Data-driven acceleration of photonic simulations

Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the poss...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 19728
Main Authors Trivedi, Rahul, Su, Logan, Lu, Jesse, Schubert, Martin F., Vuckovic, Jelena
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.12.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell’s equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell’s equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell’s equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10–50) in the number of GMRES iterations required for solving frequency-domain Maxwell’s equations.
AbstractList Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell’s equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell’s equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell’s equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10–50) in the number of GMRES iterations required for solving frequency-domain Maxwell’s equations.
Abstract Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically results in the designer performing electromagnetic simulations of a large number of correlated devices. In this paper, we investigate the possibility of accelerating electromagnetic simulations using the data collected from such correlated simulations. In particular, we present an approach to accelerate the Generalized Minimal Residual (GMRES) algorithm for the solution of frequency-domain Maxwell’s equations using two machine learning models (principal component analysis and a convolutional neural network). These data-driven models are trained to predict a subspace within which the solution of the frequency-domain Maxwell’s equations approximately lies. This subspace is then used for augmenting the Krylov subspace generated during the GMRES iterations, thus effectively reducing the size of the Krylov subspace and hence the number of iterations needed for solving Maxwell’s equations. By training the proposed models on a dataset of wavelength-splitting gratings, we show an order of magnitude reduction (~10–50) in the number of GMRES iterations required for solving frequency-domain Maxwell’s equations.
ArticleNumber 19728
Author Trivedi, Rahul
Vuckovic, Jelena
Su, Logan
Schubert, Martin F.
Lu, Jesse
Author_xml – sequence: 1
  givenname: Rahul
  surname: Trivedi
  fullname: Trivedi, Rahul
  email: rtrivedi@stanford.edu
  organization: E. L. Ginzton Laboratory, Stanford University, X
– sequence: 2
  givenname: Logan
  surname: Su
  fullname: Su, Logan
  organization: E. L. Ginzton Laboratory, Stanford University
– sequence: 3
  givenname: Jesse
  surname: Lu
  fullname: Lu, Jesse
  organization: X
– sequence: 4
  givenname: Martin F.
  surname: Schubert
  fullname: Schubert, Martin F.
  organization: X
– sequence: 5
  givenname: Jelena
  orcidid: 0000-0002-4603-9686
  surname: Vuckovic
  fullname: Vuckovic, Jelena
  organization: E. L. Ginzton Laboratory, Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31871322$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLAzEUhYNUbK39Ay6k4MbNaJ6TZCNIfULBja5DJpNpp0yTmswU_PfGttbHwmwScr977j2cY9Bz3lkAThG8RJCIq0gRkyKDSGYsxwhn7AAMMKQswwTj3o93H4xiXMB0GJYUySPQJ0hwlEoDAG91q7My1GvrxtoY29ig29q7sa_Gq7lvvavNONbLrtl8xxNwWOkm2tHuHoLX-7uXyWM2fX54mtxMM0M5bbPKGEYlTTtgLCylxHKkRcWRKCQrRFHKinIjNbZaoKIsGKkYkzwvBC0LwjEZguut7qorlrY01rVBN2oV6qUO78rrWv2uuHquZn6tcokFxCQJXOwEgn_rbGzVso7JX6Od9V1UCYGE4DxHCT3_gy58F1yyt6EgE5zDROEtZYKPMdhqvwyC6jMTtc1EpUzUJhPFUtPZTxv7lq8EEkC2QEwlN7Phe_Y_sh991Zgt
CitedBy_id crossref_primary_10_1021_acsphotonics_3c00457
crossref_primary_10_1021_acsphotonics_2c01187
crossref_primary_10_1038_s41467_022_29973_3
crossref_primary_10_1038_s41598_020_67545_x
crossref_primary_10_1364_PRJ_415960
crossref_primary_10_1364_PRJ_417693
crossref_primary_10_3390_asi7010004
crossref_primary_10_1021_acsphotonics_2c00876
crossref_primary_10_1080_23746149_2022_2046156
crossref_primary_10_1039_C9NA00656G
crossref_primary_10_1364_JOSAB_506159
crossref_primary_10_1063_5_0071616
crossref_primary_10_1103_PhysRevApplied_14_024054
crossref_primary_10_1021_acsphotonics_0c01468
crossref_primary_10_1109_ACCESS_2022_3149115
crossref_primary_10_1364_OE_415052
crossref_primary_10_1515_nanoph_2021_0332
crossref_primary_10_1364_AO_522776
Cites_doi 10.1002/nme.1798
10.1126/sciadv.aar4206
10.1364/OE.26.004023
10.1007/s11082-009-9349-3
10.1021/acsphotonics.7b01377
10.1038/nphoton.2015.69
10.1038/srep07210
10.1137/040607277
10.1137/090754674
10.1007/978-3-642-04898-2_455
10.1145/3022670.2976746
10.1007/978-3-642-22061-6_10
10.1137/1.9780898718003
10.56021/9781421407944
10.1073/pnas.1718942115
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-019-56212-5
DatabaseName SpringerOpen
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19728
ExternalDocumentID 10_1038_s41598_019_56212_5
31871322
Genre Journal Article
GrantInformation_xml – fundername: Kailath Graduate Fellowship
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-fcc5494045228e443e71a8f718b95b8bd9f47c9a2ea81bdb53f55976b84db3723
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 21:20:19 EDT 2024
Sat Oct 26 00:01:07 EDT 2024
Thu Oct 10 20:38:39 EDT 2024
Fri Aug 23 01:27:07 EDT 2024
Wed Oct 16 00:45:24 EDT 2024
Fri Oct 11 20:45:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-fcc5494045228e443e71a8f718b95b8bd9f47c9a2ea81bdb53f55976b84db3723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4603-9686
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6928023/
PMID 31871322
PQID 2330058770
PQPubID 2041939
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6928023
proquest_miscellaneous_2330332661
proquest_journals_2330058770
crossref_primary_10_1038_s41598_019_56212_5
pubmed_primary_31871322
springer_journals_10_1038_s41598_019_56212_5
PublicationCentury 2000
PublicationDate 2019-12-23
PublicationDateYYYYMMDD 2019-12-23
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hicken, Zingg (CR12) 2010; 32
CR6
Su (CR3) 2018; 26
CR8
CR19
CR7
CR18
CR17
CR16
Peurifoy (CR9) 2018; 4
CR15
CR14
CR11
Parks, De Sturler, Mackey, Johnson, Maiti (CR4) 2006; 28
Wang, Sturler, Paulino (CR5) 2007; 69
Piggott (CR1) 2015; 9
Hammer, Ivanova (CR13) 2009; 41
Piggott (CR2) 2014; 4
Liu, Tan, Khoram, Yu (CR10) 2018; 5
32071353 - Sci Rep. 2020 Feb 19;10(1):3330
56212_CR11
56212_CR14
J Peurifoy (56212_CR9) 2018; 4
AY Piggott (56212_CR1) 2015; 9
AY Piggott (56212_CR2) 2014; 4
L Su (56212_CR3) 2018; 26
56212_CR8
S Wang (56212_CR5) 2007; 69
ML Parks (56212_CR4) 2006; 28
JE Hicken (56212_CR12) 2010; 32
56212_CR6
56212_CR7
M Hammer (56212_CR13) 2009; 41
56212_CR19
56212_CR15
56212_CR16
D Liu (56212_CR10) 2018; 5
56212_CR17
56212_CR18
References_xml – volume: 69
  start-page: 2441
  year: 2007
  end-page: 2468
  ident: CR5
  article-title: Large-scale topology optimization using preconditioned krylov subspace methods with recycling
  publication-title: International journal for numerical methods in engineering
  doi: 10.1002/nme.1798
  contributor:
    fullname: Paulino
– volume: 4
  start-page: eaar4206
  year: 2018
  ident: CR9
  article-title: Nanophotonic particle simulation and inverse design using artificial neural networks
  publication-title: Science advances
  doi: 10.1126/sciadv.aar4206
  contributor:
    fullname: Peurifoy
– ident: CR19
– volume: 26
  start-page: 4023
  year: 2018
  end-page: 4034
  ident: CR3
  article-title: Fully-automated optimization of grating couplers
  publication-title: Optics express
  doi: 10.1364/OE.26.004023
  contributor:
    fullname: Su
– ident: CR18
– ident: CR14
– ident: CR15
– ident: CR16
– volume: 41
  start-page: 267
  year: 2009
  end-page: 283
  ident: CR13
  article-title: Effective index approximations of photonic crystal slabs: a 2-to-1-d assessment
  publication-title: Optical and quantum electronics
  doi: 10.1007/s11082-009-9349-3
  contributor:
    fullname: Ivanova
– ident: CR17
– ident: CR11
– volume: 5
  start-page: 1365
  year: 2018
  end-page: 1369
  ident: CR10
  article-title: Training deep neural networks for the inverse design of nanophotonic structures
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01377
  contributor:
    fullname: Yu
– volume: 9
  start-page: 374
  year: 2015
  end-page: 377
  ident: CR1
  article-title: Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer
  publication-title: Nature Photonics
  doi: 10.1038/nphoton.2015.69
  contributor:
    fullname: Piggott
– volume: 4
  year: 2014
  ident: CR2
  article-title: Inverse design and implementation of a wavelength demultiplexing grating coupler
  publication-title: Scientific reports
  doi: 10.1038/srep07210
  contributor:
    fullname: Piggott
– volume: 28
  start-page: 1651
  year: 2006
  end-page: 1674
  ident: CR4
  article-title: Recycling krylov subspaces for sequences of linear systems
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/040607277
  contributor:
    fullname: Maiti
– ident: CR6
– ident: CR7
– ident: CR8
– volume: 32
  start-page: 1672
  year: 2010
  end-page: 1694
  ident: CR12
  article-title: A simplified and flexible variant of gcrot for solving nonsymmetric linear systems
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/090754674
  contributor:
    fullname: Zingg
– volume: 4
  year: 2014
  ident: 56212_CR2
  publication-title: Scientific reports
  doi: 10.1038/srep07210
  contributor:
    fullname: AY Piggott
– ident: 56212_CR11
– ident: 56212_CR14
  doi: 10.1007/978-3-642-04898-2_455
– ident: 56212_CR18
  doi: 10.1145/3022670.2976746
– volume: 32
  start-page: 1672
  year: 2010
  ident: 56212_CR12
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/090754674
  contributor:
    fullname: JE Hicken
– ident: 56212_CR15
  doi: 10.1007/978-3-642-22061-6_10
– volume: 9
  start-page: 374
  year: 2015
  ident: 56212_CR1
  publication-title: Nature Photonics
  doi: 10.1038/nphoton.2015.69
  contributor:
    fullname: AY Piggott
– ident: 56212_CR6
– volume: 5
  start-page: 1365
  year: 2018
  ident: 56212_CR10
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01377
  contributor:
    fullname: D Liu
– ident: 56212_CR16
  doi: 10.1137/1.9780898718003
– volume: 26
  start-page: 4023
  year: 2018
  ident: 56212_CR3
  publication-title: Optics express
  doi: 10.1364/OE.26.004023
  contributor:
    fullname: L Su
– ident: 56212_CR19
– ident: 56212_CR8
  doi: 10.56021/9781421407944
– ident: 56212_CR17
– ident: 56212_CR7
  doi: 10.1073/pnas.1718942115
– volume: 41
  start-page: 267
  year: 2009
  ident: 56212_CR13
  publication-title: Optical and quantum electronics
  doi: 10.1007/s11082-009-9349-3
  contributor:
    fullname: M Hammer
– volume: 4
  start-page: eaar4206
  year: 2018
  ident: 56212_CR9
  publication-title: Science advances
  doi: 10.1126/sciadv.aar4206
  contributor:
    fullname: J Peurifoy
– volume: 69
  start-page: 2441
  year: 2007
  ident: 56212_CR5
  publication-title: International journal for numerical methods in engineering
  doi: 10.1002/nme.1798
  contributor:
    fullname: S Wang
– volume: 28
  start-page: 1651
  year: 2006
  ident: 56212_CR4
  publication-title: SIAM Journal on Scientific Computing
  doi: 10.1137/040607277
  contributor:
    fullname: ML Parks
SSID ssj0000529419
Score 2.480761
Snippet Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and typically...
Abstract Designing modern photonic devices often involves traversing a large parameter space via an optimization procedure, gradient based or otherwise, and...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 19728
SubjectTerms 639/624/400/1021
639/705/1042
Humanities and Social Sciences
Learning algorithms
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Simulation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAivq0vKnjTYptkm_QkPlk8LCIKeyvNCz3YrrYe_Pdm2uzKuug5gTYzk5lvMsk3ACcq4TqNpYzcJkRSbcujzCrqch4kRxPGJt1ti2E6eGb3o_7IH7jV_lrlxCe2jlpXCs_IzwlFYnXBeXwxfo-waxRWV30LjUVYIi5TID1YurodPjxOT1mwjsWSzL-Wiak4r13EwldlSRa50I-NAGYj0hzMnL8t-atk2kaiuzVY9RAyvOx0vg4LptyA5a6p5NcmxDdFU0T6A91YWCjl4kqn5bCy4filapAMN6xf33zjrnoLnu9un64Hke-LECnGWRNZpVxWx1oydGEYo4YnhbAuysisL4XUmWVcZQUxhQOlWvapxbwhlYJpSTmh29Arq9LsQshonAmiZay1Ypo4PGYT7UBIknKTWCYDOJ3IJh939Bd5W7amIu8kmTtJ5q0k834ABxPx5X4r1PmP4gI4ng47I8bKRFGa6rObQylihQB2OmlPP-ecDseUOQA-o4fpBCTInh0pX19aouw0I8hvF8DZRGM_v_X3Kvb-X8U-rBC0Hmc6hB5Ar_n4NIcOmDTyyFvfN3Ml3-g
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0toKK9VIXykbJFqdRbG0hsb2wfUFW1Xa049MRK3KL4SyBBArtZCf494zjZagtcONuRkzfjzBt5_Abgq864yVOlEtyEXlTb8UQ6TTHn8eJowrosVFv8zaczdn45vhxA3-6oA3DxYmrn-0nN5jcnD_ePP3DDn4Ur4-J0gUHIXxTLZILR3Gv7b8AW8cJcvpSvo_tB65tIlsnu7szLjw5hG92c-yRtPVQ945_Pyyj_O0ttQ9TkA7zvuGX8MzjDDgxstQvvQrfJx4-Q_i6bMjFz_3-LS60x4ATzx7WL767qxqvkxovr266j12IPZpM_F7-mSdcwIdGMsyZxWmO6x1qVdGEZo5ZnpXAYfpQcK6GMdIxrWRJbIls1akydTyhyJZhRlBO6D5tVXdlDiBlNpSBGpcZoZggSNZcZZCdZzm3mmIrgW49NcRd0MYr2PJuKIoBaIKhFC2oxjmDUw1f0Ji4I9VL5gvM0gi-rYfRuf2RRVrZehjloRyQRERwEtFfL9WaKgK_ZYTXBK2evj1TXV62Cdi6JF76L4HtvsX-v9fpXfHrzQkcwJN7H0MEIHcFmM1_az0hmGnXceugTK7fvGQ
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT4NAEJ1ojYkX47doNZh4UyKwC7scTbVpPHiySW-E_Up7EEyhB_-9O0AxWD143iXAzLDvDbP7BuBWBkzFvhCe_QhRVNswLzGS2JwHxdG4NkGz2-I1nkzpyyyatTI5eBamV78n_KG0AIOHwILEs0iNuv3bsIMYjG0aRvGo-5-CFSsaJO25mN8v7WPPBqHc3Bf5ozhaY874APZbsug-Nt49hC2dH8Fu0z7y8xj8p6zKPLXEBcvNpLQI0vjTLYz7MS8qlL11y8V726KrPIHp-PltNPHaDgiepIxWnpHS5m-0lj3nmlKiWZBxY_FEJJHgQiWGMplkoc4s_VQiIgYzhFhwqgRhITmFQV7k-hxcSvyEh0r4SkmqQsu8TKAs3QhipgNDhQN3a9ukH43QRVoXqAlPG0um1pJpbck0cmC4Nl_aBn2ZhgS17zljvgM33bANV6xBZLkuVs0cQpAVOHDWWLu7nV1eGCbHDrCeH7oJKIXdH8kX81oSO05CVLJz4H7tse_H-vstLv43_RL2QowmG0ohGcKgWq70laUklbiuY_ELC6HXiQ
  priority: 102
  providerName: Springer Nature
Title Data-driven acceleration of photonic simulations
URI https://link.springer.com/article/10.1038/s41598-019-56212-5
https://www.ncbi.nlm.nih.gov/pubmed/31871322
https://www.proquest.com/docview/2330058770
https://search.proquest.com/docview/2330332661
https://pubmed.ncbi.nlm.nih.gov/PMC6928023
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB2SlJZcStOPxG2yuJBb66wtyZZ0bLYJoZAQQgN7M9YXWch6l6xz6L_vSLK33YReejEYCSTPPHneoNETwLEuuKlypTJchF5U2_FMOk0x5_HiaMK6IlZbXFUXt-zHtJxuQTmchQlF-1rNTtr7-Uk7uwu1lcu5Hg91YuPry0klidctG2_DNgL0rxQ9CnoTyQrZH5DJqRivMEj5g2SFzDDae-3_XXiFWOY-E9uMR89I5vNayScbpiEOnb-B1z2BTL_Fie7Blm3fwst4peSvd5B_b7omMw_-J5Y2WmNUiT5OFy5d3i06L4Wbrmbz_tqu1Xu4PT_7ObnI-lsRMs046zKnNeZ0LEihC8sYtbxohMMYo2SphDLSMa5lQ2yDlNSokjqfNVRKMKMoJ_QD7LSL1h5AymguBTEqN0YzQ5CNucIgBSkqbgvHVAJfBtvUyyh-UYdNayrqaNQajVoHo9ZlAoeD-ep-IaxqQr0evuA8T-Dzuhkh7PclmtYuHmMfSj1TSGA_Wns93OCmBPiGH9YdvDz2ZguiJshk9yhJ4OvgsT_T-vdXfPzvgT7BLvEYQ4ARegg73cOjPULG0qkR4nTKR_Di9Ozq-gbfJtVkFLJ_fF4yMQoI_g2jEeyx
link.rule.ids 230,315,730,783,787,867,888,12070,21402,24332,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VqgouqA8e4dEGiRtEm8Te2DmhqgVtW7qnRdqbFb8EB5KFhAP_npkku2hZwdmWEs-MZ77x2N8AnJhE2CzWOsJNSKTaXkS5NwxzHiJHk84n3W2LcTa65n-nw2l_4Fb31yrnPrF11LYydEY-SBkRq0sh4vPZfURdo6i62rfQWIOPxMNF3PliKhZnLFTF4knev5WJmRzUGK_oTVmSRxj4qQ3AcjxaAZmrdyVfFUzbOHT5GbZ6ABn-7DT-BT648it86lpKPn2D-HfRFJF9ICcWFsZgVOl0HFY-nN1UDVHhhvXtXd-2q96G68uLya9R1HdFiAwXvIm8MZjT8ZYKXTrOmRNJIT3GGJ0PtdQ291yYvEhdgZDU6iHzlDVkWnKrmUjZDqyXVen2IOQszmVqdWyt4TZFNOYTixAkyYRLPNcBnM5lo2Yd-YVqi9ZMqk6SCiWpWkmqYQCHc_GpfiPU6kVtARwvhtGEqS5RlK567Oag9hApBLDbSXvxOXQ5ghLmAMSSHhYTiB57eaS8vWlpsrM8JXa7AM7mGnv5rbdXsf_-Kn7Axmjy_0pd_Rn_O4DNlCwJzShlh7DePDy6I4Qojf7e2uEzT2_hcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB21W1FxqVoKJS20QeoNok1ib-ycKlS6ogWhHoq0Nyv-0nIg2ZLsof--M4l30YLgbEuJZ8Yzz57xG4CvJhO2SLVOcBMSqbYXSekNwzMPkaNJ57Oh2uKqOL_mv2aTWah_akNZ5con9o7aNobuyMc5I2J1KUQ69qEs4vfZ9Nvib0IdpCjTGtppvIRXgmOgQ9sWM7G-b6GMFs_K8G4mZXLcYuyi92VZmSAIoJYAm7HpEeB8XDf5IHnax6TpW3gTwGR8Omj_Hbxw9Q5sDe0l_72H9KzqqsTekUOLK2Mwwgz6jhsfL-ZNR7S4cXtzG1p4tbtwPf3x5_t5EjokJIYL3iXeGDzf8Z4WXTrOmRNZJT3GG11OtNS29FyYsspdhfDU6gnzdIIotORWM5GzPRjVTe32IeYsLWVudWqt4TZHZOYzi3AkK4TLPNcRHK9koxYDEYbqE9hMqkGSCiWpekmqSQQHK_GpsClada_CCI7Ww2jOlKOoatcshzmMEWqI4MMg7fXn0P0IOjxHIDb0sJ5AVNmbI_XNvKfMLsqcmO4iOFlp7P63nl7Fx-dX8QVeowmqy59XF59gOydDQivK2QGMurulO0S00unPvRn-B-wu5ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+acceleration+of+photonic+simulations&rft.jtitle=Scientific+reports&rft.au=Trivedi%2C+Rahul&rft.au=Su%2C+Logan&rft.au=Lu%2C+Jesse&rft.au=Schubert%2C+Martin+F.&rft.date=2019-12-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=9&rft_id=info:doi/10.1038%2Fs41598-019-56212-5&rft_id=info%3Apmid%2F31871322&rft.externalDBID=PMC6928023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon