Phase-Specific Microstimulation Differentially Modulates Beta Oscillations and Affects Behavior

It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 30; no. 8; pp. 2555 - 2566.e3
Main Authors Peles, Oren, Werner-Reiss, Uri, Bergman, Hagai, Israel, Zvi, Vaadia, Eilon
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 25.02.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20–30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease. [Display omitted] •Through operant conditioning, subjects learn to volitionally control M1 Beta oscillations•Pre-movement LFP Beta power is anti-correlated with task performance•Phase-specific stimulation differentially modulates LFP and spiking temporal patterns•Stimulation differentially affects behavior when diverging from the standard regime Peles et al. show that motor cortex Beta oscillations can be differentially modulated by combined neural operant conditioning and phase-specific intracortical microstimulation. Successfully manipulating this frequency band paves the way to understanding its functional role and to development of clinical tools for treating brain diseases, including Parkinson’s and schizophrenia.
AbstractList It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.
It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20–30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease. : Peles et al. show that motor cortex Beta oscillations can be differentially modulated by combined neural operant conditioning and phase-specific intracortical microstimulation. Successfully manipulating this frequency band paves the way to understanding its functional role and to development of clinical tools for treating brain diseases, including Parkinson’s and schizophrenia. Keywords: motor cortex, operant conditioning, brain-machine interface, microsimulation, Beta oscillations, local field potential, non-human primates
It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20–30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease. [Display omitted] •Through operant conditioning, subjects learn to volitionally control M1 Beta oscillations•Pre-movement LFP Beta power is anti-correlated with task performance•Phase-specific stimulation differentially modulates LFP and spiking temporal patterns•Stimulation differentially affects behavior when diverging from the standard regime Peles et al. show that motor cortex Beta oscillations can be differentially modulated by combined neural operant conditioning and phase-specific intracortical microstimulation. Successfully manipulating this frequency band paves the way to understanding its functional role and to development of clinical tools for treating brain diseases, including Parkinson’s and schizophrenia.
It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.
Author Werner-Reiss, Uri
Peles, Oren
Bergman, Hagai
Israel, Zvi
Vaadia, Eilon
Author_xml – sequence: 1
  givenname: Oren
  surname: Peles
  fullname: Peles, Oren
  email: oren.peles@mail.huji.ac.il
  organization: Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
– sequence: 2
  givenname: Uri
  surname: Werner-Reiss
  fullname: Werner-Reiss, Uri
  organization: Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
– sequence: 3
  givenname: Hagai
  surname: Bergman
  fullname: Bergman, Hagai
  organization: Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
– sequence: 4
  givenname: Zvi
  surname: Israel
  fullname: Israel, Zvi
  organization: Department of Neurosurgery, Hadassah University Hospital, Jerusalem 9112102, Israel
– sequence: 5
  givenname: Eilon
  surname: Vaadia
  fullname: Vaadia, Eilon
  organization: Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32101735$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEYhYNUbK39ByKzdDNjPicTF0JbvwotFdR1yCRvbC5zJ9ckt9B_b6bTirjQbBLe95wTeM5zdDDHGRB6SXBHMOnfbDoLU4JdRzHFHaYdxuIJOqKUkJZQLg_-eB-ik5w3uJ4eE6L4M3TIaE2RTBwh_eXGZGi_7sAGH2xzFWyKuYTtfjIlxLl5H7yHBHMJZprumqvolg3k5gyKaa6zDdOqzI2ZXXNa1bYs2xtzG2J6gZ56M2U4ebiP0fePH76df24vrz9dnJ9etpZLXlrPey8UgOuVtwo4G0ch7Ug5tgOV2DJiGSgHBKgSg_VOAR48dkI6JqXg7BhdrLkumo3epbA16U5HE_T9IKYf2qQS7AQaK469UUQM48gJEYawwdVRpTMIGEXNer1m7VL8uYdc9DbkynsyM8R91pT1fc_FgGWVvnqQ7sctuN8fPwKugrerYMGaE3htQ7nnVZIJkyZYL4XqjV4L1UuhGlNdC61m_pf5Mf8_tnerDSrw2wBJ15ZgtuBCquVUIuHfAb8AyQq7hg
CitedBy_id crossref_primary_10_1016_j_brs_2022_08_005
crossref_primary_10_1113_JP282983
crossref_primary_10_1016_j_bspc_2021_103200
crossref_primary_10_1088_1741_2552_ab8683
crossref_primary_10_1371_journal_pbio_3002670
crossref_primary_10_1109_TNSRE_2024_3459801
crossref_primary_10_1038_s41583_022_00598_1
crossref_primary_10_1016_j_celrep_2022_111616
crossref_primary_10_1016_j_celrep_2024_114028
crossref_primary_10_1093_brain_awab264
crossref_primary_10_1016_j_brs_2021_11_019
crossref_primary_10_1016_j_jneumeth_2022_109726
crossref_primary_10_1088_2057_1976_ac240d
crossref_primary_10_3389_fnins_2020_558967
crossref_primary_10_7554_eLife_60979
crossref_primary_10_1186_s12984_021_00973_6
crossref_primary_10_1016_j_heliyon_2024_e32609
crossref_primary_10_1038_s41598_021_96660_6
crossref_primary_10_1038_s41467_024_44794_2
crossref_primary_10_1371_journal_pcbi_1009887
crossref_primary_10_1016_j_pneurobio_2022_102397
crossref_primary_10_1016_j_brs_2022_01_012
crossref_primary_10_1016_j_brs_2020_09_017
crossref_primary_10_1016_j_brs_2022_07_047
crossref_primary_10_1088_1741_2552_ada828
crossref_primary_10_23736_S1973_9087_23_07922_4
crossref_primary_10_1073_pnas_2001560117
crossref_primary_10_1371_journal_pcbi_1009281
Cites_doi 10.1093/cercor/bhw245
10.1016/j.cortex.2018.03.001
10.1021/ac60214a047
10.1523/JNEUROSCI.21-03-01033.2001
10.1016/j.cub.2009.07.074
10.1016/j.jneumeth.2007.03.012
10.1002/ana.23951
10.7554/eLife.03061
10.1111/j.1469-7793.1997.225bo.x
10.1016/S0896-6273(02)00698-0
10.1126/science.163.3870.955
10.1016/j.neuron.2012.11.015
10.1093/brain/aww286
10.1523/JNEUROSCI.6322-10.2011
10.1016/j.expneurol.2012.09.013
10.1038/nrn2774
10.3389/fnana.2015.00135
10.1038/nature05226
10.1523/JNEUROSCI.2547-14.2016
10.1038/nrn3241
10.1016/S1353-8020(13)70013-0
10.1523/JNEUROSCI.1913-18.2018
10.1126/science.1138071
10.1113/jphysiol.2001.015099
10.1016/0013-4694(95)00258-8
10.1152/jn.1996.76.6.3968
10.1073/pnas.97.4.1867
10.1523/JNEUROSCI.20-22-08559.2000
10.1016/j.cub.2018.07.009
10.1016/j.cub.2012.01.024
10.1073/pnas.89.12.5670
10.1523/JNEUROSCI.3204-15.2016
10.1073/pnas.90.10.4470
10.1371/journal.pcbi.1005011
10.1152/jn.1968.31.5.659
10.1523/JNEUROSCI.3651-16.2017
10.1016/j.conb.2010.02.015
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.7554/eLife.24573
10.1016/j.neuron.2016.02.028
10.1016/j.neuron.2011.08.023
10.1038/338334a0
10.1152/jn.00808.2006
10.1523/JNEUROSCI.07-04-01010.1987
10.1093/brain/aww308
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2020.02.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 2566.e3
ExternalDocumentID oai_doaj_org_article_0940fa9158bb4115a138d40f60185eb5
32101735
10_1016_j_celrep_2020_02_005
S2211124720301595
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-f46f59eed69fc9e43bb57cb240c8270c31c3e9de1e2958cfd9e08f0d57d377543
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:26:01 EDT 2025
Fri Jul 11 14:30:09 EDT 2025
Thu Apr 03 07:04:48 EDT 2025
Tue Jul 01 02:59:08 EDT 2025
Thu Apr 24 23:01:11 EDT 2025
Wed May 17 00:06:26 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords local field potential
motor cortex
operant conditioning
non-human primates
Beta oscillations
brain-machine interface
microsimulation
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-f46f59eed69fc9e43bb57cb240c8270c31c3e9de1e2958cfd9e08f0d57d377543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124720301595
PMID 32101735
PQID 2366645807
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0940fa9158bb4115a138d40f60185eb5
proquest_miscellaneous_2366645807
pubmed_primary_32101735
crossref_citationtrail_10_1016_j_celrep_2020_02_005
crossref_primary_10_1016_j_celrep_2020_02_005
elsevier_sciencedirect_doi_10_1016_j_celrep_2020_02_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-25
PublicationDateYYYYMMDD 2020-02-25
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Little, Pogosyan, Neal, Zavala, Zrinzo, Hariz, Foltynie, Limousin, Ashkan, FitzGerald (bib25) 2013; 74
Cagnan, Pedrosa, Little, Pogosyan, Cheeran, Aziz, Green, Fitzgerald, Foltynie, Limousin (bib5) 2017; 140
Savitzky, Golay (bib39) 1964; 36
Holt, Wilson, Shinn, Moehlis, Netoff (bib15) 2016; 12
Little, Brown (bib24) 2014; 20
Martin, Schröder (bib27) 2016; 36
Baker, Olivier, Lemon (bib1) 1997; 501
Roe, Chernov, Friedman, Chen (bib36) 2015; 9
Moll, Engel (bib29) 2017; 140
Schilberg, Engelen, Ten Oever, Schuhmann, de Gelder, de Graaf, Sack (bib40) 2018; 103
Engelhard, Ozeri, Israel, Bergman, Vaadia (bib8) 2013; 77
Sanes, Donoghue (bib38) 1993; 90
Joundi, Jenkinson, Brittain, Aziz, Brown (bib20) 2012; 22
Pfurtscheller, Stancák, Neuper (bib32) 1996; 98
Fetz (bib9) 1969; 163
Tan, Wade, Brown (bib43) 2016; 36
Gray, König, Engel, Singer (bib10) 1989; 338
Holt, Kormann, Gulberti, Pötter-Nerger, McNamara, Cagnan, Baaske, Little, Köppen, Buhmann (bib16) 2019; 39
Joshua, Elias, Levine, Bergman (bib19) 2007; 163
Churchland, Shenoy (bib6) 2007; 97
Engel, Fries (bib7) 2010; 20
Priori, Foffani, Rossi, Marceglia (bib34) 2013; 245
Uhlhaas, Singer (bib44) 2010; 11
Buzsáki, Anastassiou, Koch (bib4) 2012; 13
Lachaux, Rodriguez, Martinerie, Varela (bib23) 1999; 8
Mitz, Wise (bib28) 1987; 7
Jackson, Mavoori, Fetz (bib18) 2006; 444
Murthy, Fetz (bib31) 1996; 76
Murthy, Fetz (bib30) 1992; 89
Rosin, Slovik, Mitelman, Rivlin-Etzion, Haber, Israel, Vaadia, Bergman (bib37) 2011; 72
Griffin, Hudson, Belhaj-Saïf, Cheney (bib12) 2011; 31
Stoney, Thompson, Asanuma (bib42) 1968; 31
Khanna, Carmena (bib21) 2017; 6
Raz, Vaadia, Bergman (bib35) 2000; 20
Graziano, Taylor, Moore (bib11) 2002; 34
Buschman, Miller (bib3) 2007; 315
Guerra, Pogosyan, Nowak, Tan, Ferreri, Di Lazzaro, Brown (bib13) 2016; 26
Hernández-González, Andreu-Sánchez, Martín-Pascual, Gruart, Delgado-García (bib14) 2017; 37
Brown, Oliviero, Mazzone, Insola, Tonali, Di Lazzaro (bib2) 2001; 21
Lundqvist, Rose, Herman, Brincat, Buschman, Miller (bib26) 2016; 90
Pogosyan, Gaynor, Eusebio, Brown (bib33) 2009; 19
Zanos, Rembado, Chen, Fetz (bib45) 2018; 28
Kopell, Ermentrout, Whittington, Traub (bib22) 2000; 97
Jackson, Spinks, Freeman, Wolpert, Lemon (bib17) 2002; 541
Siegle, Wilson (bib41) 2014; 3
Savitzky (10.1016/j.celrep.2020.02.005_bib39) 1964; 36
Graziano (10.1016/j.celrep.2020.02.005_bib11) 2002; 34
Mitz (10.1016/j.celrep.2020.02.005_bib28) 1987; 7
Murthy (10.1016/j.celrep.2020.02.005_bib31) 1996; 76
Stoney (10.1016/j.celrep.2020.02.005_bib42) 1968; 31
Little (10.1016/j.celrep.2020.02.005_bib24) 2014; 20
Murthy (10.1016/j.celrep.2020.02.005_bib30) 1992; 89
Brown (10.1016/j.celrep.2020.02.005_bib2) 2001; 21
Hernández-González (10.1016/j.celrep.2020.02.005_bib14) 2017; 37
Raz (10.1016/j.celrep.2020.02.005_bib35) 2000; 20
Jackson (10.1016/j.celrep.2020.02.005_bib18) 2006; 444
Kopell (10.1016/j.celrep.2020.02.005_bib22) 2000; 97
Little (10.1016/j.celrep.2020.02.005_bib25) 2013; 74
Rosin (10.1016/j.celrep.2020.02.005_bib37) 2011; 72
Pfurtscheller (10.1016/j.celrep.2020.02.005_bib32) 1996; 98
Griffin (10.1016/j.celrep.2020.02.005_bib12) 2011; 31
Priori (10.1016/j.celrep.2020.02.005_bib34) 2013; 245
Fetz (10.1016/j.celrep.2020.02.005_bib9) 1969; 163
Khanna (10.1016/j.celrep.2020.02.005_bib21) 2017; 6
Buzsáki (10.1016/j.celrep.2020.02.005_bib4) 2012; 13
Siegle (10.1016/j.celrep.2020.02.005_bib41) 2014; 3
Churchland (10.1016/j.celrep.2020.02.005_bib6) 2007; 97
Lachaux (10.1016/j.celrep.2020.02.005_bib23) 1999; 8
Holt (10.1016/j.celrep.2020.02.005_bib16) 2019; 39
Cagnan (10.1016/j.celrep.2020.02.005_bib5) 2017; 140
Holt (10.1016/j.celrep.2020.02.005_bib15) 2016; 12
Engelhard (10.1016/j.celrep.2020.02.005_bib8) 2013; 77
Guerra (10.1016/j.celrep.2020.02.005_bib13) 2016; 26
Lundqvist (10.1016/j.celrep.2020.02.005_bib26) 2016; 90
Gray (10.1016/j.celrep.2020.02.005_bib10) 1989; 338
Jackson (10.1016/j.celrep.2020.02.005_bib17) 2002; 541
Zanos (10.1016/j.celrep.2020.02.005_bib45) 2018; 28
Moll (10.1016/j.celrep.2020.02.005_bib29) 2017; 140
Baker (10.1016/j.celrep.2020.02.005_bib1) 1997; 501
Schilberg (10.1016/j.celrep.2020.02.005_bib40) 2018; 103
Engel (10.1016/j.celrep.2020.02.005_bib7) 2010; 20
Tan (10.1016/j.celrep.2020.02.005_bib43) 2016; 36
Martin (10.1016/j.celrep.2020.02.005_bib27) 2016; 36
Joshua (10.1016/j.celrep.2020.02.005_bib19) 2007; 163
Joundi (10.1016/j.celrep.2020.02.005_bib20) 2012; 22
Roe (10.1016/j.celrep.2020.02.005_bib36) 2015; 9
Pogosyan (10.1016/j.celrep.2020.02.005_bib33) 2009; 19
Sanes (10.1016/j.celrep.2020.02.005_bib38) 1993; 90
Uhlhaas (10.1016/j.celrep.2020.02.005_bib44) 2010; 11
Buschman (10.1016/j.celrep.2020.02.005_bib3) 2007; 315
References_xml – volume: 26
  start-page: 3977
  year: 2016
  end-page: 3990
  ident: bib13
  article-title: Phase dependency of the human primary motor cortex and cholinergic inhibition cancelation during beta tACS
  publication-title: Cereb. Cortex
– volume: 541
  start-page: 685
  year: 2002
  end-page: 699
  ident: bib17
  article-title: Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation
  publication-title: J. Physiol.
– volume: 9
  start-page: 135
  year: 2015
  ident: bib36
  article-title: In vivo mapping of cortical columnar networks in the monkey with focal electrical and optical stimulation
  publication-title: Front. Neuroanat.
– volume: 12
  start-page: e1005011
  year: 2016
  ident: bib15
  article-title: Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease
  publication-title: PLoS Comput. Biol.
– volume: 76
  start-page: 3968
  year: 1996
  end-page: 3982
  ident: bib31
  article-title: Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys
  publication-title: J. Neurophysiol.
– volume: 140
  start-page: 132
  year: 2017
  end-page: 145
  ident: bib5
  article-title: Stimulating at the right time: phase-specific deep brain stimulation
  publication-title: Brain
– volume: 97
  start-page: 1867
  year: 2000
  end-page: 1872
  ident: bib22
  article-title: Gamma rhythms and beta rhythms have different synchronization properties
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 156
  year: 2010
  end-page: 165
  ident: bib7
  article-title: Beta-band oscillations--signalling the status quo?
  publication-title: Curr. Opin. Neurobiol.
– volume: 21
  start-page: 1033
  year: 2001
  end-page: 1038
  ident: bib2
  article-title: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease
  publication-title: J. Neurosci.
– volume: 90
  start-page: 4470
  year: 1993
  end-page: 4474
  ident: bib38
  article-title: Oscillations in local field potentials of the primate motor cortex during voluntary movement
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 39
  start-page: 1119
  year: 2019
  end-page: 1134
  ident: bib16
  article-title: Phase-dependent suppression of beta oscillations in Parkinson’s disease patients
  publication-title: J. Neurosci.
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: bib39
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– volume: 245
  start-page: 77
  year: 2013
  end-page: 86
  ident: bib34
  article-title: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations
  publication-title: Exp. Neurol.
– volume: 3
  start-page: e03061
  year: 2014
  ident: bib41
  article-title: Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus
  publication-title: eLife
– volume: 31
  start-page: 13088
  year: 2011
  end-page: 13096
  ident: bib12
  article-title: Hijacking cortical motor output with repetitive microstimulation
  publication-title: J. Neurosci.
– volume: 37
  start-page: 5923
  year: 2017
  end-page: 5935
  ident: bib14
  article-title: A cognition-related neural oscillation pattern, generated in the prelimbic cortex, can control operant learning in rats
  publication-title: J. Neurosci.
– volume: 163
  start-page: 267
  year: 2007
  end-page: 282
  ident: bib19
  article-title: Quantifying the isolation quality of extracellularly recorded action potentials
  publication-title: J. Neurosci. Methods
– volume: 11
  start-page: 100
  year: 2010
  end-page: 113
  ident: bib44
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat. Rev. Neurosci.
– volume: 20
  start-page: 8559
  year: 2000
  end-page: 8571
  ident: bib35
  article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism
  publication-title: J. Neurosci.
– volume: 34
  start-page: 841
  year: 2002
  end-page: 851
  ident: bib11
  article-title: Complex movements evoked by microstimulation of precentral cortex
  publication-title: Neuron
– volume: 6
  start-page: e24573
  year: 2017
  ident: bib21
  article-title: Beta band oscillations in motor cortex reflect neural population signals that delay movement onset
  publication-title: eLife
– volume: 140
  start-page: 5
  year: 2017
  end-page: 8
  ident: bib29
  article-title: Phase matters: cancelling pathological tremor by adaptive deep brain stimulation
  publication-title: Brain
– volume: 72
  start-page: 370
  year: 2011
  end-page: 384
  ident: bib37
  article-title: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism
  publication-title: Neuron
– volume: 74
  start-page: 449
  year: 2013
  end-page: 457
  ident: bib25
  article-title: Adaptive deep brain stimulation in advanced Parkinson disease
  publication-title: Ann. Neurol.
– volume: 28
  start-page: 2515
  year: 2018
  end-page: 2526.e4
  ident: bib45
  article-title: Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys
  publication-title: Curr. Biol
– volume: 338
  start-page: 334
  year: 1989
  end-page: 337
  ident: bib10
  article-title: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties
  publication-title: Nature
– volume: 36
  start-page: 2494
  year: 2016
  end-page: 2502
  ident: bib27
  article-title: Phase locking of multiple single neurons to the local field potential in Cat V1
  publication-title: J. Neurosci.
– volume: 501
  start-page: 225
  year: 1997
  end-page: 241
  ident: bib1
  article-title: Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation
  publication-title: J. Physiol
– volume: 19
  start-page: 1637
  year: 2009
  end-page: 1641
  ident: bib33
  article-title: Boosting cortical activity at beta-band frequencies slows movement in humans
  publication-title: Curr. Biol.
– volume: 103
  start-page: 142
  year: 2018
  end-page: 152
  ident: bib40
  article-title: Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability
  publication-title: Cortex
– volume: 163
  start-page: 955
  year: 1969
  end-page: 958
  ident: bib9
  article-title: Operant conditioning of cortical unit activity
  publication-title: Science
– volume: 97
  start-page: 348
  year: 2007
  end-page: 359
  ident: bib6
  article-title: Delay of movement caused by disruption of cortical preparatory activity
  publication-title: J. Neurophysiol.
– volume: 7
  start-page: 1010
  year: 1987
  end-page: 1021
  ident: bib28
  article-title: The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping
  publication-title: J. Neurosci.
– volume: 89
  start-page: 5670
  year: 1992
  end-page: 5674
  ident: bib30
  article-title: Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 31
  start-page: 659
  year: 1968
  end-page: 669
  ident: bib42
  article-title: Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current
  publication-title: J. Neurophysiol.
– volume: 315
  start-page: 1860
  year: 2007
  end-page: 1862
  ident: bib3
  article-title: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices
  publication-title: Science
– volume: 22
  start-page: 403
  year: 2012
  end-page: 407
  ident: bib20
  article-title: Driving oscillatory activity in the human cortex enhances motor performance
  publication-title: Curr. Biol.
– volume: 90
  start-page: 152
  year: 2016
  end-page: 164
  ident: bib26
  article-title: Gamma and beta bursts underlie working memory
  publication-title: Neuron
– volume: 13
  start-page: 407
  year: 2012
  end-page: 420
  ident: bib4
  article-title: The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
– volume: 36
  start-page: 1516
  year: 2016
  end-page: 1528
  ident: bib43
  article-title: Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models
  publication-title: J. Neurosci.
– volume: 77
  start-page: 361
  year: 2013
  end-page: 375
  ident: bib8
  article-title: Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface
  publication-title: Neuron
– volume: 444
  start-page: 56
  year: 2006
  end-page: 60
  ident: bib18
  article-title: Long-term motor cortex plasticity induced by an electronic neural implant
  publication-title: Nature
– volume: 8
  start-page: 194
  year: 1999
  end-page: 208
  ident: bib23
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
– volume: 98
  start-page: 281
  year: 1996
  end-page: 293
  ident: bib32
  article-title: Post-movement beta synchronization. A correlate of an idling motor area?
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 20
  start-page: S44
  year: 2014
  end-page: S48
  ident: bib24
  article-title: The functional role of beta oscillations in Parkinson’s disease
  publication-title: Parkinsonism Relat. Disord.
– volume: 26
  start-page: 3977
  year: 2016
  ident: 10.1016/j.celrep.2020.02.005_bib13
  article-title: Phase dependency of the human primary motor cortex and cholinergic inhibition cancelation during beta tACS
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw245
– volume: 103
  start-page: 142
  year: 2018
  ident: 10.1016/j.celrep.2020.02.005_bib40
  article-title: Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability
  publication-title: Cortex
  doi: 10.1016/j.cortex.2018.03.001
– volume: 36
  start-page: 1627
  year: 1964
  ident: 10.1016/j.celrep.2020.02.005_bib39
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 21
  start-page: 1033
  year: 2001
  ident: 10.1016/j.celrep.2020.02.005_bib2
  article-title: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-03-01033.2001
– volume: 19
  start-page: 1637
  year: 2009
  ident: 10.1016/j.celrep.2020.02.005_bib33
  article-title: Boosting cortical activity at beta-band frequencies slows movement in humans
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.07.074
– volume: 163
  start-page: 267
  year: 2007
  ident: 10.1016/j.celrep.2020.02.005_bib19
  article-title: Quantifying the isolation quality of extracellularly recorded action potentials
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.012
– volume: 74
  start-page: 449
  year: 2013
  ident: 10.1016/j.celrep.2020.02.005_bib25
  article-title: Adaptive deep brain stimulation in advanced Parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23951
– volume: 3
  start-page: e03061
  year: 2014
  ident: 10.1016/j.celrep.2020.02.005_bib41
  article-title: Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus
  publication-title: eLife
  doi: 10.7554/eLife.03061
– volume: 501
  start-page: 225
  year: 1997
  ident: 10.1016/j.celrep.2020.02.005_bib1
  article-title: Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation
  publication-title: J. Physiol
  doi: 10.1111/j.1469-7793.1997.225bo.x
– volume: 34
  start-page: 841
  year: 2002
  ident: 10.1016/j.celrep.2020.02.005_bib11
  article-title: Complex movements evoked by microstimulation of precentral cortex
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00698-0
– volume: 163
  start-page: 955
  year: 1969
  ident: 10.1016/j.celrep.2020.02.005_bib9
  article-title: Operant conditioning of cortical unit activity
  publication-title: Science
  doi: 10.1126/science.163.3870.955
– volume: 77
  start-page: 361
  year: 2013
  ident: 10.1016/j.celrep.2020.02.005_bib8
  article-title: Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.11.015
– volume: 140
  start-page: 132
  year: 2017
  ident: 10.1016/j.celrep.2020.02.005_bib5
  article-title: Stimulating at the right time: phase-specific deep brain stimulation
  publication-title: Brain
  doi: 10.1093/brain/aww286
– volume: 31
  start-page: 13088
  year: 2011
  ident: 10.1016/j.celrep.2020.02.005_bib12
  article-title: Hijacking cortical motor output with repetitive microstimulation
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.6322-10.2011
– volume: 245
  start-page: 77
  year: 2013
  ident: 10.1016/j.celrep.2020.02.005_bib34
  article-title: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2012.09.013
– volume: 11
  start-page: 100
  year: 2010
  ident: 10.1016/j.celrep.2020.02.005_bib44
  article-title: Abnormal neural oscillations and synchrony in schizophrenia
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2774
– volume: 9
  start-page: 135
  year: 2015
  ident: 10.1016/j.celrep.2020.02.005_bib36
  article-title: In vivo mapping of cortical columnar networks in the monkey with focal electrical and optical stimulation
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2015.00135
– volume: 444
  start-page: 56
  year: 2006
  ident: 10.1016/j.celrep.2020.02.005_bib18
  article-title: Long-term motor cortex plasticity induced by an electronic neural implant
  publication-title: Nature
  doi: 10.1038/nature05226
– volume: 36
  start-page: 2494
  year: 2016
  ident: 10.1016/j.celrep.2020.02.005_bib27
  article-title: Phase locking of multiple single neurons to the local field potential in Cat V1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2547-14.2016
– volume: 13
  start-page: 407
  year: 2012
  ident: 10.1016/j.celrep.2020.02.005_bib4
  article-title: The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3241
– volume: 20
  start-page: S44
  issue: Suppl 1
  year: 2014
  ident: 10.1016/j.celrep.2020.02.005_bib24
  article-title: The functional role of beta oscillations in Parkinson’s disease
  publication-title: Parkinsonism Relat. Disord.
  doi: 10.1016/S1353-8020(13)70013-0
– volume: 39
  start-page: 1119
  year: 2019
  ident: 10.1016/j.celrep.2020.02.005_bib16
  article-title: Phase-dependent suppression of beta oscillations in Parkinson’s disease patients
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1913-18.2018
– volume: 315
  start-page: 1860
  year: 2007
  ident: 10.1016/j.celrep.2020.02.005_bib3
  article-title: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices
  publication-title: Science
  doi: 10.1126/science.1138071
– volume: 541
  start-page: 685
  year: 2002
  ident: 10.1016/j.celrep.2020.02.005_bib17
  article-title: Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2001.015099
– volume: 98
  start-page: 281
  year: 1996
  ident: 10.1016/j.celrep.2020.02.005_bib32
  article-title: Post-movement beta synchronization. A correlate of an idling motor area?
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(95)00258-8
– volume: 76
  start-page: 3968
  year: 1996
  ident: 10.1016/j.celrep.2020.02.005_bib31
  article-title: Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.6.3968
– volume: 97
  start-page: 1867
  year: 2000
  ident: 10.1016/j.celrep.2020.02.005_bib22
  article-title: Gamma rhythms and beta rhythms have different synchronization properties
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.4.1867
– volume: 20
  start-page: 8559
  year: 2000
  ident: 10.1016/j.celrep.2020.02.005_bib35
  article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-22-08559.2000
– volume: 28
  start-page: 2515
  year: 2018
  ident: 10.1016/j.celrep.2020.02.005_bib45
  article-title: Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys
  publication-title: Curr. Biol
  doi: 10.1016/j.cub.2018.07.009
– volume: 22
  start-page: 403
  year: 2012
  ident: 10.1016/j.celrep.2020.02.005_bib20
  article-title: Driving oscillatory activity in the human cortex enhances motor performance
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.01.024
– volume: 89
  start-page: 5670
  year: 1992
  ident: 10.1016/j.celrep.2020.02.005_bib30
  article-title: Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.12.5670
– volume: 36
  start-page: 1516
  year: 2016
  ident: 10.1016/j.celrep.2020.02.005_bib43
  article-title: Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3204-15.2016
– volume: 90
  start-page: 4470
  year: 1993
  ident: 10.1016/j.celrep.2020.02.005_bib38
  article-title: Oscillations in local field potentials of the primate motor cortex during voluntary movement
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.10.4470
– volume: 12
  start-page: e1005011
  year: 2016
  ident: 10.1016/j.celrep.2020.02.005_bib15
  article-title: Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005011
– volume: 31
  start-page: 659
  year: 1968
  ident: 10.1016/j.celrep.2020.02.005_bib42
  article-title: Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1968.31.5.659
– volume: 37
  start-page: 5923
  year: 2017
  ident: 10.1016/j.celrep.2020.02.005_bib14
  article-title: A cognition-related neural oscillation pattern, generated in the prelimbic cortex, can control operant learning in rats
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3651-16.2017
– volume: 20
  start-page: 156
  year: 2010
  ident: 10.1016/j.celrep.2020.02.005_bib7
  article-title: Beta-band oscillations--signalling the status quo?
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2010.02.015
– volume: 8
  start-page: 194
  year: 1999
  ident: 10.1016/j.celrep.2020.02.005_bib23
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– volume: 6
  start-page: e24573
  year: 2017
  ident: 10.1016/j.celrep.2020.02.005_bib21
  article-title: Beta band oscillations in motor cortex reflect neural population signals that delay movement onset
  publication-title: eLife
  doi: 10.7554/eLife.24573
– volume: 90
  start-page: 152
  year: 2016
  ident: 10.1016/j.celrep.2020.02.005_bib26
  article-title: Gamma and beta bursts underlie working memory
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.02.028
– volume: 72
  start-page: 370
  year: 2011
  ident: 10.1016/j.celrep.2020.02.005_bib37
  article-title: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.023
– volume: 338
  start-page: 334
  year: 1989
  ident: 10.1016/j.celrep.2020.02.005_bib10
  article-title: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties
  publication-title: Nature
  doi: 10.1038/338334a0
– volume: 97
  start-page: 348
  year: 2007
  ident: 10.1016/j.celrep.2020.02.005_bib6
  article-title: Delay of movement caused by disruption of cortical preparatory activity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00808.2006
– volume: 7
  start-page: 1010
  year: 1987
  ident: 10.1016/j.celrep.2020.02.005_bib28
  article-title: The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.07-04-01010.1987
– volume: 140
  start-page: 5
  year: 2017
  ident: 10.1016/j.celrep.2020.02.005_bib29
  article-title: Phase matters: cancelling pathological tremor by adaptive deep brain stimulation
  publication-title: Brain
  doi: 10.1093/brain/aww308
SSID ssj0000601194
Score 2.4209344
Snippet It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2555
SubjectTerms Action Potentials - physiology
Animals
Behavior, Animal - physiology
Beta oscillations
Beta Rhythm - physiology
brain-machine interface
Conditioning, Operant
Electric Stimulation
Female
local field potential
Macaca mulatta
microsimulation
motor cortex
non-human primates
operant conditioning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOiltOlr27So0Kup9bR1TNKEUNi2hwZyE9aLprjesNkc8u87I8lLcih7yVWWZTGa8TeDZr4h5HPotdNY-St0m5BUmzWOhQhRikqMaR5dJp5fftfnF_Lbpbq81-oLc8IKPXAR3Bfkd0uDYap3ToL7MjDRBxiCQKJX0WX2UsC8e8FU-QcjlxleKXOOOVtcdnPdXE7u8nFcR6Sr5G2h7FQPcCnT9z-Ap_-5nxmGzp6TZ9V_pEdl3y_IkzgdkP3SUfLuJbE_fwMsNbmrfLrydIn5dmDFf2uXLvq1NkQBwx7HO7pcBXwSb-hx3Az0BwDiWLPj6DAFelTSPWilUVy_Ihdnp79OzpvaQ6HxspObJkmdlAEg1CZ5E6VwTnXeAY77nnetF8yLaEJkkRvV-xRMbPvUBtUFgeR44jXZm1ZTfEuoU8ENwSRwKGBVb2Baz_0waM1lZIktiJglaH0lGMc-F6OdM8n-2CJ3i3K3Lbcg9wVptm9dF4KNHfOP8XC2c5EeOw-A0tiqNHaX0ixINx-trZ5G8SBgqasdn_80a4IFQ8TblWGKq9sbywVEglL1bbcgb4qKbDeJhVKsE-rdY2z-PXmKG8p19eqQ7G3Wt_EDeEYb9zEbwT-nkAfi
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9N1t06JCr2Yt62HpmE0aQmHbQhvYm7Be7RbHGzabQ_59Z2R5YQ8l0KNlSRajkb6RNfMNIZ-CVk5h5C9XdUJSbVY5FiKcUmRiTDXRZeL55Vd1eSW-rOTqiJxNsTDoVln2_nFPz7t1KZkXac5v1uv5jwbOLoBOeI8ImGYw0JwLnYP4Vov9fxbkG2E5HyLWr7DBFEGX3bx87LcRiSubeiTvlAcIlYn8D4DqX4ZoBqSLp-RJsSTp6TjYZ-QoDs_JozG35P0LYr__BoCqcn75tPZ0iZ53sJ6vS74uel5So8AS7_t7utwEfBNv6SLuOvoNhNEXPznaDYGejo4ftBAqbl-Sq4vPP88uq5JNofKiFbsqCZWkAUhUJnkTBXdOtt4BonvdtLXnzPNoQmSxMVL7FEysdaqDbANHmjz-ihwPmyG-IdTJ4LpgEpgW0Ks3UE03vuuUakRkic0InyRofaEax4wXvZ18yv7YUe4W5W7rxoLcZ6Tat7oZqTYeqL_AydnXRaLsXLDZ_rJFUyzSA6bOMKmdE2D9dozrAEWgFVpGB52009TaA72DrtYPfP7jpAkWliTes3RD3Nzd2obDmVBIXbcz8npUkf0gMWSKtVy-_e_vviOP8SmH1csTcrzb3sX3YBjt3Ies-X8Bn8EKJw
  priority: 102
  providerName: Elsevier
Title Phase-Specific Microstimulation Differentially Modulates Beta Oscillations and Affects Behavior
URI https://dx.doi.org/10.1016/j.celrep.2020.02.005
https://www.ncbi.nlm.nih.gov/pubmed/32101735
https://www.proquest.com/docview/2366645807
https://doaj.org/article/0940fa9158bb4115a138d40f60185eb5
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-O36cUTwtdIkTZM-iNyqxyms-uDCvoXmS09qV7t74P73zjTpyoHH4UuhbZq2k5nOpJn5_Qh54XVta6z8FXUZEVSbFZb5ALMUGRmrebAj8PziY326rD6s5OqATJytWYCbf07tkE9qOXQvf__avQaDf_U3V8uFbgiIPsnLhMApr5Hr4JsUmuoiB_zp24wYZ7jUzDnmcvFKTfV0l3R0wV-NsP4X3NZlYenonk5uk1s5rqTHSRHukIPQ3yU3EtPk7h4xn7-BuypGtvl45ugC8_DAun9k9i76NhOlgMF33Y4u1h7PhA2dh21LP4Gj7HLWHG17T49TGgjN8IrDfbI8efflzWmRuRUKV6lqW8SqjrIBB1k30TWhEtZK5Sz4d6e5Kp1gToTGBxZ4I7WLvgmljqWXygsEzRMPyGG_7sMjQq30tvVNhEADenUNNNPctW1d8yqwyGZETBI0LgOPI_9FZ6YMs-8myd2g3E3JDch9Ror9VT8T8MYV7ec4OPu2CJs9HlgPX022QoNggbFtmNTWVhALt0xoD4dAK7QMFjpR09CaHIGkyAK6Orvi9s8nTTBgoLjq0vZhfb4xXMAMsZK6VDPyMKnI_iGxgIopIR__58s-ITdxbyytl0_J4XY4D88gONrao_GnAmzfr-ZHo-7_Aa63DLY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXxJsttBiJa7SxHSfxsVtabaFbkGilvVnxCxaFbLXdHvrvmXGclfaAKvXqZzQe-xvHM98Q8tnVpSkx8leUeUBSbZYZ5jzcUmRgrOTeROL52UU5vSq-zuV8hxwPsTDoVpnO_v5Mj6d1KhknaY6vF4vxTw53F0AnfEcETFPyEXkM1kCF-RvO5pPNjxYkHGExISJ2yLDHEEIX_bysb1cemSt53rN3yi2Iikz-W0j1P0s0ItLpc_IsmZL0qP_aF2THdy_Jkz655N0ron_8BoTKYoL5sLB0hq53sKH_poRd9EvKjQJ7vG3v6GzpsMbf0IlfN_Q7SKNNjnK06Rw96j0_aGJUXL0mV6cnl8fTLKVTyGxRFessFGWQCjCxVMEqXwhjZGUNQLqteZVbwazwynnmuZK1DU75vA65k5UTyJMn3pDdbtn5d4Qa6UzjVADbAka1CprV3DZNWfLCs8BGRAwS1DZxjWPKi1YPTmV_dC93jXLXOdcg9xHJNr2ue66Ne9pPcHE2bZEpOxYsV790UhWN_IChUUzWxhRg_jZM1A6KQCtq6Q0MUg1Lq7cUD4Za3DP9p0ETNOxJfGhpOr-8vdFcwKWwkHVejcjbXkU2H4kxU6wScv_B834kT6eXs3N9fnbx7T3Zw5oYYy8_kN316tYfgJW0NodxF_wD_2cNRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-Specific+Microstimulation+Differentially+Modulates+Beta+Oscillations+and+Affects+Behavior&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Peles%2C+Oren&rft.au=Werner-Reiss%2C+Uri&rft.au=Bergman%2C+Hagai&rft.au=Israel%2C+Zvi&rft.date=2020-02-25&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=30&rft.issue=8&rft.spage=2555&rft.epage=2566.e3&rft_id=info:doi/10.1016%2Fj.celrep.2020.02.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2020_02_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon