TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation
Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this curre...
Saved in:
Published in | Cell reports (Cambridge) Vol. 27; no. 11; pp. 3269 - 3283.e6 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier
11.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. |
---|---|
AbstractList | Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern.Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. : The antiviral activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. Here, Chiramel et al. demonstrate that TRIM5α restricts replication of specific flaviviruses by binding and degrading the viral protease. Keywords: TRIM5α, flavivirus, retrovirus, interferon, restriction factor, retrovirus, interferon stimulated genes, tick-borne encephalitis virus Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5α suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5α-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5α suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5α contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5α possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern. The antiviral activity of TRIM5α is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. Here, Chiramel et al. demonstrate that TRIM5α restricts replication of specific flaviviruses by binding and degrading the viral protease. |
Author | Montoya, Vanessa R. Youseff, Brian H. Meyerson, Nicholas R. Lubick, Kirk J. Kim, Kyusik Sturdevant, Gail L. Bosio, Catharine M. Taylor, R. Travis Bouamr, Fadila McNally, Kristin L. Luban, Jeremy Chiramel, Abhilash I. Nair, Vinod Sawyer, Sara L. Best, Sonja M. Robertson, Shelly J. Hirsch, Vanessa M. Méndez-Solís, Omayra Broeckel, Rebecca M. Ireland, Robin M. |
AuthorAffiliation | 2 Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA 6 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA 3 Research Technology Branch, RML, NIAID, NIH, Hamilton, MT 59840, USA 1 Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA 4 Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA 7 Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA 5 Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA 8 These authors contributed equally 9 Lead Contact |
AuthorAffiliation_xml | – name: 9 Lead Contact – name: 1 Innate Immunity and Pathogenesis Section, Laboratory of Virology, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT 59840, USA – name: 8 These authors contributed equally – name: 6 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA – name: 2 Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA – name: 3 Research Technology Branch, RML, NIAID, NIH, Hamilton, MT 59840, USA – name: 5 Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, RML, NIAID, NIH, Hamilton, MT 59840, USA – name: 4 Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43606, USA – name: 7 Laboratory of Molecular Microbiology, NIAID, Bethesda, MD 20892, USA |
Author_xml | – sequence: 1 givenname: Abhilash I. surname: Chiramel fullname: Chiramel, Abhilash I. – sequence: 2 givenname: Nicholas R. surname: Meyerson fullname: Meyerson, Nicholas R. – sequence: 3 givenname: Kristin L. surname: McNally fullname: McNally, Kristin L. – sequence: 4 givenname: Rebecca M. surname: Broeckel fullname: Broeckel, Rebecca M. – sequence: 5 givenname: Vanessa R. surname: Montoya fullname: Montoya, Vanessa R. – sequence: 6 givenname: Omayra surname: Méndez-Solís fullname: Méndez-Solís, Omayra – sequence: 7 givenname: Shelly J. surname: Robertson fullname: Robertson, Shelly J. – sequence: 8 givenname: Gail L. surname: Sturdevant fullname: Sturdevant, Gail L. – sequence: 9 givenname: Kirk J. surname: Lubick fullname: Lubick, Kirk J. – sequence: 10 givenname: Vinod surname: Nair fullname: Nair, Vinod – sequence: 11 