Energy benchmarks for water clusters and ice structures from an embedded many-body expansion
We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion...
Saved in:
Published in | The Journal of chemical physics Vol. 139; no. 11; p. 114101 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
21.09.2013
American Institute of Physics (AIP) |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.4820906 |
Cover
Loading…
Abstract | We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mEh/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested. |
---|---|
AbstractList | We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mEh/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested. In this paper, we show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mEh/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested. We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mE(h)/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested. We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mE(h)/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mE(h)/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested. |
Author | Bygrave, P. J. Gillan, M. J. Taylor, C. R. Manby, F. R. Alfè, D. |
Author_xml | – sequence: 1 givenname: M. J. surname: Gillan fullname: Gillan, M. J. – sequence: 2 givenname: D. surname: Alfè fullname: Alfè, D. – sequence: 3 givenname: P. J. surname: Bygrave fullname: Bygrave, P. J. – sequence: 4 givenname: C. R. surname: Taylor fullname: Taylor, C. R. – sequence: 5 givenname: F. R. surname: Manby fullname: Manby, F. R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24070273$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1565010$$D View this record in Osti.gov |
BookMark | eNpt0c9rFTEQB_AgFftaPfgPSNBLPWw7-bHZ5FhKq0LBi96EkM3O2q27yTPJou-_N4_39FA8DQyfGZjvnJGTEAMS8prBJQMlrtil1BwMqGdkw0CbplMGTsgGgLPGKFCn5CznRwBgHZcvyCmX0AHvxIZ8uw2Yvu9oj8E_LC79yHSMif5yBRP185przdSFgU4eaS5p9WVNWFWKS-1TXHocBhzo4sKu6eOwo_h760KeYnhJno9uzvjqWM_J17vbLzcfm_vPHz7dXN83XnayNKPXaLrRMfDG68FoxfXYcsOMVI4J3cpBGqmFRCc0-paNxo2cg0DfcwEgzsnbw96Yy2Sznwr6Bx9DQF8sa1ULbI8uDmib4s8Vc7HLlD3OswsY12yZlIZr4Kqr9N0T-hjXFOoJljPe1XSl2C98c1Rrv-Bgt2mqAe7s33AreH8APsWcE47_CAO7f5xl9vi4aq-e2HqFKzXEktw0_2fiD4vrlwk |
CitedBy_id | crossref_primary_10_1021_acs_jctc_6b00335 crossref_primary_10_1002_qua_26428 crossref_primary_10_1039_C5SC03014E crossref_primary_10_1063_1_4944633 crossref_primary_10_1063_1_4951687 crossref_primary_10_1063_1_4926444 crossref_primary_10_1063_1_4885339 crossref_primary_10_1063_1_5075487 crossref_primary_10_1021_acs_jctc_6b00298 crossref_primary_10_1021_acs_jpca_9b03481 crossref_primary_10_1002_cphc_201500626 crossref_primary_10_1002_jcc_26452 crossref_primary_10_1063_1_4903240 crossref_primary_10_1063_1_4962188 crossref_primary_10_1016_j_molliq_2019_04_088 crossref_primary_10_1063_5_0059598 crossref_primary_10_1063_5_0141872 crossref_primary_10_1021_acs_jctc_9b01095 crossref_primary_10_1134_S0036024420070067 crossref_primary_10_1021_acs_jctc_2c00865 crossref_primary_10_1002_cplu_202300619 crossref_primary_10_1063_1_4885440 crossref_primary_10_1063_1_5142481 crossref_primary_10_1002_wcms_1419 crossref_primary_10_1021_ct500749h crossref_primary_10_1038_s41570_017_0017 crossref_primary_10_1063_1_5126216 crossref_primary_10_1063_1_4930182 crossref_primary_10_1021_acs_jctc_9b00979 crossref_primary_10_1088_0034_4885_79_9_094501 crossref_primary_10_1021_acs_chemrev_5b00648 crossref_primary_10_1063_5_0129458 crossref_primary_10_1103_PhysRevResearch_3_033263 crossref_primary_10_1002_jcc_23737 crossref_primary_10_1063_1_4852182 crossref_primary_10_1002_wcms_1650 crossref_primary_10_1021_acs_jctc_1c01099 crossref_primary_10_1021_acs_jctc_6b01248 crossref_primary_10_1021_acs_jpca_2c05844 crossref_primary_10_1063_1_4865748 crossref_primary_10_1002_qua_26243 crossref_primary_10_1063_1_5120520 crossref_primary_10_1073_pnas_1715434115 crossref_primary_10_1021_acs_jctc_6b01046 crossref_primary_10_1063_5_0159410 crossref_primary_10_1071_CH17588 crossref_primary_10_1063_1_4898356 crossref_primary_10_1063_5_0234883 crossref_primary_10_1063_1_5012601 crossref_primary_10_1063_5_0102645 crossref_primary_10_1021_acs_jpclett_9b03054 crossref_primary_10_1021_acs_chemrev_5b00533 crossref_primary_10_1063_1_4923367 crossref_primary_10_1063_1_4943115 crossref_primary_10_1063_1_4927325 crossref_primary_10_1063_1_4890839 crossref_primary_10_1038_s41598_020_65984_0 crossref_primary_10_1063_1_4916070 crossref_primary_10_1071_CH16489 crossref_primary_10_1021_acs_jpcb_6b07001 crossref_primary_10_1021_jz501985w |
Cites_doi | 10.1021/jp8105919 10.1063/1.3196178 10.1063/1.466846 10.1063/1.1926272 10.1039/b600027d 10.1103/PhysRevLett.82.3308 10.1063/1.4810882 10.1063/1.1673986 10.1021/ct300544e 10.1063/1.2712434 10.1016/j.cplett.2011.05.007 10.1002/wcms.82 10.1021/jp809885e 10.1063/1.3432765 10.1021/j100067a011 10.1038/nature11770 10.1103/PhysRevB.13.5188 10.1021/ct300913g 10.1021/jp404541c 10.1103/PhysRevLett.97.155501 10.1063/1.3012573 10.1021/ct600366k 10.1021/jp077376k 10.1063/1.3466765 10.1063/1.1899583 10.1063/1.456153 10.1063/1.448153 10.1021/ct4002202 10.1063/1.462569 10.1063/1.3664730 10.1103/PhysRev.46.618 10.1063/1.1782074 10.1063/1.2837299 10.1063/1.4736712 10.1063/1.4730035 10.1016/j.physrep.2006.01.003 10.1080/00268970500083788 10.1021/jp0613889 10.1080/00268979000100371 10.1063/1.3373815 10.1063/1.460205 10.1063/1.4759079 10.1063/1.3276460 10.1063/1.472910 10.1021/ct900095d 10.1021/jz3017733 10.1063/1.3521268 10.1103/PhysRevA.76.013202 10.1080/00268970600673975 10.1021/ct900494g 10.1021/jp901990u 10.1103/PhysRevB.59.1758 10.1103/PhysRevLett.101.183005 10.1103/PhysRevB.50.17953 10.1063/1.1908913 10.1002/qua.560170311 10.1021/jz101245s 10.1063/1.478797 10.1063/1.2790009 10.1103/PhysRevB.80.174114 10.1021/jp0221993 10.1103/PhysRevLett.107.185701 10.1126/science.1136371 10.1103/PhysRevB.54.11169 10.1088/0953-8984/22/7/074209 10.1063/1.1723844 10.1016/S0009-2614(98)00065-7 10.1039/c2cp23949c 10.1098/rspa.1966.0105 10.1063/1.2817618 10.1063/1.473987 10.1063/1.445869 10.1063/1.3554905 10.1103/PhysRevB.46.6700 10.1002/jcc.21033 10.1103/PhysRev.177.108 |
ContentType | Journal Article |
Copyright | Copyright American Institute of Physics Sep 21, 2013 |
Copyright_xml | – notice: Copyright American Institute of Physics Sep 21, 2013 |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) |
DBID | AAYXX CITATION NPM 8FD H8D L7M 7X8 OIOZB OTOTI |
DOI | 10.1063/1.4820906 |
DatabaseName | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 1565010 24070273 10_1063_1_4820906 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT WH7 YQT YZZ ~02 NPM 8FD H8D L7M 7X8 OIOZB OTOTI |
ID | FETCH-LOGICAL-c474t-fc8e97fa10c9c8d98628f5291946a13854d494834ea38ec51f9af2203ecb23003 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Mon Jun 23 02:30:25 EDT 2025 Fri Jul 11 01:38:32 EDT 2025 Mon Jun 30 04:29:51 EDT 2025 Mon Jul 21 06:04:46 EDT 2025 Tue Jul 01 04:47:49 EDT 2025 Thu Apr 24 23:12:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-fc8e97fa10c9c8d98628f5291946a13854d494834ea38ec51f9af2203ecb23003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 NONE USDOE Office of Science (SC) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1565010 |
PMID | 24070273 |
PQID | 2127769430 |
PQPubID | 2050685 |
ParticipantIDs | osti_scitechconnect_1565010 proquest_miscellaneous_1449280267 proquest_journals_2127769430 pubmed_primary_24070273 crossref_primary_10_1063_1_4820906 crossref_citationtrail_10_1063_1_4820906 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-21 |
PublicationDateYYYYMMDD | 2013-09-21 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Melville |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2013 |
Publisher | American Institute of Physics American Institute of Physics (AIP) |
Publisher_xml | – name: American Institute of Physics – name: American Institute of Physics (AIP) |
References | (2023062608072008300_c19) 2012; 3 (2023062608072008300_c45) 1999; 82 (2023062608072008300_c33) 2009; 113 (2023062608072008300_c44) 1966; 291 (2023062608072008300_c64) 2007; 126 (2023062608072008300_c83) 1969; 177 (2023062608072008300_c36) 2009; 113 (2023062608072008300_c53) 2005; 122 (2023062608072008300_c74) 2010; 133 (2023062608072008300_c6) 2005; 122 (2023062608072008300_c16) 2010; 132 (2023062608072008300_c25) 1994; 98 (2023062608072008300_c51) 1980; 17 2023062608072008300_c11 (2023062608072008300_c50) 2012; 2 (2023062608072008300_c75) 2013; 493 (2023062608072008300_c60) 1976; 13 (2023062608072008300_c62) 1989; 90 (2023062608072008300_c39) 1996; 105 (2023062608072008300_c14) 2007; 315 (2023062608072008300_c66) 1998; 286 (2023062608072008300_c47) 2006; 428 (2023062608072008300_c42) 2009; 5 (2023062608072008300_c73) 1984; 81 (2023062608072008300_c1) 1991; 94 (2023062608072008300_c40) 2012; 8 (2023062608072008300_c81) 1943; 11 (2023062608072008300_c69) 2011; 135 (2023062608072008300_c13) 1999; 110 (2023062608072008300_c10) 2011; 107 (2023062608072008300_c38) 1970; 53 (2023062608072008300_c37) 2010; 1 (2023062608072008300_c7) 2008; 129 (2023062608072008300_c26) 1994; 100 (2023062608072008300_c28) 2007; 127 (2023062608072008300_c5) 2004; 121 (2023062608072008300_c3) 2006; 8 (2023062608072008300_c4) 2011; 510 (2023062608072008300_c46) 1992; 46 (2023062608072008300_c55) 2009; 5 (2023062608072008300_c21) 2008; 112 (2023062608072008300_c71) 2013; 138 (2023062608072008300_c20) 2006; 110 (2023062608072008300_c54) 2008; 29 (2023062608072008300_c35) 2007; 3 (2023062608072008300_c43) 2012; 14 (2023062608072008300_c57) 1994; 50 (2023062608072008300_c82) 2013 (2023062608072008300_c23) 2012; 136 (2023062608072008300_c68) 1983; 79 (2023062608072008300_c80) 2010; 132 (2023062608072008300_c9) 2011; 134 (2023062608072008300_c77) 2007; 76 (2023062608072008300_c22) 2010; 132 (2023062608072008300_c30) 1934; 46 (2023062608072008300_c31) 1982 (2023062608072008300_c49) 2010 (2023062608072008300_c65) 2007; 127 (2023062608072008300_c32) 2000 (2023062608072008300_c72) 1999 (2023062608072008300_c15) 2008; 128 (2023062608072008300_c34) 2008; 101 (2023062608072008300_c79) 2006; 97 (2023062608072008300_c48) 1990; 69 (2023062608072008300_c52) 1996 (2023062608072008300_c58) 1999; 59 (2023062608072008300_c67) 2003 (2023062608072008300_c70) 2013; 117 (2023062608072008300_c41) 2005; 103 (2023062608072008300_c63) 1992; 96 (2023062608072008300_c12) 2012; 137 (2023062608072008300_c27) 2005; 122 (2023062608072008300_c76) 2013; 9 (2023062608072008300_c2) 2003; 107 (2023062608072008300_c29) 2012; 137 (2023062608072008300_c84) 2006; 104 (2023062608072008300_c8) 2009; 113 (2023062608072008300_c56) 2009; 80 (2023062608072008300_c18) 2009; 131 (2023062608072008300_c78) 2010; 22 (2023062608072008300_c17) 2011; 134 (2023062608072008300_c24) 2013; 9 (2023062608072008300_c59) 1996; 54 (2023062608072008300_c61) 1997; 106 |
References_xml | – volume: 113 start-page: 3555 year: 2009 ident: 2023062608072008300_c36 publication-title: J. Phys. Chem. A doi: 10.1021/jp8105919 – volume: 131 start-page: 054511 year: 2009 ident: 2023062608072008300_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.3196178 – volume: 100 start-page: 7523 year: 1994 ident: 2023062608072008300_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.466846 – volume-title: Energy Landscapes year: 2003 ident: 2023062608072008300_c67 – volume: 122 start-page: 234102 year: 2005 ident: 2023062608072008300_c53 publication-title: J. Chem. Phys. doi: 10.1063/1.1926272 – volume: 8 start-page: 1985 year: 2006 ident: 2023062608072008300_c3 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b600027d – volume: 82 start-page: 3308 year: 1999 ident: 2023062608072008300_c45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.3308 – volume: 138 start-page: 221102 year: 2013 ident: 2023062608072008300_c71 publication-title: J. Chem. Phys. doi: 10.1063/1.4810882 – volume: 53 start-page: 4544 year: 1970 ident: 2023062608072008300_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.1673986 – volume: 8 start-page: 2564 year: 2012 ident: 2023062608072008300_c40 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300544e – volume: 126 start-page: 164102 year: 2007 ident: 2023062608072008300_c64 publication-title: J. Chem. Phys. doi: 10.1063/1.2712434 – volume: 510 start-page: 165 year: 2011 ident: 2023062608072008300_c4 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.05.007 – volume-title: Modern Quantum Chemistry year: 1982 ident: 2023062608072008300_c31 – volume: 2 start-page: 242 year: 2012 ident: 2023062608072008300_c50 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.82 – volume: 113 start-page: 2347 year: 2009 ident: 2023062608072008300_c33 publication-title: J. Phys. Chem. B doi: 10.1021/jp809885e – volume: 132 start-page: 234109 year: 2010 ident: 2023062608072008300_c80 publication-title: J. Chem. Phys. doi: 10.1063/1.3432765 – volume: 98 start-page: 4271 year: 1994 ident: 2023062608072008300_c25 publication-title: J. Phys. Chem. doi: 10.1021/j100067a011 – volume: 493 start-page: 365 year: 2013 ident: 2023062608072008300_c75 publication-title: Nature (London) doi: 10.1038/nature11770 – volume: 13 start-page: 5188 year: 1976 ident: 2023062608072008300_c60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 9 start-page: 1103 year: 2013 ident: 2023062608072008300_c24 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct300913g – volume: 117 start-page: 7606 year: 2013 ident: 2023062608072008300_c70 publication-title: J. Phys. Chem. A doi: 10.1021/jp404541c – volume: 97 start-page: 155501 year: 2006 ident: 2023062608072008300_c79 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.155501 – volume: 129 start-page: 194111 year: 2008 ident: 2023062608072008300_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.3012573 – volume: 3 start-page: 1312 year: 2007 ident: 2023062608072008300_c35 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct600366k – volume: 112 start-page: 3976 year: 2008 ident: 2023062608072008300_c21 publication-title: J. Phys. Chem. A doi: 10.1021/jp077376k – volume: 133 start-page: 074107 year: 2010 ident: 2023062608072008300_c74 publication-title: J. Chem. Phys. doi: 10.1063/1.3466765 – volume: 122 start-page: 194310 year: 2005 ident: 2023062608072008300_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.1899583 – volume: 90 start-page: 1007 year: 1989 ident: 2023062608072008300_c62 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 81 start-page: 4087 year: 1984 ident: 2023062608072008300_c73 publication-title: J. Chem. Phys. doi: 10.1063/1.448153 – volume: 9 start-page: 2654 year: 2013 ident: 2023062608072008300_c76 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct4002202 – volume: 96 start-page: 6796 year: 1992 ident: 2023062608072008300_c63 publication-title: J. Chem. Phys. doi: 10.1063/1.462569 – volume: 135 start-page: 224102 year: 2011 ident: 2023062608072008300_c69 publication-title: J. Chem. Phys. doi: 10.1063/1.3664730 – volume: 46 start-page: 618 year: 1934 ident: 2023062608072008300_c30 publication-title: Phys. Rev. doi: 10.1103/PhysRev.46.618 – volume: 121 start-page: 5400 year: 2004 ident: 2023062608072008300_c5 publication-title: J. Chem. Phys. doi: 10.1063/1.1782074 – volume: 128 start-page: 074506 year: 2008 ident: 2023062608072008300_c15 publication-title: J. Chem. Phys. doi: 10.1063/1.2837299 – volume: 137 start-page: 044506 year: 2012 ident: 2023062608072008300_c12 publication-title: J. Chem. Phys. doi: 10.1063/1.4736712 – volume: 136 start-page: 244105 year: 2012 ident: 2023062608072008300_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.4730035 – volume-title: The Theory of Intermolecular Forces year: 2013 ident: 2023062608072008300_c82 – volume: 428 start-page: 1 year: 2006 ident: 2023062608072008300_c47 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2006.01.003 – volume: 103 start-page: 2255 year: 2005 ident: 2023062608072008300_c41 publication-title: Mol. Phys. doi: 10.1080/00268970500083788 – volume: 110 start-page: 7268 year: 2006 ident: 2023062608072008300_c20 publication-title: J. Phys. Chem. A doi: 10.1021/jp0613889 – volume: 69 start-page: 507 year: 1990 ident: 2023062608072008300_c48 publication-title: Mol. Phys. doi: 10.1080/00268979000100371 – volume: 132 start-page: 134303 year: 2010 ident: 2023062608072008300_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.3373815 – ident: 2023062608072008300_c11 – volume: 94 start-page: 7221 year: 1991 ident: 2023062608072008300_c1 publication-title: J. Chem. Phys. doi: 10.1063/1.460205 – volume: 137 start-page: 164102 year: 2012 ident: 2023062608072008300_c29 publication-title: J. Chem. Phys. doi: 10.1063/1.4759079 – volume: 132 start-page: 014309 year: 2010 ident: 2023062608072008300_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.3276460 – volume: 105 start-page: 11091 year: 1996 ident: 2023062608072008300_c39 publication-title: J. Chem. Phys. doi: 10.1063/1.472910 – volume: 5 start-page: 1573 year: 2009 ident: 2023062608072008300_c42 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900095d – volume: 3 start-page: 3765 year: 2012 ident: 2023062608072008300_c19 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3017733 – volume-title: Molecular Electronic Structure Theory year: 2000 ident: 2023062608072008300_c32 – volume: 134 start-page: 024516 year: 2011 ident: 2023062608072008300_c9 publication-title: J. Chem. Phys. doi: 10.1063/1.3521268 – volume-title: Physics of Ice year: 1999 ident: 2023062608072008300_c72 – volume: 76 start-page: 013202 year: 2007 ident: 2023062608072008300_c77 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.76.013202 – volume: 104 start-page: 2303 year: 2006 ident: 2023062608072008300_c84 publication-title: Mol. Phys. doi: 10.1080/00268970600673975 – volume: 5 start-page: 3010 year: 2009 ident: 2023062608072008300_c55 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900494g – volume: 113 start-page: 11959 year: 2009 ident: 2023062608072008300_c8 publication-title: J. Phys. Chem. B doi: 10.1021/jp901990u – volume: 59 start-page: 1758 year: 1999 ident: 2023062608072008300_c58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 101 start-page: 183005 year: 2008 ident: 2023062608072008300_c34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.183005 – volume: 50 start-page: 17953 year: 1994 ident: 2023062608072008300_c57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 122 start-page: 204510 year: 2005 ident: 2023062608072008300_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.1908913 – volume: 17 start-page: 501 year: 1980 ident: 2023062608072008300_c51 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560170311 – volume: 1 start-page: 3122 year: 2010 ident: 2023062608072008300_c37 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz101245s – volume-title: Quantum-Mechanical Ab Initio Calculation of the Properties of Crystalline Materials year: 1996 ident: 2023062608072008300_c52 – volume: 110 start-page: 4566 year: 1999 ident: 2023062608072008300_c13 publication-title: J. Chem. Phys. doi: 10.1063/1.478797 – volume: 127 start-page: 184104 year: 2007 ident: 2023062608072008300_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.2790009 – volume: 80 start-page: 174114 year: 2009 ident: 2023062608072008300_c56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.174114 – volume: 107 start-page: 3898 year: 2003 ident: 2023062608072008300_c2 publication-title: J. Phys. Chem. A doi: 10.1021/jp0221993 – volume: 107 start-page: 185701 year: 2011 ident: 2023062608072008300_c10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.185701 – volume: 315 start-page: 1249 year: 2007 ident: 2023062608072008300_c14 publication-title: Science doi: 10.1126/science.1136371 – volume: 54 start-page: 11169 year: 1996 ident: 2023062608072008300_c59 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 22 start-page: 074209 year: 2010 ident: 2023062608072008300_c78 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/7/074209 – year: 2010 ident: 2023062608072008300_c49 – volume: 11 start-page: 299 year: 1943 ident: 2023062608072008300_c81 publication-title: J. Chem. Phys. doi: 10.1063/1.1723844 – volume: 286 start-page: 65 year: 1998 ident: 2023062608072008300_c66 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(98)00065-7 – volume: 14 start-page: 7578 year: 2012 ident: 2023062608072008300_c43 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp23949c – volume: 291 start-page: 445 year: 1966 ident: 2023062608072008300_c44 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1966.0105 – volume: 127 start-page: 221106 year: 2007 ident: 2023062608072008300_c65 publication-title: J. Chem. Phys. doi: 10.1063/1.2817618 – volume: 106 start-page: 4618 year: 1997 ident: 2023062608072008300_c61 publication-title: J. Chem. Phys. doi: 10.1063/1.473987 – volume: 79 start-page: 926 year: 1983 ident: 2023062608072008300_c68 publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 134 start-page: 094509 year: 2011 ident: 2023062608072008300_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.3554905 – volume: 46 start-page: 6700 year: 1992 ident: 2023062608072008300_c46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.6700 – volume: 29 start-page: 2098 year: 2008 ident: 2023062608072008300_c54 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21033 – volume: 177 start-page: 108 year: 1969 ident: 2023062608072008300_c83 publication-title: Phys. Rev. doi: 10.1103/PhysRev.177.108 |
SSID | ssj0001724 |
Score | 2.384994 |
Snippet | We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using... In this paper, we show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures... |
SourceID | osti proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 114101 |
SubjectTerms | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
Title | Energy benchmarks for water clusters and ice structures from an embedded many-body expansion |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24070273 https://www.proquest.com/docview/2127769430 https://www.proquest.com/docview/1449280267 https://www.osti.gov/servlets/purl/1565010 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZQJwQvCMaPhQ1kEA9IlUMSp4n9WMpgTAxNsEl7QIoSxxE_unbaWqHy13Nnx06KCgJeosqJUiffF-fucvcdIc-kLJXIk4YpWPhYKmPOyrwRLOM1ckAo1WC84-h9dnCaHp6Nzrq0MVNdsqhC9WNjXcn_oApjgCtWyf4Dsv6kMAC_AV_YAsKw_SuM923hXgVz-nxeXn4z2grD7yUKH6rpEjUQrATzFyMki0qxS3CvbU0JPNj6vNKw8NSYw7pi1bxeoeI_vLwcWF87LvUsV-VEBmxYxFvlb7CDkc0NDoeHoefStDGf44VZ3_zwy5VpfWTM2P7hXQxhEg4_hP2wBLaIkCzppXi4701rOQ_HdlpoPI_fHrtYhysriBm6U2tLM5d9DsYb13wwsjD8EKZgzMjoF11t6-iA1Wrq8LYScCaSAdkavzp699G_scGIa9W67RScAlXGX_jTrtktgzlc1O99EmObnNwmt1po6Ngy5A65pmfb5MbE9fLbJtfbW3KXfLKcoR1nKHCGGs5QxxkKnKHAGdpxhiJnYJw6zlDPGeo5c4-cvt4_mRywtsMGU2meLlijhJZ5U8aRkkrUEtxb0YwSGcs0K2MuRmmN8kE81SUXWo3iRpZNkkRcqwp814jfJ4PZfKZ3CM2xEg7c7USoUaqbXFR1nfGsUrBIZCJSAXnu7l-hWvl57IIyLUwaRMaLuGhvdUCe-kMvrObKpoN2EYQCDEVUO1aYFqYWRQt1QPYcNkX7wF4V2Mwgz7DfQECe-N2ABH4jK2d6vrwCTxgvAduyBeSBxdTPAYMfKP_08I9_vUtuds_DHhkAUPoRGK6L6nHLu59GApYX |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+benchmarks+for+water+clusters+and+ice+structures+from+an+embedded+many-body+expansion&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Gillan%2C+M.+J.&rft.au=Alf%C3%A8%2C+D.&rft.au=Bygrave%2C+P.+J.&rft.au=Taylor%2C+C.+R.&rft.date=2013-09-21&rft.pub=American+Institute+of+Physics+%28AIP%29&rft.issn=0021-9606&rft.volume=139&rft.issue=11&rft_id=info:doi/10.1063%2F1.4820906&rft.externalDocID=1565010 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |