BEHRT: Transformer for Electronic Health Records
Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of earl...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; p. 7155 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.04.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (including deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for electronic health records (EHR), capable of simultaneously predicting the likelihood of 301 conditions in one’s future visits. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking improvement of 8.0–13.2% (in terms of average precision scores for different tasks), over the existing state-of-the-art deep EHR models. In addition to its scalability and superior accuracy, BEHRT enables personalised interpretation of its predictions; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to further improve the accuracy of its predictions; its (pre-)training results in disease and patient representations can be useful for future studies (i.e., transfer learning). |
---|---|
AbstractList | Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (including deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for electronic health records (EHR), capable of simultaneously predicting the likelihood of 301 conditions in one’s future visits. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking improvement of 8.0–13.2% (in terms of average precision scores for different tasks), over the existing state-of-the-art deep EHR models. In addition to its scalability and superior accuracy, BEHRT enables personalised interpretation of its predictions; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to further improve the accuracy of its predictions; its (pre-)training results in disease and patient representations can be useful for future studies (i.e., transfer learning). Abstract Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (including deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for electronic health records (EHR), capable of simultaneously predicting the likelihood of 301 conditions in one’s future visits. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking improvement of 8.0–13.2% (in terms of average precision scores for different tasks), over the existing state-of-the-art deep EHR models. In addition to its scalability and superior accuracy, BEHRT enables personalised interpretation of its predictions; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to further improve the accuracy of its predictions; its (pre-)training results in disease and patient representations can be useful for future studies (i.e., transfer learning). |
ArticleNumber | 7155 |
Author | Canoy, Dexter Rao, Shishir Ramakrishnan, Rema Solares, José Roberto Ayala Hassaine, Abdelaali Rahimi, Kazem Salimi-Khorshidi, Gholamreza Zhu, Yajie Li, Yikuan |
Author_xml | – sequence: 1 givenname: Yikuan surname: Li fullname: Li, Yikuan organization: Deep Medicine, Oxford Martin School, University of Oxford – sequence: 2 givenname: Shishir orcidid: 0000-0001-7331-9416 surname: Rao fullname: Rao, Shishir email: shishir.rao@stcatz.ox.ac.uk organization: Deep Medicine, Oxford Martin School, University of Oxford – sequence: 3 givenname: José Roberto Ayala surname: Solares fullname: Solares, José Roberto Ayala organization: Deep Medicine, Oxford Martin School, University of Oxford – sequence: 4 givenname: Abdelaali surname: Hassaine fullname: Hassaine, Abdelaali organization: Deep Medicine, Oxford Martin School, University of Oxford – sequence: 5 givenname: Rema surname: Ramakrishnan fullname: Ramakrishnan, Rema organization: Deep Medicine, Oxford Martin School, University of Oxford – sequence: 6 givenname: Dexter orcidid: 0000-0003-4493-9901 surname: Canoy fullname: Canoy, Dexter organization: Deep Medicine, Oxford Martin School, University of Oxford – sequence: 7 givenname: Yajie orcidid: 0000-0003-2490-9609 surname: Zhu fullname: Zhu, Yajie organization: Deep Medicine, Oxford Martin School, University of Oxford – sequence: 8 givenname: Kazem surname: Rahimi fullname: Rahimi, Kazem organization: Deep Medicine, Oxford Martin School, University of Oxford – sequence: 9 givenname: Gholamreza orcidid: 0000-0002-4166-2858 surname: Salimi-Khorshidi fullname: Salimi-Khorshidi, Gholamreza organization: Deep Medicine, Oxford Martin School, University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32346050$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVIaT7_QA7F0EsvTkcjybZ6KKRhkw0EAmF7FrI8Thy8Uip5C_vvq2Tz1Rwylxl4n3ml4d1j2z54YuyIwzEH0XxPkivdlIBQVqgRy_UW20WQqkSBuP1m3mGHKd1BLoVacv2Z7QgUsgIFuwx-zebXix_FIlqf-hCXFIvcitlIborBD66Ykx2n2-KaXIhdOmCfejsmOnzq--z32WxxOi8vr84vTk8uSydrOZV9LQRJ2eoaoRN9Q7qudQvAedsB6JZUloRuEJVwriPZVqCxdxZaa7FBsc9-bnzvV-2SOkd-inY093FY2rg2wQ7mf8UPt-Ym_DU1bzQKng2-PRnE8GdFaTLLITkaR-sprJJBoSvBgQNk9Os79C6sos_nPVBKVShVkyncUC6GlCL1L5_hYB4yMZtMTM7EPGZi1nnpy9szXlaeE8iA2AApS_6G4uvbH9j-A-6Kl6A |
CitedBy_id | crossref_primary_10_3389_frai_2023_1287541 crossref_primary_10_1080_02813432_2024_2372297 crossref_primary_10_2196_18418 crossref_primary_10_1093_jamia_ocab043 crossref_primary_10_1038_s43856_024_00529_4 crossref_primary_10_2196_51240 crossref_primary_10_2196_52730 crossref_primary_10_3390_jpm14010094 crossref_primary_10_1038_s41562_024_01909_5 crossref_primary_10_1016_j_heliyon_2024_e26772 crossref_primary_10_1109_TBME_2023_3243311 crossref_primary_10_1109_JBHI_2023_3327951 crossref_primary_10_3390_ohbm3040007 crossref_primary_10_1136_bmjopen_2023_072884 crossref_primary_10_1016_j_drudis_2020_12_013 crossref_primary_10_1109_TKDE_2023_3310909 crossref_primary_10_14778_3574245_3574273 crossref_primary_10_23919_cje_2023_00_181 crossref_primary_10_3390_jcm10040766 crossref_primary_10_1109_ACCESS_2020_3037710 crossref_primary_10_1016_j_jbi_2020_103531 crossref_primary_10_1016_j_artmed_2024_102900 crossref_primary_10_1109_JBHI_2024_3390419 crossref_primary_10_1016_j_cosrev_2024_100632 crossref_primary_10_1055_s_0041_1726522 crossref_primary_10_1038_s41746_023_00875_y crossref_primary_10_1136_heartjnl_2023_322431 crossref_primary_10_1016_j_patter_2023_100830 crossref_primary_10_3389_fonc_2021_747250 crossref_primary_10_1016_j_patter_2024_100973 crossref_primary_10_1145_3665250 crossref_primary_10_1038_s41746_024_01070_3 crossref_primary_10_1093_jamiaopen_ooab064 crossref_primary_10_1093_jamiaopen_ooad086 crossref_primary_10_3390_ai4010004 crossref_primary_10_1007_s10916_024_02043_5 crossref_primary_10_2196_40755 crossref_primary_10_1007_s11633_022_1382_8 crossref_primary_10_2196_29812 crossref_primary_10_1109_JBHI_2023_3316750 crossref_primary_10_3389_fdgth_2023_1161098 crossref_primary_10_1016_j_jbi_2023_104417 crossref_primary_10_1016_j_jbi_2023_104418 crossref_primary_10_1093_jamia_ocad168 crossref_primary_10_1109_JBHI_2022_3217810 crossref_primary_10_3390_app13084812 crossref_primary_10_1109_TNNLS_2022_3183864 crossref_primary_10_2196_53761 crossref_primary_10_1016_j_patter_2021_100337 crossref_primary_10_1148_ryai_210114 crossref_primary_10_1186_s12859_020_03554_x crossref_primary_10_1038_s41591_024_03074_8 crossref_primary_10_2215_CJN_0000000000000085 crossref_primary_10_1371_journal_pdig_0000014 crossref_primary_10_1038_s41551_023_01045_x crossref_primary_10_1038_s41551_022_00898_y crossref_primary_10_2196_41775 crossref_primary_10_1038_s41598_022_17953_y crossref_primary_10_1016_j_aohep_2024_101528 crossref_primary_10_1161_HYPERTENSIONAHA_122_20489 crossref_primary_10_3748_wjg_v27_i26_4088 crossref_primary_10_1016_j_knosys_2023_111160 crossref_primary_10_1016_j_compbiomed_2023_107876 crossref_primary_10_2196_25113 crossref_primary_10_1016_j_ijmedinf_2024_105384 crossref_primary_10_1109_ACCESS_2023_3296261 crossref_primary_10_1002_ana_26584 crossref_primary_10_3390_jpm13071070 crossref_primary_10_1109_JBHI_2023_3344765 crossref_primary_10_3390_app122211709 crossref_primary_10_1016_j_jbi_2021_103980 crossref_primary_10_1109_RBME_2023_3324264 crossref_primary_10_3389_fdgth_2022_1029191 crossref_primary_10_18287_2412_6179_CO_793 crossref_primary_10_1038_s41598_022_23011_4 crossref_primary_10_1109_JBHI_2022_3224727 crossref_primary_10_1109_ACCESS_2022_3195212 crossref_primary_10_1016_j_mad_2020_111325 crossref_primary_10_1017_neu_2021_22 crossref_primary_10_2196_32245 crossref_primary_10_1007_s11886_022_01706_4 crossref_primary_10_1007_s11899_023_00716_5 crossref_primary_10_1109_TBME_2023_3331305 crossref_primary_10_1109_JBHI_2023_3321132 crossref_primary_10_1093_bioadv_vbad001 crossref_primary_10_1038_s41551_022_00914_1 crossref_primary_10_1016_j_xcrm_2023_101379 crossref_primary_10_1007_s10278_024_01086_x crossref_primary_10_1145_3531326 crossref_primary_10_1016_j_isci_2024_109334 crossref_primary_10_3390_info14030187 crossref_primary_10_1016_j_jbi_2022_104027 crossref_primary_10_1038_s41514_024_00148_2 crossref_primary_10_1016_j_patter_2023_100906 crossref_primary_10_1109_JBHI_2022_3148820 crossref_primary_10_1109_JBHI_2023_3324191 crossref_primary_10_1016_j_smhl_2024_100478 crossref_primary_10_1093_jamia_ocae091 crossref_primary_10_1038_s41598_023_30657_1 crossref_primary_10_1109_TPAMI_2023_3275156 crossref_primary_10_1177_17455065211046132 crossref_primary_10_1038_s41467_023_43715_z crossref_primary_10_1093_ehjdh_ztad033 crossref_primary_10_1093_eurheartj_ehad535 crossref_primary_10_1093_jamia_ocad085 crossref_primary_10_1016_j_hfc_2021_11_005 crossref_primary_10_1109_JTEHM_2023_3276943 crossref_primary_10_3390_healthcare11182532 crossref_primary_10_1016_j_xcrm_2022_100869 crossref_primary_10_1093_ehjdh_ztac061 crossref_primary_10_3390_jpm13060951 crossref_primary_10_1002_art_42296 crossref_primary_10_1016_j_jpainsymman_2024_05_015 crossref_primary_10_1109_TKDE_2021_3052992 crossref_primary_10_1016_j_artmed_2022_102440 crossref_primary_10_1038_s43588_023_00573_5 crossref_primary_10_1016_j_jbi_2020_103671 crossref_primary_10_1136_bmjopen_2021_052887 crossref_primary_10_1093_jamia_ocad190 crossref_primary_10_1002_jcc_27315 crossref_primary_10_1200_CCI_23_00009 crossref_primary_10_1093_jamia_ocae030 crossref_primary_10_1016_j_jbi_2021_103726 crossref_primary_10_1109_RBME_2022_3210270 |
Cites_doi | 10.1136/bmj.h4865 10.1016/S2589-7500(19)30012-3 10.1109/JBHI.2017.2767063 10.1038/s41551-018-0195-0 10.1016/j.jbi.2019.103337 10.1093/ije/dyv098 10.1109/JBHI.2016.2633963 10.1016/S0140-6736(97)04248-7 10.1038/s41591-018-0300-7 10.1046/j.1464-410X.2002.02833.x 10.1038/s41591-018-0316-z 10.1371/journal.pmed.1002695 10.1016/S0925-2312(03)00433-8 10.1016/j.jbi.2018.10.005 10.1038/s41591-019-0447-x 10.1017/ATSIP.2019.12 10.1109/BIBM.2014.6999219 10.1007/978-3-319-31750-2_3 10.1016/j.jbi.2015.01.012 10.3115/v1/D14-1179 10.1038/srep26094 10.1016/j.patrec.2005.10.010 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1038/s41598-020-62922-y |
DatabaseName | Springer Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 7155 |
ExternalDocumentID | 10_1038_s41598_020_62922_y 32346050 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: DH | National Institute for Health Research (NIHR) funderid: https://doi.org/10.13039/501100000272 – fundername: Oxford University | Oxford Martin School, University of Oxford funderid: https://doi.org/10.13039/501100004211 – fundername: British Heart Foundation grantid: PG/18/65/33872 – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-f733e44b9720d3f8e9779b0011bd009be5b973982253ccde4b6092fca0baa2823 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Sep 17 21:26:38 EDT 2024 Fri Oct 25 21:52:13 EDT 2024 Sat Nov 02 09:32:00 EDT 2024 Fri Aug 23 00:45:18 EDT 2024 Wed Oct 16 00:42:15 EDT 2024 Fri Oct 11 20:45:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-f733e44b9720d3f8e9779b0011bd009be5b973982253ccde4b6092fca0baa2823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7331-9416 0000-0003-4493-9901 0000-0002-4166-2858 0000-0003-2490-9609 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189231/ |
PMID | 32346050 |
PQID | 2395562458 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7189231 proquest_miscellaneous_2396310100 proquest_journals_2395562458 crossref_primary_10_1038_s41598_020_62922_y pubmed_primary_32346050 springer_journals_10_1038_s41598_020_62922_y |
PublicationCentury | 2000 |
PublicationDate | 2020-04-28 |
PublicationDateYYYYMMDD | 2020-04-28 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Cao, Chua, Chong, Lee, Gu (CR13) 2003; 55 CR18 Maaten, Hinton (CR39) 2008; 9 CR17 Poplin (CR2) 2018; 2 CR16 CR38 Shickel, Tighe, Bihorac, Rashidi (CR5) 2017; 22 CR15 CR37 Walley, Mantgani (CR20) 1997; 350 CR35 CR12 CR34 CR11 CR33 CR10 CR32 CR31 CR30 Solares (CR9) 2020; 101 Rahimian (CR8) 2018; 15 Velupillai (CR29) 2018; 88 CR6 Topol (CR3) 2019; 25 Emdin (CR22) 2016; 46 CR7 CR28 CR26 Lee, Patel, Emberton (CR23) 2002; 90 CR25 Ardila (CR1) 2019; 25 Zhu (CR36) 2004; 2 CR41 CR40 Nguyen, Tran, Wickramasinghe, Venkatesh (CR14) 2016; 21 Mohseni, Kiran, Khorshidi, Rahimi (CR24) 2017; 38 Esteva (CR4) 2019; 25 Herrett (CR19) 2015; 44 Emdin (CR21) 2015; 351 Kuan (CR27) 2019; 1 P Nguyen (62922_CR14) 2016; 21 L Cao (62922_CR13) 2003; 55 62922_CR6 F Lee (62922_CR23) 2002; 90 62922_CR7 CA Emdin (62922_CR22) 2016; 46 62922_CR41 B Shickel (62922_CR5) 2017; 22 CA Emdin (62922_CR21) 2015; 351 62922_CR40 V Kuan (62922_CR27) 2019; 1 62922_CR28 62922_CR25 62922_CR26 M Zhu (62922_CR36) 2004; 2 JRA Solares (62922_CR9) 2020; 101 A Esteva (62922_CR4) 2019; 25 T Walley (62922_CR20) 1997; 350 E Herrett (62922_CR19) 2015; 44 F Rahimian (62922_CR8) 2018; 15 62922_CR30 62922_CR31 H Mohseni (62922_CR24) 2017; 38 62922_CR12 62922_CR34 62922_CR35 62922_CR10 62922_CR32 62922_CR11 62922_CR33 62922_CR16 62922_CR38 R Poplin (62922_CR2) 2018; 2 62922_CR17 62922_CR15 62922_CR37 S Velupillai (62922_CR29) 2018; 88 62922_CR18 D Ardila (62922_CR1) 2019; 25 EJ Topol (62922_CR3) 2019; 25 LVD Maaten (62922_CR39) 2008; 9 |
References_xml | – ident: CR18 – volume: 351 start-page: h4865 year: 2015 ident: CR21 article-title: Usual blood pressure, peripheral arterial disease, and vascular risk: cohort study of 4.2 million adults publication-title: Bmj doi: 10.1136/bmj.h4865 contributor: fullname: Emdin – volume: 1 start-page: e63 year: 2019 end-page: e77 ident: CR27 article-title: Articles A chronological map of 308 physical and mental health conditions from 4 million individuals in the English National Health Service publication-title: The Lancet Digit. Heal. doi: 10.1016/S2589-7500(19)30012-3 contributor: fullname: Kuan – ident: CR16 – ident: CR37 – ident: CR12 – ident: CR30 – volume: 22 start-page: 1589 year: 2017 end-page: 1604 ident: CR5 article-title: Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis publication-title: IEEE journal biomedical health informatics doi: 10.1109/JBHI.2017.2767063 contributor: fullname: Rashidi – ident: CR10 – volume: 2 start-page: 158 year: 2018 ident: CR2 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 contributor: fullname: Poplin – ident: CR33 – volume: 101 start-page: 103337 year: 2020 ident: CR9 article-title: Deep learning for electronic health records: A comparative review of multiple deep neural architectures publication-title: J. Biomed. Informatics doi: 10.1016/j.jbi.2019.103337 contributor: fullname: Solares – volume: 44 start-page: 827 year: 2015 end-page: 836 ident: CR19 article-title: Data Resource Profile: Clinical Practice Research Datalink (CPRD) publication-title: Int. journal epidemiology doi: 10.1093/ije/dyv098 contributor: fullname: Herrett – ident: CR35 – ident: CR6 – volume: 46 start-page: 162 year: 2016 end-page: 172 ident: CR22 article-title: Usual blood pressure, atrial fibrillation and vascular risk: evidence from 4.3 million adults publication-title: Int. journal epidemiology contributor: fullname: Emdin – ident: CR40 – ident: CR25 – volume: 21 start-page: 22 year: 2016 end-page: 30 ident: CR14 article-title: Deepr: A Convolutional Net for Medical Records publication-title: IEEE journal biomedical health informatics doi: 10.1109/JBHI.2016.2633963 contributor: fullname: Venkatesh – volume: 350 start-page: 1097 year: 1997 end-page: 1099 ident: CR20 article-title: The UK General Practice Research Database publication-title: The Lancet doi: 10.1016/S0140-6736(97)04248-7 contributor: fullname: Mantgani – volume: 38 start-page: 326 year: 2017 end-page: 333 ident: CR24 article-title: Influenza vaccination and risk of hospitalization in patients with heart failure: a self-controlled case series study publication-title: Eur. heart journal contributor: fullname: Rahimi – volume: 2 start-page: 30 year: 2004 ident: CR36 article-title: Recall, precision and average precision publication-title: Dep. Stat. Actuar. Sci. Univ. Waterloo, Waterloo contributor: fullname: Zhu – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: CR3 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. medicine doi: 10.1038/s41591-018-0300-7 contributor: fullname: Topol – volume: 90 start-page: 1 year: 2002 end-page: 6 ident: CR23 article-title: The ‘Top 10’ Urological Procedures: A Study of Hospital Episodes Statistics 1998–99 publication-title: BJU international doi: 10.1046/j.1464-410X.2002.02833.x contributor: fullname: Emberton – ident: CR15 – ident: CR38 – volume: 25 start-page: 24 year: 2019 end-page: 29 ident: CR4 article-title: A guide to deep learning in healthcare publication-title: Nat. medicine doi: 10.1038/s41591-018-0316-z contributor: fullname: Esteva – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: CR39 article-title: Visualizing Data using t-SNE publication-title: J. machine learning research contributor: fullname: Hinton – ident: CR17 – ident: CR31 – volume: 15 start-page: e1002695 year: 2018 ident: CR8 article-title: Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records publication-title: PLoS medicine doi: 10.1371/journal.pmed.1002695 contributor: fullname: Rahimian – ident: CR11 – ident: CR32 – ident: CR34 – ident: CR7 – volume: 55 start-page: 321 year: 2003 end-page: 336 ident: CR13 article-title: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00433-8 contributor: fullname: Gu – ident: CR28 – ident: CR41 – ident: CR26 – volume: 88 start-page: 11 year: 2018 end-page: 19 ident: CR29 article-title: Using clinical Natural Language Processing for health outcomes research: Overview and actionable suggestions for future advances publication-title: J. biomedical informatics doi: 10.1016/j.jbi.2018.10.005 contributor: fullname: Velupillai – volume: 25 start-page: 954 year: 2019 ident: CR1 article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography publication-title: Nat. medicine doi: 10.1038/s41591-019-0447-x contributor: fullname: Ardila – ident: 62922_CR38 doi: 10.1017/ATSIP.2019.12 – ident: 62922_CR10 doi: 10.1109/BIBM.2014.6999219 – ident: 62922_CR37 – ident: 62922_CR33 – volume: 15 start-page: e1002695 year: 2018 ident: 62922_CR8 publication-title: PLoS medicine doi: 10.1371/journal.pmed.1002695 contributor: fullname: F Rahimian – volume: 2 start-page: 158 year: 2018 ident: 62922_CR2 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 contributor: fullname: R Poplin – ident: 62922_CR31 – ident: 62922_CR16 doi: 10.1007/978-3-319-31750-2_3 – ident: 62922_CR6 – ident: 62922_CR11 doi: 10.1016/j.jbi.2015.01.012 – volume: 88 start-page: 11 year: 2018 ident: 62922_CR29 publication-title: J. biomedical informatics doi: 10.1016/j.jbi.2018.10.005 contributor: fullname: S Velupillai – volume: 9 start-page: 2579 year: 2008 ident: 62922_CR39 publication-title: J. machine learning research contributor: fullname: LVD Maaten – volume: 22 start-page: 1589 year: 2017 ident: 62922_CR5 publication-title: IEEE journal biomedical health informatics doi: 10.1109/JBHI.2017.2767063 contributor: fullname: B Shickel – volume: 25 start-page: 24 year: 2019 ident: 62922_CR4 publication-title: Nat. medicine doi: 10.1038/s41591-018-0316-z contributor: fullname: A Esteva – ident: 62922_CR25 – volume: 55 start-page: 321 year: 2003 ident: 62922_CR13 publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00433-8 contributor: fullname: L Cao – volume: 1 start-page: e63 year: 2019 ident: 62922_CR27 publication-title: The Lancet Digit. Heal. doi: 10.1016/S2589-7500(19)30012-3 contributor: fullname: V Kuan – volume: 38 start-page: 326 year: 2017 ident: 62922_CR24 publication-title: Eur. heart journal contributor: fullname: H Mohseni – ident: 62922_CR28 doi: 10.3115/v1/D14-1179 – volume: 21 start-page: 22 year: 2016 ident: 62922_CR14 publication-title: IEEE journal biomedical health informatics doi: 10.1109/JBHI.2016.2633963 contributor: fullname: P Nguyen – ident: 62922_CR34 – ident: 62922_CR32 – ident: 62922_CR15 – ident: 62922_CR40 – ident: 62922_CR30 – volume: 44 start-page: 827 year: 2015 ident: 62922_CR19 publication-title: Int. journal epidemiology doi: 10.1093/ije/dyv098 contributor: fullname: E Herrett – ident: 62922_CR17 – volume: 101 start-page: 103337 year: 2020 ident: 62922_CR9 publication-title: J. Biomed. Informatics doi: 10.1016/j.jbi.2019.103337 contributor: fullname: JRA Solares – volume: 350 start-page: 1097 year: 1997 ident: 62922_CR20 publication-title: The Lancet doi: 10.1016/S0140-6736(97)04248-7 contributor: fullname: T Walley – volume: 2 start-page: 30 year: 2004 ident: 62922_CR36 publication-title: Dep. Stat. Actuar. Sci. Univ. Waterloo, Waterloo contributor: fullname: M Zhu – volume: 25 start-page: 44 year: 2019 ident: 62922_CR3 publication-title: Nat. medicine doi: 10.1038/s41591-018-0300-7 contributor: fullname: EJ Topol – ident: 62922_CR12 doi: 10.1038/srep26094 – ident: 62922_CR7 – ident: 62922_CR18 – ident: 62922_CR26 – ident: 62922_CR35 doi: 10.1016/j.patrec.2005.10.010 – volume: 351 start-page: h4865 year: 2015 ident: 62922_CR21 publication-title: Bmj doi: 10.1136/bmj.h4865 contributor: fullname: CA Emdin – ident: 62922_CR41 – volume: 90 start-page: 1 year: 2002 ident: 62922_CR23 publication-title: BJU international doi: 10.1046/j.1464-410X.2002.02833.x contributor: fullname: F Lee – volume: 25 start-page: 954 year: 2019 ident: 62922_CR1 publication-title: Nat. medicine doi: 10.1038/s41591-019-0447-x contributor: fullname: D Ardila – volume: 46 start-page: 162 year: 2016 ident: 62922_CR22 publication-title: Int. journal epidemiology contributor: fullname: CA Emdin |
SSID | ssj0000529419 |
Score | 2.7040129 |
Snippet | Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to... Abstract Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 7155 |
SubjectTerms | 692/308/1426 692/700/459/1748 Algorithms Electronic Health Records Electronic medical records Health care Humanities and Social Sciences Humans Learning algorithms Machine Learning multidisciplinary Science Science (multidisciplinary) Transfer learning |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BERIL4k2goCCxgVXHdhKHBQFqVTEwoFbqFsWPCpa09DH033POqyoIpgxnKfHdxfed7wVwa2SsgijjJDKBIkJzSjImFUlMmEVCK1SrIsv3LeoPxesoHFUXbvMqrbI-E4uD2ky0uyPvMJ6EaKtFKB-nX8RNjXLR1WqExjbsBAyVF_U5HsXNHYuLYokgqWplKJedOdorV1PmfCaWoB-22rRHv0Dm71zJHwHTwg71DmC_ApD-UynxQ9iy-RHsliMlV8dAn7v998GDP6gBqZ35-PC7zbgbv6w88kvHc34Cw1538NIn1VQEokUsFmQcc26FUEnMqOFjaRHBucaGQaAMAiZlQyRx15Yv5FobK1REEzbWGVUZioHxU2jlk9yeg88VM1QmBhH2WMQ2yEKeaPSuteYqo6H04K7mTTotm1-kRdCay7TkZIqcTAtOpisP2jX70upHmKdrsXlw05BRhV1cIsvtZFmsiRBlBpR6cFZyu3kdZ9xFbpESb8ihWeDaY29S8s-Pok02Wl2HXj24ryW2_qy_d3Hx_y4uYY857aGCMNmG1mK2tFcISxbqutC9bz_k3vE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qRfAivq1WieBNo5vdzWMFEZWW4sGDtNBbyG42KEiqfYD9985mk0i1gqccZpNsvpkw3zA7MwBnaRRKL0iYG6SedLlixE1oJF2R-knAlUSzKk75PgW9AX8c-sMGVOOOSgAnS0M7M09qMH67_PyY3-IPf2NLxqOrCTohUyhmAiEqMLiar8AqNY25zFG-ku7bXt9UcE-UtTPLb130T79I5--zkz8SqIVf6m7CRkkonTtrAVvQ0Pk2rNkRk_MdIPed3nP_2ulXBFWPHbw4nXr8jWMrkRwbiE52YdDt9B96bjklwVU85FM3CxnTnEsRUpKyLNLI6EyjQ8-TKRIoqX0UMdOmz2dKpZrLgAiaqYTIBNVC2R4081GuD8BhkqYkEiky7oyH2kt8JhRG20oxmRA_asF5hU38bpthxEUSm0WxRTJGJOMCyXjegnYFX1zpNaZM-Ei5uHnYaS1GkzZ5iiTXo1mxJkDW6RHSgn2Ldv06RpnJ5KIkXNBDvcC0y16U5K8vRdts9MKGzbbgotLY97b-_orDf2zzCNapMSHCXRq1oTkdz_QxcpWpPCkM8AtCzuRb priority: 102 providerName: Scholars Portal – databaseName: Springer Open Access dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagCIkF8SZQUJDYIMKxncRmg6pVxcCAWqmb5VcFS4r6GPrvOeeFQmFgynDOw9-ddN_lfHcI3Vqe6ThVNEptrCNmKI4U4ToSNlEpMxrMqjjl-5oOx-xlkkyqNjm-FqaVv6f8YQEOxheB-SCHCAic1ttox_tgP6ahl_aa_yk-Y8ViUdXF_H5r2_dsEMrNc5E_kqOFzxkcoP2KLIZPpXYP0ZbLj9BuOT5yfYzwc3_4NnoMRzX5dPMQLmG_GW0TllVGYRlkLk7QeNAf9YZRNQEhMixjy2iaUeoY0yIj2NIpd8DWfBPDONYWyJF2CYiob8GXUGOsYzrFgkyNwloB5ISeok4-y905CqkmFnNhgU1PWeZilVBhIJI2hmqFEx6guxob-Vk2upBFgppyWSIpAUlZICnXAerW8MnK6BeSUJEAnWL-YTeNGMzV5yBU7marYk0KjDLGOEBnJdrN6yihPksLkqylh2aBb4XdluQf70VLbPCwnqkG6L7W2Pdn_b2Li_8tv0R7xFsTZhHhXdRZzlfuCijJUl8XtvgFIivYXQ priority: 102 providerName: Springer Nature |
Title | BEHRT: Transformer for Electronic Health Records |
URI | https://link.springer.com/article/10.1038/s41598-020-62922-y https://www.ncbi.nlm.nih.gov/pubmed/32346050 https://www.proquest.com/docview/2395562458 https://search.proquest.com/docview/2396310100 https://pubmed.ncbi.nlm.nih.gov/PMC7189231 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_4geJF_LY6RwVvWpcmaZt40zEZwkTGBruVJs1Q0CpuHvbf-5K20ylevLSUhCZ579fm93gfATjLRaLCOGNBnIcq4JqRIKNCBTKPsphrhbByUb73cXfI70bRaAmiOhfGBe1r9XRZPL9cFk-PLrby7UW36jix1kOvjf9Ty0tay7CMAP1mopcFvankoawSZAgTrQluUjaRzBpKVKLxNduAdUaZdQmSxf3oF8n8HSv5w2Hq9qHbLdisCKR_XU50G5ZMsQNr5ZGSs10gN51uf3DlD2pCat59vPmd-XE3fpl55JeG52QPhredQbsbVKciBJonfBqME8YM50omlORsLAwyOFvYMAxVjoRJmQibmC3LFzGtc8NVTCQd64yoDNVA2T6sFK-FOQSfKZoTIXNk2GOemDCLmNRoXWvNVEYi4cF5LZv0rSx-kTqnNRNpKdQUhZo6oaYzDxq1-NLqQ5iklMkIKRa3LzudNyOErV8iK8zrh-sTI8sMCfHgoJT2fLhaTR4kC3qYd7DlsRdbEDWuTHaFEg8uao19TevvVRz9e6Bj2KAWY4QHVDRgZfr-YU6QsUxVE3E6SpqwetO5f-jjUztuN531j9ceF02H4E8bEO0B |
link.rule.ids | 230,315,730,783,787,867,888,12070,21402,24332,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5B0QouCHZ5hC0QJG5grWM7ibMXtItahaX0gFqpNyt-RMsl3e3j0H-_47yqUsEph7GUeGbi-cZjfwPw2cpUR0nBSWIjTYThlBRMapLZuEiE0ehW9SnfaZLPxc0iXrQbbuv2WGW3JtYLtV0av0d-wXgWY6wWsfx2d0981yhfXW1baDyGJ56Hy3Pnp4u032PxVSwRZe1dGcrlxRrjlb9T5nMmlmEetjuMR0cg8_is5F8F0zoOjV_A8xZAhleNxV_CI1edwknTUnJ3BvR6lP-eXYazDpC6VYiPcNS3uwmbm0dhk3iuX8F8PJp9z0nbFYEYkYoNKVPOnRA6Sxm1vJQOEZwnNowibREwaRejiHtavpgbY53QCc1YaQqqCzQD469hUC0r9xZCrpmlMrOIsEuRuqiIeWYwuzaG64LGMoAvnW7UXUN-oeqiNZeq0aRCTapak2oXwLBTn2p_hLXamy2AT70YXdjXJYrKLbf1mARRZkRpAG8abfev44z7yi1K0gM79AM8PfahpPpzW9NkY9T16DWAr53F9p_171m8-_8sPsLTfPZroiY_pj_P4RnznkQFYXIIg81q694jRNnoD7UfPgDk8uHh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61VFRcEC2vUGiDxI1a69hO7PSCWrqrLSCE0CLtzYofUXvJArsc9t8zzgttUXvKYSwlnpl4vvG8AE6ckibJCk4ylxgiLKekYMqQ3KVFJqxBtaqzfK-z8Z24mKbTNv9p3qZVdmdifVC7mQ135APG8xRttUjVoGzTIm5-js7uH0iYIBUire04jbfwTgo0dKjbcir7-5YQ0RJJ3tbNUK4Gc7Rdob4s-E8sR59suWqbXgHO13mTfwVPa5s02oLNFkzG3xvpf4A3vvoI6814yeU20B_D8e3kWzzpwKl_jPERD_vRN3FThRQ3Tuh8B-5Gw8n5mLQTEogVUixIKTn3QphcMup4qTyiudDkMEmMQ_BkfIokHlr0pdxa54XJaM5KW1BToEgY34W1alb5fYi5YY6q3CHaLoX0SZHy3KKnbS03BU1VBKcdb_R90whD1wFsrnTDSY2c1DUn9TKCw459uv0p5vpFhBEc92RU5xCjKCo_e6rXZIg4E0oj2Gu43b-OMx6iuEiRK3LoF4RW2auU6s_vumU2WuCAZCP42kns5bP-vYuD_-_iC7xHFdRXv64vP8EGC4pEBWHqENYWj0_-CNHKwnyu1fAZh5jmFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BEHRT%3A+Transformer+for+Electronic+Health+Records&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yikuan&rft.au=Rao%2C+Shishir&rft.au=Solares%2C+Jos%C3%A9+Roberto+Ayala&rft.au=Hassaine%2C+Abdelaali&rft.date=2020-04-28&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft.spage=7155&rft.epage=7155&rft_id=info:doi/10.1038%2Fs41598-020-62922-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |