BEHRT: Transformer for Electronic Health Records

Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of earl...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 7155
Main Authors Li, Yikuan, Rao, Shishir, Solares, José Roberto Ayala, Hassaine, Abdelaali, Ramakrishnan, Rema, Canoy, Dexter, Zhu, Yajie, Rahimi, Kazem, Salimi-Khorshidi, Gholamreza
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.04.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (including deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for electronic health records (EHR), capable of simultaneously predicting the likelihood of 301 conditions in one’s future visits. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking improvement of 8.0–13.2% (in terms of average precision scores for different tasks), over the existing state-of-the-art deep EHR models. In addition to its scalability and superior accuracy, BEHRT enables personalised interpretation of its predictions; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to further improve the accuracy of its predictions; its (pre-)training results in disease and patient representations can be useful for future studies (i.e., transfer learning).
AbstractList Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (including deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for electronic health records (EHR), capable of simultaneously predicting the likelihood of 301 conditions in one’s future visits. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking improvement of 8.0–13.2% (in terms of average precision scores for different tasks), over the existing state-of-the-art deep EHR models. In addition to its scalability and superior accuracy, BEHRT enables personalised interpretation of its predictions; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to further improve the accuracy of its predictions; its (pre-)training results in disease and patient representations can be useful for future studies (i.e., transfer learning).
Abstract Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (including deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for electronic health records (EHR), capable of simultaneously predicting the likelihood of 301 conditions in one’s future visits. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking improvement of 8.0–13.2% (in terms of average precision scores for different tasks), over the existing state-of-the-art deep EHR models. In addition to its scalability and superior accuracy, BEHRT enables personalised interpretation of its predictions; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to further improve the accuracy of its predictions; its (pre-)training results in disease and patient representations can be useful for future studies (i.e., transfer learning).
ArticleNumber 7155
Author Canoy, Dexter
Rao, Shishir
Ramakrishnan, Rema
Solares, José Roberto Ayala
Hassaine, Abdelaali
Rahimi, Kazem
Salimi-Khorshidi, Gholamreza
Zhu, Yajie
Li, Yikuan
Author_xml – sequence: 1
  givenname: Yikuan
  surname: Li
  fullname: Li, Yikuan
  organization: Deep Medicine, Oxford Martin School, University of Oxford
– sequence: 2
  givenname: Shishir
  orcidid: 0000-0001-7331-9416
  surname: Rao
  fullname: Rao, Shishir
  email: shishir.rao@stcatz.ox.ac.uk
  organization: Deep Medicine, Oxford Martin School, University of Oxford
– sequence: 3
  givenname: José Roberto Ayala
  surname: Solares
  fullname: Solares, José Roberto Ayala
  organization: Deep Medicine, Oxford Martin School, University of Oxford
– sequence: 4
  givenname: Abdelaali
  surname: Hassaine
  fullname: Hassaine, Abdelaali
  organization: Deep Medicine, Oxford Martin School, University of Oxford
– sequence: 5
  givenname: Rema
  surname: Ramakrishnan
  fullname: Ramakrishnan, Rema
  organization: Deep Medicine, Oxford Martin School, University of Oxford
– sequence: 6
  givenname: Dexter
  orcidid: 0000-0003-4493-9901
  surname: Canoy
  fullname: Canoy, Dexter
  organization: Deep Medicine, Oxford Martin School, University of Oxford
– sequence: 7
  givenname: Yajie
  orcidid: 0000-0003-2490-9609
  surname: Zhu
  fullname: Zhu, Yajie
  organization: Deep Medicine, Oxford Martin School, University of Oxford
– sequence: 8
  givenname: Kazem
  surname: Rahimi
  fullname: Rahimi, Kazem
  organization: Deep Medicine, Oxford Martin School, University of Oxford
– sequence: 9
  givenname: Gholamreza
  orcidid: 0000-0002-4166-2858
  surname: Salimi-Khorshidi
  fullname: Salimi-Khorshidi, Gholamreza
  organization: Deep Medicine, Oxford Martin School, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32346050$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVIaT7_QA7F0EsvTkcjybZ6KKRhkw0EAmF7FrI8Thy8Uip5C_vvq2Tz1Rwylxl4n3ml4d1j2z54YuyIwzEH0XxPkivdlIBQVqgRy_UW20WQqkSBuP1m3mGHKd1BLoVacv2Z7QgUsgIFuwx-zebXix_FIlqf-hCXFIvcitlIborBD66Ykx2n2-KaXIhdOmCfejsmOnzq--z32WxxOi8vr84vTk8uSydrOZV9LQRJ2eoaoRN9Q7qudQvAedsB6JZUloRuEJVwriPZVqCxdxZaa7FBsc9-bnzvV-2SOkd-inY093FY2rg2wQ7mf8UPt-Ym_DU1bzQKng2-PRnE8GdFaTLLITkaR-sprJJBoSvBgQNk9Os79C6sos_nPVBKVShVkyncUC6GlCL1L5_hYB4yMZtMTM7EPGZi1nnpy9szXlaeE8iA2AApS_6G4uvbH9j-A-6Kl6A
CitedBy_id crossref_primary_10_3389_frai_2023_1287541
crossref_primary_10_1080_02813432_2024_2372297
crossref_primary_10_2196_18418
crossref_primary_10_1093_jamia_ocab043
crossref_primary_10_1038_s43856_024_00529_4
crossref_primary_10_2196_51240
crossref_primary_10_2196_52730
crossref_primary_10_3390_jpm14010094
crossref_primary_10_1038_s41562_024_01909_5
crossref_primary_10_1016_j_heliyon_2024_e26772
crossref_primary_10_1109_TBME_2023_3243311
crossref_primary_10_1109_JBHI_2023_3327951
crossref_primary_10_3390_ohbm3040007
crossref_primary_10_1136_bmjopen_2023_072884
crossref_primary_10_1016_j_drudis_2020_12_013
crossref_primary_10_1109_TKDE_2023_3310909
crossref_primary_10_14778_3574245_3574273
crossref_primary_10_23919_cje_2023_00_181
crossref_primary_10_3390_jcm10040766
crossref_primary_10_1109_ACCESS_2020_3037710
crossref_primary_10_1016_j_jbi_2020_103531
crossref_primary_10_1016_j_artmed_2024_102900
crossref_primary_10_1109_JBHI_2024_3390419
crossref_primary_10_1016_j_cosrev_2024_100632
crossref_primary_10_1055_s_0041_1726522
crossref_primary_10_1038_s41746_023_00875_y
crossref_primary_10_1136_heartjnl_2023_322431
crossref_primary_10_1016_j_patter_2023_100830
crossref_primary_10_3389_fonc_2021_747250
crossref_primary_10_1016_j_patter_2024_100973
crossref_primary_10_1145_3665250
crossref_primary_10_1038_s41746_024_01070_3
crossref_primary_10_1093_jamiaopen_ooab064
crossref_primary_10_1093_jamiaopen_ooad086
crossref_primary_10_3390_ai4010004
crossref_primary_10_1007_s10916_024_02043_5
crossref_primary_10_2196_40755
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_2196_29812
crossref_primary_10_1109_JBHI_2023_3316750
crossref_primary_10_3389_fdgth_2023_1161098
crossref_primary_10_1016_j_jbi_2023_104417
crossref_primary_10_1016_j_jbi_2023_104418
crossref_primary_10_1093_jamia_ocad168
crossref_primary_10_1109_JBHI_2022_3217810
crossref_primary_10_3390_app13084812
crossref_primary_10_1109_TNNLS_2022_3183864
crossref_primary_10_2196_53761
crossref_primary_10_1016_j_patter_2021_100337
crossref_primary_10_1148_ryai_210114
crossref_primary_10_1186_s12859_020_03554_x
crossref_primary_10_1038_s41591_024_03074_8
crossref_primary_10_2215_CJN_0000000000000085
crossref_primary_10_1371_journal_pdig_0000014
crossref_primary_10_1038_s41551_023_01045_x
crossref_primary_10_1038_s41551_022_00898_y
crossref_primary_10_2196_41775
crossref_primary_10_1038_s41598_022_17953_y
crossref_primary_10_1016_j_aohep_2024_101528
crossref_primary_10_1161_HYPERTENSIONAHA_122_20489
crossref_primary_10_3748_wjg_v27_i26_4088
crossref_primary_10_1016_j_knosys_2023_111160
crossref_primary_10_1016_j_compbiomed_2023_107876
crossref_primary_10_2196_25113
crossref_primary_10_1016_j_ijmedinf_2024_105384
crossref_primary_10_1109_ACCESS_2023_3296261
crossref_primary_10_1002_ana_26584
crossref_primary_10_3390_jpm13071070
crossref_primary_10_1109_JBHI_2023_3344765
crossref_primary_10_3390_app122211709
crossref_primary_10_1016_j_jbi_2021_103980
crossref_primary_10_1109_RBME_2023_3324264
crossref_primary_10_3389_fdgth_2022_1029191
crossref_primary_10_18287_2412_6179_CO_793
crossref_primary_10_1038_s41598_022_23011_4
crossref_primary_10_1109_JBHI_2022_3224727
crossref_primary_10_1109_ACCESS_2022_3195212
crossref_primary_10_1016_j_mad_2020_111325
crossref_primary_10_1017_neu_2021_22
crossref_primary_10_2196_32245
crossref_primary_10_1007_s11886_022_01706_4
crossref_primary_10_1007_s11899_023_00716_5
crossref_primary_10_1109_TBME_2023_3331305
crossref_primary_10_1109_JBHI_2023_3321132
crossref_primary_10_1093_bioadv_vbad001
crossref_primary_10_1038_s41551_022_00914_1
crossref_primary_10_1016_j_xcrm_2023_101379
crossref_primary_10_1007_s10278_024_01086_x
crossref_primary_10_1145_3531326
crossref_primary_10_1016_j_isci_2024_109334
crossref_primary_10_3390_info14030187
crossref_primary_10_1016_j_jbi_2022_104027
crossref_primary_10_1038_s41514_024_00148_2
crossref_primary_10_1016_j_patter_2023_100906
crossref_primary_10_1109_JBHI_2022_3148820
crossref_primary_10_1109_JBHI_2023_3324191
crossref_primary_10_1016_j_smhl_2024_100478
crossref_primary_10_1093_jamia_ocae091
crossref_primary_10_1038_s41598_023_30657_1
crossref_primary_10_1109_TPAMI_2023_3275156
crossref_primary_10_1177_17455065211046132
crossref_primary_10_1038_s41467_023_43715_z
crossref_primary_10_1093_ehjdh_ztad033
crossref_primary_10_1093_eurheartj_ehad535
crossref_primary_10_1093_jamia_ocad085
crossref_primary_10_1016_j_hfc_2021_11_005
crossref_primary_10_1109_JTEHM_2023_3276943
crossref_primary_10_3390_healthcare11182532
crossref_primary_10_1016_j_xcrm_2022_100869
crossref_primary_10_1093_ehjdh_ztac061
crossref_primary_10_3390_jpm13060951
crossref_primary_10_1002_art_42296
crossref_primary_10_1016_j_jpainsymman_2024_05_015
crossref_primary_10_1109_TKDE_2021_3052992
crossref_primary_10_1016_j_artmed_2022_102440
crossref_primary_10_1038_s43588_023_00573_5
crossref_primary_10_1016_j_jbi_2020_103671
crossref_primary_10_1136_bmjopen_2021_052887
crossref_primary_10_1093_jamia_ocad190
crossref_primary_10_1002_jcc_27315
crossref_primary_10_1200_CCI_23_00009
crossref_primary_10_1093_jamia_ocae030
crossref_primary_10_1016_j_jbi_2021_103726
crossref_primary_10_1109_RBME_2022_3210270
Cites_doi 10.1136/bmj.h4865
10.1016/S2589-7500(19)30012-3
10.1109/JBHI.2017.2767063
10.1038/s41551-018-0195-0
10.1016/j.jbi.2019.103337
10.1093/ije/dyv098
10.1109/JBHI.2016.2633963
10.1016/S0140-6736(97)04248-7
10.1038/s41591-018-0300-7
10.1046/j.1464-410X.2002.02833.x
10.1038/s41591-018-0316-z
10.1371/journal.pmed.1002695
10.1016/S0925-2312(03)00433-8
10.1016/j.jbi.2018.10.005
10.1038/s41591-019-0447-x
10.1017/ATSIP.2019.12
10.1109/BIBM.2014.6999219
10.1007/978-3-319-31750-2_3
10.1016/j.jbi.2015.01.012
10.3115/v1/D14-1179
10.1038/srep26094
10.1016/j.patrec.2005.10.010
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-020-62922-y
DatabaseName Springer Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 7155
ExternalDocumentID 10_1038_s41598_020_62922_y
32346050
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: DH | National Institute for Health Research (NIHR)
  funderid: https://doi.org/10.13039/501100000272
– fundername: Oxford University | Oxford Martin School, University of Oxford
  funderid: https://doi.org/10.13039/501100004211
– fundername: British Heart Foundation
  grantid: PG/18/65/33872
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-f733e44b9720d3f8e9779b0011bd009be5b973982253ccde4b6092fca0baa2823
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 21:26:38 EDT 2024
Fri Oct 25 21:52:13 EDT 2024
Sat Nov 02 09:32:00 EDT 2024
Fri Aug 23 00:45:18 EDT 2024
Wed Oct 16 00:42:15 EDT 2024
Fri Oct 11 20:45:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-f733e44b9720d3f8e9779b0011bd009be5b973982253ccde4b6092fca0baa2823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7331-9416
0000-0003-4493-9901
0000-0002-4166-2858
0000-0003-2490-9609
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7189231/
PMID 32346050
PQID 2395562458
PQPubID 2041939
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7189231
proquest_miscellaneous_2396310100
proquest_journals_2395562458
crossref_primary_10_1038_s41598_020_62922_y
pubmed_primary_32346050
springer_journals_10_1038_s41598_020_62922_y
PublicationCentury 2000
PublicationDate 2020-04-28
PublicationDateYYYYMMDD 2020-04-28
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Cao, Chua, Chong, Lee, Gu (CR13) 2003; 55
CR18
Maaten, Hinton (CR39) 2008; 9
CR17
Poplin (CR2) 2018; 2
CR16
CR38
Shickel, Tighe, Bihorac, Rashidi (CR5) 2017; 22
CR15
CR37
Walley, Mantgani (CR20) 1997; 350
CR35
CR12
CR34
CR11
CR33
CR10
CR32
CR31
CR30
Solares (CR9) 2020; 101
Rahimian (CR8) 2018; 15
Velupillai (CR29) 2018; 88
CR6
Topol (CR3) 2019; 25
Emdin (CR22) 2016; 46
CR7
CR28
CR26
Lee, Patel, Emberton (CR23) 2002; 90
CR25
Ardila (CR1) 2019; 25
Zhu (CR36) 2004; 2
CR41
CR40
Nguyen, Tran, Wickramasinghe, Venkatesh (CR14) 2016; 21
Mohseni, Kiran, Khorshidi, Rahimi (CR24) 2017; 38
Esteva (CR4) 2019; 25
Herrett (CR19) 2015; 44
Emdin (CR21) 2015; 351
Kuan (CR27) 2019; 1
P Nguyen (62922_CR14) 2016; 21
L Cao (62922_CR13) 2003; 55
62922_CR6
F Lee (62922_CR23) 2002; 90
62922_CR7
CA Emdin (62922_CR22) 2016; 46
62922_CR41
B Shickel (62922_CR5) 2017; 22
CA Emdin (62922_CR21) 2015; 351
62922_CR40
V Kuan (62922_CR27) 2019; 1
62922_CR28
62922_CR25
62922_CR26
M Zhu (62922_CR36) 2004; 2
JRA Solares (62922_CR9) 2020; 101
A Esteva (62922_CR4) 2019; 25
T Walley (62922_CR20) 1997; 350
E Herrett (62922_CR19) 2015; 44
F Rahimian (62922_CR8) 2018; 15
62922_CR30
62922_CR31
H Mohseni (62922_CR24) 2017; 38
62922_CR12
62922_CR34
62922_CR35
62922_CR10
62922_CR32
62922_CR11
62922_CR33
62922_CR16
62922_CR38
R Poplin (62922_CR2) 2018; 2
62922_CR17
62922_CR15
62922_CR37
S Velupillai (62922_CR29) 2018; 88
62922_CR18
D Ardila (62922_CR1) 2019; 25
EJ Topol (62922_CR3) 2019; 25
LVD Maaten (62922_CR39) 2008; 9
References_xml – ident: CR18
– volume: 351
  start-page: h4865
  year: 2015
  ident: CR21
  article-title: Usual blood pressure, peripheral arterial disease, and vascular risk: cohort study of 4.2 million adults
  publication-title: Bmj
  doi: 10.1136/bmj.h4865
  contributor:
    fullname: Emdin
– volume: 1
  start-page: e63
  year: 2019
  end-page: e77
  ident: CR27
  article-title: Articles A chronological map of 308 physical and mental health conditions from 4 million individuals in the English National Health Service
  publication-title: The Lancet Digit. Heal.
  doi: 10.1016/S2589-7500(19)30012-3
  contributor:
    fullname: Kuan
– ident: CR16
– ident: CR37
– ident: CR12
– ident: CR30
– volume: 22
  start-page: 1589
  year: 2017
  end-page: 1604
  ident: CR5
  article-title: Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis
  publication-title: IEEE journal biomedical health informatics
  doi: 10.1109/JBHI.2017.2767063
  contributor:
    fullname: Rashidi
– ident: CR10
– volume: 2
  start-page: 158
  year: 2018
  ident: CR2
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
  contributor:
    fullname: Poplin
– ident: CR33
– volume: 101
  start-page: 103337
  year: 2020
  ident: CR9
  article-title: Deep learning for electronic health records: A comparative review of multiple deep neural architectures
  publication-title: J. Biomed. Informatics
  doi: 10.1016/j.jbi.2019.103337
  contributor:
    fullname: Solares
– volume: 44
  start-page: 827
  year: 2015
  end-page: 836
  ident: CR19
  article-title: Data Resource Profile: Clinical Practice Research Datalink (CPRD)
  publication-title: Int. journal epidemiology
  doi: 10.1093/ije/dyv098
  contributor:
    fullname: Herrett
– ident: CR35
– ident: CR6
– volume: 46
  start-page: 162
  year: 2016
  end-page: 172
  ident: CR22
  article-title: Usual blood pressure, atrial fibrillation and vascular risk: evidence from 4.3 million adults
  publication-title: Int. journal epidemiology
  contributor:
    fullname: Emdin
– ident: CR40
– ident: CR25
– volume: 21
  start-page: 22
  year: 2016
  end-page: 30
  ident: CR14
  article-title: Deepr: A Convolutional Net for Medical Records
  publication-title: IEEE journal biomedical health informatics
  doi: 10.1109/JBHI.2016.2633963
  contributor:
    fullname: Venkatesh
– volume: 350
  start-page: 1097
  year: 1997
  end-page: 1099
  ident: CR20
  article-title: The UK General Practice Research Database
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(97)04248-7
  contributor:
    fullname: Mantgani
– volume: 38
  start-page: 326
  year: 2017
  end-page: 333
  ident: CR24
  article-title: Influenza vaccination and risk of hospitalization in patients with heart failure: a self-controlled case series study
  publication-title: Eur. heart journal
  contributor:
    fullname: Rahimi
– volume: 2
  start-page: 30
  year: 2004
  ident: CR36
  article-title: Recall, precision and average precision
  publication-title: Dep. Stat. Actuar. Sci. Univ. Waterloo, Waterloo
  contributor:
    fullname: Zhu
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: CR3
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat. medicine
  doi: 10.1038/s41591-018-0300-7
  contributor:
    fullname: Topol
– volume: 90
  start-page: 1
  year: 2002
  end-page: 6
  ident: CR23
  article-title: The ‘Top 10’ Urological Procedures: A Study of Hospital Episodes Statistics 1998–99
  publication-title: BJU international
  doi: 10.1046/j.1464-410X.2002.02833.x
  contributor:
    fullname: Emberton
– ident: CR15
– ident: CR38
– volume: 25
  start-page: 24
  year: 2019
  end-page: 29
  ident: CR4
  article-title: A guide to deep learning in healthcare
  publication-title: Nat. medicine
  doi: 10.1038/s41591-018-0316-z
  contributor:
    fullname: Esteva
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR39
  article-title: Visualizing Data using t-SNE
  publication-title: J. machine learning research
  contributor:
    fullname: Hinton
– ident: CR17
– ident: CR31
– volume: 15
  start-page: e1002695
  year: 2018
  ident: CR8
  article-title: Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records
  publication-title: PLoS medicine
  doi: 10.1371/journal.pmed.1002695
  contributor:
    fullname: Rahimian
– ident: CR11
– ident: CR32
– ident: CR34
– ident: CR7
– volume: 55
  start-page: 321
  year: 2003
  end-page: 336
  ident: CR13
  article-title: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00433-8
  contributor:
    fullname: Gu
– ident: CR28
– ident: CR41
– ident: CR26
– volume: 88
  start-page: 11
  year: 2018
  end-page: 19
  ident: CR29
  article-title: Using clinical Natural Language Processing for health outcomes research: Overview and actionable suggestions for future advances
  publication-title: J. biomedical informatics
  doi: 10.1016/j.jbi.2018.10.005
  contributor:
    fullname: Velupillai
– volume: 25
  start-page: 954
  year: 2019
  ident: CR1
  article-title: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
  publication-title: Nat. medicine
  doi: 10.1038/s41591-019-0447-x
  contributor:
    fullname: Ardila
– ident: 62922_CR38
  doi: 10.1017/ATSIP.2019.12
– ident: 62922_CR10
  doi: 10.1109/BIBM.2014.6999219
– ident: 62922_CR37
– ident: 62922_CR33
– volume: 15
  start-page: e1002695
  year: 2018
  ident: 62922_CR8
  publication-title: PLoS medicine
  doi: 10.1371/journal.pmed.1002695
  contributor:
    fullname: F Rahimian
– volume: 2
  start-page: 158
  year: 2018
  ident: 62922_CR2
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
  contributor:
    fullname: R Poplin
– ident: 62922_CR31
– ident: 62922_CR16
  doi: 10.1007/978-3-319-31750-2_3
– ident: 62922_CR6
– ident: 62922_CR11
  doi: 10.1016/j.jbi.2015.01.012
– volume: 88
  start-page: 11
  year: 2018
  ident: 62922_CR29
  publication-title: J. biomedical informatics
  doi: 10.1016/j.jbi.2018.10.005
  contributor:
    fullname: S Velupillai
– volume: 9
  start-page: 2579
  year: 2008
  ident: 62922_CR39
  publication-title: J. machine learning research
  contributor:
    fullname: LVD Maaten
– volume: 22
  start-page: 1589
  year: 2017
  ident: 62922_CR5
  publication-title: IEEE journal biomedical health informatics
  doi: 10.1109/JBHI.2017.2767063
  contributor:
    fullname: B Shickel
– volume: 25
  start-page: 24
  year: 2019
  ident: 62922_CR4
  publication-title: Nat. medicine
  doi: 10.1038/s41591-018-0316-z
  contributor:
    fullname: A Esteva
– ident: 62922_CR25
– volume: 55
  start-page: 321
  year: 2003
  ident: 62922_CR13
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00433-8
  contributor:
    fullname: L Cao
– volume: 1
  start-page: e63
  year: 2019
  ident: 62922_CR27
  publication-title: The Lancet Digit. Heal.
  doi: 10.1016/S2589-7500(19)30012-3
  contributor:
    fullname: V Kuan
– volume: 38
  start-page: 326
  year: 2017
  ident: 62922_CR24
  publication-title: Eur. heart journal
  contributor:
    fullname: H Mohseni
– ident: 62922_CR28
  doi: 10.3115/v1/D14-1179
– volume: 21
  start-page: 22
  year: 2016
  ident: 62922_CR14
  publication-title: IEEE journal biomedical health informatics
  doi: 10.1109/JBHI.2016.2633963
  contributor:
    fullname: P Nguyen
– ident: 62922_CR34
– ident: 62922_CR32
– ident: 62922_CR15
– ident: 62922_CR40
– ident: 62922_CR30
– volume: 44
  start-page: 827
  year: 2015
  ident: 62922_CR19
  publication-title: Int. journal epidemiology
  doi: 10.1093/ije/dyv098
  contributor:
    fullname: E Herrett
– ident: 62922_CR17
– volume: 101
  start-page: 103337
  year: 2020
  ident: 62922_CR9
  publication-title: J. Biomed. Informatics
  doi: 10.1016/j.jbi.2019.103337
  contributor:
    fullname: JRA Solares
– volume: 350
  start-page: 1097
  year: 1997
  ident: 62922_CR20
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(97)04248-7
  contributor:
    fullname: T Walley
– volume: 2
  start-page: 30
  year: 2004
  ident: 62922_CR36
  publication-title: Dep. Stat. Actuar. Sci. Univ. Waterloo, Waterloo
  contributor:
    fullname: M Zhu
– volume: 25
  start-page: 44
  year: 2019
  ident: 62922_CR3
  publication-title: Nat. medicine
  doi: 10.1038/s41591-018-0300-7
  contributor:
    fullname: EJ Topol
– ident: 62922_CR12
  doi: 10.1038/srep26094
– ident: 62922_CR7
– ident: 62922_CR18
– ident: 62922_CR26
– ident: 62922_CR35
  doi: 10.1016/j.patrec.2005.10.010
– volume: 351
  start-page: h4865
  year: 2015
  ident: 62922_CR21
  publication-title: Bmj
  doi: 10.1136/bmj.h4865
  contributor:
    fullname: CA Emdin
– ident: 62922_CR41
– volume: 90
  start-page: 1
  year: 2002
  ident: 62922_CR23
  publication-title: BJU international
  doi: 10.1046/j.1464-410X.2002.02833.x
  contributor:
    fullname: F Lee
– volume: 25
  start-page: 954
  year: 2019
  ident: 62922_CR1
  publication-title: Nat. medicine
  doi: 10.1038/s41591-019-0447-x
  contributor:
    fullname: D Ardila
– volume: 46
  start-page: 162
  year: 2016
  ident: 62922_CR22
  publication-title: Int. journal epidemiology
  contributor:
    fullname: CA Emdin
SSID ssj0000529419
Score 2.7040129
Snippet Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to...
Abstract Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7155
SubjectTerms 692/308/1426
692/700/459/1748
Algorithms
Electronic Health Records
Electronic medical records
Health care
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
multidisciplinary
Science
Science (multidisciplinary)
Transfer learning
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BERIL4k2goCCxgVXHdhKHBQFqVTEwoFbqFsWPCpa09DH033POqyoIpgxnKfHdxfed7wVwa2SsgijjJDKBIkJzSjImFUlMmEVCK1SrIsv3LeoPxesoHFUXbvMqrbI-E4uD2ky0uyPvMJ6EaKtFKB-nX8RNjXLR1WqExjbsBAyVF_U5HsXNHYuLYokgqWplKJedOdorV1PmfCaWoB-22rRHv0Dm71zJHwHTwg71DmC_ApD-UynxQ9iy-RHsliMlV8dAn7v998GDP6gBqZ35-PC7zbgbv6w88kvHc34Cw1538NIn1VQEokUsFmQcc26FUEnMqOFjaRHBucaGQaAMAiZlQyRx15Yv5FobK1REEzbWGVUZioHxU2jlk9yeg88VM1QmBhH2WMQ2yEKeaPSuteYqo6H04K7mTTotm1-kRdCay7TkZIqcTAtOpisP2jX70upHmKdrsXlw05BRhV1cIsvtZFmsiRBlBpR6cFZyu3kdZ9xFbpESb8ihWeDaY29S8s-Pok02Wl2HXj24ryW2_qy_d3Hx_y4uYY857aGCMNmG1mK2tFcISxbqutC9bz_k3vE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qRfAivq1WieBNo5vdzWMFEZWW4sGDtNBbyG42KEiqfYD9985mk0i1gqccZpNsvpkw3zA7MwBnaRRKL0iYG6SedLlixE1oJF2R-knAlUSzKk75PgW9AX8c-sMGVOOOSgAnS0M7M09qMH67_PyY3-IPf2NLxqOrCTohUyhmAiEqMLiar8AqNY25zFG-ku7bXt9UcE-UtTPLb130T79I5--zkz8SqIVf6m7CRkkonTtrAVvQ0Pk2rNkRk_MdIPed3nP_2ulXBFWPHbw4nXr8jWMrkRwbiE52YdDt9B96bjklwVU85FM3CxnTnEsRUpKyLNLI6EyjQ8-TKRIoqX0UMdOmz2dKpZrLgAiaqYTIBNVC2R4081GuD8BhkqYkEiky7oyH2kt8JhRG20oxmRA_asF5hU38bpthxEUSm0WxRTJGJOMCyXjegnYFX1zpNaZM-Ei5uHnYaS1GkzZ5iiTXo1mxJkDW6RHSgn2Ldv06RpnJ5KIkXNBDvcC0y16U5K8vRdts9MKGzbbgotLY97b-_orDf2zzCNapMSHCXRq1oTkdz_QxcpWpPCkM8AtCzuRb
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Open Access
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagCIkF8SZQUJDYIMKxncRmg6pVxcCAWqmb5VcFS4r6GPrvOeeFQmFgynDOw9-ddN_lfHcI3Vqe6ThVNEptrCNmKI4U4ToSNlEpMxrMqjjl-5oOx-xlkkyqNjm-FqaVv6f8YQEOxheB-SCHCAic1ttox_tgP6ahl_aa_yk-Y8ViUdXF_H5r2_dsEMrNc5E_kqOFzxkcoP2KLIZPpXYP0ZbLj9BuOT5yfYzwc3_4NnoMRzX5dPMQLmG_GW0TllVGYRlkLk7QeNAf9YZRNQEhMixjy2iaUeoY0yIj2NIpd8DWfBPDONYWyJF2CYiob8GXUGOsYzrFgkyNwloB5ISeok4-y905CqkmFnNhgU1PWeZilVBhIJI2hmqFEx6guxob-Vk2upBFgppyWSIpAUlZICnXAerW8MnK6BeSUJEAnWL-YTeNGMzV5yBU7marYk0KjDLGOEBnJdrN6yihPksLkqylh2aBb4XdluQf70VLbPCwnqkG6L7W2Pdn_b2Li_8tv0R7xFsTZhHhXdRZzlfuCijJUl8XtvgFIivYXQ
  priority: 102
  providerName: Springer Nature
Title BEHRT: Transformer for Electronic Health Records
URI https://link.springer.com/article/10.1038/s41598-020-62922-y
https://www.ncbi.nlm.nih.gov/pubmed/32346050
https://www.proquest.com/docview/2395562458
https://search.proquest.com/docview/2396310100
https://pubmed.ncbi.nlm.nih.gov/PMC7189231
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_4geJF_LY6RwVvWpcmaZt40zEZwkTGBruVJs1Q0CpuHvbf-5K20ylevLSUhCZ579fm93gfATjLRaLCOGNBnIcq4JqRIKNCBTKPsphrhbByUb73cXfI70bRaAmiOhfGBe1r9XRZPL9cFk-PLrby7UW36jix1kOvjf9Ty0tay7CMAP1mopcFvankoawSZAgTrQluUjaRzBpKVKLxNduAdUaZdQmSxf3oF8n8HSv5w2Hq9qHbLdisCKR_XU50G5ZMsQNr5ZGSs10gN51uf3DlD2pCat59vPmd-XE3fpl55JeG52QPhredQbsbVKciBJonfBqME8YM50omlORsLAwyOFvYMAxVjoRJmQibmC3LFzGtc8NVTCQd64yoDNVA2T6sFK-FOQSfKZoTIXNk2GOemDCLmNRoXWvNVEYi4cF5LZv0rSx-kTqnNRNpKdQUhZo6oaYzDxq1-NLqQ5iklMkIKRa3LzudNyOErV8iK8zrh-sTI8sMCfHgoJT2fLhaTR4kC3qYd7DlsRdbEDWuTHaFEg8uao19TevvVRz9e6Bj2KAWY4QHVDRgZfr-YU6QsUxVE3E6SpqwetO5f-jjUztuN531j9ceF02H4E8bEO0B
link.rule.ids 230,315,730,783,787,867,888,12070,21402,24332,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5B0QouCHZ5hC0QJG5grWM7ibMXtItahaX0gFqpNyt-RMsl3e3j0H-_47yqUsEph7GUeGbi-cZjfwPw2cpUR0nBSWIjTYThlBRMapLZuEiE0ehW9SnfaZLPxc0iXrQbbuv2WGW3JtYLtV0av0d-wXgWY6wWsfx2d0981yhfXW1baDyGJ56Hy3Pnp4u032PxVSwRZe1dGcrlxRrjlb9T5nMmlmEetjuMR0cg8_is5F8F0zoOjV_A8xZAhleNxV_CI1edwknTUnJ3BvR6lP-eXYazDpC6VYiPcNS3uwmbm0dhk3iuX8F8PJp9z0nbFYEYkYoNKVPOnRA6Sxm1vJQOEZwnNowibREwaRejiHtavpgbY53QCc1YaQqqCzQD469hUC0r9xZCrpmlMrOIsEuRuqiIeWYwuzaG64LGMoAvnW7UXUN-oeqiNZeq0aRCTapak2oXwLBTn2p_hLXamy2AT70YXdjXJYrKLbf1mARRZkRpAG8abfev44z7yi1K0gM79AM8PfahpPpzW9NkY9T16DWAr53F9p_171m8-_8sPsLTfPZroiY_pj_P4RnznkQFYXIIg81q694jRNnoD7UfPgDk8uHh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB61VFRcEC2vUGiDxI1a69hO7PSCWrqrLSCE0CLtzYofUXvJArsc9t8zzgttUXvKYSwlnpl4vvG8AE6ckibJCk4ylxgiLKekYMqQ3KVFJqxBtaqzfK-z8Z24mKbTNv9p3qZVdmdifVC7mQ135APG8xRttUjVoGzTIm5-js7uH0iYIBUire04jbfwTgo0dKjbcir7-5YQ0RJJ3tbNUK4Gc7Rdob4s-E8sR59suWqbXgHO13mTfwVPa5s02oLNFkzG3xvpf4A3vvoI6814yeU20B_D8e3kWzzpwKl_jPERD_vRN3FThRQ3Tuh8B-5Gw8n5mLQTEogVUixIKTn3QphcMup4qTyiudDkMEmMQ_BkfIokHlr0pdxa54XJaM5KW1BToEgY34W1alb5fYi5YY6q3CHaLoX0SZHy3KKnbS03BU1VBKcdb_R90whD1wFsrnTDSY2c1DUn9TKCw459uv0p5vpFhBEc92RU5xCjKCo_e6rXZIg4E0oj2Gu43b-OMx6iuEiRK3LoF4RW2auU6s_vumU2WuCAZCP42kns5bP-vYuD_-_iC7xHFdRXv64vP8EGC4pEBWHqENYWj0_-CNHKwnyu1fAZh5jmFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BEHRT%3A+Transformer+for+Electronic+Health+Records&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yikuan&rft.au=Rao%2C+Shishir&rft.au=Solares%2C+Jos%C3%A9+Roberto+Ayala&rft.au=Hassaine%2C+Abdelaali&rft.date=2020-04-28&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft.spage=7155&rft.epage=7155&rft_id=info:doi/10.1038%2Fs41598-020-62922-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon