith of 159% (2.05-14 GHz) in simulation. Thus, the designed UWB antenna meets FCC standards. The antenna has an omnidirectional radiation pattern with a maximum gain of 12.7 dB in 8.4 GHz. The proposed antenna is fabricated with the low-cost airbrush printed technique. In this technique, a higher gain value is obtained by controlling the thickness of the conductive layer. Effect of flexibility on the antenna performance is tested for different configurations in the simulation and anechoic chamber environments. According to the results obtained, the overall performance is not affected except for the shift in frequency. Since the antenna has a UWB structure, the frequency shift that occurs in bending is at a tolerable level. The proposed UWB antenna is suitable for wearable biomedical devices, with a high UWB performance.
This study presents a novel UWB flexible antenna with dual band-notched design for wearable biomedical devices. The proposed antenna is designed on Kapton Polyimide-based flexible substrate. This includes a CPW fed circular and triangle structure. The dual notched bands are realized by using two triangular-shaped spiral slots defected ground structures. The first notched band (2.4–3.7 GHz) is generated for rejecting WLAN and WiMAX, the second notch (5.15–5.725 GHz) is generated for rejecting HyperLAN/2. The designed UWB antenna has approximately a bandwith of 159% (2.05–14 GHz) in simulation. Thus, the designed UWB antenna meets FCC standards. The antenna has an omnidirectional radiation pattern with a maximum gain of 12.7 dB in 8.4 GHz. The proposed antenna is fabricated with the low-cost airbrush printed technique. In this technique, a higher gain value is obtained by controlling the thickness of the conductive layer. Effect of flexibility on the antenna performance is tested for different configurations in the simulation and anechoic chamber environments. According to the results obtained, the overall performance is not affected except for the shift in frequency. Since the antenna has a UWB structure, the frequency shift that occurs in bending is at a tolerable level. The proposed UWB antenna is suitable for wearable biomedical devices, with a high UWB performance.
Author Dilruba Geyikoglu, Miraç
Author_xml – sequence: 1
  givenname: Miraç
  surname: Dilruba Geyikoglu
  fullname: Dilruba Geyikoglu, Miraç
  email: dilruba.mdk@gmail.com
  organization: Department of Electrical and Electronics, Atatürk University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36747992$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vVCEYhYmpsdPqH3BhSNy4uZWvC5eNSW3UmjQxMTYuCQPv7dAwUOHeqfPvZZxatYsugAXPOZyXc4QOUk6A0EtKTigh6m2lRCjSEcbbokJ22ydoQXvFO6qVPkALolnfUcLJITqq9ZoQwpQgz9Ahl0oordkCfT3FKW8g4svv7_EY4WdYRsA2TZCSxbdhWmE_29igya3w0iZf8ZgLvgVb7A5dhrwGH1xjPGyCg_ocPR1trPDi7jxGlx8_fDs77y6-fPp8dnrROaHE1I1eqFHzUdpBjIJxPXgimdRCeuG882LQjPfAlQXvGtK7njNqpZIweMEkP0bv9r4387JFcJCmYqO5KWFty9ZkG8z_NymszFXeGN2cpeLN4M2dQck_ZqiTWYfqIEabIM_VMKUEU0Rx0dDXD9DrPJfUxmuU1pS0bWjUq38T3Uf5890NYHvAlVxrgfEeocTsOjX7Tk3r1Pzu1GybaHggcmGyU8i7qUJ8XMr30treSVdQ_sZ-RPUL1Oi2EQ
CitedBy_id crossref_primary_10_1016_j_rineng_2025_104230
crossref_primary_10_1017_S1759078724001387
crossref_primary_10_1002_mop_34317
crossref_primary_10_1021_acsomega_4c05071
crossref_primary_10_1038_s41598_024_62253_2
crossref_primary_10_1109_ACCESS_2023_3343154
crossref_primary_10_1021_acsanm_3c01325
crossref_primary_10_1002_dac_70061
crossref_primary_10_1007_s10470_025_02355_7
Cites_doi 10.13164/re.2020.0044
10.2528/PIER08052201
10.1016/j.aej.2021.09.048
10.1109/WOCN.2014.6923083
10.1155/2014/546064
10.1002/mmce.22201
10.1109/TAP.2017.2684191
10.1049/iet-map.2018.5801
10.1109/MAP.2017.2774138
10.1002/mmce.23289
10.1109/TCPMT.2013.2294871
10.1177/00405175211003167
10.1007/s11277-022-10036-1
10.1155/2018/4382841
10.1109/MWSCAS48704.2020.9184564
10.1049/iet-map.2017.0852
10.1016/j.aej.2021.09.055
10.1155/2013/402914
10.1080/09205071.2014.972470
10.1002/adma.201901958
10.1109/TMTT.2016.2618919
10.1145/2207676.2208576
10.1007/s11277-022-09471-x
10.1080/02564602.2021.1878942
10.1049/iet-map.2010.0126
10.46604/ijeti.2021.8084
10.1049/iet-map.2008.0232
10.1002/mop.32678
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2023
DBID AAYXX
CITATION
NPM
7SP
7TG
8FD
KL.
L7M
7X8
5PM
DOI 10.1007/s10470-023-02146-y
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Meteorological & Geoastrophysical Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1979
EndPage 450
ExternalDocumentID PMC9892673
36747992
10_1007_s10470_023_02146_y
Genre Journal Article
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
-5B
-5G
-BR
-EM
ADINQ
GQ6
NPM
YOT
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
_50
7SP
7TG
8FD
ABRTQ
KL.
L7M
7X8
5PM
ID FETCH-LOGICAL-c474t-fd47f93f6a84f42398d0626946d4cdcd489235e37aedc84f5c5321a676e8d4263
IEDL.DBID U2A
ISSN 0925-1030
IngestDate Thu Aug 21 18:38:09 EDT 2025
Thu Jul 10 21:20:57 EDT 2025
Fri Jul 25 10:40:38 EDT 2025
Wed Feb 19 02:24:05 EST 2025
Tue Jul 01 05:10:40 EDT 2025
Thu Apr 24 23:10:47 EDT 2025
Thu Apr 10 07:08:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords UWB
Airbrush printing
Flexible antenna
Wearable biomedical devices
Dual notch
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-fd47f93f6a84f42398d0626946d4cdcd489235e37aedc84f5c5321a676e8d4263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9892673
PMID 36747992
PQID 2799107998
PQPubID 2043739
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892673
proquest_miscellaneous_2774270734
proquest_journals_2799107998
pubmed_primary_36747992
crossref_primary_10_1007_s10470_023_02146_y
crossref_citationtrail_10_1007_s10470_023_02146_y
springer_journals_10_1007_s10470_023_02146_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal
PublicationTitle Analog integrated circuits and signal processing
PublicationTitleAbbrev Analog Integr Circ Sig Process
PublicationTitleAlternate Analog Integr Circuits Signal Process
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References J Shi (2146_CR1) 2020; 32
2146_CR5
S Hekal (2146_CR30) 2016; 65
2146_CR7
2146_CR2
2146_CR26
OA Safia (2146_CR18) 2018; 12
Y Soerbakti (2146_CR11) 2022; 61
C Du (2146_CR25) 2022; 32
Q Zou (2146_CR22) 2021; 63
Z-C Hao (2146_CR10) 2009; 3
SR Zahran (2146_CR14) 2019; 13
EJ Rothwell (2146_CR8) 2014; 28
S Saleh (2146_CR12) 2022; 61
J Mol (2146_CR13) 2022
Y Li (2146_CR17) 2013
S Modak (2146_CR24) 2022
C Liu (2146_CR3) 2016; 14
DD Krishna (2146_CR29) 2008; 83
X Yang (2146_CR27) 2022; 153
M Fallahpour (2146_CR6) 2017; 60
A Zaidi (2146_CR20) 2020; 29
H Yoon (2146_CR19) 2011; 5
X Zhang (2146_CR21) 2014
R Shadid (2146_CR4) 2018
SM Haque (2146_CR9) 2017; 65
S Lakrit (2146_CR16) 2020; 30
V Kollipara (2146_CR23) 2021; 11
J Bor (2146_CR31) 2014; 4
S Modak (2146_CR28) 2022; 39
S Kannadhasan (2146_CR15) 2021
References_xml – volume: 29
  start-page: 45
  issue: 1
  year: 2020
  ident: 2146_CR20
  publication-title: Radioengineering
  doi: 10.13164/re.2020.0044
– volume: 83
  start-page: 245
  year: 2008
  ident: 2146_CR29
  publication-title: Progress In Electromagnetics Research
  doi: 10.2528/PIER08052201
– volume: 61
  start-page: 4241
  issue: 6
  year: 2022
  ident: 2146_CR11
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.09.048
– ident: 2146_CR7
  doi: 10.1109/WOCN.2014.6923083
– year: 2014
  ident: 2146_CR21
  publication-title: International journal of Antennas and Propagation
  doi: 10.1155/2014/546064
– volume: 30
  issue: 7
  year: 2020
  ident: 2146_CR16
  publication-title: International Journal of RF and Microwave Computer-Aided Engineering
  doi: 10.1002/mmce.22201
– volume: 65
  start-page: 2215
  issue: 5
  year: 2017
  ident: 2146_CR9
  publication-title: IEEE Transactions on Antennas and Propagation
  doi: 10.1109/TAP.2017.2684191
– volume: 13
  start-page: 1219
  issue: 8
  year: 2019
  ident: 2146_CR14
  publication-title: IET Microwaves, Antennas & Propagation
  doi: 10.1049/iet-map.2018.5801
– ident: 2146_CR26
– volume: 153
  year: 2022
  ident: 2146_CR27
  publication-title: AEU-International Journal of Electronics and Communications
– volume: 60
  start-page: 38
  issue: 1
  year: 2017
  ident: 2146_CR6
  publication-title: IEEE Antennas and Propagation Magazine
  doi: 10.1109/MAP.2017.2774138
– volume: 32
  issue: 9
  year: 2022
  ident: 2146_CR25
  publication-title: International Journal of RF and Microwave Computer-Aided Engineering
  doi: 10.1002/mmce.23289
– volume: 4
  start-page: 938
  issue: 5
  year: 2014
  ident: 2146_CR31
  publication-title: IEEE Transactions on Components, Packaging and Manufacturing Technology
  doi: 10.1109/TCPMT.2013.2294871
– year: 2021
  ident: 2146_CR15
  publication-title: Textile Research Journal
  doi: 10.1177/00405175211003167
– year: 2022
  ident: 2146_CR24
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-022-10036-1
– year: 2018
  ident: 2146_CR4
  publication-title: International Journal of Antennas and Propagation
  doi: 10.1155/2018/4382841
– ident: 2146_CR5
  doi: 10.1109/MWSCAS48704.2020.9184564
– volume: 12
  start-page: 1112
  issue: 7
  year: 2018
  ident: 2146_CR18
  publication-title: IET Microwaves, Antennas & Propagation
  doi: 10.1049/iet-map.2017.0852
– volume: 61
  start-page: 4977
  issue: 6
  year: 2022
  ident: 2146_CR12
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.09.055
– year: 2013
  ident: 2146_CR17
  publication-title: The Scientific World Journal
  doi: 10.1155/2013/402914
– volume: 14
  start-page: 1
  issue: 3
  year: 2016
  ident: 2146_CR3
  publication-title: Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)
– volume: 28
  start-page: 2089
  issue: 17
  year: 2014
  ident: 2146_CR8
  publication-title: Journal of Electromagnetic Waves and Applications
  doi: 10.1080/09205071.2014.972470
– volume: 32
  start-page: 1901958
  issue: 5
  year: 2020
  ident: 2146_CR1
  publication-title: Advanced Materials
  doi: 10.1002/adma.201901958
– volume: 65
  start-page: 591
  issue: 2
  year: 2016
  ident: 2146_CR30
  publication-title: IEEE Transactions on Microwave Theory and Techniques
  doi: 10.1109/TMTT.2016.2618919
– ident: 2146_CR2
  doi: 10.1145/2207676.2208576
– year: 2022
  ident: 2146_CR13
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-022-09471-x
– volume: 39
  start-page: 568
  issue: 3
  year: 2022
  ident: 2146_CR28
  publication-title: IETE Technical Review
  doi: 10.1080/02564602.2021.1878942
– volume: 5
  start-page: 1463
  issue: 12
  year: 2011
  ident: 2146_CR19
  publication-title: IET Microwaves, Antennas & Propagation
  doi: 10.1049/iet-map.2010.0126
– volume: 11
  start-page: 294
  issue: 4
  year: 2021
  ident: 2146_CR23
  publication-title: International Journal of Engineering and Technology Innovation
  doi: 10.46604/ijeti.2021.8084
– volume: 3
  start-page: 749
  issue: 5
  year: 2009
  ident: 2146_CR10
  publication-title: IET Microwaves, Antennas & Propagation
  doi: 10.1049/iet-map.2008.0232
– volume: 63
  start-page: 895
  issue: 3
  year: 2021
  ident: 2146_CR22
  publication-title: Microwave and Optical Technology Letters
  doi: 10.1002/mop.32678
SSID ssj0002740
Score 2.3935866
Snippet This study presents a novel UWB flexible antenna with dual band-notched design for wearable biomedical devices. The proposed antenna is designed on Kapton...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 439
SubjectTerms Anechoic chambers
Antenna radiation patterns
Antennas
Banded structure
Circuits and Systems
Electrical Engineering
Engineering
Frequency shift
Kapton (trademark)
Polyimide resins
Radiation
Signal,Image and Speech Processing
Substrates
Thickness
Wearable technology
Title A novel UWB flexible antenna with dual notch bands for wearable biomedical devices
URI https://link.springer.com/article/10.1007/s10470-023-02146-y
https://www.ncbi.nlm.nih.gov/pubmed/36747992
https://www.proquest.com/docview/2799107998
https://www.proquest.com/docview/2774270734
https://pubmed.ncbi.nlm.nih.gov/PMC9892673
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLaAXeCAeFNeChI3qNQ1adIeN8RAIO2AmBinqktSgTR1CAaIf4-dtR3jJXFJD3UfsZ3ETvJ9ATgKrFAEDvAxVh74Ikc3jg0WGocuJQNu8tzt8u3Ki5647Ef9EhT2XO12r5YkXU_9Cewm6JCUkNYdsX377_PQiCh3Ry_uha26_8U8y82sJCFxbPKghMr8_I7Z4ehbjPl9q-SX9VI3DHVWYLmMH1lrYvBVmLPFGix9YhVch-sWK0avdsh6t22WE-HlYGgZabAoMkYTr4wAWCiEFmMDwvoyDF3ZGzo9AanYBJJP1mPGup5kA3qds5vTC788OsHXQomxnxuh8oTnMotF7jj-TCAJtCqN0EYbEWNgF1muMqwaikQ64mEzk0ra2BCH-yYsFKPCbgNLlDEuk5C8KbS2OJyF3PBAy4yOujIeNCsNprrkFafjLYbplBGZtJ6i1lOn9fTdg-P6mccJq8af0nuVYdKyhT2nocLINsAi9uCwvo1tgxY8ssKOXkgGE3-FnZjwYGtix_pzXGIilSShB2rGwrUA8W7P3ike7h3_doLKk4p7cFL5wvS3fq_Fzv_Ed2ExdH5K2932YGH89GL3Mf4ZDw6g0eq02126nt9dnR049_8AqBr92g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD4k15BokbVOqaLGmPA4HGawfEBLeqS1KBNHUIBmj_HjtrC2OAxCWXuI_YTuIk_r4AHARWKAIH-Bgrd32RoRtHBguNU5eSATdZ5rJ827LVERf3jfsCFPZSZruXR5JupP4CdhN0SUpI547Yv_3hNMxgMBBRIlcnbFbjL66z3M5KHBLHJg8KqMzP7xifjiZizMlUyW_npW4aOluEhSJ-ZM2RwZdgyubLMP-FVXAFbpos77_ZHuvcHbOMCC-7PctIg3meMtp4ZQTAQiG0GOsS1pdh6Mre0ekJSMVGkHyyHjPWjSSr0Dk7vT1p-cXVCb4WSgz8zAiVxTyTaSQyx_FnAkmgVWmENtqICAO7huUqxaahSEM3eFhPpZI2MsThvga1vJ_bDWCxMsatJCSvC60tTmchNzzQMqWrrowH9VKDiS54xel6i17yyYhMWk9Q64nTejL04LB65mnEqvGn9HZpmKToYS9JqDCyDbCIPNivqrFv0IFHmtv-K8ngwl_hICY8WB_Zsfocl7iQiuPQAzVm4UqAeLfHa_LHB8e_HaPypOIeHJW-8Plbv7di83_iezDbur2-Sq7O25dbMBc6n6XUt22oDZ5f7Q7GQoPurnP9D9_G_b0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4VKlVwQEBbWArUlXprV2xsx949ptCIlgoh1Ahuq40fAilyIhqK-PfMeDdLUmilXnzx7MMzY3tsz_cZ4GPmpCZwQIqx8jCVHt04t1gYnLq0yoT1Pmb5nqrjgfx-2b2cQ_HHbPfZkWSNaSCWpjA9mFh_MAd8k3RhCqczSOzr6f0SvMThuEN-PeC9dizGNVfcZSk48W2KrIHNPP-OxanpSbz5NG3yj7PTOCX112GtiSVZrzb-BrxwYRNW5xgGX8N5j4Xxbzdig4svzBP55XDkGGkzhIrRJiwjMBYKofXYkHC_DMNYdocdgEBVrIbnkyWZdXFUeQOD_tefh8dpc41CaqSW09RbqX0hvKpy6SPfn80UAViVlcYaK3MM8rpO6AqbhiJd0xW8UymtXG6Jz_0tLIdxcNvACm1tXFUo0ZHGOJzauLAiM6qia69sAp2ZBkvTcIzTVRej8pEdmbReotbLqPXyPoFP7TOTmmHjn9K7M8OUTW_7VXKNUW6GRZ7Ah7Ya-wkdflTBjW9JRkuucUCTCWzVdmw_JxQuqoqCJ6AXLNwKEAf3Yk24vopc3AUqT2mRwOeZLzz-1t9bsfN_4u_h1dlRv_zx7fTkHazw6LKUBbcLy9ObW7eHYdF0uB89_wFoJAII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+UWB+flexible+antenna+with+dual+notch+bands+for+wearable+biomedical+devices&rft.jtitle=Analog+integrated+circuits+and+signal+processing&rft.au=Dilruba+Geyikoglu%2C+Mira%C3%A7&rft.date=2023-03-01&rft.pub=Springer+US&rft.issn=0925-1030&rft.eissn=1573-1979&rft.volume=114&rft.issue=3&rft.spage=439&rft.epage=450&rft_id=info:doi/10.1007%2Fs10470-023-02146-y&rft.externalDocID=10_1007_s10470_023_02146_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-1030&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-1030&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-1030&client=summon