TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation

Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this curre...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 27; no. 11; pp. 3269 - 3283.e6
Main Authors Chiramel, Abhilash I., Meyerson, Nicholas R., McNally, Kristin L., Broeckel, Rebecca M., Montoya, Vanessa R., Méndez-Solís, Omayra, Robertson, Shelly J., Sturdevant, Gail L., Lubick, Kirk J., Nair, Vinod, Youseff, Brian H., Ireland, Robin M., Bosio, Catharine M., Kim, Kyusik, Luban, Jeremy, Hirsch, Vanessa M., Taylor, R. Travis, Bouamr, Fadila, Sawyer, Sara L., Best, Sonja M.
Format Journal Article
LanguageEnglish
Published United States Elsevier 11.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern.
AbstractList Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern.
Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern.Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern.
Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. : The antiviral activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. Here, Chiramel et al. demonstrate that TRIM5α restricts replication of specific flaviviruses by binding and degrading the viral protease. Keywords: TRIM5α, flavivirus, retrovirus, interferon, restriction factor, retrovirus, interferon stimulated genes, tick-borne encephalitis virus
Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. The antiviral activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. Here, Chiramel et al. demonstrate that TRIM5α restricts replication of specific flaviviruses by binding and degrading the viral protease.
Author Montoya, Vanessa R.
Youseff, Brian H.
Meyerson, Nicholas R.
Lubick, Kirk J.
Kim, Kyusik
Sturdevant, Gail L.
Bosio, Catharine M.
Taylor, R. Travis
Bouamr, Fadila
McNally, Kristin L.
Luban, Jeremy
Chiramel, Abhilash I.
Nair, Vinod
Sawyer, Sara L.
Best, Sonja M.
Robertson, Shelly J.
Hirsch, Vanessa M.
Méndez-Solís, Omayra
Broeckel, Rebecca M.
Ireland, Robin M.
AuthorAffiliation 2 Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
6 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
3 Research Technology Branch, RML, NIAID, NIH, Hamilton, MT 59840, USA
1 Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
4 Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA
7 Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA
5 Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA
8 These authors contributed equally
9 Lead Contact
AuthorAffiliation_xml – name: 9 Lead Contact
– name: 1 Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA
– name: 8 These authors contributed equally
– name: 6 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
– name: 2 Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
– name: 3 Research Technology Branch, RML, NIAID, NIH, Hamilton, MT 59840, USA
– name: 5 Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA
– name: 4 Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA
– name: 7 Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA
Author_xml – sequence: 1
  givenname: Abhilash I.
  surname: Chiramel
  fullname: Chiramel, Abhilash I.
– sequence: 2
  givenname: Nicholas R.
  surname: Meyerson
  fullname: Meyerson, Nicholas R.
– sequence: 3
  givenname: Kristin L.
  surname: McNally
  fullname: McNally, Kristin L.
– sequence: 4
  givenname: Rebecca M.
  surname: Broeckel
  fullname: Broeckel, Rebecca M.
– sequence: 5
  givenname: Vanessa R.
  surname: Montoya
  fullname: Montoya, Vanessa R.
– sequence: 6
  givenname: Omayra
  surname: Méndez-Solís
  fullname: Méndez-Solís, Omayra
– sequence: 7
  givenname: Shelly J.
  surname: Robertson
  fullname: Robertson, Shelly J.
– sequence: 8
  givenname: Gail L.
  surname: Sturdevant
  fullname: Sturdevant, Gail L.
– sequence: 9
  givenname: Kirk J.
  surname: Lubick
  fullname: Lubick, Kirk J.
– sequence: 10
  givenname: Vinod
  surname: Nair
  fullname: Nair, Vinod
– sequence: 11
  givenname: Brian H.
  surname: Youseff
  fullname: Youseff, Brian H.
– sequence: 12
  givenname: Robin M.
  surname: Ireland
  fullname: Ireland, Robin M.
– sequence: 13
  givenname: Catharine M.
  surname: Bosio
  fullname: Bosio, Catharine M.
– sequence: 14
  givenname: Kyusik
  surname: Kim
  fullname: Kim, Kyusik
– sequence: 15
  givenname: Jeremy
  surname: Luban
  fullname: Luban, Jeremy
– sequence: 16
  givenname: Vanessa M.
  surname: Hirsch
  fullname: Hirsch, Vanessa M.
– sequence: 17
  givenname: R. Travis
  surname: Taylor
  fullname: Taylor, R. Travis
– sequence: 18
  givenname: Fadila
  surname: Bouamr
  fullname: Bouamr, Fadila
– sequence: 19
  givenname: Sara L.
  surname: Sawyer
  fullname: Sawyer, Sara L.
– sequence: 20
  givenname: Sonja M.
  surname: Best
  fullname: Best, Sonja M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31189110$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEQgC1UREvpGyC0Ry5Zxrv27poDEioUIhWBqsDV8s_s1tFmHWwnUh-LF-GZcJIGtRzwxZ6_b8Yz85ycTH5CQl5SKCnQ5s2yNDgGXJcVUFECL4HBE3JWVZTOaMXakwfvU3IR4xLyaYBSwZ6R05rSTlAKZ8QubuZf-O9fxQ3GFJxJsbga1dZtXdjErFyPzqjk_FTou2KhwoDJTUORbrH44YIai2_BJ1QRi96Ho-BX2fABh6DsPvYFedqrMeLF_X1Ovl99XFx-nl1__TS_fH89M6xladZ3tam5sJy21vZgGe96oSkYbLlQlKGhTauFBmbqSjNEhV3TQGs60xqj-_qczA9c69VSroNbqXAnvXJyr_BhkCokZ0aUTQe6VaBFbThrhNHaYmuN1bq2zFY2s94dWOuNXqE1OKX83UfQx5bJ3crBb2UuqaEMMuD1PSD4n5vcXblyMU9tVBP6TZRV1XSCdRx2rq8e5vqb5Dim7PD24GCCjzFgL41L-9bm1G6UFORuLeRSHtZC7tZCApewL4T9E3zk_zfsD7eNwaw
CitedBy_id crossref_primary_10_1038_s41590_020_0618_4
crossref_primary_10_1371_journal_ppat_1009678
crossref_primary_10_1126_sciadv_adg3444
crossref_primary_10_3390_v16070997
crossref_primary_10_1002_jnr_24923
crossref_primary_10_1002_cam4_7472
crossref_primary_10_1099_jgv_0_001341
crossref_primary_10_1016_j_celrep_2024_114127
crossref_primary_10_3390_v16071161
crossref_primary_10_2147_IJGM_S416493
crossref_primary_10_1111_nyas_14957
crossref_primary_10_4103_jmedsci_jmedsci_212_22
crossref_primary_10_3390_v16081262
crossref_primary_10_3389_fmicb_2022_835344
crossref_primary_10_1074_jbc_RA120_015165
crossref_primary_10_3390_v16060820
crossref_primary_10_1128_jvi_00158_24
crossref_primary_10_1016_j_celrep_2024_114294
crossref_primary_10_1073_pnas_2111266118
crossref_primary_10_1128_jvi_00818_22
crossref_primary_10_4049_jimmunol_2101007
crossref_primary_10_1038_s41586_023_06401_0
crossref_primary_10_1371_journal_ppat_1012626
crossref_primary_10_3389_fimmu_2020_00503
crossref_primary_10_1128_JVI_00596_21
crossref_primary_10_1007_s40588_020_00150_8
crossref_primary_10_1111_febs_15627
crossref_primary_10_1002_advs_202408024
crossref_primary_10_1016_j_virs_2023_07_001
crossref_primary_10_3390_ijms26020495
crossref_primary_10_3390_v13030446
crossref_primary_10_1186_s12974_020_01756_x
crossref_primary_10_3390_v17020287
crossref_primary_10_1186_s13578_022_00872_w
crossref_primary_10_1038_s41564_021_00999_5
crossref_primary_10_3390_ijms22010323
crossref_primary_10_1016_j_cell_2021_04_047
crossref_primary_10_1172_JCI160766
crossref_primary_10_1080_15548627_2022_2126614
crossref_primary_10_3389_fcimb_2021_628275
crossref_primary_10_1159_000519241
crossref_primary_10_1016_j_antiviral_2024_106037
crossref_primary_10_7554_eLife_65243
crossref_primary_10_1038_s41467_023_39056_6
crossref_primary_10_3389_fimmu_2023_1168589
crossref_primary_10_3390_ijms232315340
crossref_primary_10_1016_j_hlife_2025_02_007
crossref_primary_10_3390_microorganisms8121965
crossref_primary_10_3390_vaccines8020256
crossref_primary_10_1016_j_celrep_2022_110797
crossref_primary_10_1186_s13567_024_01354_2
crossref_primary_10_3390_v14050879
Cites_doi 10.3389/fcimb.2017.00339
10.1126/science.1140579
10.1155/2012/426840
10.1074/jbc.M109.090936
10.4161/15548627.2014.984278
10.1126/science.1152905
10.1021/acs.jproteome.6b00933
10.1016/j.antiviral.2015.03.014
10.1038/nature18625
10.1038/nature20567
10.1093/infdis/jiw241
10.1016/0042-6822(85)90446-5
10.1016/j.chom.2011.08.004
10.1371/journal.ppat.1003214
10.1371/journal.ppat.1002780
10.1128/AAC.00189-09
10.1038/nature02777
10.1016/j.virol.2008.12.018
10.1038/nprot.2011.327
10.1371/journal.pntd.0001760
10.1016/j.virol.2005.12.040
10.1128/JVI.71.9.6650-6661.1997
10.1128/JVI.01161-09
10.1128/JVI.01519-06
10.7554/eLife.31919
10.1128/JVI.79.20.12828-12839.2005
10.1016/j.jmb.2013.12.005
10.1371/journal.ppat.1000546
10.1073/pnas.0509996103
10.1371/journal.ppat.1005085
10.1073/pnas.0409853102
10.1128/JVI.80.3.1290-1301.2006
10.1128/JVI.02412-09
10.1016/j.devcel.2014.06.013
10.1016/j.chom.2018.10.007
10.2174/1570162X13666150608104412
10.1128/JVI.01948-15
10.1371/journal.ppat.1003577
10.1126/science.1130994
10.1128/JVI.01970-16
10.1074/jbc.270.25.14891
10.1016/0092-8674(93)90637-6
10.1038/nature09976
10.1371/journal.ppat.1002934
10.1016/j.virol.2006.05.035
10.1016/j.coviro.2016.11.007
10.1016/S0092-8674(00)81823-1
10.1159/000489504
10.1016/j.mib.2010.05.009
10.1371/journal.pgen.1002388
10.1371/journal.ppat.1007398
10.1038/nature02343
10.1073/pnas.1013426108
10.1128/JVI.02496-15
10.1038/s41564-017-0017-2
10.1128/JVI.00206-16
10.1073/pnas.162299499
ContentType Journal Article
Copyright Published by Elsevier Inc.
Copyright_xml – notice: Published by Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.celrep.2019.05.040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 3283.e6
ExternalDocumentID oai_doaj_org_article_680b7a0b93c5469cbbde7dcdbb3d4d2d
PMC8666140
31189110
10_1016_j_celrep_2019_05_040
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI137011
– fundername: NIDA NIH HHS
  grantid: DP1 DA046108
– fundername: Intramural NIH HHS
  grantid: ZIA AI001125
– fundername: NIAID NIH HHS
  grantid: R01 AI111809
– fundername: NIDA NIH HHS
  grantid: DP1 DA034990
GroupedDBID 0R~
4.4
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
AAYWO
AAYXX
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
CITATION
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
HZ~
IPNFZ
IXB
KQ8
M41
M48
O-L
O9-
OK1
RIG
ROL
SSZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c474t-f83c359d517ddf0d458f9b10ce759a14ec167b9b04c32b4eeae86607c8c7ccbf3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:25:23 EDT 2025
Thu Aug 21 18:17:12 EDT 2025
Thu Jul 10 17:35:32 EDT 2025
Mon Jul 21 06:02:53 EDT 2025
Thu Apr 24 23:12:46 EDT 2025
Tue Jul 01 02:59:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords TRIM5α
retrovirus
restriction factor
interferon
interferon stimulated genes
flavivirus
tick-borne encephalitis virus
Language English
License Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-f83c359d517ddf0d458f9b10ce759a14ec167b9b04c32b4eeae86607c8c7ccbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AUTHOR CONTRIBUTIONS
Conceptualization, A.I.C. and S.M.B.; Methodology, A.I.C., N.R.M., F.B., S.L.S., and S.M.B.; Investigation, A.I.C., N.R.M., K.L.M., R.M.B., V.R.M., O.M.-S., S.J.R., F.B., G.L.S., K.J.L., V.N., B.H.Y., R.T.T., K.K., and S.M.B.; Data Curation, A.I.C., N.R.M., F.B., S.M.B.; Writing – Original Draft, A.I.C. and S.M.B.; Writing – Review & Editing, A.I.C., N.R.M., R.T.T., F.B., S.L.S., and S.M.B.; Resources, J.L., V.M.H., R.T.T., S.L.S., and S.M.B.; Visualization, A.I.C., N.R.M., V.R.M., K.L.M., O.M.-S., S.J.R., G.L.S., K.J.L., V.N., S.L.S., and S.M.B.; Supervision, J.L., R.T.T., S.L.S., and S.M.B.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2019.05.040
PMID 31189110
PQID 2268948500
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_680b7a0b93c5469cbbde7dcdbb3d4d2d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8666140
proquest_miscellaneous_2268948500
pubmed_primary_31189110
crossref_citationtrail_10_1016_j_celrep_2019_05_040
crossref_primary_10_1016_j_celrep_2019_05_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-11
PublicationDateYYYYMMDD 2019-06-11
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier
Publisher_xml – name: Elsevier
References Kutluay (10.1016/j.celrep.2019.05.040_bib23) 2013; 9
O’Connor (10.1016/j.celrep.2019.05.040_bib37) 2010; 84
Westaway (10.1016/j.celrep.2019.05.040_bib56) 1997; 71
Berger (10.1016/j.celrep.2019.05.040_bib2) 2011; 6
Merindol (10.1016/j.celrep.2019.05.040_bib36) 2018; 14
Pertel (10.1016/j.celrep.2019.05.040_bib38) 2011; 472
Chiramel (10.1016/j.celrep.2019.05.040_bib7) 2016; 214
Qing (10.1016/j.celrep.2019.05.040_bib39) 2009; 53
Chu (10.1016/j.celrep.2019.05.040_bib8) 1985; 140
Davis (10.1016/j.celrep.2019.05.040_bib10) 2006; 80
Tissot (10.1016/j.celrep.2019.05.040_bib52) 1995; 270
Kaul (10.1016/j.celrep.2019.05.040_bib20) 2009; 5
Luban (10.1016/j.celrep.2019.05.040_bib29) 1993; 73
Luo (10.1016/j.celrep.2019.05.040_bib31) 2015; 118
Stremlau (10.1016/j.celrep.2019.05.040_bib49) 2006; 103
McCarthy (10.1016/j.celrep.2019.05.040_bib34) 2015; 11
Brady (10.1016/j.celrep.2019.05.040_bib5) 2012; 6
Zhang (10.1016/j.celrep.2019.05.040_bib59) 2006; 353
Luban (10.1016/j.celrep.2019.05.040_bib27) 2007; 81
Gamble (10.1016/j.celrep.2019.05.040_bib13) 1996; 87
Kaiser (10.1016/j.celrep.2019.05.040_bib19) 2007; 316
Campbell (10.1016/j.celrep.2019.05.040_bib6) 2015; 90
Lascano (10.1016/j.celrep.2019.05.040_bib24) 2015; 90
Stabell (10.1016/j.celrep.2019.05.040_bib46) 2018; 7
Kazimírová (10.1016/j.celrep.2019.05.040_bib21) 2017; 7
Aguirre (10.1016/j.celrep.2019.05.040_bib1) 2012; 8
Diaz-Griffero (10.1016/j.celrep.2019.05.040_bib11) 2006; 349
Ganser-Pornillos (10.1016/j.celrep.2019.05.040_bib14) 2011; 108
Best (10.1016/j.celrep.2019.05.040_bib4) 2005; 79
Vasilakis (10.1016/j.celrep.2019.05.040_bib53) 2017; 22
Mandell (10.1016/j.celrep.2019.05.040_bib33) 2014; 10
Sawyer (10.1016/j.celrep.2019.05.040_bib42) 2005; 102
Tareen (10.1016/j.celrep.2019.05.040_bib50) 2009; 385
Vidotto (10.1016/j.celrep.2019.05.040_bib55) 2017; 16
Versteeg (10.1016/j.celrep.2019.05.040_bib54) 2010; 13
Wu (10.1016/j.celrep.2019.05.040_bib57) 2013; 9
Yu (10.1016/j.celrep.2019.05.040_bib58) 2012; 8
Merindol (10.1016/j.celrep.2019.05.040_bib35) 2015; 13
Stremlau (10.1016/j.celrep.2019.05.040_bib47) 2007; 318
Cowan (10.1016/j.celrep.2019.05.040_bib9) 2002; 99
Fletcher (10.1016/j.celrep.2019.05.040_bib12) 2018; 24
Hatziioannou (10.1016/j.celrep.2019.05.040_bib17) 2006; 314
Ireland (10.1016/j.celrep.2019.05.040_bib18) 2018; 10
Luban (10.1016/j.celrep.2019.05.040_bib28) 2012; 2012
Mandell (10.1016/j.celrep.2019.05.040_bib32) 2014; 30
Sparrer (10.1016/j.celrep.2019.05.040_bib45) 2017; 2
Rajsbaum (10.1016/j.celrep.2019.05.040_bib40) 2014; 426
Taylor (10.1016/j.celrep.2019.05.040_bib51) 2011; 10
Gebhard (10.1016/j.celrep.2019.05.040_bib15) 2016; 90
Kim (10.1016/j.celrep.2019.05.040_bib22) 2019
Lindenbach (10.1016/j.celrep.2019.05.040_bib26) 2007
Stremlau (10.1016/j.celrep.2019.05.040_bib48) 2004; 427
Sayah (10.1016/j.celrep.2019.05.040_bib43) 2004; 430
Simmonds (10.1016/j.celrep.2019.05.040_bib44) 2013; 369
Ribeiro (10.1016/j.celrep.2019.05.040_bib41) 2016; 540
Zhang (10.1016/j.celrep.2019.05.040_bib60) 2016; 535
Han (10.1016/j.celrep.2019.05.040_bib16) 2011; 7
Luo (10.1016/j.celrep.2019.05.040_bib30) 2010; 285
Best (10.1016/j.celrep.2019.05.040_bib3) 2017; 91
Laurent-Rolle (10.1016/j.celrep.2019.05.040_bib25) 2010; 84
References_xml – volume: 7
  start-page: 339
  year: 2017
  ident: 10.1016/j.celrep.2019.05.040_bib21
  article-title: Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface
  publication-title: Front. Cell. Infect. Microbiol.
  doi: 10.3389/fcimb.2017.00339
– volume: 316
  start-page: 1756
  year: 2007
  ident: 10.1016/j.celrep.2019.05.040_bib19
  article-title: Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein
  publication-title: Science
  doi: 10.1126/science.1140579
– volume: 2012
  start-page: 426840
  year: 2012
  ident: 10.1016/j.celrep.2019.05.040_bib28
  article-title: TRIM5 and the Regulation of HIV-1 Infectivity
  publication-title: Mol. Biol. Int.
  doi: 10.1155/2012/426840
– volume: 285
  start-page: 18817
  year: 2010
  ident: 10.1016/j.celrep.2019.05.040_bib30
  article-title: Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.090936
– volume: 10
  start-page: 2387
  year: 2014
  ident: 10.1016/j.celrep.2019.05.040_bib33
  article-title: TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction
  publication-title: Autophagy
  doi: 10.4161/15548627.2014.984278
– volume: 318
  start-page: 1565
  year: 2007
  ident: 10.1016/j.celrep.2019.05.040_bib47
  article-title: GE Prize-winning essay. Why Old World monkeys are resistant to HIV-1
  publication-title: Science
  doi: 10.1126/science.1152905
– volume: 16
  start-page: 1542
  year: 2017
  ident: 10.1016/j.celrep.2019.05.040_bib55
  article-title: Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.6b00933
– volume: 118
  start-page: 148
  year: 2015
  ident: 10.1016/j.celrep.2019.05.040_bib31
  article-title: The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2015.03.014
– volume: 535
  start-page: 164
  year: 2016
  ident: 10.1016/j.celrep.2019.05.040_bib60
  article-title: A CRISPR screen defines a signal peptide processing pathway required by flaviviruses
  publication-title: Nature
  doi: 10.1038/nature18625
– volume: 540
  start-page: 448
  year: 2016
  ident: 10.1016/j.celrep.2019.05.040_bib41
  article-title: Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets
  publication-title: Nature
  doi: 10.1038/nature20567
– volume: 214
  start-page: S355
  year: 2016
  ident: 10.1016/j.celrep.2019.05.040_bib7
  article-title: Alisporivir Has Limited Antiviral Effects Against Ebola Virus Strains Makona and Mayinga
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiw241
– volume: 369
  start-page: 1
  year: 2013
  ident: 10.1016/j.celrep.2019.05.040_bib44
  article-title: The origin of hepatitis C virus
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 140
  start-page: 68
  year: 1985
  ident: 10.1016/j.celrep.2019.05.040_bib8
  article-title: Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication
  publication-title: Virology
  doi: 10.1016/0042-6822(85)90446-5
– volume: 10
  start-page: 185
  year: 2011
  ident: 10.1016/j.celrep.2019.05.040_bib51
  article-title: TRIM79α, an interferon-stimulated gene product, restricts tick-borne encephalitis virus replication by degrading the viral RNA polymerase
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2011.08.004
– volume: 9
  start-page: e1003214
  year: 2013
  ident: 10.1016/j.celrep.2019.05.040_bib23
  article-title: Fates of retroviral core components during unrestricted and TRIM5-restricted infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003214
– volume: 8
  start-page: e1002780
  year: 2012
  ident: 10.1016/j.celrep.2019.05.040_bib58
  article-title: Dengue virus targets the adaptor protein MITA to subvert host innate immunity
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002780
– volume: 53
  start-page: 3226
  year: 2009
  ident: 10.1016/j.celrep.2019.05.040_bib39
  article-title: Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.00189-09
– volume: 430
  start-page: 569
  year: 2004
  ident: 10.1016/j.celrep.2019.05.040_bib43
  article-title: Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1
  publication-title: Nature
  doi: 10.1038/nature02777
– volume: 385
  start-page: 473
  year: 2009
  ident: 10.1016/j.celrep.2019.05.040_bib50
  article-title: An expanded clade of rodent Trim5 genes
  publication-title: Virology
  doi: 10.1016/j.virol.2008.12.018
– volume: 6
  start-page: 806
  year: 2011
  ident: 10.1016/j.celrep.2019.05.040_bib2
  article-title: A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.327
– volume: 6
  start-page: e1760
  year: 2012
  ident: 10.1016/j.celrep.2019.05.040_bib5
  article-title: Refining the global spatial limits of dengue virus transmission by evidence-based consensus
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0001760
– volume: 349
  start-page: 300
  year: 2006
  ident: 10.1016/j.celrep.2019.05.040_bib11
  article-title: Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5
  publication-title: Virology
  doi: 10.1016/j.virol.2005.12.040
– volume: 71
  start-page: 6650
  year: 1997
  ident: 10.1016/j.celrep.2019.05.040_bib56
  article-title: Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures
  publication-title: J. Virol.
  doi: 10.1128/JVI.71.9.6650-6661.1997
– volume: 84
  start-page: 3503
  year: 2010
  ident: 10.1016/j.celrep.2019.05.040_bib25
  article-title: The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.01161-09
– volume: 81
  start-page: 1054
  year: 2007
  ident: 10.1016/j.celrep.2019.05.040_bib27
  article-title: Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.01519-06
– volume: 7
  start-page: e31919
  year: 2018
  ident: 10.1016/j.celrep.2019.05.040_bib46
  article-title: Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir
  publication-title: eLife
  doi: 10.7554/eLife.31919
– volume: 79
  start-page: 12828
  year: 2005
  ident: 10.1016/j.celrep.2019.05.040_bib4
  article-title: Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.20.12828-12839.2005
– volume: 426
  start-page: 1265
  year: 2014
  ident: 10.1016/j.celrep.2019.05.040_bib40
  article-title: TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2013.12.005
– volume: 5
  start-page: e1000546
  year: 2009
  ident: 10.1016/j.celrep.2019.05.040_bib20
  article-title: Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000546
– volume: 103
  start-page: 5514
  year: 2006
  ident: 10.1016/j.celrep.2019.05.040_bib49
  article-title: Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0509996103
– year: 2019
  ident: 10.1016/j.celrep.2019.05.040_bib22
  article-title: Cyclophilin A protects HIV-1 from restriction by human TRIM5α
  publication-title: bioRxiv
– volume: 11
  start-page: e1005085
  year: 2015
  ident: 10.1016/j.celrep.2019.05.040_bib34
  article-title: Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005085
– volume: 102
  start-page: 2832
  year: 2005
  ident: 10.1016/j.celrep.2019.05.040_bib42
  article-title: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0409853102
– volume: 80
  start-page: 1290
  year: 2006
  ident: 10.1016/j.celrep.2019.05.040_bib10
  article-title: West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.80.3.1290-1301.2006
– volume: 84
  start-page: 5997
  year: 2010
  ident: 10.1016/j.celrep.2019.05.040_bib37
  article-title: p62/sequestosome-1 associates with and sustains the expression of retroviral restriction factor TRIM5alpha
  publication-title: J. Virol.
  doi: 10.1128/JVI.02412-09
– volume: 30
  start-page: 394
  year: 2014
  ident: 10.1016/j.celrep.2019.05.040_bib32
  article-title: TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.06.013
– volume: 24
  start-page: 761
  year: 2018
  ident: 10.1016/j.celrep.2019.05.040_bib12
  article-title: Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.10.007
– volume: 13
  start-page: 448
  year: 2015
  ident: 10.1016/j.celrep.2019.05.040_bib35
  article-title: Restriction Factors in HIV-1 Disease Progression
  publication-title: Curr. HIV Res.
  doi: 10.2174/1570162X13666150608104412
– volume: 90
  start-page: 1849
  year: 2015
  ident: 10.1016/j.celrep.2019.05.040_bib6
  article-title: TRIM5α-mediated ubiquitin chain conjugation is required for inhibition of HIV-1 reverse transcription and capsid destabilization
  publication-title: J. Virol.
  doi: 10.1128/JVI.01948-15
– volume: 9
  start-page: e1003577
  year: 2013
  ident: 10.1016/j.celrep.2019.05.040_bib57
  article-title: TRIM5 alpha drives SIVsmm evolution in rhesus macaques
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003577
– volume: 314
  start-page: 95
  year: 2006
  ident: 10.1016/j.celrep.2019.05.040_bib17
  article-title: Generation of simian-tropic HIV-1 by restriction factor evasion
  publication-title: Science
  doi: 10.1126/science.1130994
– volume: 91
  start-page: e01970-16
  year: 2017
  ident: 10.1016/j.celrep.2019.05.040_bib3
  article-title: The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.01970-16
– volume: 270
  start-page: 14891
  year: 1995
  ident: 10.1016/j.celrep.2019.05.040_bib52
  article-title: Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.25.14891
– volume: 73
  start-page: 1067
  year: 1993
  ident: 10.1016/j.celrep.2019.05.040_bib29
  article-title: Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90637-6
– volume: 472
  start-page: 361
  year: 2011
  ident: 10.1016/j.celrep.2019.05.040_bib38
  article-title: TRIM5 is an innate immune sensor for the retrovirus capsid lattice
  publication-title: Nature
  doi: 10.1038/nature09976
– volume: 8
  start-page: e1002934
  year: 2012
  ident: 10.1016/j.celrep.2019.05.040_bib1
  article-title: DENV inhibits type I IFN production in infected cells by cleaving human STING
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002934
– volume: 353
  start-page: 396
  year: 2006
  ident: 10.1016/j.celrep.2019.05.040_bib59
  article-title: Antiretroviral potential of human tripartite motif-5 and related proteins
  publication-title: Virology
  doi: 10.1016/j.virol.2006.05.035
– volume: 22
  start-page: 30
  year: 2017
  ident: 10.1016/j.celrep.2019.05.040_bib53
  article-title: Flavivirus transmission focusing on Zika
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2016.11.007
– volume: 87
  start-page: 1285
  year: 1996
  ident: 10.1016/j.celrep.2019.05.040_bib13
  article-title: Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81823-1
– volume: 10
  start-page: 291
  year: 2018
  ident: 10.1016/j.celrep.2019.05.040_bib18
  article-title: Unique Francisella Phosphatidylethanolamine Acts as a Potent Anti-Inflammatory Lipid
  publication-title: J. Innate Immun.
  doi: 10.1159/000489504
– volume: 13
  start-page: 508
  year: 2010
  ident: 10.1016/j.celrep.2019.05.040_bib54
  article-title: Viral tricks to grid-lock the type I interferon system
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2010.05.009
– start-page: 1101
  year: 2007
  ident: 10.1016/j.celrep.2019.05.040_bib26
  article-title: Flaviviridae: the viruses and their replication
– volume: 7
  start-page: e1002388
  year: 2011
  ident: 10.1016/j.celrep.2019.05.040_bib16
  article-title: Identification of a genomic reservoir for new TRIM genes in primate genomes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002388
– volume: 14
  start-page: e1007398
  year: 2018
  ident: 10.1016/j.celrep.2019.05.040_bib36
  article-title: HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007398
– volume: 427
  start-page: 848
  year: 2004
  ident: 10.1016/j.celrep.2019.05.040_bib48
  article-title: The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys
  publication-title: Nature
  doi: 10.1038/nature02343
– volume: 108
  start-page: 534
  year: 2011
  ident: 10.1016/j.celrep.2019.05.040_bib14
  article-title: Hexagonal assembly of a restricting TRIM5alpha protein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1013426108
– volume: 90
  start-page: 308
  year: 2015
  ident: 10.1016/j.celrep.2019.05.040_bib24
  article-title: TRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.02496-15
– volume: 2
  start-page: 1543
  year: 2017
  ident: 10.1016/j.celrep.2019.05.040_bib45
  article-title: TRIM23 mediates virus-induced autophagy via activation of TBK1
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-017-0017-2
– volume: 90
  start-page: 5451
  year: 2016
  ident: 10.1016/j.celrep.2019.05.040_bib15
  article-title: A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production
  publication-title: J. Virol.
  doi: 10.1128/JVI.00206-16
– volume: 99
  start-page: 11914
  year: 2002
  ident: 10.1016/j.celrep.2019.05.040_bib9
  article-title: Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.162299499
SSID ssj0000601194
Score 2.4722924
Snippet Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity...
Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3269
SubjectTerms Animals
Antiviral Restriction Factors
Cats
Chlorocebus aethiops
Dendritic Cells - metabolism
Dendritic Cells - virology
Flavivirus - pathogenicity
Flavivirus - physiology
Flavivirus Infections - metabolism
Flavivirus Infections - virology
HEK293 Cells
Humans
Peptide Hydrolases - metabolism
Proteasome Endopeptidase Complex - metabolism
Protein Binding
Proteolysis
Substrate Specificity
Tripartite Motif Proteins - metabolism
Ubiquitin-Protein Ligases - metabolism
Ubiquitination
Vero Cells
Viral Proteins - metabolism
Virus Replication
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9N1N2qBCr6aSJVn2sY8saSGlhE3JTUgjmW7Zess-AvlZ-SP5TZ2x1stuKeTSo_WwxMzI88kafcPY20CcVTqpwpjWFxpSKHwEWUjj2yAaQMXT5eSzr9Xphf5yaS53Un1RTFimB86Ce1fVIlgvQqPA4FYOQojJRoghqKhjGenriz5vZzOVv8HEZUZHymVJMVultsO9uT64C9JskYiuUjY9cSf9-9jxSz19_78w59-hkzu-aPyIPdyASP4-T_4xu5e6J-x-Tit5_ZTFyfnnM3N7w88TZeWA1ZKPZ_5qejVdrJdYuD2y5uGaT_pQcHRgHKEg_z7F4fg3Im9A98YR0Q4P819Y8YmoJXIWpmfsYnwy-XhabLIpFKCtXhVtrUCZJhppY2xF1KZumyAFJGsaL3UCWdnQBKFBlUGn5FNdVcJCDRYgtOo5O-jmXXrJeAyAMKQuKdha-wrfEj12t2WJakEAOGJqkKWDDdU4ZbyYuSGm7KfLGnCkASeMQw2MWLHt9TtTbdzR_gOpaduWiLL7AjQftzEfd5f5jNibQckOFxadlvguzddLh7i0JuocgQO9yErfDqVwW4ZeAmvsnjnszWW_ppv-6Mm7UaaIiMTh_5j8EXtA8qDINSlfsYPVYp1eI0ZaheN-OfwBadAUfQ
  priority: 102
  providerName: Directory of Open Access Journals
Title TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation
URI https://www.ncbi.nlm.nih.gov/pubmed/31189110
https://www.proquest.com/docview/2268948500
https://pubmed.ncbi.nlm.nih.gov/PMC8666140
https://doaj.org/article/680b7a0b93c5469cbbde7dcdbb3d4d2d
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bjtMwELVWi5B4Qdwpl5WReA2yEztOHhDiVi1IRWjVon2z7LHDFpUU0nZFP4sf4ZuYyaVQtAjxGN_j8WSO4_EZxh574qxSMUu0rlyiIPrEBZCJ1K7yogQUPF1OnrzLj2fq7ak-PWBDzNZ-AlcXbu0ontSsWTz59nX7DBX-6S9fLYiLJhL7pCxbHk6Fm_hLaJsMqeqkB_zdt5k4zuioOU3JlytVZrhP95eG9uxVS-t_ERb906XyNxs1vsau9uCSP-9Ww3V2EOsb7HIXbnJ7k4XpyZuJ_vGdn0SK1gHrFR8v3Pn8fN5sVpi4O8rmfsunrYs4GjaOEJF_mGN3_D2ROqDZ44h0h4flZ8x4RZQTXXSmW2w2fj19eZz0URYSUEatk6rIINNl0NKEUImgdFGVXgqIRpdOqggyN770QkGWehWji0WeCwMFGABfZbfZYb2s413GgweEJ0VKTtjK5dhKcFjdpGnwHoHhiGXDXFroKcgpEsbCDr5mn2wnAUsSsEJblMCIJbtaXzoKjn-Uf0Fi2pUlAu02Ydl8tL0-2rwQ3jjhywy0ykvwPkQTAMeZBRXSMGKPBiFbVDg6RXF1XG5WFvFqQZQ6Aju60wl911WG2zW0Hphj9pbD3lj2c-r5WUvqjXOKSEnc-8-Xvc-u0BM5r0n5gB2um018iDBp7Y_a3wtH7fr_CR-BFVM
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIM5%CE%B1+Restricts+Flavivirus+Replication+by+Targeting+the+Viral+Protease+for+Proteasomal+Degradation&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Chiramel%2C+Abhilash+I.&rft.au=Meyerson%2C+Nicholas+R.&rft.au=McNally%2C+Kristin+L.&rft.au=Broeckel%2C+Rebecca+M.&rft.date=2019-06-11&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=27&rft.issue=11&rft.spage=3269&rft.epage=3283.e6&rft_id=info:doi/10.1016%2Fj.celrep.2019.05.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2019_05_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon