Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal
We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). Muscle biopsies were collected to determine differences in autophagy a...
Saved in:
Published in | Molecular metabolism (Germany) Vol. 6; no. 12; pp. 1597 - 1609 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Elsevier
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM).
Muscle biopsies were collected to determine differences in autophagy and mitophagy protein markers and metabolic flexibility under fasting conditions and 4 h following a HFM between endurance-trained male runners (n = 10) and sedentary, non-obese controls (n = 9).
Maximal oxygen consumption (ml·kg·min
) was approximately 50% higher (p < 0.05) in endurance-trained runners compared with sedentary controls (65.8 ± 2.3 and 43.1 ± 3.4, respectively). Autophagy markers were similar between groups. Mitophagy and mitochondrial dynamics protein markers were significantly higher in skeletal muscle of endurance-trained runners compared with sedentary controls in the fasted state, although unaffected by the HFM. Skeletal muscle metabolic flexibility was similar between groups when fasted (p > 0.05), but increased in response to the HFM in endurance-trained athletes only (p < 0.005). Key mitophagy markers, phospho-Pink1
and phospho-Parkin
(r = 0.64, p < 0.005), and phospo-Parkin
and phospho-Drp1
(r = 0.70, p < 0.05) were correlated only within the endurance-trained group. Autophagy and mitophagy markers were not correlated with metabolic flexibility.
In summary, mitophagy may be enhanced in endurance-trained runners based on elevated markers of mitophagy and mitochondrial dynamics. The HFM did not alter autophagy or mitophagy in either group. The absence of a relationship between mitophagy markers and metabolic flexibility suggests that mitophagy is not a key determinant of metabolic flexibility in a healthy population, but further investigation is warranted. |
---|---|
AbstractList | OBJECTIVEWe tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM).METHODSMuscle biopsies were collected to determine differences in autophagy and mitophagy protein markers and metabolic flexibility under fasting conditions and 4 h following a HFM between endurance-trained male runners (n = 10) and sedentary, non-obese controls (n = 9).RESULTSMaximal oxygen consumption (ml·kg·min-1) was approximately 50% higher (p < 0.05) in endurance-trained runners compared with sedentary controls (65.8 ± 2.3 and 43.1 ± 3.4, respectively). Autophagy markers were similar between groups. Mitophagy and mitochondrial dynamics protein markers were significantly higher in skeletal muscle of endurance-trained runners compared with sedentary controls in the fasted state, although unaffected by the HFM. Skeletal muscle metabolic flexibility was similar between groups when fasted (p > 0.05), but increased in response to the HFM in endurance-trained athletes only (p < 0.005). Key mitophagy markers, phospho-Pink1Thr257 and phospho-ParkinS65 (r = 0.64, p < 0.005), and phospo-ParkinSer65 and phospho-Drp1Ser616 (r = 0.70, p < 0.05) were correlated only within the endurance-trained group. Autophagy and mitophagy markers were not correlated with metabolic flexibility.CONCLUSIONIn summary, mitophagy may be enhanced in endurance-trained runners based on elevated markers of mitophagy and mitochondrial dynamics. The HFM did not alter autophagy or mitophagy in either group. The absence of a relationship between mitophagy markers and metabolic flexibility suggests that mitophagy is not a key determinant of metabolic flexibility in a healthy population, but further investigation is warranted. • Basal autophagy is similar in skeletal muscle of endurance-trained and sedentary males. • Trained and sedentary skeletal muscle autophagy is unaltered following high-fat meal. • Mitophagy activity is greater in endurance-trained than sedentary skeletal muscle. • Greater mitophagy is related to increased metabolic flexibility after high-fat meal. • Trained and sedentary skeletal muscle mitophagy is unaltered following high-fat meal. We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). Muscle biopsies were collected to determine differences in autophagy and mitophagy protein markers and metabolic flexibility under fasting conditions and 4 h following a HFM between endurance-trained male runners (n = 10) and sedentary, non-obese controls (n = 9). Maximal oxygen consumption (ml·kg·min ) was approximately 50% higher (p < 0.05) in endurance-trained runners compared with sedentary controls (65.8 ± 2.3 and 43.1 ± 3.4, respectively). Autophagy markers were similar between groups. Mitophagy and mitochondrial dynamics protein markers were significantly higher in skeletal muscle of endurance-trained runners compared with sedentary controls in the fasted state, although unaffected by the HFM. Skeletal muscle metabolic flexibility was similar between groups when fasted (p > 0.05), but increased in response to the HFM in endurance-trained athletes only (p < 0.005). Key mitophagy markers, phospho-Pink1 and phospho-Parkin (r = 0.64, p < 0.005), and phospo-Parkin and phospho-Drp1 (r = 0.70, p < 0.05) were correlated only within the endurance-trained group. Autophagy and mitophagy markers were not correlated with metabolic flexibility. In summary, mitophagy may be enhanced in endurance-trained runners based on elevated markers of mitophagy and mitochondrial dynamics. The HFM did not alter autophagy or mitophagy in either group. The absence of a relationship between mitophagy markers and metabolic flexibility suggests that mitophagy is not a key determinant of metabolic flexibility in a healthy population, but further investigation is warranted. Objective: We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). Methods: Muscle biopsies were collected to determine differences in autophagy and mitophagy protein markers and metabolic flexibility under fasting conditions and 4 h following a HFM between endurance-trained male runners (n = 10) and sedentary, non-obese controls (n = 9). Results: Maximal oxygen consumption (ml·kg·min−1) was approximately 50% higher (p < 0.05) in endurance-trained runners compared with sedentary controls (65.8 ± 2.3 and 43.1 ± 3.4, respectively). Autophagy markers were similar between groups. Mitophagy and mitochondrial dynamics protein markers were significantly higher in skeletal muscle of endurance-trained runners compared with sedentary controls in the fasted state, although unaffected by the HFM. Skeletal muscle metabolic flexibility was similar between groups when fasted (p > 0.05), but increased in response to the HFM in endurance-trained athletes only (p < 0.005). Key mitophagy markers, phospho-Pink1Thr257 and phospho-ParkinS65 (r = 0.64, p < 0.005), and phospo-ParkinSer65 and phospho-Drp1Ser616 (r = 0.70, p < 0.05) were correlated only within the endurance-trained group. Autophagy and mitophagy markers were not correlated with metabolic flexibility. Conclusion: In summary, mitophagy may be enhanced in endurance-trained runners based on elevated markers of mitophagy and mitochondrial dynamics. The HFM did not alter autophagy or mitophagy in either group. The absence of a relationship between mitophagy markers and metabolic flexibility suggests that mitophagy is not a key determinant of metabolic flexibility in a healthy population, but further investigation is warranted. Author Video: Author Video Watch what authors say about their articles Keywords: Metabolic flexibility, Autophagy, Mitophagy, Endurance training, Skeletal muscle |
Author | McMillan, Ryan P Bowser, Suzanne M Boutagy, Nabil E Tarpey, Michael D Davy, Brenda M Halliday, Tanya M Frisard, Madlyn I Hulver, Matthew W Davy, Kevin P |
AuthorAffiliation | 1 Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA 2 Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA 3 Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA |
AuthorAffiliation_xml | – name: 3 Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA – name: 2 Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA – name: 1 Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA |
Author_xml | – sequence: 1 givenname: Michael D surname: Tarpey fullname: Tarpey, Michael D organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA – sequence: 2 givenname: Kevin P surname: Davy fullname: Davy, Kevin P organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA – sequence: 3 givenname: Ryan P surname: McMillan fullname: McMillan, Ryan P organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA – sequence: 4 givenname: Suzanne M surname: Bowser fullname: Bowser, Suzanne M organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA – sequence: 5 givenname: Tanya M surname: Halliday fullname: Halliday, Tanya M organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA – sequence: 6 givenname: Nabil E surname: Boutagy fullname: Boutagy, Nabil E organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA – sequence: 7 givenname: Brenda M surname: Davy fullname: Davy, Brenda M organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA – sequence: 8 givenname: Madlyn I surname: Frisard fullname: Frisard, Madlyn I organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA – sequence: 9 givenname: Matthew W surname: Hulver fullname: Hulver, Matthew W email: hulvermw@vt.edu organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA. Electronic address: hulvermw@vt.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29097020$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU9v3CAQxVGVqknTfIOq4tiLtwPGYC6Vqqh_IkXqoe0ZjfGw660NKdiR8u3rzSZRwgXmMe8Ho_eWncQUibH3AjYChP6030xpnGjeSBBmlTYA-hU7k1LIqjWmPXl2PmUXpexhXa3WuhFv2Km0YA1IOGP06y-NNOPIp6X4kTguc7rZ4faOY-z5NDxWQ-QU-yVj9FTNGYdIPc9LjJQL7yikTPcODDNljnw3bHdVwJlPhOM79jrgWOjiYT9nf759_X35o7r--f3q8st15ZVRcxVqbZpempYQre2DQaxVAxpMI6gzqtHgpTKh6doAcGiTvjW6rqE1gizW5-zqyO0T7t1NHibMdy7h4O6FlLcO8zysc7q-8ZY6MKJDoVoPnfRWGVPLIIyooV9Zn4-sm6WbqPcU16nHF9CXN3HYuW26dY221gq1Aj4-AHL6t1CZ3TQUT-OIkdJSnLBa21YpIddWdWz1OZWSKTw9I8AdAnd7dwzcHQI_qGvgq-3D8y8-mR7jrf8DkpGrcg |
CitedBy_id | crossref_primary_10_3390_cells8111436 crossref_primary_10_1002_jcsm_12611 crossref_primary_10_1016_j_ceca_2021_102357 crossref_primary_10_1038_s42255_023_00930_8 crossref_primary_10_3389_fphys_2022_843784 crossref_primary_10_3390_nu15122749 crossref_primary_10_2174_1381612825666191213115232 crossref_primary_10_1093_jas_sky057 crossref_primary_10_1111_obr_13164 crossref_primary_10_1111_eci_14138 crossref_primary_10_12965_jer_1938380_190 crossref_primary_10_3389_fphys_2023_1151389 crossref_primary_10_14814_phy2_15281 crossref_primary_10_1016_j_exger_2018_08_001 crossref_primary_10_3390_ijms25042052 crossref_primary_10_3389_fphys_2019_01088 crossref_primary_10_3390_ani11010215 crossref_primary_10_3892_ijmm_2022_5191 crossref_primary_10_1016_j_abb_2018_11_004 crossref_primary_10_1152_ajpregu_00404_2017 crossref_primary_10_1155_2021_7382900 crossref_primary_10_1111_apha_13179 crossref_primary_10_1042_CS20210506 crossref_primary_10_1093_nutrit_nuz044 crossref_primary_10_1152_japplphysiol_00576_2019 crossref_primary_10_1016_j_exger_2023_112204 crossref_primary_10_1016_j_metabol_2019_154041 crossref_primary_10_1093_gerona_glac164 crossref_primary_10_5213_inj_1938038_019 crossref_primary_10_14814_phy2_14607 |
Cites_doi | 10.1038/oby.2005.61 10.1126/science.1231031 10.1152/ajpendo.00317.2009 10.2337/db06-0783 10.1073/pnas.1113884108 10.1007/s00125-014-3187-y 10.1007/s12576-016-0440-9 10.1016/S0006-291X(03)00050-0 10.4161/auto.7.6.15123 10.1016/j.cub.2012.02.005 10.1016/j.cmet.2007.10.013 10.2337/dc09-1305 10.1172/JCI25151 10.1155/2014/943162 10.1210/jc.2008-1475 10.2337/diabetes.52.9.2191 10.1152/ajpendo.00257.2014 10.1079/PHN2003585 10.2337/diabetes.51.10.2944 10.1152/japplphysiol.01116.2014 10.1177/1753944712471740 10.1152/japplphysiol.00698.2011 10.1073/pnas.1032913100 10.1079/PNS2004349 10.1016/j.cmet.2007.11.001 10.1074/jbc.M702824200 10.1152/ajpendo.00307.2009 10.1128/MCB.00666-09 10.1098/rsob.120080 10.1093/hmg/ddq419 10.2337/diab.44.9.1010 10.1038/sj.emboj.7601963 10.1152/japplphysiol.00952.2011 10.1007/s00421-011-2287-3 10.1096/fj.13-228486 10.1007/s00125-006-0498-7 10.1371/journal.pone.0051648 10.1007/s00125-007-0594-3 10.1038/ng1180 10.1210/jc.2010-0822 10.1083/jcb.201402104 10.1128/MCB.24.18.8055-8068.2004 10.1101/cshperspect.a011072 10.2337/db09-1322 10.1006/abbi.1999.1494 10.1111/j.1471-4159.2011.07318.x 10.1016/j.soard.2013.03.009 10.1097/00005768-199702000-00017 10.1371/journal.pone.0023211 10.1076/apab.104.2.129.12878 10.1038/nature10758 10.1016/j.cell.2010.01.028 10.1093/hmg/dds325 10.1186/1750-1326-6-34 10.1016/j.mito.2016.09.003 10.1074/jbc.M606116200 10.1249/MSS.0000000000001256 10.1073/pnas.0404161101 10.1152/ajpendo.90558.2008 10.1038/nrn2417 10.1096/fj.02-0367com 10.1172/JCI37048 |
ContentType | Journal Article |
Copyright | Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved. 2017 The Authors 2017 |
Copyright_xml | – notice: Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved. – notice: 2017 The Authors 2017 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.molmet.2017.10.006 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DAOJ: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2212-8778 |
EndPage | 1609 |
ExternalDocumentID | oai_doaj_org_article_d5c9eb071ba148c0b2c947732f17130d 10_1016_j_molmet_2017_10_006 29097020 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | -IN .1- .FO 0R~ 0SF 1P~ 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEVXI AEXQZ AFCTW AFJKZ AFRHN AFTJW AGHFR AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CGR CUY CVF DIK EBS ECM EIF EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ IXB KQ8 M41 M48 M~E NCXOZ NPM O-L O9- OB0 OK1 ON- RIG ROL RPM SSZ Z5R AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c474t-f3675d278eaa99df7aa345060751eb74560c247f5b8f0078ea2c876330871e9a3 |
IEDL.DBID | RPM |
ISSN | 2212-8778 |
IngestDate | Tue Oct 22 15:13:36 EDT 2024 Tue Sep 17 21:25:17 EDT 2024 Fri Oct 25 21:21:50 EDT 2024 Thu Sep 26 19:11:56 EDT 2024 Sat Sep 28 08:38:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Endurance training Mitophagy Autophagy Metabolic flexibility Skeletal muscle |
Language | English |
License | Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-f3675d278eaa99df7aa345060751eb74560c247f5b8f0078ea2c876330871e9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4334-5223 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699914/ |
PMID | 29097020 |
PQID | 1966984412 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d5c9eb071ba148c0b2c947732f17130d pubmedcentral_primary_oai_pubmedcentral_nih_gov_5699914 proquest_miscellaneous_1966984412 crossref_primary_10_1016_j_molmet_2017_10_006 pubmed_primary_29097020 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Molecular metabolism (Germany) |
PublicationTitleAlternate | Mol Metab |
PublicationYear | 2017 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Patti (10.1016/j.molmet.2017.10.006_bib10) 2003; 100 Schwalm (10.1016/j.molmet.2017.10.006_bib32) 2017; 49 Clavel (10.1016/j.molmet.2017.10.006_bib42) 2010; 30 Park (10.1016/j.molmet.2017.10.006_bib59) 2011; 6 Zhang (10.1016/j.molmet.2017.10.006_bib58) 2011; 108 Anderson (10.1016/j.molmet.2017.10.006_bib56) 2009; 119 Heilbronn (10.1016/j.molmet.2017.10.006_bib38) 2005; 13 Meex (10.1016/j.molmet.2017.10.006_bib24) 2010; 59 Yao (10.1016/j.molmet.2017.10.006_bib62) 2004; 101 Egan (10.1016/j.molmet.2017.10.006_bib41) 2011; 7 Bergouignan (10.1016/j.molmet.2017.10.006_bib18) 2011; 111 Cai (10.1016/j.molmet.2017.10.006_bib48) 2012; 22 Twig (10.1016/j.molmet.2017.10.006_bib49) 2008; 27 Vijgen (10.1016/j.molmet.2017.10.006_bib14) 2013; 9 Morino (10.1016/j.molmet.2017.10.006_bib4) 2005; 115 Lira (10.1016/j.molmet.2017.10.006_bib31) 2013; 27 Moller (10.1016/j.molmet.2017.10.006_bib40) 2015; 118 van der Bliek (10.1016/j.molmet.2017.10.006_bib50) 2013; 5 Jamart (10.1016/j.molmet.2017.10.006_bib33) 2012; 112 Chen (10.1016/j.molmet.2017.10.006_bib53) 2013; 340 Kondapalli (10.1016/j.molmet.2017.10.006_bib43) 2012; 2 Galgani (10.1016/j.molmet.2017.10.006_bib15) 2008; 295 Mammucari (10.1016/j.molmet.2017.10.006_bib8) 2007; 6 Koves (10.1016/j.molmet.2017.10.006_bib17) 2008; 7 Seibenhener (10.1016/j.molmet.2017.10.006_bib47) 2004; 24 Knott (10.1016/j.molmet.2017.10.006_bib45) 2008; 9 Glauser (10.1016/j.molmet.2017.10.006_bib52) 2011; 118 Swinburn (10.1016/j.molmet.2017.10.006_bib20) 2004; 7 Boushel (10.1016/j.molmet.2017.10.006_bib2) 2007; 50 Kane (10.1016/j.molmet.2017.10.006_bib44) 2014; 205 Bonnard (10.1016/j.molmet.2017.10.006_bib57) 2008; 118 Kaur (10.1016/j.molmet.2017.10.006_bib19) 2014; 2014 He (10.1016/j.molmet.2017.10.006_bib1) 2012; 481 Shojaee-Moradie (10.1016/j.molmet.2017.10.006_bib22) 2007; 50 Mizushima (10.1016/j.molmet.2017.10.006_bib39) 2010; 140 Ju (10.1016/j.molmet.2017.10.006_bib29) 2016; 66 Pankiv (10.1016/j.molmet.2017.10.006_bib46) 2007; 282 Marinik (10.1016/j.molmet.2017.10.006_bib36) 2013; 7 Frisard (10.1016/j.molmet.2017.10.006_bib37) 2010; 298 Kristensen (10.1016/j.molmet.2017.10.006_bib12) 2014; 57 Dela (10.1016/j.molmet.2017.10.006_bib23) 1995; 44 Chomentowski (10.1016/j.molmet.2017.10.006_bib26) 2011; 96 Jamart (10.1016/j.molmet.2017.10.006_bib34) 2012; 112 Goodpaster (10.1016/j.molmet.2017.10.006_bib21) 2003; 52 Baar (10.1016/j.molmet.2017.10.006_bib27) 2002; 16 Ishihara (10.1016/j.molmet.2017.10.006_bib54) 2003; 301 Zielinski (10.1016/j.molmet.2017.10.006_bib63) 2016; 31 Gegg (10.1016/j.molmet.2017.10.006_bib51) 2010; 19 Wright (10.1016/j.molmet.2017.10.006_bib30) 2007; 282 Meng (10.1016/j.molmet.2017.10.006_bib61) 2011; 6 Mootha (10.1016/j.molmet.2017.10.006_bib9) 2003; 34 Freyssenet (10.1016/j.molmet.2017.10.006_bib28) 1996; 104 Hernandez-Alvarez (10.1016/j.molmet.2017.10.006_bib6) 2010; 33 Kelley (10.1016/j.molmet.2017.10.006_bib3) 2002; 51 Ritov (10.1016/j.molmet.2017.10.006_bib7) 2010; 298 Dube (10.1016/j.molmet.2017.10.006_bib25) 2014; 307 van de Weijer (10.1016/j.molmet.2017.10.006_bib13) 2013; 8 Joselin (10.1016/j.molmet.2017.10.006_bib60) 2012; 21 Rabol (10.1016/j.molmet.2017.10.006_bib5) 2009; 94 Duncan (10.1016/j.molmet.2017.10.006_bib35) 1997; 29 Storlien (10.1016/j.molmet.2017.10.006_bib16) 2004; 63 Venditti (10.1016/j.molmet.2017.10.006_bib55) 1999; 372 Befroy (10.1016/j.molmet.2017.10.006_bib11) 2007; 56 |
References_xml | – volume: 13 start-page: 574 year: 2005 ident: 10.1016/j.molmet.2017.10.006_bib38 article-title: Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting publication-title: Obesity Research doi: 10.1038/oby.2005.61 contributor: fullname: Heilbronn – volume: 340 start-page: 471 year: 2013 ident: 10.1016/j.molmet.2017.10.006_bib53 article-title: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria publication-title: Science doi: 10.1126/science.1231031 contributor: fullname: Chen – volume: 298 start-page: E49 year: 2010 ident: 10.1016/j.molmet.2017.10.006_bib7 article-title: Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity publication-title: American Journal of Physiology Endocrinology and Metabolism doi: 10.1152/ajpendo.00317.2009 contributor: fullname: Ritov – volume: 56 start-page: 1376 year: 2007 ident: 10.1016/j.molmet.2017.10.006_bib11 article-title: Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients publication-title: Diabetes doi: 10.2337/db06-0783 contributor: fullname: Befroy – volume: 108 start-page: 16259 year: 2011 ident: 10.1016/j.molmet.2017.10.006_bib58 article-title: Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1113884108 contributor: fullname: Zhang – volume: 57 start-page: 1006 year: 2014 ident: 10.1016/j.molmet.2017.10.006_bib12 article-title: A PGC-1alpha- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance publication-title: Diabetologia doi: 10.1007/s00125-014-3187-y contributor: fullname: Kristensen – volume: 66 start-page: 417 year: 2016 ident: 10.1016/j.molmet.2017.10.006_bib29 article-title: Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition publication-title: The Journal of Physiological Sciences doi: 10.1007/s12576-016-0440-9 contributor: fullname: Ju – volume: 301 start-page: 891 year: 2003 ident: 10.1016/j.molmet.2017.10.006_bib54 article-title: Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells publication-title: Biochemical and Biophysical Research Communication doi: 10.1016/S0006-291X(03)00050-0 contributor: fullname: Ishihara – volume: 7 start-page: 643 year: 2011 ident: 10.1016/j.molmet.2017.10.006_bib41 article-title: The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR publication-title: Autophagy doi: 10.4161/auto.7.6.15123 contributor: fullname: Egan – volume: 22 start-page: 545 year: 2012 ident: 10.1016/j.molmet.2017.10.006_bib48 article-title: Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons publication-title: Current Biology doi: 10.1016/j.cub.2012.02.005 contributor: fullname: Cai – volume: 7 start-page: 45 year: 2008 ident: 10.1016/j.molmet.2017.10.006_bib17 article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance publication-title: Cell Metabolism doi: 10.1016/j.cmet.2007.10.013 contributor: fullname: Koves – volume: 33 start-page: 645 year: 2010 ident: 10.1016/j.molmet.2017.10.006_bib6 article-title: Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1{alpha}/Mitofusin-2 regulatory pathway in response to physical activity publication-title: Diabetes Care doi: 10.2337/dc09-1305 contributor: fullname: Hernandez-Alvarez – volume: 115 start-page: 3587 year: 2005 ident: 10.1016/j.molmet.2017.10.006_bib4 article-title: Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI25151 contributor: fullname: Morino – volume: 2014 year: 2014 ident: 10.1016/j.molmet.2017.10.006_bib19 article-title: A comprehensive review on metabolic syndrome publication-title: Cardiology Research and Practice doi: 10.1155/2014/943162 contributor: fullname: Kaur – volume: 94 start-page: 1372 year: 2009 ident: 10.1016/j.molmet.2017.10.006_bib5 article-title: Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes publication-title: The Journal of Clinical Endocrinology and Metabolism doi: 10.1210/jc.2008-1475 contributor: fullname: Rabol – volume: 52 start-page: 2191 year: 2003 ident: 10.1016/j.molmet.2017.10.006_bib21 article-title: Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity publication-title: Diabetes doi: 10.2337/diabetes.52.9.2191 contributor: fullname: Goodpaster – volume: 307 start-page: E1117 year: 2014 ident: 10.1016/j.molmet.2017.10.006_bib25 article-title: Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance publication-title: American Journal of Physiology Endocrinology and Metabolism doi: 10.1152/ajpendo.00257.2014 contributor: fullname: Dube – volume: 7 start-page: 123 year: 2004 ident: 10.1016/j.molmet.2017.10.006_bib20 article-title: Diet, nutrition and the prevention of excess weight gain and obesity publication-title: Public Health Nutrition doi: 10.1079/PHN2003585 contributor: fullname: Swinburn – volume: 51 start-page: 2944 year: 2002 ident: 10.1016/j.molmet.2017.10.006_bib3 article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.51.10.2944 contributor: fullname: Kelley – volume: 118 start-page: 971 year: 2015 ident: 10.1016/j.molmet.2017.10.006_bib40 article-title: Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.01116.2014 contributor: fullname: Moller – volume: 7 start-page: 11 year: 2013 ident: 10.1016/j.molmet.2017.10.006_bib36 article-title: Angiotensin II receptor blockade and insulin sensitivity in overweight and obese adults with elevated blood pressure publication-title: Therapeutic Advances in Cardiovascular Disease doi: 10.1177/1753944712471740 contributor: fullname: Marinik – volume: 111 start-page: 1201 year: 2011 ident: 10.1016/j.molmet.2017.10.006_bib18 article-title: Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00698.2011 contributor: fullname: Bergouignan – volume: 100 start-page: 8466 year: 2003 ident: 10.1016/j.molmet.2017.10.006_bib10 article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1032913100 contributor: fullname: Patti – volume: 63 start-page: 363 year: 2004 ident: 10.1016/j.molmet.2017.10.006_bib16 article-title: Metabolic flexibility publication-title: The Proceedings of the Nutrition Society doi: 10.1079/PNS2004349 contributor: fullname: Storlien – volume: 6 start-page: 458 year: 2007 ident: 10.1016/j.molmet.2017.10.006_bib8 article-title: FoxO3 controls autophagy in skeletal muscle in vivo publication-title: Cell Metabolism doi: 10.1016/j.cmet.2007.11.001 contributor: fullname: Mammucari – volume: 282 start-page: 24131 year: 2007 ident: 10.1016/j.molmet.2017.10.006_bib46 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M702824200 contributor: fullname: Pankiv – volume: 298 start-page: E988 year: 2010 ident: 10.1016/j.molmet.2017.10.006_bib37 article-title: Toll-like receptor 4 modulates skeletal muscle substrate metabolism publication-title: American Journal of Physiology – Endocrinology and Metabolism doi: 10.1152/ajpendo.00307.2009 contributor: fullname: Frisard – volume: 30 start-page: 470 year: 2010 ident: 10.1016/j.molmet.2017.10.006_bib42 article-title: Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.00666-09 contributor: fullname: Clavel – volume: 2 year: 2012 ident: 10.1016/j.molmet.2017.10.006_bib43 article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 publication-title: Open Biology doi: 10.1098/rsob.120080 contributor: fullname: Kondapalli – volume: 19 start-page: 4861 year: 2010 ident: 10.1016/j.molmet.2017.10.006_bib51 article-title: Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy publication-title: Human Molecular Genetics doi: 10.1093/hmg/ddq419 contributor: fullname: Gegg – volume: 44 start-page: 1010 year: 1995 ident: 10.1016/j.molmet.2017.10.006_bib23 article-title: Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training publication-title: Diabetes doi: 10.2337/diab.44.9.1010 contributor: fullname: Dela – volume: 27 start-page: 433 year: 2008 ident: 10.1016/j.molmet.2017.10.006_bib49 article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy publication-title: The EMBO Journal doi: 10.1038/sj.emboj.7601963 contributor: fullname: Twig – volume: 112 start-page: 1529 year: 2012 ident: 10.1016/j.molmet.2017.10.006_bib34 article-title: Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00952.2011 contributor: fullname: Jamart – volume: 112 start-page: 3173 year: 2012 ident: 10.1016/j.molmet.2017.10.006_bib33 article-title: Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise publication-title: European Journal of Applied Physiology doi: 10.1007/s00421-011-2287-3 contributor: fullname: Jamart – volume: 27 start-page: 4184 year: 2013 ident: 10.1016/j.molmet.2017.10.006_bib31 article-title: Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance publication-title: Federation of American Societies for Experimental Biology doi: 10.1096/fj.13-228486 contributor: fullname: Lira – volume: 50 start-page: 404 year: 2007 ident: 10.1016/j.molmet.2017.10.006_bib22 article-title: Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism publication-title: Diabetologia doi: 10.1007/s00125-006-0498-7 contributor: fullname: Shojaee-Moradie – volume: 8 year: 2013 ident: 10.1016/j.molmet.2017.10.006_bib13 article-title: Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus publication-title: PloS One doi: 10.1371/journal.pone.0051648 contributor: fullname: van de Weijer – volume: 50 start-page: 790 year: 2007 ident: 10.1016/j.molmet.2017.10.006_bib2 article-title: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle publication-title: Diabetologia doi: 10.1007/s00125-007-0594-3 contributor: fullname: Boushel – volume: 34 start-page: 267 year: 2003 ident: 10.1016/j.molmet.2017.10.006_bib9 article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes publication-title: Nature Genetics doi: 10.1038/ng1180 contributor: fullname: Mootha – volume: 96 start-page: 494 year: 2011 ident: 10.1016/j.molmet.2017.10.006_bib26 article-title: Skeletal muscle mitochondria in insulin resostance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility publication-title: The Journal of Clinical Endocrinology and Metabolism doi: 10.1210/jc.2010-0822 contributor: fullname: Chomentowski – volume: 205 start-page: 143 year: 2014 ident: 10.1016/j.molmet.2017.10.006_bib44 article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201402104 contributor: fullname: Kane – volume: 24 start-page: 8055 year: 2004 ident: 10.1016/j.molmet.2017.10.006_bib47 article-title: Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation publication-title: Molecular and Cellular Biology doi: 10.1128/MCB.24.18.8055-8068.2004 contributor: fullname: Seibenhener – volume: 5 issue: 6 year: 2013 ident: 10.1016/j.molmet.2017.10.006_bib50 article-title: Mechanisms of mitochondrial fission and fusion publication-title: Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a011072 contributor: fullname: van der Bliek – volume: 59 start-page: 572 year: 2010 ident: 10.1016/j.molmet.2017.10.006_bib24 article-title: Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity publication-title: Diabetes doi: 10.2337/db09-1322 contributor: fullname: Meex – volume: 372 start-page: 315 year: 1999 ident: 10.1016/j.molmet.2017.10.006_bib55 article-title: Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle publication-title: Archives of Biochemistry and Biophysics doi: 10.1006/abbi.1999.1494 contributor: fullname: Venditti – volume: 118 start-page: 636 year: 2011 ident: 10.1016/j.molmet.2017.10.006_bib52 article-title: Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1 publication-title: Journal of Neurochemistry doi: 10.1111/j.1471-4159.2011.07318.x contributor: fullname: Glauser – volume: 9 start-page: 936 year: 2013 ident: 10.1016/j.molmet.2017.10.006_bib14 article-title: Impaired skeletal muscle mitochondrial function in morbidly obese patients is normalized one year after bariatric surgery publication-title: Surgery for Obesity and Related Diseases: Official Journal of the American Society for Bariatric Surgery doi: 10.1016/j.soard.2013.03.009 contributor: fullname: Vijgen – volume: 29 start-page: 273 year: 1997 ident: 10.1016/j.molmet.2017.10.006_bib35 article-title: Applicability of VO2max criteria: discontinuous versus continuous protocols publication-title: Medicine and Science in Sports and Exercise doi: 10.1097/00005768-199702000-00017 contributor: fullname: Duncan – volume: 6 year: 2011 ident: 10.1016/j.molmet.2017.10.006_bib59 article-title: Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers publication-title: PloS One doi: 10.1371/journal.pone.0023211 contributor: fullname: Park – volume: 104 start-page: 129 year: 1996 ident: 10.1016/j.molmet.2017.10.006_bib28 article-title: Mitochondrial biogenesis in skeletal muscle in response to endurance exercises publication-title: Archives Physiology Biochemistry doi: 10.1076/apab.104.2.129.12878 contributor: fullname: Freyssenet – volume: 481 start-page: 511 year: 2012 ident: 10.1016/j.molmet.2017.10.006_bib1 article-title: Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis publication-title: Nature doi: 10.1038/nature10758 contributor: fullname: He – volume: 140 start-page: 313 year: 2010 ident: 10.1016/j.molmet.2017.10.006_bib39 article-title: Methods in mammalian autophagy research publication-title: Cell doi: 10.1016/j.cell.2010.01.028 contributor: fullname: Mizushima – volume: 21 start-page: 4888 year: 2012 ident: 10.1016/j.molmet.2017.10.006_bib60 article-title: ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons publication-title: Human Molecular Genetics doi: 10.1093/hmg/dds325 contributor: fullname: Joselin – volume: 6 start-page: 34 year: 2011 ident: 10.1016/j.molmet.2017.10.006_bib61 article-title: Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation publication-title: Molecular Neurodegeneration doi: 10.1186/1750-1326-6-34 contributor: fullname: Meng – volume: 31 start-page: 45 year: 2016 ident: 10.1016/j.molmet.2017.10.006_bib63 article-title: Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling publication-title: Mitochondrion doi: 10.1016/j.mito.2016.09.003 contributor: fullname: Zielinski – volume: 282 start-page: 194 year: 2007 ident: 10.1016/j.molmet.2017.10.006_bib30 article-title: Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression publication-title: The Journal of Biological Chemistry doi: 10.1074/jbc.M606116200 contributor: fullname: Wright – volume: 49 start-page: 1552 year: 2017 ident: 10.1016/j.molmet.2017.10.006_bib32 article-title: Lack of activation of mitophagy during endurance exercise in humans publication-title: Medicine and Science in Sports and Exercise doi: 10.1249/MSS.0000000000001256 contributor: fullname: Schwalm – volume: 101 start-page: 10810 year: 2004 ident: 10.1016/j.molmet.2017.10.006_bib62 article-title: Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0404161101 contributor: fullname: Yao – volume: 295 start-page: E1009 year: 2008 ident: 10.1016/j.molmet.2017.10.006_bib15 article-title: Metabolic flexibility and insulin resistance publication-title: American Journal of Physiology Endocrinology and Metabolism doi: 10.1152/ajpendo.90558.2008 contributor: fullname: Galgani – volume: 9 start-page: 505 year: 2008 ident: 10.1016/j.molmet.2017.10.006_bib45 article-title: Mitochondrial fragmentation in neurodegeneration publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn2417 contributor: fullname: Knott – volume: 16 start-page: 1879 year: 2002 ident: 10.1016/j.molmet.2017.10.006_bib27 article-title: Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1 publication-title: Federation of American Societies for Experimental Biology doi: 10.1096/fj.02-0367com contributor: fullname: Baar – volume: 119 start-page: 573 year: 2009 ident: 10.1016/j.molmet.2017.10.006_bib56 article-title: Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI37048 contributor: fullname: Anderson – volume: 118 start-page: 789 year: 2008 ident: 10.1016/j.molmet.2017.10.006_bib57 article-title: Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice publication-title: The Journal of Clinical Investigation contributor: fullname: Bonnard |
SSID | ssj0000866651 |
Score | 2.3214898 |
Snippet | We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be... OBJECTIVEWe tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be... • Basal autophagy is similar in skeletal muscle of endurance-trained and sedentary males. • Trained and sedentary skeletal muscle autophagy is unaltered... Objective: We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1597 |
SubjectTerms | Adolescent Adult Autophagy Case-Control Studies Diet, High-Fat Dietary Fats - metabolism Endurance Training Fasting - metabolism Humans Male Mitochondrial Degradation Muscle, Skeletal - metabolism Original Oxygen Consumption Running - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJKReUIGWboHKSL26TRwnjo-AQAgJLhSJW-SPcdlWGyp2c-DfM2Nv0G6FxKXHOE4ympmMn5WXN4x9a00ItXJGKOkaoSrthdUqiLIEbUrbRJ1INFfXzcWturyr71ZafREnLMsDZ8f9CLU34HAhdBaRuy-c9EZpXclY4v6qCKn6FmZlM5VqcIuwPPVelFib8ZXX7fjfXCJ3zYjvT1TKUn_P5K61dSnJ97-GOf-lTq6sRecf2NYSRPLjbPw2ewf9DtvMbSWfdhnc_MHFBFE1nw1znMDtQPIB9tcTt33gs-l4NO059GGg3hogUrMICPxxoG5cc-4A8SykK1IjcW45aRuLaBd8hvDyI7s9P_t5eiGW7RSEV1otRKxwcxCkbsFaY0LU1laK9AV1XYLTiKQKL5WOtWsjIQew0pNeHWkGlmBs9Ylt9A89fGa8CrJtYqwi4C0wmqZpbWN04REclV7KCROjM7u_WTWjG-lkv7vs_I6cT6Po_Ak7IY-_zCXN6zSAmdAtM6F7KxMm7GiMV4fvCH34sD08DPMOq0xjWgR-aNhejt_Lo6Qp0HBZTJhei-yaLetn-ul90uGuG0LX6sv_MH6fvSd_ZKLMAdtYPA5wiHBn4b6mzH4GGMz7lg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQuiDfLS0bi6ip2nDg-IASIqkKCC6zUW-RnWcpmYXcjsf-eGScpXVQuHOPEeczY8TfKl-8DeNmYECrlDFfS1VyV2nOrVeBCRG2ErZPOJJqPn-qTufpwWp0ewOTZOgZwc2VpR35S8_X3o18_d69xwr_6w9VaEn2fmJFCHw1crWtwXSqs1YnMNwL-_G5uEK5XYvqH7h-dSSHYFEYX5AJ-abnKqv5XQdG_GZWXlqjj23BrxJbszTAY7sBB7O7CjcFtcncP4udzXGPwOdmy3-ABzPakKmDPdsx2gS0X09aiY7ELPVluRJ49JGJg655MujbMRYS5MffI_uLMMpI85slu2RJR532YH7__8u6Ejy4L3CuttjyVWDMEqZtorTEhaWtLRbKDuhLRaQRYhZdKp8o1iQBFtNKTjB1JCYpobPkADrtVFx8BK4Ns6pTKFPEUmGRTN7bGMHrETMJLOQM-BbP9MYhptBPL7Fs75KGlPFAr5mEGbyniF8eSFHZuWK3P2nFmtaHyJjpESs5iaecLJ73Bi5cyCSzAizCDF1O-Wpw69D3EdnHVb1p8-dSmQTyIN_ZwyN_Fpab8z0DvZXbvXvb3dIuvWZ67qgl0q8f_3fMJ3KQgDKSZp3C4XffxGUKfrXueR_NvOpQDzQ priority: 102 providerName: Scholars Portal |
Title | Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29097020 https://search.proquest.com/docview/1966984412 https://pubmed.ncbi.nlm.nih.gov/PMC5699914 https://doaj.org/article/d5c9eb071ba148c0b2c947732f17130d |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLW2ISQuiN90QGUkrm4Tx4njI1RME1IHEkyquET-OTqIO7XNYf_9vs9pphZx4hIpiR1bfo79nDy_j5APtXKuFEYxwU3FRCEt01I4ludeqlxXQSYRzfyiOr8UXxbl4oiUw16YJNq3ZjmJf9pJXP5K2sqb1k4Hndj023xWVkhrxPSYHEMH3Vuip-G3BkZe5sM2uaTlalHej8rJXE56LReaAKtMyQwDfe_NSMm4_19s82_R5N4sdPaEPN7RR_qxr-ZTcuTjM_KwDyh5-5z4779hGgE-TdtuAwmo7tA4QF_dUh0dbZfD2TJSH12HUTU8S2EivKPrDuNwbajxwGR9ypFCiFNN0dWYBb2lLRDLF-Ty7POP2TnbBVJgVkixZaGAZYHjsvZaK-WC1LoQ6Cwoy9wbCRwqs1zIUJo6IGfwmlt0qkO3wNwrXbwkJ3EV_WtCC8frKoQieHgE4KiqWlfQjBZoUW45HxE2NGZz0_tlNIOQ7LrpcWgQB7wKOIzIJ2zx-7Todp0urNZXzQ7zxpVWeQNkyGhYvdnMcKug8IKHHNbYmRuR9wNeDbwd-MtDR7_qNg2ML5WqgfJBxV71-N0XNeA_IvIA2YO6HN6BDpkcuHcd8PS_c74hj7ARel3MW3KyXXf-HbCbrRmnrwJwnIt6TB5czBZff45TD78D-n7-IQ |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKEaIX9mUoi5G4OpPFieMjragG6FRItKi3yGsZ2mSqmeTQ_vq-50yqmYoLHOMlsf2e7c_K5-8R8qmU1uZcS8ZTXTCeCcOU4JYliRMyUYUXgUQzPSomJ_zbaX66RfLhLkwg7Rs9i5qLOmpmvwO38rI244EnNv4x3c8LhDV8fI_ch_ka87VDeliAS8DkeTJclAtsrhoJ_sidTETUs7lQBljGUsQY6nttTwrS_X_Dm3dpk2v70MFj8mvoQU8_OY-6Vkfm-o644z938Ql5tEKm9HOf_ZRsueYZedDHqrx6TtzPc9ihAKrTultCAao61CRQZ1dUNZbWs-Fp1lDX2A4DdjgWIlA4SxcdhvhaUu0AJLtQI0Qnp4qiYDLzqqU1YNYX5OTgy_H-hK1iNDDDBW-Zz-DEYVNROqWktF4olXEULRR54rQAeBablAuf69IjHHEqNSiCh0KEiZMqe0m2m3njXhOa2bQsvM-8g1eAi8iiVAXYxwDiSkyajggbrFRd9lIc1cBR-1P1Bq7QwJgKBh6RPTTlbVkU0g4J88VZtRrryuZGOg04Sys4GJpYp0bCx7PUJ3B8j-2IfBwcoYKJh39TVOPm3bKCpauQJaBJaNir3jFuPzU41oiIDZfZaMtmDjhCEPdeGf7Nf9f8QB5OjqeH1eHXo--7ZAcHpKffvCXb7aJz7wBEtfp9mDI3XU8crQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMSFd-nSAkbi6mweThwfaWFVHq0qQaWKS-RnWdpkV7vJofz6zjibarfi1GMcO7E9Y_sb5cs3hHwspbU515LxVBeMZ8IwJbhlSeKETFThRSDRHB0Xh6f821l-tpbqK5D2jZ5GzWUdNdM_gVs5r8144ImNT44O8gJhDR_PrR_fJw9gzcbFWqAeNuEScHmeDD_LBUZXjSR_5E8mIuoZXSgFLGMpYkz3vXYuBfn-_2HO29TJtbNo8pT8HkbRU1Auoq7Vkfl3S-DxTsN8Rp6sECr91Fd5Tu655gV52OesvHpJ3M8LOKkAstO6W0IFqjrUJlDnV1Q1ltbT4WraUNfYDhN3OBYyUThLFx2m-lpS7QAsu9AiZCmniqJwMvOqpTVg11fkdPLl18EhW-VqYIYL3jKfQeRhU1E6paS0XiiVcRQvFHnitACYFpuUC5_r0iMscSo1KIaHgoSJkyrbJlvNrHE7hGY2LQvvM-_gEeAqsihVATYygLwSk6YjwgZLVfNekqMauGp_q97IFRoZS8HII7KP5rypi4LaoWC2OK9W813Z3EinAW9pBQGiiXVqJLw8S30CYXxsR-TD4AwVLED8qqIaN-uWFWxhhSwBVULHXvfOcfOqwblGRGy4zUZfNu-AMwSR75Xx39y55Xvy6OTzpPrx9fj7LnmM89GzcPbIVrvo3FvAUq1-F1bNNT_jHy0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+autophagy+and+mitophagy+in+endurance-trained+runners+before+and+after+a+high-fat+meal&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Tarpey%2C+Michael+D.&rft.au=Davy%2C+Kevin+P.&rft.au=McMillan%2C+Ryan+P.&rft.au=Bowser%2C+Suzanne+M.&rft.date=2017-12-01&rft.pub=Elsevier&rft.eissn=2212-8778&rft.volume=6&rft.issue=12&rft.spage=1597&rft.epage=1609&rft_id=info:doi/10.1016%2Fj.molmet.2017.10.006&rft_id=info%3Apmid%2F29097020&rft.externalDBID=PMC5699914 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8778&client=summon |