givenname: Brian H. surname: Youseff fullname: Youseff, Brian H. – sequence: 12 givenname: Robin M. surname: Ireland fullname: Ireland, Robin M. – sequence: 13 givenname: Catharine M. surname: Bosio fullname: Bosio, Catharine M. – sequence: 14 givenname: Kyusik surname: Kim fullname: Kim, Kyusik – sequence: 15 givenname: Jeremy surname: Luban fullname: Luban, Jeremy – sequence: 16 givenname: Vanessa M. surname: Hirsch fullname: Hirsch, Vanessa M. – sequence: 17 givenname: R. Travis surname: Taylor fullname: Taylor, R. Travis – sequence: 18 givenname: Fadila surname: Bouamr fullname: Bouamr, Fadila – sequence: 19 givenname: Sara L. surname: Sawyer fullname: Sawyer, Sara L. – sequence: 20 givenname: Sonja M. surname: Best fullname: Best, Sonja M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31189110$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1uEzEQgC1UREvpGyC0Ry5Zxrv27poDEioUIhWBqsDV8s_s1tFmHWwnUh-LF-GZcJIGtRzwxZ6_b8Yz85ycTH5CQl5SKCnQ5s2yNDgGXJcVUFECL4HBE3JWVZTOaMXakwfvU3IR4xLyaYBSwZ6R05rSTlAKZ8QubuZf-O9fxQ3GFJxJsbga1dZtXdjErFyPzqjk_FTou2KhwoDJTUORbrH44YIai2_BJ1QRi96Ho-BX2fABh6DsPvYFedqrMeLF_X1Ovl99XFx-nl1__TS_fH89M6xladZ3tam5sJy21vZgGe96oSkYbLlQlKGhTauFBmbqSjNEhV3TQGs60xqj-_qczA9c69VSroNbqXAnvXJyr_BhkCokZ0aUTQe6VaBFbThrhNHaYmuN1bq2zFY2s94dWOuNXqE1OKX83UfQx5bJ3crBb2UuqaEMMuD1PSD4n5vcXblyMU9tVBP6TZRV1XSCdRx2rq8e5vqb5Dim7PD24GCCjzFgL41L-9bm1G6UFORuLeRSHtZC7tZCApewL4T9E3zk_zfsD7eNwaw |
CitedBy_id | crossref_primary_10_1038_s41590_020_0618_4 crossref_primary_10_1371_journal_ppat_1009678 crossref_primary_10_1126_sciadv_adg3444 crossref_primary_10_3390_v16070997 crossref_primary_10_1002_jnr_24923 crossref_primary_10_1002_cam4_7472 crossref_primary_10_1099_jgv_0_001341 crossref_primary_10_1016_j_celrep_2024_114127 crossref_primary_10_3390_v16071161 crossref_primary_10_2147_IJGM_S416493 crossref_primary_10_1111_nyas_14957 crossref_primary_10_4103_jmedsci_jmedsci_212_22 crossref_primary_10_3390_v16081262 crossref_primary_10_3389_fmicb_2022_835344 crossref_primary_10_1074_jbc_RA120_015165 crossref_primary_10_3390_v16060820 crossref_primary_10_1128_jvi_00158_24 crossref_primary_10_1016_j_celrep_2024_114294 crossref_primary_10_1073_pnas_2111266118 crossref_primary_10_1128_jvi_00818_22 crossref_primary_10_4049_jimmunol_2101007 crossref_primary_10_1038_s41586_023_06401_0 crossref_primary_10_1371_journal_ppat_1012626 crossref_primary_10_3389_fimmu_2020_00503 crossref_primary_10_1128_JVI_00596_21 crossref_primary_10_1007_s40588_020_00150_8 crossref_primary_10_1111_febs_15627 crossref_primary_10_1002_advs_202408024 crossref_primary_10_1016_j_virs_2023_07_001 crossref_primary_10_3390_ijms26020495 crossref_primary_10_3390_v13030446 crossref_primary_10_1186_s12974_020_01756_x crossref_primary_10_3390_v17020287 crossref_primary_10_1186_s13578_022_00872_w crossref_primary_10_1038_s41564_021_00999_5 crossref_primary_10_3390_ijms22010323 crossref_primary_10_1016_j_cell_2021_04_047 crossref_primary_10_1172_JCI160766 crossref_primary_10_1080_15548627_2022_2126614 crossref_primary_10_3389_fcimb_2021_628275 crossref_primary_10_1159_000519241 crossref_primary_10_1016_j_antiviral_2024_106037 crossref_primary_10_7554_eLife_65243 crossref_primary_10_1038_s41467_023_39056_6 crossref_primary_10_3389_fimmu_2023_1168589 crossref_primary_10_3390_ijms232315340 crossref_primary_10_1016_j_hlife_2025_02_007 crossref_primary_10_3390_microorganisms8121965 crossref_primary_10_3390_vaccines8020256 crossref_primary_10_1016_j_celrep_2022_110797 crossref_primary_10_1186_s13567_024_01354_2 crossref_primary_10_3390_v14050879 |
Cites_doi | 10.3389/fcimb.2017.00339 10.1126/science.1140579 10.1155/2012/426840 10.1074/jbc.M109.090936 10.4161/15548627.2014.984278 10.1126/science.1152905 10.1021/acs.jproteome.6b00933 10.1016/j.antiviral.2015.03.014 10.1038/nature18625 10.1038/nature20567 10.1093/infdis/jiw241 10.1016/0042-6822(85)90446-5 10.1016/j.chom.2011.08.004 10.1371/journal.ppat.1003214 10.1371/journal.ppat.1002780 10.1128/AAC.00189-09 10.1038/nature02777 10.1016/j.virol.2008.12.018 10.1038/nprot.2011.327 10.1371/journal.pntd.0001760 10.1016/j.virol.2005.12.040 10.1128/JVI.71.9.6650-6661.1997 10.1128/JVI.01161-09 10.1128/JVI.01519-06 10.7554/eLife.31919 10.1128/JVI.79.20.12828-12839.2005 10.1016/j.jmb.2013.12.005 10.1371/journal.ppat.1000546 10.1073/pnas.0509996103 10.1371/journal.ppat.1005085 10.1073/pnas.0409853102 10.1128/JVI.80.3.1290-1301.2006 10.1128/JVI.02412-09 10.1016/j.devcel.2014.06.013 10.1016/j.chom.2018.10.007 10.2174/1570162X13666150608104412 10.1128/JVI.01948-15 10.1371/journal.ppat.1003577 10.1126/science.1130994 10.1128/JVI.01970-16 10.1074/jbc.270.25.14891 10.1016/0092-8674(93)90637-6 10.1038/nature09976 10.1371/journal.ppat.1002934 10.1016/j.virol.2006.05.035 10.1016/j.coviro.2016.11.007 10.1016/S0092-8674(00)81823-1 10.1159/000489504 10.1016/j.mib.2010.05.009 10.1371/journal.pgen.1002388 10.1371/journal.ppat.1007398 10.1038/nature02343 10.1073/pnas.1013426108 10.1128/JVI.02496-15 10.1038/s41564-017-0017-2 10.1128/JVI.00206-16 10.1073/pnas.162299499 |
ContentType | Journal Article |
Copyright | Published by Elsevier Inc. |
Copyright_xml | – notice: Published by Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2019.05.040 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 3283.e6 |
ExternalDocumentID | oai_doaj_org_article_680b7a0b93c5469cbbde7dcdbb3d4d2d PMC8666140 31189110 10_1016_j_celrep_2019_05_040 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI137011 – fundername: NIDA NIH HHS grantid: DP1 DA046108 – fundername: Intramural NIH HHS grantid: ZIA AI001125 – fundername: NIAID NIH HHS grantid: R01 AI111809 – fundername: NIDA NIH HHS grantid: DP1 DA034990 |
GroupedDBID | 0R~ 4.4 457 53G 5VS AAEDT AAEDW AAIKJ AAKRW AALRI AAMRU AAXUO AAYWO AAYXX ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV CITATION DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 HZ~ IPNFZ IXB KQ8 M41 M48 O-L O9- OK1 RIG ROL SSZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c474t-f83c359d517ddf0d458f9b10ce759a14ec167b9b04c32b4eeae86607c8c7ccbf3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:25:23 EDT 2025 Thu Aug 21 18:17:12 EDT 2025 Thu Jul 10 17:35:32 EDT 2025 Mon Jul 21 06:02:53 EDT 2025 Thu Apr 24 23:12:46 EDT 2025 Tue Jul 01 02:59:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | TRIM5α retrovirus restriction factor interferon interferon stimulated genes flavivirus tick-borne encephalitis virus |
Language | English |
License | Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-f83c359d517ddf0d458f9b10ce759a14ec167b9b04c32b4eeae86607c8c7ccbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AUTHOR CONTRIBUTIONS Conceptualization, A.I.C. and S.M.B.; Methodology, A.I.C., N.R.M., F.B., S.L.S., and S.M.B.; Investigation, A.I.C., N.R.M., K.L.M., R.M.B., V.R.M., O.M.-S., S.J.R., F.B., G.L.S., K.J.L., V.N., B.H.Y., R.T.T., K.K., and S.M.B.; Data Curation, A.I.C., N.R.M., F.B., S.M.B.; Writing – Original Draft, A.I.C. and S.M.B.; Writing – Review & Editing, A.I.C., N.R.M., R.T.T., F.B., S.L.S., and S.M.B.; Resources, J.L., V.M.H., R.T.T., S.L.S., and S.M.B.; Visualization, A.I.C., N.R.M., V.R.M., K.L.M., O.M.-S., S.J.R., G.L.S., K.J.L., V.N., S.L.S., and S.M.B.; Supervision, J.L., R.T.T., S.L.S., and S.M.B. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.celrep.2019.05.040 |
PMID | 31189110 |
PQID | 2268948500 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_680b7a0b93c5469cbbde7dcdbb3d4d2d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8666140 proquest_miscellaneous_2268948500 pubmed_primary_31189110 crossref_citationtrail_10_1016_j_celrep_2019_05_040 crossref_primary_10_1016_j_celrep_2019_05_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-11 |
PublicationDateYYYYMMDD | 2019-06-11 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Kutluay (10.1016/j.celrep.2019.05.040_bib23) 2013; 9 O’Connor (10.1016/j.celrep.2019.05.040_bib37) 2010; 84 Westaway (10.1016/j.celrep.2019.05.040_bib56) 1997; 71 Berger (10.1016/j.celrep.2019.05.040_bib2) 2011; 6 Merindol (10.1016/j.celrep.2019.05.040_bib36) 2018; 14 Pertel (10.1016/j.celrep.2019.05.040_bib38) 2011; 472 Chiramel (10.1016/j.celrep.2019.05.040_bib7) 2016; 214 Qing (10.1016/j.celrep.2019.05.040_bib39) 2009; 53 Chu (10.1016/j.celrep.2019.05.040_bib8) 1985; 140 Davis (10.1016/j.celrep.2019.05.040_bib10) 2006; 80 Tissot (10.1016/j.celrep.2019.05.040_bib52) 1995; 270 Kaul (10.1016/j.celrep.2019.05.040_bib20) 2009; 5 Luban (10.1016/j.celrep.2019.05.040_bib29) 1993; 73 Luo (10.1016/j.celrep.2019.05.040_bib31) 2015; 118 Stremlau (10.1016/j.celrep.2019.05.040_bib49) 2006; 103 McCarthy (10.1016/j.celrep.2019.05.040_bib34) 2015; 11 Brady (10.1016/j.celrep.2019.05.040_bib5) 2012; 6 Zhang (10.1016/j.celrep.2019.05.040_bib59) 2006; 353 Luban (10.1016/j.celrep.2019.05.040_bib27) 2007; 81 Gamble (10.1016/j.celrep.2019.05.040_bib13) 1996; 87 Kaiser (10.1016/j.celrep.2019.05.040_bib19) 2007; 316 Campbell (10.1016/j.celrep.2019.05.040_bib6) 2015; 90 Lascano (10.1016/j.celrep.2019.05.040_bib24) 2015; 90 Stabell (10.1016/j.celrep.2019.05.040_bib46) 2018; 7 Kazimírová (10.1016/j.celrep.2019.05.040_bib21) 2017; 7 Aguirre (10.1016/j.celrep.2019.05.040_bib1) 2012; 8 Diaz-Griffero (10.1016/j.celrep.2019.05.040_bib11) 2006; 349 Ganser-Pornillos (10.1016/j.celrep.2019.05.040_bib14) 2011; 108 Best (10.1016/j.celrep.2019.05.040_bib4) 2005; 79 Vasilakis (10.1016/j.celrep.2019.05.040_bib53) 2017; 22 Mandell (10.1016/j.celrep.2019.05.040_bib33) 2014; 10 Sawyer (10.1016/j.celrep.2019.05.040_bib42) 2005; 102 Tareen (10.1016/j.celrep.2019.05.040_bib50) 2009; 385 Vidotto (10.1016/j.celrep.2019.05.040_bib55) 2017; 16 Versteeg (10.1016/j.celrep.2019.05.040_bib54) 2010; 13 Wu (10.1016/j.celrep.2019.05.040_bib57) 2013; 9 Yu (10.1016/j.celrep.2019.05.040_bib58) 2012; 8 Merindol (10.1016/j.celrep.2019.05.040_bib35) 2015; 13 Stremlau (10.1016/j.celrep.2019.05.040_bib47) 2007; 318 Cowan (10.1016/j.celrep.2019.05.040_bib9) 2002; 99 Fletcher (10.1016/j.celrep.2019.05.040_bib12) 2018; 24 Hatziioannou (10.1016/j.celrep.2019.05.040_bib17) 2006; 314 Ireland (10.1016/j.celrep.2019.05.040_bib18) 2018; 10 Luban (10.1016/j.celrep.2019.05.040_bib28) 2012; 2012 Mandell (10.1016/j.celrep.2019.05.040_bib32) 2014; 30 Sparrer (10.1016/j.celrep.2019.05.040_bib45) 2017; 2 Rajsbaum (10.1016/j.celrep.2019.05.040_bib40) 2014; 426 Taylor (10.1016/j.celrep.2019.05.040_bib51) 2011; 10 Gebhard (10.1016/j.celrep.2019.05.040_bib15) 2016; 90 Kim (10.1016/j.celrep.2019.05.040_bib22) 2019 Lindenbach (10.1016/j.celrep.2019.05.040_bib26) 2007 Stremlau (10.1016/j.celrep.2019.05.040_bib48) 2004; 427 Sayah (10.1016/j.celrep.2019.05.040_bib43) 2004; 430 Simmonds (10.1016/j.celrep.2019.05.040_bib44) 2013; 369 Ribeiro (10.1016/j.celrep.2019.05.040_bib41) 2016; 540 Zhang (10.1016/j.celrep.2019.05.040_bib60) 2016; 535 Han (10.1016/j.celrep.2019.05.040_bib16) 2011; 7 Luo (10.1016/j.celrep.2019.05.040_bib30) 2010; 285 Best (10.1016/j.celrep.2019.05.040_bib3) 2017; 91 Laurent-Rolle (10.1016/j.celrep.2019.05.040_bib25) 2010; 84 |
References_xml | – volume: 7 start-page: 339 year: 2017 ident: 10.1016/j.celrep.2019.05.040_bib21 article-title: Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface publication-title: Front. Cell. Infect. Microbiol. doi: 10.3389/fcimb.2017.00339 – volume: 316 start-page: 1756 year: 2007 ident: 10.1016/j.celrep.2019.05.040_bib19 article-title: Restriction of an extinct retrovirus by the human TRIM5alpha antiviral protein publication-title: Science doi: 10.1126/science.1140579 – volume: 2012 start-page: 426840 year: 2012 ident: 10.1016/j.celrep.2019.05.040_bib28 article-title: TRIM5 and the Regulation of HIV-1 Infectivity publication-title: Mol. Biol. Int. doi: 10.1155/2012/426840 – volume: 285 start-page: 18817 year: 2010 ident: 10.1016/j.celrep.2019.05.040_bib30 article-title: Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.090936 – volume: 10 start-page: 2387 year: 2014 ident: 10.1016/j.celrep.2019.05.040_bib33 article-title: TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction publication-title: Autophagy doi: 10.4161/15548627.2014.984278 – volume: 318 start-page: 1565 year: 2007 ident: 10.1016/j.celrep.2019.05.040_bib47 article-title: GE Prize-winning essay. Why Old World monkeys are resistant to HIV-1 publication-title: Science doi: 10.1126/science.1152905 – volume: 16 start-page: 1542 year: 2017 ident: 10.1016/j.celrep.2019.05.040_bib55 article-title: Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.6b00933 – volume: 118 start-page: 148 year: 2015 ident: 10.1016/j.celrep.2019.05.040_bib31 article-title: The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2015.03.014 – volume: 535 start-page: 164 year: 2016 ident: 10.1016/j.celrep.2019.05.040_bib60 article-title: A CRISPR screen defines a signal peptide processing pathway required by flaviviruses publication-title: Nature doi: 10.1038/nature18625 – volume: 540 start-page: 448 year: 2016 ident: 10.1016/j.celrep.2019.05.040_bib41 article-title: Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets publication-title: Nature doi: 10.1038/nature20567 – volume: 214 start-page: S355 year: 2016 ident: 10.1016/j.celrep.2019.05.040_bib7 article-title: Alisporivir Has Limited Antiviral Effects Against Ebola Virus Strains Makona and Mayinga publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiw241 – volume: 369 start-page: 1 year: 2013 ident: 10.1016/j.celrep.2019.05.040_bib44 article-title: The origin of hepatitis C virus publication-title: Curr. Top. Microbiol. Immunol. – volume: 140 start-page: 68 year: 1985 ident: 10.1016/j.celrep.2019.05.040_bib8 article-title: Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication publication-title: Virology doi: 10.1016/0042-6822(85)90446-5 – volume: 10 start-page: 185 year: 2011 ident: 10.1016/j.celrep.2019.05.040_bib51 article-title: TRIM79α, an interferon-stimulated gene product, restricts tick-borne encephalitis virus replication by degrading the viral RNA polymerase publication-title: Cell Host Microbe doi: 10.1016/j.chom.2011.08.004 – volume: 9 start-page: e1003214 year: 2013 ident: 10.1016/j.celrep.2019.05.040_bib23 article-title: Fates of retroviral core components during unrestricted and TRIM5-restricted infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003214 – volume: 8 start-page: e1002780 year: 2012 ident: 10.1016/j.celrep.2019.05.040_bib58 article-title: Dengue virus targets the adaptor protein MITA to subvert host innate immunity publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002780 – volume: 53 start-page: 3226 year: 2009 ident: 10.1016/j.celrep.2019.05.040_bib39 article-title: Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00189-09 – volume: 430 start-page: 569 year: 2004 ident: 10.1016/j.celrep.2019.05.040_bib43 article-title: Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 publication-title: Nature doi: 10.1038/nature02777 – volume: 385 start-page: 473 year: 2009 ident: 10.1016/j.celrep.2019.05.040_bib50 article-title: An expanded clade of rodent Trim5 genes publication-title: Virology doi: 10.1016/j.virol.2008.12.018 – volume: 6 start-page: 806 year: 2011 ident: 10.1016/j.celrep.2019.05.040_bib2 article-title: A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.327 – volume: 6 start-page: e1760 year: 2012 ident: 10.1016/j.celrep.2019.05.040_bib5 article-title: Refining the global spatial limits of dengue virus transmission by evidence-based consensus publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001760 – volume: 349 start-page: 300 year: 2006 ident: 10.1016/j.celrep.2019.05.040_bib11 article-title: Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5 publication-title: Virology doi: 10.1016/j.virol.2005.12.040 – volume: 71 start-page: 6650 year: 1997 ident: 10.1016/j.celrep.2019.05.040_bib56 article-title: Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures publication-title: J. Virol. doi: 10.1128/JVI.71.9.6650-6661.1997 – volume: 84 start-page: 3503 year: 2010 ident: 10.1016/j.celrep.2019.05.040_bib25 article-title: The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling publication-title: J. Virol. doi: 10.1128/JVI.01161-09 – volume: 81 start-page: 1054 year: 2007 ident: 10.1016/j.celrep.2019.05.040_bib27 article-title: Cyclophilin A, TRIM5, and resistance to human immunodeficiency virus type 1 infection publication-title: J. Virol. doi: 10.1128/JVI.01519-06 – volume: 7 start-page: e31919 year: 2018 ident: 10.1016/j.celrep.2019.05.040_bib46 article-title: Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir publication-title: eLife doi: 10.7554/eLife.31919 – volume: 79 start-page: 12828 year: 2005 ident: 10.1016/j.celrep.2019.05.040_bib4 article-title: Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist publication-title: J. Virol. doi: 10.1128/JVI.79.20.12828-12839.2005 – volume: 426 start-page: 1265 year: 2014 ident: 10.1016/j.celrep.2019.05.040_bib40 article-title: TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2013.12.005 – volume: 5 start-page: e1000546 year: 2009 ident: 10.1016/j.celrep.2019.05.040_bib20 article-title: Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000546 – volume: 103 start-page: 5514 year: 2006 ident: 10.1016/j.celrep.2019.05.040_bib49 article-title: Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0509996103 – year: 2019 ident: 10.1016/j.celrep.2019.05.040_bib22 article-title: Cyclophilin A protects HIV-1 from restriction by human TRIM5α publication-title: bioRxiv – volume: 11 start-page: e1005085 year: 2015 ident: 10.1016/j.celrep.2019.05.040_bib34 article-title: Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005085 – volume: 102 start-page: 2832 year: 2005 ident: 10.1016/j.celrep.2019.05.040_bib42 article-title: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409853102 – volume: 80 start-page: 1290 year: 2006 ident: 10.1016/j.celrep.2019.05.040_bib10 article-title: West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection publication-title: J. Virol. doi: 10.1128/JVI.80.3.1290-1301.2006 – volume: 84 start-page: 5997 year: 2010 ident: 10.1016/j.celrep.2019.05.040_bib37 article-title: p62/sequestosome-1 associates with and sustains the expression of retroviral restriction factor TRIM5alpha publication-title: J. Virol. doi: 10.1128/JVI.02412-09 – volume: 30 start-page: 394 year: 2014 ident: 10.1016/j.celrep.2019.05.040_bib32 article-title: TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.06.013 – volume: 24 start-page: 761 year: 2018 ident: 10.1016/j.celrep.2019.05.040_bib12 article-title: Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.10.007 – volume: 13 start-page: 448 year: 2015 ident: 10.1016/j.celrep.2019.05.040_bib35 article-title: Restriction Factors in HIV-1 Disease Progression publication-title: Curr. HIV Res. doi: 10.2174/1570162X13666150608104412 – volume: 90 start-page: 1849 year: 2015 ident: 10.1016/j.celrep.2019.05.040_bib6 article-title: TRIM5α-mediated ubiquitin chain conjugation is required for inhibition of HIV-1 reverse transcription and capsid destabilization publication-title: J. Virol. doi: 10.1128/JVI.01948-15 – volume: 9 start-page: e1003577 year: 2013 ident: 10.1016/j.celrep.2019.05.040_bib57 article-title: TRIM5 alpha drives SIVsmm evolution in rhesus macaques publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003577 – volume: 314 start-page: 95 year: 2006 ident: 10.1016/j.celrep.2019.05.040_bib17 article-title: Generation of simian-tropic HIV-1 by restriction factor evasion publication-title: Science doi: 10.1126/science.1130994 – volume: 91 start-page: e01970-16 year: 2017 ident: 10.1016/j.celrep.2019.05.040_bib3 article-title: The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling publication-title: J. Virol. doi: 10.1128/JVI.01970-16 – volume: 270 start-page: 14891 year: 1995 ident: 10.1016/j.celrep.2019.05.040_bib52 article-title: Molecular cloning of a new interferon-induced factor that represses human immunodeficiency virus type 1 long terminal repeat expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.25.14891 – volume: 73 start-page: 1067 year: 1993 ident: 10.1016/j.celrep.2019.05.040_bib29 article-title: Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B publication-title: Cell doi: 10.1016/0092-8674(93)90637-6 – volume: 472 start-page: 361 year: 2011 ident: 10.1016/j.celrep.2019.05.040_bib38 article-title: TRIM5 is an innate immune sensor for the retrovirus capsid lattice publication-title: Nature doi: 10.1038/nature09976 – volume: 8 start-page: e1002934 year: 2012 ident: 10.1016/j.celrep.2019.05.040_bib1 article-title: DENV inhibits type I IFN production in infected cells by cleaving human STING publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002934 – volume: 353 start-page: 396 year: 2006 ident: 10.1016/j.celrep.2019.05.040_bib59 article-title: Antiretroviral potential of human tripartite motif-5 and related proteins publication-title: Virology doi: 10.1016/j.virol.2006.05.035 – volume: 22 start-page: 30 year: 2017 ident: 10.1016/j.celrep.2019.05.040_bib53 article-title: Flavivirus transmission focusing on Zika publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2016.11.007 – volume: 87 start-page: 1285 year: 1996 ident: 10.1016/j.celrep.2019.05.040_bib13 article-title: Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid publication-title: Cell doi: 10.1016/S0092-8674(00)81823-1 – volume: 10 start-page: 291 year: 2018 ident: 10.1016/j.celrep.2019.05.040_bib18 article-title: Unique Francisella Phosphatidylethanolamine Acts as a Potent Anti-Inflammatory Lipid publication-title: J. Innate Immun. doi: 10.1159/000489504 – volume: 13 start-page: 508 year: 2010 ident: 10.1016/j.celrep.2019.05.040_bib54 article-title: Viral tricks to grid-lock the type I interferon system publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2010.05.009 – start-page: 1101 year: 2007 ident: 10.1016/j.celrep.2019.05.040_bib26 article-title: Flaviviridae: the viruses and their replication – volume: 7 start-page: e1002388 year: 2011 ident: 10.1016/j.celrep.2019.05.040_bib16 article-title: Identification of a genomic reservoir for new TRIM genes in primate genomes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002388 – volume: 14 start-page: e1007398 year: 2018 ident: 10.1016/j.celrep.2019.05.040_bib36 article-title: HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1007398 – volume: 427 start-page: 848 year: 2004 ident: 10.1016/j.celrep.2019.05.040_bib48 article-title: The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys publication-title: Nature doi: 10.1038/nature02343 – volume: 108 start-page: 534 year: 2011 ident: 10.1016/j.celrep.2019.05.040_bib14 article-title: Hexagonal assembly of a restricting TRIM5alpha protein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1013426108 – volume: 90 start-page: 308 year: 2015 ident: 10.1016/j.celrep.2019.05.040_bib24 article-title: TRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling publication-title: J. Virol. doi: 10.1128/JVI.02496-15 – volume: 2 start-page: 1543 year: 2017 ident: 10.1016/j.celrep.2019.05.040_bib45 article-title: TRIM23 mediates virus-induced autophagy via activation of TBK1 publication-title: Nat. Microbiol. doi: 10.1038/s41564-017-0017-2 – volume: 90 start-page: 5451 year: 2016 ident: 10.1016/j.celrep.2019.05.040_bib15 article-title: A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production publication-title: J. Virol. doi: 10.1128/JVI.00206-16 – volume: 99 start-page: 11914 year: 2002 ident: 10.1016/j.celrep.2019.05.040_bib9 article-title: Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.162299499 |
SSID | ssj0000601194 |
Score | 2.4722924 |
Snippet | Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity... Tripartite motif-containing protein 5α (TRIM5α) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3269 |
SubjectTerms | Animals Antiviral Restriction Factors Cats Chlorocebus aethiops Dendritic Cells - metabolism Dendritic Cells - virology Flavivirus - pathogenicity Flavivirus - physiology Flavivirus Infections - metabolism Flavivirus Infections - virology HEK293 Cells Humans Peptide Hydrolases - metabolism Proteasome Endopeptidase Complex - metabolism Protein Binding Proteolysis Substrate Specificity Tripartite Motif Proteins - metabolism Ubiquitin-Protein Ligases - metabolism Ubiquitination Vero Cells Viral Proteins - metabolism Virus Replication |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9N1N2qBCr6aSJVn2sY8saSGlhE3JTUgjmW7Zess-AvlZ-SP5TZ2x1stuKeTSo_WwxMzI88kafcPY20CcVTqpwpjWFxpSKHwEWUjj2yAaQMXT5eSzr9Xphf5yaS53Un1RTFimB86Ce1fVIlgvQqPA4FYOQojJRoghqKhjGenriz5vZzOVv8HEZUZHymVJMVultsO9uT64C9JskYiuUjY9cSf9-9jxSz19_78w59-hkzu-aPyIPdyASP4-T_4xu5e6J-x-Tit5_ZTFyfnnM3N7w88TZeWA1ZKPZ_5qejVdrJdYuD2y5uGaT_pQcHRgHKEg_z7F4fg3Im9A98YR0Q4P819Y8YmoJXIWpmfsYnwy-XhabLIpFKCtXhVtrUCZJhppY2xF1KZumyAFJGsaL3UCWdnQBKFBlUGn5FNdVcJCDRYgtOo5O-jmXXrJeAyAMKQuKdha-wrfEj12t2WJakEAOGJqkKWDDdU4ZbyYuSGm7KfLGnCkASeMQw2MWLHt9TtTbdzR_gOpaduWiLL7AjQftzEfd5f5jNibQckOFxadlvguzddLh7i0JuocgQO9yErfDqVwW4ZeAmvsnjnszWW_ppv-6Mm7UaaIiMTh_5j8EXtA8qDINSlfsYPVYp1eI0ZaheN-OfwBadAUfQ priority: 102 providerName: Directory of Open Access Journals |
Title | TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31189110 https://www.proquest.com/docview/2268948500 https://pubmed.ncbi.nlm.nih.gov/PMC8666140 https://doaj.org/article/680b7a0b93c5469cbbde7dcdbb3d4d2d |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bjtMwELVWi5B4Qdwpl5WReA2yEztOHhDiVi1IRWjVon2z7LHDFpUU0nZFP4sf4ZuYyaVQtAjxGN_j8WSO4_EZxh574qxSMUu0rlyiIPrEBZCJ1K7yogQUPF1OnrzLj2fq7ak-PWBDzNZ-AlcXbu0ontSsWTz59nX7DBX-6S9fLYiLJhL7pCxbHk6Fm_hLaJsMqeqkB_zdt5k4zuioOU3JlytVZrhP95eG9uxVS-t_ERb906XyNxs1vsau9uCSP-9Ww3V2EOsb7HIXbnJ7k4XpyZuJ_vGdn0SK1gHrFR8v3Pn8fN5sVpi4O8rmfsunrYs4GjaOEJF_mGN3_D2ROqDZ44h0h4flZ8x4RZQTXXSmW2w2fj19eZz0URYSUEatk6rIINNl0NKEUImgdFGVXgqIRpdOqggyN770QkGWehWji0WeCwMFGABfZbfZYb2s413GgweEJ0VKTtjK5dhKcFjdpGnwHoHhiGXDXFroKcgpEsbCDr5mn2wnAUsSsEJblMCIJbtaXzoKjn-Uf0Fi2pUlAu02Ydl8tL0-2rwQ3jjhywy0ykvwPkQTAMeZBRXSMGKPBiFbVDg6RXF1XG5WFvFqQZQ6Aju60wl911WG2zW0Hphj9pbD3lj2c-r5WUvqjXOKSEnc-8-Xvc-u0BM5r0n5gB2um018iDBp7Y_a3wtH7fr_CR-BFVM |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIM5%CE%B1+Restricts+Flavivirus+Replication+by+Targeting+the+Viral+Protease+for+Proteasomal+Degradation&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Chiramel%2C+Abhilash+I.&rft.au=Meyerson%2C+Nicholas+R.&rft.au=McNally%2C+Kristin+L.&rft.au=Broeckel%2C+Rebecca+M.&rft.date=2019-06-11&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=27&rft.issue=11&rft.spage=3269&rft.epage=3283.e6&rft_id=info:doi/10.1016%2Fj.celrep.2019.05.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2019_05_040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |