Energy benchmarks for water clusters and ice structures from an embedded many-body expansion

We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 139; no. 11; p. 114101
Main Authors Gillan, M. J., Alfè, D., Bygrave, P. J., Taylor, C. R., Manby, F. R.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 21.09.2013
American Institute of Physics (AIP)
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.4820906

Cover

Loading…
Abstract We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mEh/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.
AbstractList We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mEh/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.
In this paper, we show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mEh/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.
We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mE(h)/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.
We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mE(h)/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mE(h)/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.
Author Bygrave, P. J.
Gillan, M. J.
Taylor, C. R.
Manby, F. R.
Alfè, D.
Author_xml – sequence: 1
  givenname: M. J.
  surname: Gillan
  fullname: Gillan, M. J.
– sequence: 2
  givenname: D.
  surname: Alfè
  fullname: Alfè, D.
– sequence: 3
  givenname: P. J.
  surname: Bygrave
  fullname: Bygrave, P. J.
– sequence: 4
  givenname: C. R.
  surname: Taylor
  fullname: Taylor, C. R.
– sequence: 5
  givenname: F. R.
  surname: Manby
  fullname: Manby, F. R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24070273$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1565010$$D View this record in Osti.gov
BookMark eNpt0c9rFTEQB_AgFftaPfgPSNBLPWw7-bHZ5FhKq0LBi96EkM3O2q27yTPJou-_N4_39FA8DQyfGZjvnJGTEAMS8prBJQMlrtil1BwMqGdkw0CbplMGTsgGgLPGKFCn5CznRwBgHZcvyCmX0AHvxIZ8uw2Yvu9oj8E_LC79yHSMif5yBRP185przdSFgU4eaS5p9WVNWFWKS-1TXHocBhzo4sKu6eOwo_h760KeYnhJno9uzvjqWM_J17vbLzcfm_vPHz7dXN83XnayNKPXaLrRMfDG68FoxfXYcsOMVI4J3cpBGqmFRCc0-paNxo2cg0DfcwEgzsnbw96Yy2Sznwr6Bx9DQF8sa1ULbI8uDmib4s8Vc7HLlD3OswsY12yZlIZr4Kqr9N0T-hjXFOoJljPe1XSl2C98c1Rrv-Bgt2mqAe7s33AreH8APsWcE47_CAO7f5xl9vi4aq-e2HqFKzXEktw0_2fiD4vrlwk
CitedBy_id crossref_primary_10_1021_acs_jctc_6b00335
crossref_primary_10_1002_qua_26428
crossref_primary_10_1039_C5SC03014E
crossref_primary_10_1063_1_4944633
crossref_primary_10_1063_1_4951687
crossref_primary_10_1063_1_4926444
crossref_primary_10_1063_1_4885339
crossref_primary_10_1063_1_5075487
crossref_primary_10_1021_acs_jctc_6b00298
crossref_primary_10_1021_acs_jpca_9b03481
crossref_primary_10_1002_cphc_201500626
crossref_primary_10_1002_jcc_26452
crossref_primary_10_1063_1_4903240
crossref_primary_10_1063_1_4962188
crossref_primary_10_1016_j_molliq_2019_04_088
crossref_primary_10_1063_5_0059598
crossref_primary_10_1063_5_0141872
crossref_primary_10_1021_acs_jctc_9b01095
crossref_primary_10_1134_S0036024420070067
crossref_primary_10_1021_acs_jctc_2c00865
crossref_primary_10_1002_cplu_202300619
crossref_primary_10_1063_1_4885440
crossref_primary_10_1063_1_5142481
crossref_primary_10_1002_wcms_1419
crossref_primary_10_1021_ct500749h
crossref_primary_10_1038_s41570_017_0017
crossref_primary_10_1063_1_5126216
crossref_primary_10_1063_1_4930182
crossref_primary_10_1021_acs_jctc_9b00979
crossref_primary_10_1088_0034_4885_79_9_094501
crossref_primary_10_1021_acs_chemrev_5b00648
crossref_primary_10_1063_5_0129458
crossref_primary_10_1103_PhysRevResearch_3_033263
crossref_primary_10_1002_jcc_23737
crossref_primary_10_1063_1_4852182
crossref_primary_10_1002_wcms_1650
crossref_primary_10_1021_acs_jctc_1c01099
crossref_primary_10_1021_acs_jctc_6b01248
crossref_primary_10_1021_acs_jpca_2c05844
crossref_primary_10_1063_1_4865748
crossref_primary_10_1002_qua_26243
crossref_primary_10_1063_1_5120520
crossref_primary_10_1073_pnas_1715434115
crossref_primary_10_1021_acs_jctc_6b01046
crossref_primary_10_1063_5_0159410
crossref_primary_10_1071_CH17588
crossref_primary_10_1063_1_4898356
crossref_primary_10_1063_5_0234883
crossref_primary_10_1063_1_5012601
crossref_primary_10_1063_5_0102645
crossref_primary_10_1021_acs_jpclett_9b03054
crossref_primary_10_1021_acs_chemrev_5b00533
crossref_primary_10_1063_1_4923367
crossref_primary_10_1063_1_4943115
crossref_primary_10_1063_1_4927325
crossref_primary_10_1063_1_4890839
crossref_primary_10_1038_s41598_020_65984_0
crossref_primary_10_1063_1_4916070
crossref_primary_10_1071_CH16489
crossref_primary_10_1021_acs_jpcb_6b07001
crossref_primary_10_1021_jz501985w
Cites_doi 10.1021/jp8105919
10.1063/1.3196178
10.1063/1.466846
10.1063/1.1926272
10.1039/b600027d
10.1103/PhysRevLett.82.3308
10.1063/1.4810882
10.1063/1.1673986
10.1021/ct300544e
10.1063/1.2712434
10.1016/j.cplett.2011.05.007
10.1002/wcms.82
10.1021/jp809885e
10.1063/1.3432765
10.1021/j100067a011
10.1038/nature11770
10.1103/PhysRevB.13.5188
10.1021/ct300913g
10.1021/jp404541c
10.1103/PhysRevLett.97.155501
10.1063/1.3012573
10.1021/ct600366k
10.1021/jp077376k
10.1063/1.3466765
10.1063/1.1899583
10.1063/1.456153
10.1063/1.448153
10.1021/ct4002202
10.1063/1.462569
10.1063/1.3664730
10.1103/PhysRev.46.618
10.1063/1.1782074
10.1063/1.2837299
10.1063/1.4736712
10.1063/1.4730035
10.1016/j.physrep.2006.01.003
10.1080/00268970500083788
10.1021/jp0613889
10.1080/00268979000100371
10.1063/1.3373815
10.1063/1.460205
10.1063/1.4759079
10.1063/1.3276460
10.1063/1.472910
10.1021/ct900095d
10.1021/jz3017733
10.1063/1.3521268
10.1103/PhysRevA.76.013202
10.1080/00268970600673975
10.1021/ct900494g
10.1021/jp901990u
10.1103/PhysRevB.59.1758
10.1103/PhysRevLett.101.183005
10.1103/PhysRevB.50.17953
10.1063/1.1908913
10.1002/qua.560170311
10.1021/jz101245s
10.1063/1.478797
10.1063/1.2790009
10.1103/PhysRevB.80.174114
10.1021/jp0221993
10.1103/PhysRevLett.107.185701
10.1126/science.1136371
10.1103/PhysRevB.54.11169
10.1088/0953-8984/22/7/074209
10.1063/1.1723844
10.1016/S0009-2614(98)00065-7
10.1039/c2cp23949c
10.1098/rspa.1966.0105
10.1063/1.2817618
10.1063/1.473987
10.1063/1.445869
10.1063/1.3554905
10.1103/PhysRevB.46.6700
10.1002/jcc.21033
10.1103/PhysRev.177.108
ContentType Journal Article
Copyright Copyright American Institute of Physics Sep 21, 2013
Copyright_xml – notice: Copyright American Institute of Physics Sep 21, 2013
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
DBID AAYXX
CITATION
NPM
8FD
H8D
L7M
7X8
OIOZB
OTOTI
DOI 10.1063/1.4820906
DatabaseName CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 1565010
24070273
10_1063_1_4820906
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
NPM
8FD
H8D
L7M
7X8
OIOZB
OTOTI
ID FETCH-LOGICAL-c474t-fc8e97fa10c9c8d98628f5291946a13854d494834ea38ec51f9af2203ecb23003
ISSN 0021-9606
1089-7690
IngestDate Mon Jun 23 02:30:25 EDT 2025
Fri Jul 11 01:38:32 EDT 2025
Mon Jun 30 04:29:51 EDT 2025
Mon Jul 21 06:04:46 EDT 2025
Tue Jul 01 04:47:49 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-fc8e97fa10c9c8d98628f5291946a13854d494834ea38ec51f9af2203ecb23003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
NONE
USDOE Office of Science (SC)
OpenAccessLink https://www.osti.gov/servlets/purl/1565010
PMID 24070273
PQID 2127769430
PQPubID 2050685
ParticipantIDs osti_scitechconnect_1565010
proquest_miscellaneous_1449280267
proquest_journals_2127769430
pubmed_primary_24070273
crossref_primary_10_1063_1_4820906
crossref_citationtrail_10_1063_1_4820906
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-21
PublicationDateYYYYMMDD 2013-09-21
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Melville
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2013
Publisher American Institute of Physics
American Institute of Physics (AIP)
Publisher_xml – name: American Institute of Physics
– name: American Institute of Physics (AIP)
References (2023062608072008300_c19) 2012; 3
(2023062608072008300_c45) 1999; 82
(2023062608072008300_c33) 2009; 113
(2023062608072008300_c44) 1966; 291
(2023062608072008300_c64) 2007; 126
(2023062608072008300_c83) 1969; 177
(2023062608072008300_c36) 2009; 113
(2023062608072008300_c53) 2005; 122
(2023062608072008300_c74) 2010; 133
(2023062608072008300_c6) 2005; 122
(2023062608072008300_c16) 2010; 132
(2023062608072008300_c25) 1994; 98
(2023062608072008300_c51) 1980; 17
2023062608072008300_c11
(2023062608072008300_c50) 2012; 2
(2023062608072008300_c75) 2013; 493
(2023062608072008300_c60) 1976; 13
(2023062608072008300_c62) 1989; 90
(2023062608072008300_c39) 1996; 105
(2023062608072008300_c14) 2007; 315
(2023062608072008300_c66) 1998; 286
(2023062608072008300_c47) 2006; 428
(2023062608072008300_c42) 2009; 5
(2023062608072008300_c73) 1984; 81
(2023062608072008300_c1) 1991; 94
(2023062608072008300_c40) 2012; 8
(2023062608072008300_c81) 1943; 11
(2023062608072008300_c69) 2011; 135
(2023062608072008300_c13) 1999; 110
(2023062608072008300_c10) 2011; 107
(2023062608072008300_c38) 1970; 53
(2023062608072008300_c37) 2010; 1
(2023062608072008300_c7) 2008; 129
(2023062608072008300_c26) 1994; 100
(2023062608072008300_c28) 2007; 127
(2023062608072008300_c5) 2004; 121
(2023062608072008300_c3) 2006; 8
(2023062608072008300_c4) 2011; 510
(2023062608072008300_c46) 1992; 46
(2023062608072008300_c55) 2009; 5
(2023062608072008300_c21) 2008; 112
(2023062608072008300_c71) 2013; 138
(2023062608072008300_c20) 2006; 110
(2023062608072008300_c54) 2008; 29
(2023062608072008300_c35) 2007; 3
(2023062608072008300_c43) 2012; 14
(2023062608072008300_c57) 1994; 50
(2023062608072008300_c82) 2013
(2023062608072008300_c23) 2012; 136
(2023062608072008300_c68) 1983; 79
(2023062608072008300_c80) 2010; 132
(2023062608072008300_c9) 2011; 134
(2023062608072008300_c77) 2007; 76
(2023062608072008300_c22) 2010; 132
(2023062608072008300_c30) 1934; 46
(2023062608072008300_c31) 1982
(2023062608072008300_c49) 2010
(2023062608072008300_c65) 2007; 127
(2023062608072008300_c32) 2000
(2023062608072008300_c72) 1999
(2023062608072008300_c15) 2008; 128
(2023062608072008300_c34) 2008; 101
(2023062608072008300_c79) 2006; 97
(2023062608072008300_c48) 1990; 69
(2023062608072008300_c52) 1996
(2023062608072008300_c58) 1999; 59
(2023062608072008300_c67) 2003
(2023062608072008300_c70) 2013; 117
(2023062608072008300_c41) 2005; 103
(2023062608072008300_c63) 1992; 96
(2023062608072008300_c12) 2012; 137
(2023062608072008300_c27) 2005; 122
(2023062608072008300_c76) 2013; 9
(2023062608072008300_c2) 2003; 107
(2023062608072008300_c29) 2012; 137
(2023062608072008300_c84) 2006; 104
(2023062608072008300_c8) 2009; 113
(2023062608072008300_c56) 2009; 80
(2023062608072008300_c18) 2009; 131
(2023062608072008300_c78) 2010; 22
(2023062608072008300_c17) 2011; 134
(2023062608072008300_c24) 2013; 9
(2023062608072008300_c59) 1996; 54
(2023062608072008300_c61) 1997; 106
References_xml – volume: 113
  start-page: 3555
  year: 2009
  ident: 2023062608072008300_c36
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8105919
– volume: 131
  start-page: 054511
  year: 2009
  ident: 2023062608072008300_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3196178
– volume: 100
  start-page: 7523
  year: 1994
  ident: 2023062608072008300_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466846
– volume-title: Energy Landscapes
  year: 2003
  ident: 2023062608072008300_c67
– volume: 122
  start-page: 234102
  year: 2005
  ident: 2023062608072008300_c53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1926272
– volume: 8
  start-page: 1985
  year: 2006
  ident: 2023062608072008300_c3
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b600027d
– volume: 82
  start-page: 3308
  year: 1999
  ident: 2023062608072008300_c45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.3308
– volume: 138
  start-page: 221102
  year: 2013
  ident: 2023062608072008300_c71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4810882
– volume: 53
  start-page: 4544
  year: 1970
  ident: 2023062608072008300_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1673986
– volume: 8
  start-page: 2564
  year: 2012
  ident: 2023062608072008300_c40
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300544e
– volume: 126
  start-page: 164102
  year: 2007
  ident: 2023062608072008300_c64
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2712434
– volume: 510
  start-page: 165
  year: 2011
  ident: 2023062608072008300_c4
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.05.007
– volume-title: Modern Quantum Chemistry
  year: 1982
  ident: 2023062608072008300_c31
– volume: 2
  start-page: 242
  year: 2012
  ident: 2023062608072008300_c50
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.82
– volume: 113
  start-page: 2347
  year: 2009
  ident: 2023062608072008300_c33
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp809885e
– volume: 132
  start-page: 234109
  year: 2010
  ident: 2023062608072008300_c80
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3432765
– volume: 98
  start-page: 4271
  year: 1994
  ident: 2023062608072008300_c25
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100067a011
– volume: 493
  start-page: 365
  year: 2013
  ident: 2023062608072008300_c75
  publication-title: Nature (London)
  doi: 10.1038/nature11770
– volume: 13
  start-page: 5188
  year: 1976
  ident: 2023062608072008300_c60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 9
  start-page: 1103
  year: 2013
  ident: 2023062608072008300_c24
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct300913g
– volume: 117
  start-page: 7606
  year: 2013
  ident: 2023062608072008300_c70
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp404541c
– volume: 97
  start-page: 155501
  year: 2006
  ident: 2023062608072008300_c79
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.155501
– volume: 129
  start-page: 194111
  year: 2008
  ident: 2023062608072008300_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3012573
– volume: 3
  start-page: 1312
  year: 2007
  ident: 2023062608072008300_c35
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct600366k
– volume: 112
  start-page: 3976
  year: 2008
  ident: 2023062608072008300_c21
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp077376k
– volume: 133
  start-page: 074107
  year: 2010
  ident: 2023062608072008300_c74
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3466765
– volume: 122
  start-page: 194310
  year: 2005
  ident: 2023062608072008300_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1899583
– volume: 90
  start-page: 1007
  year: 1989
  ident: 2023062608072008300_c62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 81
  start-page: 4087
  year: 1984
  ident: 2023062608072008300_c73
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448153
– volume: 9
  start-page: 2654
  year: 2013
  ident: 2023062608072008300_c76
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct4002202
– volume: 96
  start-page: 6796
  year: 1992
  ident: 2023062608072008300_c63
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462569
– volume: 135
  start-page: 224102
  year: 2011
  ident: 2023062608072008300_c69
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3664730
– volume: 46
  start-page: 618
  year: 1934
  ident: 2023062608072008300_c30
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.46.618
– volume: 121
  start-page: 5400
  year: 2004
  ident: 2023062608072008300_c5
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1782074
– volume: 128
  start-page: 074506
  year: 2008
  ident: 2023062608072008300_c15
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2837299
– volume: 137
  start-page: 044506
  year: 2012
  ident: 2023062608072008300_c12
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4736712
– volume: 136
  start-page: 244105
  year: 2012
  ident: 2023062608072008300_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4730035
– volume-title: The Theory of Intermolecular Forces
  year: 2013
  ident: 2023062608072008300_c82
– volume: 428
  start-page: 1
  year: 2006
  ident: 2023062608072008300_c47
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.01.003
– volume: 103
  start-page: 2255
  year: 2005
  ident: 2023062608072008300_c41
  publication-title: Mol. Phys.
  doi: 10.1080/00268970500083788
– volume: 110
  start-page: 7268
  year: 2006
  ident: 2023062608072008300_c20
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0613889
– volume: 69
  start-page: 507
  year: 1990
  ident: 2023062608072008300_c48
  publication-title: Mol. Phys.
  doi: 10.1080/00268979000100371
– volume: 132
  start-page: 134303
  year: 2010
  ident: 2023062608072008300_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3373815
– ident: 2023062608072008300_c11
– volume: 94
  start-page: 7221
  year: 1991
  ident: 2023062608072008300_c1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460205
– volume: 137
  start-page: 164102
  year: 2012
  ident: 2023062608072008300_c29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4759079
– volume: 132
  start-page: 014309
  year: 2010
  ident: 2023062608072008300_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3276460
– volume: 105
  start-page: 11091
  year: 1996
  ident: 2023062608072008300_c39
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.472910
– volume: 5
  start-page: 1573
  year: 2009
  ident: 2023062608072008300_c42
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900095d
– volume: 3
  start-page: 3765
  year: 2012
  ident: 2023062608072008300_c19
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3017733
– volume-title: Molecular Electronic Structure Theory
  year: 2000
  ident: 2023062608072008300_c32
– volume: 134
  start-page: 024516
  year: 2011
  ident: 2023062608072008300_c9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3521268
– volume-title: Physics of Ice
  year: 1999
  ident: 2023062608072008300_c72
– volume: 76
  start-page: 013202
  year: 2007
  ident: 2023062608072008300_c77
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.76.013202
– volume: 104
  start-page: 2303
  year: 2006
  ident: 2023062608072008300_c84
  publication-title: Mol. Phys.
  doi: 10.1080/00268970600673975
– volume: 5
  start-page: 3010
  year: 2009
  ident: 2023062608072008300_c55
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900494g
– volume: 113
  start-page: 11959
  year: 2009
  ident: 2023062608072008300_c8
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp901990u
– volume: 59
  start-page: 1758
  year: 1999
  ident: 2023062608072008300_c58
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 101
  start-page: 183005
  year: 2008
  ident: 2023062608072008300_c34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.183005
– volume: 50
  start-page: 17953
  year: 1994
  ident: 2023062608072008300_c57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 122
  start-page: 204510
  year: 2005
  ident: 2023062608072008300_c6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1908913
– volume: 17
  start-page: 501
  year: 1980
  ident: 2023062608072008300_c51
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560170311
– volume: 1
  start-page: 3122
  year: 2010
  ident: 2023062608072008300_c37
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz101245s
– volume-title: Quantum-Mechanical Ab Initio Calculation of the Properties of Crystalline Materials
  year: 1996
  ident: 2023062608072008300_c52
– volume: 110
  start-page: 4566
  year: 1999
  ident: 2023062608072008300_c13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478797
– volume: 127
  start-page: 184104
  year: 2007
  ident: 2023062608072008300_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2790009
– volume: 80
  start-page: 174114
  year: 2009
  ident: 2023062608072008300_c56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.174114
– volume: 107
  start-page: 3898
  year: 2003
  ident: 2023062608072008300_c2
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp0221993
– volume: 107
  start-page: 185701
  year: 2011
  ident: 2023062608072008300_c10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.185701
– volume: 315
  start-page: 1249
  year: 2007
  ident: 2023062608072008300_c14
  publication-title: Science
  doi: 10.1126/science.1136371
– volume: 54
  start-page: 11169
  year: 1996
  ident: 2023062608072008300_c59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 22
  start-page: 074209
  year: 2010
  ident: 2023062608072008300_c78
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/7/074209
– year: 2010
  ident: 2023062608072008300_c49
– volume: 11
  start-page: 299
  year: 1943
  ident: 2023062608072008300_c81
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1723844
– volume: 286
  start-page: 65
  year: 1998
  ident: 2023062608072008300_c66
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(98)00065-7
– volume: 14
  start-page: 7578
  year: 2012
  ident: 2023062608072008300_c43
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp23949c
– volume: 291
  start-page: 445
  year: 1966
  ident: 2023062608072008300_c44
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1966.0105
– volume: 127
  start-page: 221106
  year: 2007
  ident: 2023062608072008300_c65
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2817618
– volume: 106
  start-page: 4618
  year: 1997
  ident: 2023062608072008300_c61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473987
– volume: 79
  start-page: 926
  year: 1983
  ident: 2023062608072008300_c68
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 134
  start-page: 094509
  year: 2011
  ident: 2023062608072008300_c17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3554905
– volume: 46
  start-page: 6700
  year: 1992
  ident: 2023062608072008300_c46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.6700
– volume: 29
  start-page: 2098
  year: 2008
  ident: 2023062608072008300_c54
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21033
– volume: 177
  start-page: 108
  year: 1969
  ident: 2023062608072008300_c83
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.177.108
SSID ssj0001724
Score 2.384994
Snippet We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using...
In this paper, we show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures...
SourceID osti
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 114101
SubjectTerms CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Title Energy benchmarks for water clusters and ice structures from an embedded many-body expansion
URI https://www.ncbi.nlm.nih.gov/pubmed/24070273
https://www.proquest.com/docview/2127769430
https://www.proquest.com/docview/1449280267
https://www.osti.gov/servlets/purl/1565010
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZQJwQvCMaPhQ1kEA9IlUMSp4n9WMpgTAxNsEl7QIoSxxE_unbaWqHy13Nnx06KCgJeosqJUiffF-fucvcdIc-kLJXIk4YpWPhYKmPOyrwRLOM1ckAo1WC84-h9dnCaHp6Nzrq0MVNdsqhC9WNjXcn_oApjgCtWyf4Dsv6kMAC_AV_YAsKw_SuM923hXgVz-nxeXn4z2grD7yUKH6rpEjUQrATzFyMki0qxS3CvbU0JPNj6vNKw8NSYw7pi1bxeoeI_vLwcWF87LvUsV-VEBmxYxFvlb7CDkc0NDoeHoefStDGf44VZ3_zwy5VpfWTM2P7hXQxhEg4_hP2wBLaIkCzppXi4701rOQ_HdlpoPI_fHrtYhysriBm6U2tLM5d9DsYb13wwsjD8EKZgzMjoF11t6-iA1Wrq8LYScCaSAdkavzp699G_scGIa9W67RScAlXGX_jTrtktgzlc1O99EmObnNwmt1po6Ngy5A65pmfb5MbE9fLbJtfbW3KXfLKcoR1nKHCGGs5QxxkKnKHAGdpxhiJnYJw6zlDPGeo5c4-cvt4_mRywtsMGU2meLlijhJZ5U8aRkkrUEtxb0YwSGcs0K2MuRmmN8kE81SUXWo3iRpZNkkRcqwp814jfJ4PZfKZ3CM2xEg7c7USoUaqbXFR1nfGsUrBIZCJSAXnu7l-hWvl57IIyLUwaRMaLuGhvdUCe-kMvrObKpoN2EYQCDEVUO1aYFqYWRQt1QPYcNkX7wF4V2Mwgz7DfQECe-N2ABH4jK2d6vrwCTxgvAduyBeSBxdTPAYMfKP_08I9_vUtuds_DHhkAUPoRGK6L6nHLu59GApYX
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+benchmarks+for+water+clusters+and+ice+structures+from+an+embedded+many-body+expansion&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Gillan%2C+M.+J.&rft.au=Alf%C3%A8%2C+D.&rft.au=Bygrave%2C+P.+J.&rft.au=Taylor%2C+C.+R.&rft.date=2013-09-21&rft.pub=American+Institute+of+Physics+%28AIP%29&rft.issn=0021-9606&rft.volume=139&rft.issue=11&rft_id=info:doi/10.1063%2F1.4820906&rft.externalDocID=1565010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon