Phase-Specific Microstimulation Differentially Modulates Beta Oscillations and Affects Behavior
It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays...
Saved in:
Published in | Cell reports (Cambridge) Vol. 30; no. 8; pp. 2555 - 2566.e3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.02.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20–30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.
[Display omitted]
•Through operant conditioning, subjects learn to volitionally control M1 Beta oscillations•Pre-movement LFP Beta power is anti-correlated with task performance•Phase-specific stimulation differentially modulates LFP and spiking temporal patterns•Stimulation differentially affects behavior when diverging from the standard regime
Peles et al. show that motor cortex Beta oscillations can be differentially modulated by combined neural operant conditioning and phase-specific intracortical microstimulation. Successfully manipulating this frequency band paves the way to understanding its functional role and to development of clinical tools for treating brain diseases, including Parkinson’s and schizophrenia. |
---|---|
AbstractList | It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease.It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease. It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20–30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease. : Peles et al. show that motor cortex Beta oscillations can be differentially modulated by combined neural operant conditioning and phase-specific intracortical microstimulation. Successfully manipulating this frequency band paves the way to understanding its functional role and to development of clinical tools for treating brain diseases, including Parkinson’s and schizophrenia. Keywords: motor cortex, operant conditioning, brain-machine interface, microsimulation, Beta oscillations, local field potential, non-human primates It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20–30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease. [Display omitted] •Through operant conditioning, subjects learn to volitionally control M1 Beta oscillations•Pre-movement LFP Beta power is anti-correlated with task performance•Phase-specific stimulation differentially modulates LFP and spiking temporal patterns•Stimulation differentially affects behavior when diverging from the standard regime Peles et al. show that motor cortex Beta oscillations can be differentially modulated by combined neural operant conditioning and phase-specific intracortical microstimulation. Successfully manipulating this frequency band paves the way to understanding its functional role and to development of clinical tools for treating brain diseases, including Parkinson’s and schizophrenia. It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine neural operant conditioning and phase-specific intracortical microstimulation (ICMS). We trained monkeys, implanted with 96 electrode arrays in the motor cortex, to volitionally enhance local field potential (LFP) Beta-band (20-30 Hz) activity at selected sites using a brain-machine interface. We find that Beta oscillations of LFP and single-unit spiking activity increase dramatically with brain-machine interface training and that pre-movement Beta power is anti-correlated with task performance. We also find that phase-specific ICMS modulates the power and phase of oscillations, shifting local networks between oscillatory and non-oscillatory states. Furthermore, ICMS induces phase-dependent effects in animal reaction times and success rates. These findings contribute to unraveling the functional role of cortical oscillations and to the future development of clinical tools for ameliorating abnormal neuronal activities in brain disease. |
Author | Werner-Reiss, Uri Peles, Oren Bergman, Hagai Israel, Zvi Vaadia, Eilon |
Author_xml | – sequence: 1 givenname: Oren surname: Peles fullname: Peles, Oren email: oren.peles@mail.huji.ac.il organization: Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel – sequence: 2 givenname: Uri surname: Werner-Reiss fullname: Werner-Reiss, Uri organization: Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel – sequence: 3 givenname: Hagai surname: Bergman fullname: Bergman, Hagai organization: Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel – sequence: 4 givenname: Zvi surname: Israel fullname: Israel, Zvi organization: Department of Neurosurgery, Hadassah University Hospital, Jerusalem 9112102, Israel – sequence: 5 givenname: Eilon surname: Vaadia fullname: Vaadia, Eilon organization: Department of Medical Neurobiology, Institute of Medical Research-Israel Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112102, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32101735$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rFTEYhYNUbK39ByKzdDNjPicTF0JbvwotFdR1yCRvbC5zJ9ckt9B_b6bTirjQbBLe95wTeM5zdDDHGRB6SXBHMOnfbDoLU4JdRzHFHaYdxuIJOqKUkJZQLg_-eB-ik5w3uJ4eE6L4M3TIaE2RTBwh_eXGZGi_7sAGH2xzFWyKuYTtfjIlxLl5H7yHBHMJZprumqvolg3k5gyKaa6zDdOqzI2ZXXNa1bYs2xtzG2J6gZ56M2U4ebiP0fePH76df24vrz9dnJ9etpZLXlrPey8UgOuVtwo4G0ch7Ug5tgOV2DJiGSgHBKgSg_VOAR48dkI6JqXg7BhdrLkumo3epbA16U5HE_T9IKYf2qQS7AQaK469UUQM48gJEYawwdVRpTMIGEXNer1m7VL8uYdc9DbkynsyM8R91pT1fc_FgGWVvnqQ7sctuN8fPwKugrerYMGaE3htQ7nnVZIJkyZYL4XqjV4L1UuhGlNdC61m_pf5Mf8_tnerDSrw2wBJ15ZgtuBCquVUIuHfAb8AyQq7hg |
CitedBy_id | crossref_primary_10_1016_j_brs_2022_08_005 crossref_primary_10_1113_JP282983 crossref_primary_10_1016_j_bspc_2021_103200 crossref_primary_10_1088_1741_2552_ab8683 crossref_primary_10_1371_journal_pbio_3002670 crossref_primary_10_1109_TNSRE_2024_3459801 crossref_primary_10_1038_s41583_022_00598_1 crossref_primary_10_1016_j_celrep_2022_111616 crossref_primary_10_1016_j_celrep_2024_114028 crossref_primary_10_1093_brain_awab264 crossref_primary_10_1016_j_brs_2021_11_019 crossref_primary_10_1016_j_jneumeth_2022_109726 crossref_primary_10_1088_2057_1976_ac240d crossref_primary_10_3389_fnins_2020_558967 crossref_primary_10_7554_eLife_60979 crossref_primary_10_1186_s12984_021_00973_6 crossref_primary_10_1016_j_heliyon_2024_e32609 crossref_primary_10_1038_s41598_021_96660_6 crossref_primary_10_1038_s41467_024_44794_2 crossref_primary_10_1371_journal_pcbi_1009887 crossref_primary_10_1016_j_pneurobio_2022_102397 crossref_primary_10_1016_j_brs_2022_01_012 crossref_primary_10_1016_j_brs_2020_09_017 crossref_primary_10_1016_j_brs_2022_07_047 crossref_primary_10_1088_1741_2552_ada828 crossref_primary_10_23736_S1973_9087_23_07922_4 crossref_primary_10_1073_pnas_2001560117 crossref_primary_10_1371_journal_pcbi_1009281 |
Cites_doi | 10.1093/cercor/bhw245 10.1016/j.cortex.2018.03.001 10.1021/ac60214a047 10.1523/JNEUROSCI.21-03-01033.2001 10.1016/j.cub.2009.07.074 10.1016/j.jneumeth.2007.03.012 10.1002/ana.23951 10.7554/eLife.03061 10.1111/j.1469-7793.1997.225bo.x 10.1016/S0896-6273(02)00698-0 10.1126/science.163.3870.955 10.1016/j.neuron.2012.11.015 10.1093/brain/aww286 10.1523/JNEUROSCI.6322-10.2011 10.1016/j.expneurol.2012.09.013 10.1038/nrn2774 10.3389/fnana.2015.00135 10.1038/nature05226 10.1523/JNEUROSCI.2547-14.2016 10.1038/nrn3241 10.1016/S1353-8020(13)70013-0 10.1523/JNEUROSCI.1913-18.2018 10.1126/science.1138071 10.1113/jphysiol.2001.015099 10.1016/0013-4694(95)00258-8 10.1152/jn.1996.76.6.3968 10.1073/pnas.97.4.1867 10.1523/JNEUROSCI.20-22-08559.2000 10.1016/j.cub.2018.07.009 10.1016/j.cub.2012.01.024 10.1073/pnas.89.12.5670 10.1523/JNEUROSCI.3204-15.2016 10.1073/pnas.90.10.4470 10.1371/journal.pcbi.1005011 10.1152/jn.1968.31.5.659 10.1523/JNEUROSCI.3651-16.2017 10.1016/j.conb.2010.02.015 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.7554/eLife.24573 10.1016/j.neuron.2016.02.028 10.1016/j.neuron.2011.08.023 10.1038/338334a0 10.1152/jn.00808.2006 10.1523/JNEUROSCI.07-04-01010.1987 10.1093/brain/aww308 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2020.02.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 2566.e3 |
ExternalDocumentID | oai_doaj_org_article_0940fa9158bb4115a138d40f60185eb5 32101735 10_1016_j_celrep_2020_02_005 S2211124720301595 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c474t-f46f59eed69fc9e43bb57cb240c8270c31c3e9de1e2958cfd9e08f0d57d377543 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:26:01 EDT 2025 Fri Jul 11 14:30:09 EDT 2025 Thu Apr 03 07:04:48 EDT 2025 Tue Jul 01 02:59:08 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Wed May 17 00:06:26 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | local field potential motor cortex operant conditioning non-human primates Beta oscillations brain-machine interface microsimulation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-f46f59eed69fc9e43bb57cb240c8270c31c3e9de1e2958cfd9e08f0d57d377543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124720301595 |
PMID | 32101735 |
PQID | 2366645807 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0940fa9158bb4115a138d40f60185eb5 proquest_miscellaneous_2366645807 pubmed_primary_32101735 crossref_citationtrail_10_1016_j_celrep_2020_02_005 crossref_primary_10_1016_j_celrep_2020_02_005 elsevier_sciencedirect_doi_10_1016_j_celrep_2020_02_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-25 |
PublicationDateYYYYMMDD | 2020-02-25 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Little, Pogosyan, Neal, Zavala, Zrinzo, Hariz, Foltynie, Limousin, Ashkan, FitzGerald (bib25) 2013; 74 Cagnan, Pedrosa, Little, Pogosyan, Cheeran, Aziz, Green, Fitzgerald, Foltynie, Limousin (bib5) 2017; 140 Savitzky, Golay (bib39) 1964; 36 Holt, Wilson, Shinn, Moehlis, Netoff (bib15) 2016; 12 Little, Brown (bib24) 2014; 20 Martin, Schröder (bib27) 2016; 36 Baker, Olivier, Lemon (bib1) 1997; 501 Roe, Chernov, Friedman, Chen (bib36) 2015; 9 Moll, Engel (bib29) 2017; 140 Schilberg, Engelen, Ten Oever, Schuhmann, de Gelder, de Graaf, Sack (bib40) 2018; 103 Engelhard, Ozeri, Israel, Bergman, Vaadia (bib8) 2013; 77 Sanes, Donoghue (bib38) 1993; 90 Joundi, Jenkinson, Brittain, Aziz, Brown (bib20) 2012; 22 Pfurtscheller, Stancák, Neuper (bib32) 1996; 98 Fetz (bib9) 1969; 163 Tan, Wade, Brown (bib43) 2016; 36 Gray, König, Engel, Singer (bib10) 1989; 338 Holt, Kormann, Gulberti, Pötter-Nerger, McNamara, Cagnan, Baaske, Little, Köppen, Buhmann (bib16) 2019; 39 Joshua, Elias, Levine, Bergman (bib19) 2007; 163 Churchland, Shenoy (bib6) 2007; 97 Engel, Fries (bib7) 2010; 20 Priori, Foffani, Rossi, Marceglia (bib34) 2013; 245 Uhlhaas, Singer (bib44) 2010; 11 Buzsáki, Anastassiou, Koch (bib4) 2012; 13 Lachaux, Rodriguez, Martinerie, Varela (bib23) 1999; 8 Mitz, Wise (bib28) 1987; 7 Jackson, Mavoori, Fetz (bib18) 2006; 444 Murthy, Fetz (bib31) 1996; 76 Murthy, Fetz (bib30) 1992; 89 Rosin, Slovik, Mitelman, Rivlin-Etzion, Haber, Israel, Vaadia, Bergman (bib37) 2011; 72 Griffin, Hudson, Belhaj-Saïf, Cheney (bib12) 2011; 31 Stoney, Thompson, Asanuma (bib42) 1968; 31 Khanna, Carmena (bib21) 2017; 6 Raz, Vaadia, Bergman (bib35) 2000; 20 Graziano, Taylor, Moore (bib11) 2002; 34 Buschman, Miller (bib3) 2007; 315 Guerra, Pogosyan, Nowak, Tan, Ferreri, Di Lazzaro, Brown (bib13) 2016; 26 Hernández-González, Andreu-Sánchez, Martín-Pascual, Gruart, Delgado-García (bib14) 2017; 37 Brown, Oliviero, Mazzone, Insola, Tonali, Di Lazzaro (bib2) 2001; 21 Lundqvist, Rose, Herman, Brincat, Buschman, Miller (bib26) 2016; 90 Pogosyan, Gaynor, Eusebio, Brown (bib33) 2009; 19 Zanos, Rembado, Chen, Fetz (bib45) 2018; 28 Kopell, Ermentrout, Whittington, Traub (bib22) 2000; 97 Jackson, Spinks, Freeman, Wolpert, Lemon (bib17) 2002; 541 Siegle, Wilson (bib41) 2014; 3 Savitzky (10.1016/j.celrep.2020.02.005_bib39) 1964; 36 Graziano (10.1016/j.celrep.2020.02.005_bib11) 2002; 34 Mitz (10.1016/j.celrep.2020.02.005_bib28) 1987; 7 Murthy (10.1016/j.celrep.2020.02.005_bib31) 1996; 76 Stoney (10.1016/j.celrep.2020.02.005_bib42) 1968; 31 Little (10.1016/j.celrep.2020.02.005_bib24) 2014; 20 Murthy (10.1016/j.celrep.2020.02.005_bib30) 1992; 89 Brown (10.1016/j.celrep.2020.02.005_bib2) 2001; 21 Hernández-González (10.1016/j.celrep.2020.02.005_bib14) 2017; 37 Raz (10.1016/j.celrep.2020.02.005_bib35) 2000; 20 Jackson (10.1016/j.celrep.2020.02.005_bib18) 2006; 444 Kopell (10.1016/j.celrep.2020.02.005_bib22) 2000; 97 Little (10.1016/j.celrep.2020.02.005_bib25) 2013; 74 Rosin (10.1016/j.celrep.2020.02.005_bib37) 2011; 72 Pfurtscheller (10.1016/j.celrep.2020.02.005_bib32) 1996; 98 Griffin (10.1016/j.celrep.2020.02.005_bib12) 2011; 31 Priori (10.1016/j.celrep.2020.02.005_bib34) 2013; 245 Fetz (10.1016/j.celrep.2020.02.005_bib9) 1969; 163 Khanna (10.1016/j.celrep.2020.02.005_bib21) 2017; 6 Buzsáki (10.1016/j.celrep.2020.02.005_bib4) 2012; 13 Siegle (10.1016/j.celrep.2020.02.005_bib41) 2014; 3 Churchland (10.1016/j.celrep.2020.02.005_bib6) 2007; 97 Lachaux (10.1016/j.celrep.2020.02.005_bib23) 1999; 8 Holt (10.1016/j.celrep.2020.02.005_bib16) 2019; 39 Cagnan (10.1016/j.celrep.2020.02.005_bib5) 2017; 140 Holt (10.1016/j.celrep.2020.02.005_bib15) 2016; 12 Engelhard (10.1016/j.celrep.2020.02.005_bib8) 2013; 77 Guerra (10.1016/j.celrep.2020.02.005_bib13) 2016; 26 Lundqvist (10.1016/j.celrep.2020.02.005_bib26) 2016; 90 Gray (10.1016/j.celrep.2020.02.005_bib10) 1989; 338 Jackson (10.1016/j.celrep.2020.02.005_bib17) 2002; 541 Zanos (10.1016/j.celrep.2020.02.005_bib45) 2018; 28 Moll (10.1016/j.celrep.2020.02.005_bib29) 2017; 140 Baker (10.1016/j.celrep.2020.02.005_bib1) 1997; 501 Schilberg (10.1016/j.celrep.2020.02.005_bib40) 2018; 103 Engel (10.1016/j.celrep.2020.02.005_bib7) 2010; 20 Tan (10.1016/j.celrep.2020.02.005_bib43) 2016; 36 Martin (10.1016/j.celrep.2020.02.005_bib27) 2016; 36 Joshua (10.1016/j.celrep.2020.02.005_bib19) 2007; 163 Joundi (10.1016/j.celrep.2020.02.005_bib20) 2012; 22 Roe (10.1016/j.celrep.2020.02.005_bib36) 2015; 9 Pogosyan (10.1016/j.celrep.2020.02.005_bib33) 2009; 19 Sanes (10.1016/j.celrep.2020.02.005_bib38) 1993; 90 Uhlhaas (10.1016/j.celrep.2020.02.005_bib44) 2010; 11 Buschman (10.1016/j.celrep.2020.02.005_bib3) 2007; 315 |
References_xml | – volume: 26 start-page: 3977 year: 2016 end-page: 3990 ident: bib13 article-title: Phase dependency of the human primary motor cortex and cholinergic inhibition cancelation during beta tACS publication-title: Cereb. Cortex – volume: 541 start-page: 685 year: 2002 end-page: 699 ident: bib17 article-title: Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation publication-title: J. Physiol. – volume: 9 start-page: 135 year: 2015 ident: bib36 article-title: In vivo mapping of cortical columnar networks in the monkey with focal electrical and optical stimulation publication-title: Front. Neuroanat. – volume: 12 start-page: e1005011 year: 2016 ident: bib15 article-title: Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease publication-title: PLoS Comput. Biol. – volume: 76 start-page: 3968 year: 1996 end-page: 3982 ident: bib31 article-title: Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys publication-title: J. Neurophysiol. – volume: 140 start-page: 132 year: 2017 end-page: 145 ident: bib5 article-title: Stimulating at the right time: phase-specific deep brain stimulation publication-title: Brain – volume: 97 start-page: 1867 year: 2000 end-page: 1872 ident: bib22 article-title: Gamma rhythms and beta rhythms have different synchronization properties publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 156 year: 2010 end-page: 165 ident: bib7 article-title: Beta-band oscillations--signalling the status quo? publication-title: Curr. Opin. Neurobiol. – volume: 21 start-page: 1033 year: 2001 end-page: 1038 ident: bib2 article-title: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease publication-title: J. Neurosci. – volume: 90 start-page: 4470 year: 1993 end-page: 4474 ident: bib38 article-title: Oscillations in local field potentials of the primate motor cortex during voluntary movement publication-title: Proc. Natl. Acad. Sci. USA – volume: 39 start-page: 1119 year: 2019 end-page: 1134 ident: bib16 article-title: Phase-dependent suppression of beta oscillations in Parkinson’s disease patients publication-title: J. Neurosci. – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: bib39 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – volume: 245 start-page: 77 year: 2013 end-page: 86 ident: bib34 article-title: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations publication-title: Exp. Neurol. – volume: 3 start-page: e03061 year: 2014 ident: bib41 article-title: Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus publication-title: eLife – volume: 31 start-page: 13088 year: 2011 end-page: 13096 ident: bib12 article-title: Hijacking cortical motor output with repetitive microstimulation publication-title: J. Neurosci. – volume: 37 start-page: 5923 year: 2017 end-page: 5935 ident: bib14 article-title: A cognition-related neural oscillation pattern, generated in the prelimbic cortex, can control operant learning in rats publication-title: J. Neurosci. – volume: 163 start-page: 267 year: 2007 end-page: 282 ident: bib19 article-title: Quantifying the isolation quality of extracellularly recorded action potentials publication-title: J. Neurosci. Methods – volume: 11 start-page: 100 year: 2010 end-page: 113 ident: bib44 article-title: Abnormal neural oscillations and synchrony in schizophrenia publication-title: Nat. Rev. Neurosci. – volume: 20 start-page: 8559 year: 2000 end-page: 8571 ident: bib35 article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism publication-title: J. Neurosci. – volume: 34 start-page: 841 year: 2002 end-page: 851 ident: bib11 article-title: Complex movements evoked by microstimulation of precentral cortex publication-title: Neuron – volume: 6 start-page: e24573 year: 2017 ident: bib21 article-title: Beta band oscillations in motor cortex reflect neural population signals that delay movement onset publication-title: eLife – volume: 140 start-page: 5 year: 2017 end-page: 8 ident: bib29 article-title: Phase matters: cancelling pathological tremor by adaptive deep brain stimulation publication-title: Brain – volume: 72 start-page: 370 year: 2011 end-page: 384 ident: bib37 article-title: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism publication-title: Neuron – volume: 74 start-page: 449 year: 2013 end-page: 457 ident: bib25 article-title: Adaptive deep brain stimulation in advanced Parkinson disease publication-title: Ann. Neurol. – volume: 28 start-page: 2515 year: 2018 end-page: 2526.e4 ident: bib45 article-title: Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys publication-title: Curr. Biol – volume: 338 start-page: 334 year: 1989 end-page: 337 ident: bib10 article-title: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties publication-title: Nature – volume: 36 start-page: 2494 year: 2016 end-page: 2502 ident: bib27 article-title: Phase locking of multiple single neurons to the local field potential in Cat V1 publication-title: J. Neurosci. – volume: 501 start-page: 225 year: 1997 end-page: 241 ident: bib1 article-title: Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation publication-title: J. Physiol – volume: 19 start-page: 1637 year: 2009 end-page: 1641 ident: bib33 article-title: Boosting cortical activity at beta-band frequencies slows movement in humans publication-title: Curr. Biol. – volume: 103 start-page: 142 year: 2018 end-page: 152 ident: bib40 article-title: Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability publication-title: Cortex – volume: 163 start-page: 955 year: 1969 end-page: 958 ident: bib9 article-title: Operant conditioning of cortical unit activity publication-title: Science – volume: 97 start-page: 348 year: 2007 end-page: 359 ident: bib6 article-title: Delay of movement caused by disruption of cortical preparatory activity publication-title: J. Neurophysiol. – volume: 7 start-page: 1010 year: 1987 end-page: 1021 ident: bib28 article-title: The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping publication-title: J. Neurosci. – volume: 89 start-page: 5670 year: 1992 end-page: 5674 ident: bib30 article-title: Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys publication-title: Proc. Natl. Acad. Sci. USA – volume: 31 start-page: 659 year: 1968 end-page: 669 ident: bib42 article-title: Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current publication-title: J. Neurophysiol. – volume: 315 start-page: 1860 year: 2007 end-page: 1862 ident: bib3 article-title: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices publication-title: Science – volume: 22 start-page: 403 year: 2012 end-page: 407 ident: bib20 article-title: Driving oscillatory activity in the human cortex enhances motor performance publication-title: Curr. Biol. – volume: 90 start-page: 152 year: 2016 end-page: 164 ident: bib26 article-title: Gamma and beta bursts underlie working memory publication-title: Neuron – volume: 13 start-page: 407 year: 2012 end-page: 420 ident: bib4 article-title: The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes publication-title: Nat. Rev. Neurosci. – volume: 36 start-page: 1516 year: 2016 end-page: 1528 ident: bib43 article-title: Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models publication-title: J. Neurosci. – volume: 77 start-page: 361 year: 2013 end-page: 375 ident: bib8 article-title: Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface publication-title: Neuron – volume: 444 start-page: 56 year: 2006 end-page: 60 ident: bib18 article-title: Long-term motor cortex plasticity induced by an electronic neural implant publication-title: Nature – volume: 8 start-page: 194 year: 1999 end-page: 208 ident: bib23 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. – volume: 98 start-page: 281 year: 1996 end-page: 293 ident: bib32 article-title: Post-movement beta synchronization. A correlate of an idling motor area? publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 20 start-page: S44 year: 2014 end-page: S48 ident: bib24 article-title: The functional role of beta oscillations in Parkinson’s disease publication-title: Parkinsonism Relat. Disord. – volume: 26 start-page: 3977 year: 2016 ident: 10.1016/j.celrep.2020.02.005_bib13 article-title: Phase dependency of the human primary motor cortex and cholinergic inhibition cancelation during beta tACS publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw245 – volume: 103 start-page: 142 year: 2018 ident: 10.1016/j.celrep.2020.02.005_bib40 article-title: Phase of beta-frequency tACS over primary motor cortex modulates corticospinal excitability publication-title: Cortex doi: 10.1016/j.cortex.2018.03.001 – volume: 36 start-page: 1627 year: 1964 ident: 10.1016/j.celrep.2020.02.005_bib39 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 21 start-page: 1033 year: 2001 ident: 10.1016/j.celrep.2020.02.005_bib2 article-title: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-03-01033.2001 – volume: 19 start-page: 1637 year: 2009 ident: 10.1016/j.celrep.2020.02.005_bib33 article-title: Boosting cortical activity at beta-band frequencies slows movement in humans publication-title: Curr. Biol. doi: 10.1016/j.cub.2009.07.074 – volume: 163 start-page: 267 year: 2007 ident: 10.1016/j.celrep.2020.02.005_bib19 article-title: Quantifying the isolation quality of extracellularly recorded action potentials publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.012 – volume: 74 start-page: 449 year: 2013 ident: 10.1016/j.celrep.2020.02.005_bib25 article-title: Adaptive deep brain stimulation in advanced Parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.23951 – volume: 3 start-page: e03061 year: 2014 ident: 10.1016/j.celrep.2020.02.005_bib41 article-title: Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus publication-title: eLife doi: 10.7554/eLife.03061 – volume: 501 start-page: 225 year: 1997 ident: 10.1016/j.celrep.2020.02.005_bib1 article-title: Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation publication-title: J. Physiol doi: 10.1111/j.1469-7793.1997.225bo.x – volume: 34 start-page: 841 year: 2002 ident: 10.1016/j.celrep.2020.02.005_bib11 article-title: Complex movements evoked by microstimulation of precentral cortex publication-title: Neuron doi: 10.1016/S0896-6273(02)00698-0 – volume: 163 start-page: 955 year: 1969 ident: 10.1016/j.celrep.2020.02.005_bib9 article-title: Operant conditioning of cortical unit activity publication-title: Science doi: 10.1126/science.163.3870.955 – volume: 77 start-page: 361 year: 2013 ident: 10.1016/j.celrep.2020.02.005_bib8 article-title: Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface publication-title: Neuron doi: 10.1016/j.neuron.2012.11.015 – volume: 140 start-page: 132 year: 2017 ident: 10.1016/j.celrep.2020.02.005_bib5 article-title: Stimulating at the right time: phase-specific deep brain stimulation publication-title: Brain doi: 10.1093/brain/aww286 – volume: 31 start-page: 13088 year: 2011 ident: 10.1016/j.celrep.2020.02.005_bib12 article-title: Hijacking cortical motor output with repetitive microstimulation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6322-10.2011 – volume: 245 start-page: 77 year: 2013 ident: 10.1016/j.celrep.2020.02.005_bib34 article-title: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2012.09.013 – volume: 11 start-page: 100 year: 2010 ident: 10.1016/j.celrep.2020.02.005_bib44 article-title: Abnormal neural oscillations and synchrony in schizophrenia publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2774 – volume: 9 start-page: 135 year: 2015 ident: 10.1016/j.celrep.2020.02.005_bib36 article-title: In vivo mapping of cortical columnar networks in the monkey with focal electrical and optical stimulation publication-title: Front. Neuroanat. doi: 10.3389/fnana.2015.00135 – volume: 444 start-page: 56 year: 2006 ident: 10.1016/j.celrep.2020.02.005_bib18 article-title: Long-term motor cortex plasticity induced by an electronic neural implant publication-title: Nature doi: 10.1038/nature05226 – volume: 36 start-page: 2494 year: 2016 ident: 10.1016/j.celrep.2020.02.005_bib27 article-title: Phase locking of multiple single neurons to the local field potential in Cat V1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2547-14.2016 – volume: 13 start-page: 407 year: 2012 ident: 10.1016/j.celrep.2020.02.005_bib4 article-title: The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3241 – volume: 20 start-page: S44 issue: Suppl 1 year: 2014 ident: 10.1016/j.celrep.2020.02.005_bib24 article-title: The functional role of beta oscillations in Parkinson’s disease publication-title: Parkinsonism Relat. Disord. doi: 10.1016/S1353-8020(13)70013-0 – volume: 39 start-page: 1119 year: 2019 ident: 10.1016/j.celrep.2020.02.005_bib16 article-title: Phase-dependent suppression of beta oscillations in Parkinson’s disease patients publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1913-18.2018 – volume: 315 start-page: 1860 year: 2007 ident: 10.1016/j.celrep.2020.02.005_bib3 article-title: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices publication-title: Science doi: 10.1126/science.1138071 – volume: 541 start-page: 685 year: 2002 ident: 10.1016/j.celrep.2020.02.005_bib17 article-title: Rhythm generation in monkey motor cortex explored using pyramidal tract stimulation publication-title: J. Physiol. doi: 10.1113/jphysiol.2001.015099 – volume: 98 start-page: 281 year: 1996 ident: 10.1016/j.celrep.2020.02.005_bib32 article-title: Post-movement beta synchronization. A correlate of an idling motor area? publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(95)00258-8 – volume: 76 start-page: 3968 year: 1996 ident: 10.1016/j.celrep.2020.02.005_bib31 article-title: Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.76.6.3968 – volume: 97 start-page: 1867 year: 2000 ident: 10.1016/j.celrep.2020.02.005_bib22 article-title: Gamma rhythms and beta rhythms have different synchronization properties publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.4.1867 – volume: 20 start-page: 8559 year: 2000 ident: 10.1016/j.celrep.2020.02.005_bib35 article-title: Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-22-08559.2000 – volume: 28 start-page: 2515 year: 2018 ident: 10.1016/j.celrep.2020.02.005_bib45 article-title: Phase-locked stimulation during cortical beta oscillations produces bidirectional synaptic plasticity in awake monkeys publication-title: Curr. Biol doi: 10.1016/j.cub.2018.07.009 – volume: 22 start-page: 403 year: 2012 ident: 10.1016/j.celrep.2020.02.005_bib20 article-title: Driving oscillatory activity in the human cortex enhances motor performance publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.01.024 – volume: 89 start-page: 5670 year: 1992 ident: 10.1016/j.celrep.2020.02.005_bib30 article-title: Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.12.5670 – volume: 36 start-page: 1516 year: 2016 ident: 10.1016/j.celrep.2020.02.005_bib43 article-title: Post-movement beta activity in sensorimotor cortex indexes confidence in the estimations from internal models publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3204-15.2016 – volume: 90 start-page: 4470 year: 1993 ident: 10.1016/j.celrep.2020.02.005_bib38 article-title: Oscillations in local field potentials of the primate motor cortex during voluntary movement publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.10.4470 – volume: 12 start-page: e1005011 year: 2016 ident: 10.1016/j.celrep.2020.02.005_bib15 article-title: Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005011 – volume: 31 start-page: 659 year: 1968 ident: 10.1016/j.celrep.2020.02.005_bib42 article-title: Excitation of pyramidal tract cells by intracortical microstimulation: effective extent of stimulating current publication-title: J. Neurophysiol. doi: 10.1152/jn.1968.31.5.659 – volume: 37 start-page: 5923 year: 2017 ident: 10.1016/j.celrep.2020.02.005_bib14 article-title: A cognition-related neural oscillation pattern, generated in the prelimbic cortex, can control operant learning in rats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3651-16.2017 – volume: 20 start-page: 156 year: 2010 ident: 10.1016/j.celrep.2020.02.005_bib7 article-title: Beta-band oscillations--signalling the status quo? publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2010.02.015 – volume: 8 start-page: 194 year: 1999 ident: 10.1016/j.celrep.2020.02.005_bib23 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – volume: 6 start-page: e24573 year: 2017 ident: 10.1016/j.celrep.2020.02.005_bib21 article-title: Beta band oscillations in motor cortex reflect neural population signals that delay movement onset publication-title: eLife doi: 10.7554/eLife.24573 – volume: 90 start-page: 152 year: 2016 ident: 10.1016/j.celrep.2020.02.005_bib26 article-title: Gamma and beta bursts underlie working memory publication-title: Neuron doi: 10.1016/j.neuron.2016.02.028 – volume: 72 start-page: 370 year: 2011 ident: 10.1016/j.celrep.2020.02.005_bib37 article-title: Closed-loop deep brain stimulation is superior in ameliorating parkinsonism publication-title: Neuron doi: 10.1016/j.neuron.2011.08.023 – volume: 338 start-page: 334 year: 1989 ident: 10.1016/j.celrep.2020.02.005_bib10 article-title: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties publication-title: Nature doi: 10.1038/338334a0 – volume: 97 start-page: 348 year: 2007 ident: 10.1016/j.celrep.2020.02.005_bib6 article-title: Delay of movement caused by disruption of cortical preparatory activity publication-title: J. Neurophysiol. doi: 10.1152/jn.00808.2006 – volume: 7 start-page: 1010 year: 1987 ident: 10.1016/j.celrep.2020.02.005_bib28 article-title: The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.07-04-01010.1987 – volume: 140 start-page: 5 year: 2017 ident: 10.1016/j.celrep.2020.02.005_bib29 article-title: Phase matters: cancelling pathological tremor by adaptive deep brain stimulation publication-title: Brain doi: 10.1093/brain/aww308 |
SSID | ssj0000601194 |
Score | 2.4209344 |
Snippet | It is widely accepted that Beta-band oscillations play a role in sensorimotor behavior. To further explore this role, we developed a hybrid platform to combine... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2555 |
SubjectTerms | Action Potentials - physiology Animals Behavior, Animal - physiology Beta oscillations Beta Rhythm - physiology brain-machine interface Conditioning, Operant Electric Stimulation Female local field potential Macaca mulatta microsimulation motor cortex non-human primates operant conditioning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOiltOlr27So0Kup9bR1TNKEUNi2hwZyE9aLprjesNkc8u87I8lLcih7yVWWZTGa8TeDZr4h5HPotdNY-St0m5BUmzWOhQhRikqMaR5dJp5fftfnF_Lbpbq81-oLc8IKPXAR3Bfkd0uDYap3ToL7MjDRBxiCQKJX0WX2UsC8e8FU-QcjlxleKXOOOVtcdnPdXE7u8nFcR6Sr5G2h7FQPcCnT9z-Ap_-5nxmGzp6TZ9V_pEdl3y_IkzgdkP3SUfLuJbE_fwMsNbmrfLrydIn5dmDFf2uXLvq1NkQBwx7HO7pcBXwSb-hx3Az0BwDiWLPj6DAFelTSPWilUVy_Ihdnp79OzpvaQ6HxspObJkmdlAEg1CZ5E6VwTnXeAY77nnetF8yLaEJkkRvV-xRMbPvUBtUFgeR44jXZm1ZTfEuoU8ENwSRwKGBVb2Baz_0waM1lZIktiJglaH0lGMc-F6OdM8n-2CJ3i3K3Lbcg9wVptm9dF4KNHfOP8XC2c5EeOw-A0tiqNHaX0ixINx-trZ5G8SBgqasdn_80a4IFQ8TblWGKq9sbywVEglL1bbcgb4qKbDeJhVKsE-rdY2z-PXmKG8p19eqQ7G3Wt_EDeEYb9zEbwT-nkAfi priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9N1t06JCr2Yt62HpmE0aQmHbQhvYm7Be7RbHGzabQ_59Z2R5YQ8l0KNlSRajkb6RNfMNIZ-CVk5h5C9XdUJSbVY5FiKcUmRiTDXRZeL55Vd1eSW-rOTqiJxNsTDoVln2_nFPz7t1KZkXac5v1uv5jwbOLoBOeI8ImGYw0JwLnYP4Vov9fxbkG2E5HyLWr7DBFEGX3bx87LcRiSubeiTvlAcIlYn8D4DqX4ZoBqSLp-RJsSTp6TjYZ-QoDs_JozG35P0LYr__BoCqcn75tPZ0iZ53sJ6vS74uel5So8AS7_t7utwEfBNv6SLuOvoNhNEXPznaDYGejo4ftBAqbl-Sq4vPP88uq5JNofKiFbsqCZWkAUhUJnkTBXdOtt4BonvdtLXnzPNoQmSxMVL7FEysdaqDbANHmjz-ihwPmyG-IdTJ4LpgEpgW0Ks3UE03vuuUakRkic0InyRofaEax4wXvZ18yv7YUe4W5W7rxoLcZ6Tat7oZqTYeqL_AydnXRaLsXLDZ_rJFUyzSA6bOMKmdE2D9dozrAEWgFVpGB52009TaA72DrtYPfP7jpAkWliTes3RD3Nzd2obDmVBIXbcz8npUkf0gMWSKtVy-_e_vviOP8SmH1csTcrzb3sX3YBjt3Ies-X8Bn8EKJw priority: 102 providerName: Elsevier |
Title | Phase-Specific Microstimulation Differentially Modulates Beta Oscillations and Affects Behavior |
URI | https://dx.doi.org/10.1016/j.celrep.2020.02.005 https://www.ncbi.nlm.nih.gov/pubmed/32101735 https://www.proquest.com/docview/2366645807 https://doaj.org/article/0940fa9158bb4115a138d40f60185eb5 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-O36cUTwtdIkTZM-iNyqxyms-uDCvoXmS09qV7t74P73zjTpyoHH4UuhbZq2k5nOpJn5_Qh54XVta6z8FXUZEVSbFZb5ALMUGRmrebAj8PziY326rD6s5OqATJytWYCbf07tkE9qOXQvf__avQaDf_U3V8uFbgiIPsnLhMApr5Hr4JsUmuoiB_zp24wYZ7jUzDnmcvFKTfV0l3R0wV-NsP4X3NZlYenonk5uk1s5rqTHSRHukIPQ3yU3EtPk7h4xn7-BuypGtvl45ugC8_DAun9k9i76NhOlgMF33Y4u1h7PhA2dh21LP4Gj7HLWHG17T49TGgjN8IrDfbI8efflzWmRuRUKV6lqW8SqjrIBB1k30TWhEtZK5Sz4d6e5Kp1gToTGBxZ4I7WLvgmljqWXygsEzRMPyGG_7sMjQq30tvVNhEADenUNNNPctW1d8yqwyGZETBI0LgOPI_9FZ6YMs-8myd2g3E3JDch9Ror9VT8T8MYV7ec4OPu2CJs9HlgPX022QoNggbFtmNTWVhALt0xoD4dAK7QMFjpR09CaHIGkyAK6Orvi9s8nTTBgoLjq0vZhfb4xXMAMsZK6VDPyMKnI_iGxgIopIR__58s-ITdxbyytl0_J4XY4D88gONrao_GnAmzfr-ZHo-7_Aa63DLY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXxJsttBiJa7SxHSfxsVtabaFbkGilvVnxCxaFbLXdHvrvmXGclfaAKvXqZzQe-xvHM98Q8tnVpSkx8leUeUBSbZYZ5jzcUmRgrOTeROL52UU5vSq-zuV8hxwPsTDoVpnO_v5Mj6d1KhknaY6vF4vxTw53F0AnfEcETFPyEXkM1kCF-RvO5pPNjxYkHGExISJ2yLDHEEIX_bysb1cemSt53rN3yi2Iikz-W0j1P0s0ItLpc_IsmZL0qP_aF2THdy_Jkz655N0ron_8BoTKYoL5sLB0hq53sKH_poRd9EvKjQJ7vG3v6GzpsMbf0IlfN_Q7SKNNjnK06Rw96j0_aGJUXL0mV6cnl8fTLKVTyGxRFessFGWQCjCxVMEqXwhjZGUNQLqteZVbwazwynnmuZK1DU75vA65k5UTyJMn3pDdbtn5d4Qa6UzjVADbAka1CprV3DZNWfLCs8BGRAwS1DZxjWPKi1YPTmV_dC93jXLXOdcg9xHJNr2ue66Ne9pPcHE2bZEpOxYsV790UhWN_IChUUzWxhRg_jZM1A6KQCtq6Q0MUg1Lq7cUD4Za3DP9p0ETNOxJfGhpOr-8vdFcwKWwkHVejcjbXkU2H4kxU6wScv_B834kT6eXs3N9fnbx7T3Zw5oYYy8_kN316tYfgJW0NodxF_wD_2cNRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-Specific+Microstimulation+Differentially+Modulates+Beta+Oscillations+and+Affects+Behavior&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Peles%2C+Oren&rft.au=Werner-Reiss%2C+Uri&rft.au=Bergman%2C+Hagai&rft.au=Israel%2C+Zvi&rft.date=2020-02-25&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=30&rft.issue=8&rft.spage=2555&rft.epage=2566.e3&rft_id=info:doi/10.1016%2Fj.celrep.2020.02.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2020_02_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |