Data-driven acceleration of photonic simulations
Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the poss...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 19728 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.12.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell’s equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell’s equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell’s equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10–50) in the number of GMRES iterations required for solving frequency-domain Maxwell’s equations. |
---|---|
AbstractList | Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell’s equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell’s equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell’s equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10–50) in the number of GMRES iterations required for solving frequency-domain Maxwell’s equations. Abstract Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell’s equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell’s equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell’s equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10–50) in the number of GMRES iterations required for solving frequency-domain Maxwell’s equations. |
ArticleNumber | 19728 |
Author | Trivedi, Rahul Vuckovic, Jelena Su, Logan Schubert, Martin F. Lu, Jesse |
Author_xml | – sequence: 1 givenname: Rahul surname: Trivedi fullname: Trivedi, Rahul email: rtrivedi@stanford.edu organization: E. L. Ginzton Laboratory, Stanford University, X – sequence: 2 givenname: Logan surname: Su fullname: Su, Logan organization: E. L. Ginzton Laboratory, Stanford University – sequence: 3 givenname: Jesse surname: Lu fullname: Lu, Jesse organization: X – sequence: 4 givenname: Martin F. surname: Schubert fullname: Schubert, Martin F. organization: X – sequence: 5 givenname: Jelena orcidid: 0000-0002-4603-9686 surname: Vuckovic fullname: Vuckovic, Jelena organization: E. L. Ginzton Laboratory, Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31871322$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEUhYNUbK39Ay6k4MbNaJ6TZCNIfULBja5DJpNpp0yTmswU_PfGttbHwmwScr977j2cY9Bz3lkAThG8RJCIq0gRkyKDSGYsxwhn7AAMMKQswwTj3o93H4xiXMB0GJYUySPQJ0hwlEoDAG91q7My1GvrxtoY29ig29q7sa_Gq7lvvavNONbLrtl8xxNwWOkm2tHuHoLX-7uXyWM2fX54mtxMM0M5bbPKGEYlTTtgLCylxHKkRcWRKCQrRFHKinIjNbZaoKIsGKkYkzwvBC0LwjEZguut7qorlrY01rVBN2oV6qUO78rrWv2uuHquZn6tcokFxCQJXOwEgn_rbGzVso7JX6Od9V1UCYGE4DxHCT3_gy58F1yyt6EgE5zDROEtZYKPMdhqvwyC6jMTtc1EpUzUJhPFUtPZTxv7lq8EEkC2QEwlN7Phe_Y_sh991Zgt |
CitedBy_id | crossref_primary_10_1021_acsphotonics_3c00457 crossref_primary_10_1021_acsphotonics_2c01187 crossref_primary_10_1038_s41467_022_29973_3 crossref_primary_10_1038_s41598_020_67545_x crossref_primary_10_1364_PRJ_415960 crossref_primary_10_1364_PRJ_417693 crossref_primary_10_3390_asi7010004 crossref_primary_10_1021_acsphotonics_2c00876 crossref_primary_10_1080_23746149_2022_2046156 crossref_primary_10_1039_C9NA00656G crossref_primary_10_1364_JOSAB_506159 crossref_primary_10_1063_5_0071616 crossref_primary_10_1103_PhysRevApplied_14_024054 crossref_primary_10_1021_acsphotonics_0c01468 crossref_primary_10_1109_ACCESS_2022_3149115 crossref_primary_10_1364_OE_415052 crossref_primary_10_1515_nanoph_2021_0332 crossref_primary_10_1364_AO_522776 |
Cites_doi | 10.1002/nme.1798 10.1126/sciadv.aar4206 10.1364/OE.26.004023 10.1007/s11082-009-9349-3 10.1021/acsphotonics.7b01377 10.1038/nphoton.2015.69 10.1038/srep07210 10.1137/040607277 10.1137/090754674 10.1007/978-3-642-04898-2_455 10.1145/3022670.2976746 10.1007/978-3-642-22061-6_10 10.1137/1.9780898718003 10.56021/9781421407944 10.1073/pnas.1718942115 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-019-56212-5 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 19728 |
ExternalDocumentID | 10_1038_s41598_019_56212_5 31871322 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Kailath Graduate Fellowship – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP NPM AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-fcc5494045228e443e71a8f718b95b8bd9f47c9a2ea81bdb53f55976b84db3723 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Sep 17 21:20:19 EDT 2024 Sat Oct 26 00:01:07 EDT 2024 Thu Oct 10 20:38:39 EDT 2024 Fri Aug 23 01:27:07 EDT 2024 Wed Oct 16 00:45:24 EDT 2024 Fri Oct 11 20:45:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-fcc5494045228e443e71a8f718b95b8bd9f47c9a2ea81bdb53f55976b84db3723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4603-9686 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928023/ |
PMID | 31871322 |
PQID | 2330058770 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928023 proquest_miscellaneous_2330332661 proquest_journals_2330058770 crossref_primary_10_1038_s41598_019_56212_5 pubmed_primary_31871322 springer_journals_10_1038_s41598_019_56212_5 |
PublicationCentury | 2000 |
PublicationDate | 2019-12-23 |
PublicationDateYYYYMMDD | 2019-12-23 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hicken, Zingg (CR12) 2010; 32 CR6 Su (CR3) 2018; 26 CR8 CR19 CR7 CR18 CR17 CR16 Peurifoy (CR9) 2018; 4 CR15 CR14 CR11 Parks, De Sturler, Mackey, Johnson, Maiti (CR4) 2006; 28 Wang, Sturler, Paulino (CR5) 2007; 69 Piggott (CR1) 2015; 9 Hammer, Ivanova (CR13) 2009; 41 Piggott (CR2) 2014; 4 Liu, Tan, Khoram, Yu (CR10) 2018; 5 32071353 - Sci Rep. 2020 Feb 19;10(1):3330 56212_CR11 56212_CR14 J Peurifoy (56212_CR9) 2018; 4 AY Piggott (56212_CR1) 2015; 9 AY Piggott (56212_CR2) 2014; 4 L Su (56212_CR3) 2018; 26 56212_CR8 S Wang (56212_CR5) 2007; 69 ML Parks (56212_CR4) 2006; 28 JE Hicken (56212_CR12) 2010; 32 56212_CR6 56212_CR7 M Hammer (56212_CR13) 2009; 41 56212_CR19 56212_CR15 56212_CR16 D Liu (56212_CR10) 2018; 5 56212_CR17 56212_CR18 |
References_xml | – volume: 69 start-page: 2441 year: 2007 end-page: 2468 ident: CR5 article-title: Large-scale topology optimization using preconditioned krylov subspace methods with recycling publication-title: International journal for numerical methods in engineering doi: 10.1002/nme.1798 contributor: fullname: Paulino – volume: 4 start-page: eaar4206 year: 2018 ident: CR9 article-title: Nanophotonic particle simulation and inverse design using artificial neural networks publication-title: Science advances doi: 10.1126/sciadv.aar4206 contributor: fullname: Peurifoy – ident: CR19 – volume: 26 start-page: 4023 year: 2018 end-page: 4034 ident: CR3 article-title: Fully-automated optimization of grating couplers publication-title: Optics express doi: 10.1364/OE.26.004023 contributor: fullname: Su – ident: CR18 – ident: CR14 – ident: CR15 – ident: CR16 – volume: 41 start-page: 267 year: 2009 end-page: 283 ident: CR13 article-title: Effective index approximations of photonic crystal slabs: a 2-to-1-d assessment publication-title: Optical and quantum electronics doi: 10.1007/s11082-009-9349-3 contributor: fullname: Ivanova – ident: CR17 – ident: CR11 – volume: 5 start-page: 1365 year: 2018 end-page: 1369 ident: CR10 article-title: Training deep neural networks for the inverse design of nanophotonic structures publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01377 contributor: fullname: Yu – volume: 9 start-page: 374 year: 2015 end-page: 377 ident: CR1 article-title: Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer publication-title: Nature Photonics doi: 10.1038/nphoton.2015.69 contributor: fullname: Piggott – volume: 4 year: 2014 ident: CR2 article-title: Inverse design and implementation of a wavelength demultiplexing grating coupler publication-title: Scientific reports doi: 10.1038/srep07210 contributor: fullname: Piggott – volume: 28 start-page: 1651 year: 2006 end-page: 1674 ident: CR4 article-title: Recycling krylov subspaces for sequences of linear systems publication-title: SIAM Journal on Scientific Computing doi: 10.1137/040607277 contributor: fullname: Maiti – ident: CR6 – ident: CR7 – ident: CR8 – volume: 32 start-page: 1672 year: 2010 end-page: 1694 ident: CR12 article-title: A simplified and flexible variant of gcrot for solving nonsymmetric linear systems publication-title: SIAM Journal on Scientific Computing doi: 10.1137/090754674 contributor: fullname: Zingg – volume: 4 year: 2014 ident: 56212_CR2 publication-title: Scientific reports doi: 10.1038/srep07210 contributor: fullname: AY Piggott – ident: 56212_CR11 – ident: 56212_CR14 doi: 10.1007/978-3-642-04898-2_455 – ident: 56212_CR18 doi: 10.1145/3022670.2976746 – volume: 32 start-page: 1672 year: 2010 ident: 56212_CR12 publication-title: SIAM Journal on Scientific Computing doi: 10.1137/090754674 contributor: fullname: JE Hicken – ident: 56212_CR15 doi: 10.1007/978-3-642-22061-6_10 – volume: 9 start-page: 374 year: 2015 ident: 56212_CR1 publication-title: Nature Photonics doi: 10.1038/nphoton.2015.69 contributor: fullname: AY Piggott – ident: 56212_CR6 – volume: 5 start-page: 1365 year: 2018 ident: 56212_CR10 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01377 contributor: fullname: D Liu – ident: 56212_CR16 doi: 10.1137/1.9780898718003 – volume: 26 start-page: 4023 year: 2018 ident: 56212_CR3 publication-title: Optics express doi: 10.1364/OE.26.004023 contributor: fullname: L Su – ident: 56212_CR19 – ident: 56212_CR8 doi: 10.56021/9781421407944 – ident: 56212_CR17 – ident: 56212_CR7 doi: 10.1073/pnas.1718942115 – volume: 41 start-page: 267 year: 2009 ident: 56212_CR13 publication-title: Optical and quantum electronics doi: 10.1007/s11082-009-9349-3 contributor: fullname: M Hammer – volume: 4 start-page: eaar4206 year: 2018 ident: 56212_CR9 publication-title: Science advances doi: 10.1126/sciadv.aar4206 contributor: fullname: J Peurifoy – volume: 69 start-page: 2441 year: 2007 ident: 56212_CR5 publication-title: International journal for numerical methods in engineering doi: 10.1002/nme.1798 contributor: fullname: S Wang – volume: 28 start-page: 1651 year: 2006 ident: 56212_CR4 publication-title: SIAM Journal on Scientific Computing doi: 10.1137/040607277 contributor: fullname: ML Parks |
SSID | ssj0000529419 |
Score | 2.480761 |
Snippet | Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically... Abstract Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 19728 |
SubjectTerms | 639/624/400/1021 639/705/1042 Humanities and Social Sciences Learning algorithms multidisciplinary Neural networks Science Science (multidisciplinary) Simulation |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAivq0vKnjTYptkm_QkPlk8LCIKeyvNCz3YrrYe_Pdm2uzKuug5gTYzk5lvMsk3ACcq4TqNpYzcJkRSbcujzCrqch4kRxPGJt1ti2E6eGb3o_7IH7jV_lrlxCe2jlpXCs_IzwlFYnXBeXwxfo-waxRWV30LjUVYIi5TID1YurodPjxOT1mwjsWSzL-Wiak4r13EwldlSRa50I-NAGYj0hzMnL8t-atk2kaiuzVY9RAyvOx0vg4LptyA5a6p5NcmxDdFU0T6A91YWCjl4kqn5bCy4filapAMN6xf33zjrnoLnu9un64Hke-LECnGWRNZpVxWx1oydGEYo4YnhbAuysisL4XUmWVcZQUxhQOlWvapxbwhlYJpSTmh29Arq9LsQshonAmiZay1Ypo4PGYT7UBIknKTWCYDOJ3IJh939Bd5W7amIu8kmTtJ5q0k834ABxPx5X4r1PmP4gI4ng47I8bKRFGa6rObQylihQB2OmlPP-ecDseUOQA-o4fpBCTInh0pX19aouw0I8hvF8DZRGM_v_X3Kvb-X8U-rBC0Hmc6hB5Ar_n4NIcOmDTyyFvfN3Ml3-g priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0toKK9VIXykbJFqdRbG0hsb2wfUFW1Xa049MRK3KL4SyBBArtZCf494zjZagtcONuRkzfjzBt5_Abgq864yVOlEtyEXlTb8UQ6TTHn8eJowrosVFv8zaczdn45vhxA3-6oA3DxYmrn-0nN5jcnD_ePP3DDn4Ur4-J0gUHIXxTLZILR3Gv7b8AW8cJcvpSvo_tB65tIlsnu7szLjw5hG92c-yRtPVQ945_Pyyj_O0ttQ9TkA7zvuGX8MzjDDgxstQvvQrfJx4-Q_i6bMjFz_3-LS60x4ATzx7WL767qxqvkxovr266j12IPZpM_F7-mSdcwIdGMsyZxWmO6x1qVdGEZo5ZnpXAYfpQcK6GMdIxrWRJbIls1akydTyhyJZhRlBO6D5tVXdlDiBlNpSBGpcZoZggSNZcZZCdZzm3mmIrgW49NcRd0MYr2PJuKIoBaIKhFC2oxjmDUw1f0Ji4I9VL5gvM0gi-rYfRuf2RRVrZehjloRyQRERwEtFfL9WaKgK_ZYTXBK2evj1TXV62Cdi6JF76L4HtvsX-v9fpXfHrzQkcwJN7H0MEIHcFmM1_az0hmGnXceugTK7fvGQ priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEJ1ojYkX47doNZh4UyKwC7scTbVpPHiySW-E_Up7EEyhB_-9O0AxWD143iXAzLDvDbP7BuBWBkzFvhCe_QhRVNswLzGS2JwHxdG4NkGz2-I1nkzpyyyatTI5eBamV78n_KG0AIOHwILEs0iNuv3bsIMYjG0aRvGo-5-CFSsaJO25mN8v7WPPBqHc3Bf5ozhaY874APZbsug-Nt49hC2dH8Fu0z7y8xj8p6zKPLXEBcvNpLQI0vjTLYz7MS8qlL11y8V726KrPIHp-PltNPHaDgiepIxWnpHS5m-0lj3nmlKiWZBxY_FEJJHgQiWGMplkoc4s_VQiIgYzhFhwqgRhITmFQV7k-hxcSvyEh0r4SkmqQsu8TKAs3QhipgNDhQN3a9ukH43QRVoXqAlPG0um1pJpbck0cmC4Nl_aBn2ZhgS17zljvgM33bANV6xBZLkuVs0cQpAVOHDWWLu7nV1eGCbHDrCeH7oJKIXdH8kX81oSO05CVLJz4H7tse_H-vstLv43_RL2QowmG0ohGcKgWq70laUklbiuY_ELC6HXiQ priority: 102 providerName: Springer Nature |
Title | Data-driven acceleration of photonic simulations |
URI | https://link.springer.com/article/10.1038/s41598-019-56212-5 https://www.ncbi.nlm.nih.gov/pubmed/31871322 https://www.proquest.com/docview/2330058770 https://search.proquest.com/docview/2330332661 https://pubmed.ncbi.nlm.nih.gov/PMC6928023 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2SlJZcStOPxG2yuJBb66wtyZZ0bLYJoZAQQgN7M9YXWch6l6xz6L_vSLK33YReejEYCSTPPHneoNETwLEuuKlypTJchF5U2_FMOk0x5_HiaMK6IlZbXFUXt-zHtJxuQTmchQlF-1rNTtr7-Uk7uwu1lcu5Hg91YuPry0klidctG2_DNgL0rxQ9CnoTyQrZH5DJqRivMEj5g2SFzDDae-3_XXiFWOY-E9uMR89I5vNayScbpiEOnb-B1z2BTL_Fie7Blm3fwst4peSvd5B_b7omMw_-J5Y2WmNUiT5OFy5d3i06L4Wbrmbz_tqu1Xu4PT_7ObnI-lsRMs046zKnNeZ0LEihC8sYtbxohMMYo2SphDLSMa5lQ2yDlNSokjqfNVRKMKMoJ_QD7LSL1h5AymguBTEqN0YzQ5CNucIgBSkqbgvHVAJfBtvUyyh-UYdNayrqaNQajVoHo9ZlAoeD-ep-IaxqQr0evuA8T-Dzuhkh7PclmtYuHmMfSj1TSGA_Wns93OCmBPiGH9YdvDz2ZguiJshk9yhJ4OvgsT_T-vdXfPzvgT7BLvEYQ4ARegg73cOjPULG0qkR4nTKR_Di9Ozq-gbfJtVkFLJ_fF4yMQoI_g2jEeyx |
link.rule.ids | 230,315,730,783,787,867,888,12070,21402,24332,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VqgouqA8e4dEGiRtEm8Te2DmhqgVtW7qnRdqbFb8EB5KFhAP_npkku2hZwdmWEs-MZ77x2N8AnJhE2CzWOsJNSKTaXkS5NwxzHiJHk84n3W2LcTa65n-nw2l_4Fb31yrnPrF11LYydEY-SBkRq0sh4vPZfURdo6i62rfQWIOPxMNF3PliKhZnLFTF4knev5WJmRzUGK_oTVmSRxj4qQ3AcjxaAZmrdyVfFUzbOHT5GbZ6ABn-7DT-BT648it86lpKPn2D-HfRFJF9ICcWFsZgVOl0HFY-nN1UDVHhhvXtXd-2q96G68uLya9R1HdFiAwXvIm8MZjT8ZYKXTrOmRNJIT3GGJ0PtdQ291yYvEhdgZDU6iHzlDVkWnKrmUjZDqyXVen2IOQszmVqdWyt4TZFNOYTixAkyYRLPNcBnM5lo2Yd-YVqi9ZMqk6SCiWpWkmqYQCHc_GpfiPU6kVtARwvhtGEqS5RlK567Oag9hApBLDbSXvxOXQ5ghLmAMSSHhYTiB57eaS8vWlpsrM8JXa7AM7mGnv5rbdXsf_-Kn7Axmjy_0pd_Rn_O4DNlCwJzShlh7DePDy6I4Qojf7e2uEzT2_hcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB21W1FxqVoKJS20QeoNok1ib-ycKlS6ogWhHoq0Nyv-0nIg2ZLsof--M4l30YLgbEuJZ8Yzz57xG4CvJhO2SLVOcBMSqbYXSekNwzMPkaNJ57Oh2uKqOL_mv2aTWah_akNZ5con9o7aNobuyMc5I2J1KUQ69qEs4vfZ9Nvib0IdpCjTGtppvIRXgmOgQ9sWM7G-b6GMFs_K8G4mZXLcYuyi92VZmSAIoJYAm7HpEeB8XDf5IHnax6TpW3gTwGR8Omj_Hbxw9Q5sDe0l_72H9KzqqsTekUOLK2Mwwgz6jhsfL-ZNR7S4cXtzG1p4tbtwPf3x5_t5EjokJIYL3iXeGDzf8Z4WXTrOmRNZJT3GG11OtNS29FyYsspdhfDU6gnzdIIotORWM5GzPRjVTe32IeYsLWVudWqt4TZHZOYzi3AkK4TLPNcRHK9koxYDEYbqE9hMqkGSCiWpekmqSQQHK_GpsClada_CCI7Ww2jOlKOoatcshzmMEWqI4MMg7fXn0P0IOjxHIDb0sJ5AVNmbI_XNvKfMLsqcmO4iOFlp7P63nl7Fx-dX8QVeowmqy59XF59gOydDQivK2QGMurulO0S00unPvRn-B-wu5ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+acceleration+of+photonic+simulations&rft.jtitle=Scientific+reports&rft.au=Trivedi%2C+Rahul&rft.au=Su%2C+Logan&rft.au=Lu%2C+Jesse&rft.au=Schubert%2C+Martin+F.&rft.date=2019-12-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=9&rft_id=info:doi/10.1038%2Fs41598-019-56212-5&rft_id=info%3Apmid%2F31871322&rft.externalDBID=PMC6928023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |