Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal

We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). Muscle biopsies were collected to determine differences in autophagy a...

Full description

Saved in:
Bibliographic Details
Published inMolecular metabolism (Germany) Vol. 6; no. 12; pp. 1597 - 1609
Main Authors Tarpey, Michael D, Davy, Kevin P, McMillan, Ryan P, Bowser, Suzanne M, Halliday, Tanya M, Boutagy, Nabil E, Davy, Brenda M, Frisard, Madlyn I, Hulver, Matthew W
Format Journal Article
LanguageEnglish
Published Germany Elsevier 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). Muscle biopsies were collected to determine differences in autophagy and mitophagy protein markers and metabolic flexibility under fasting conditions and 4 h following a HFM between endurance-trained male runners (n = 10) and sedentary, non-obese controls (n = 9). Maximal oxygen consumption (ml·kg·min ) was approximately 50% higher (p < 0.05) in endurance-trained runners compared with sedentary controls (65.8 ± 2.3 and 43.1 ± 3.4, respectively). Autophagy markers were similar between groups. Mitophagy and mitochondrial dynamics protein markers were significantly higher in skeletal muscle of endurance-trained runners compared with sedentary controls in the fasted state, although unaffected by the HFM. Skeletal muscle metabolic flexibility was similar between groups when fasted (p > 0.05), but increased in response to the HFM in endurance-trained athletes only (p < 0.005). Key mitophagy markers, phospho-Pink1 and phospho-Parkin (r = 0.64, p < 0.005), and phospo-Parkin and phospho-Drp1 (r = 0.70, p < 0.05) were correlated only within the endurance-trained group. Autophagy and mitophagy markers were not correlated with metabolic flexibility. In summary, mitophagy may be enhanced in endurance-trained runners based on elevated markers of mitophagy and mitochondrial dynamics. The HFM did not alter autophagy or mitophagy in either group. The absence of a relationship between mitophagy markers and metabolic flexibility suggests that mitophagy is not a key determinant of metabolic flexibility in a healthy population, but further investigation is warranted.
AbstractList OBJECTIVEWe tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM).METHODSMuscle biopsies were collected to determine differences in autophagy and mitophagy protein markers and metabolic flexibility under fasting conditions and 4 h following a HFM between endurance-trained male runners (n = 10) and sedentary, non-obese controls (n = 9).RESULTSMaximal oxygen consumption (ml·kg·min-1) was approximately 50% higher (p < 0.05) in endurance-trained runners compared with sedentary controls (65.8 ± 2.3 and 43.1 ± 3.4, respectively). Autophagy markers were similar between groups. Mitophagy and mitochondrial dynamics protein markers were significantly higher in skeletal muscle of endurance-trained runners compared with sedentary controls in the fasted state, although unaffected by the HFM. Skeletal muscle metabolic flexibility was similar between groups when fasted (p > 0.05), but increased in response to the HFM in endurance-trained athletes only (p < 0.005). Key mitophagy markers, phospho-Pink1Thr257 and phospho-ParkinS65 (r = 0.64, p < 0.005), and phospo-ParkinSer65 and phospho-Drp1Ser616 (r = 0.70, p < 0.05) were correlated only within the endurance-trained group. Autophagy and mitophagy markers were not correlated with metabolic flexibility.CONCLUSIONIn summary, mitophagy may be enhanced in endurance-trained runners based on elevated markers of mitophagy and mitochondrial dynamics. The HFM did not alter autophagy or mitophagy in either group. The absence of a relationship between mitophagy markers and metabolic flexibility suggests that mitophagy is not a key determinant of metabolic flexibility in a healthy population, but further investigation is warranted.
• Basal autophagy is similar in skeletal muscle of endurance-trained and sedentary males. • Trained and sedentary skeletal muscle autophagy is unaltered following high-fat meal. • Mitophagy activity is greater in endurance-trained than sedentary skeletal muscle. • Greater mitophagy is related to increased metabolic flexibility after high-fat meal. • Trained and sedentary skeletal muscle mitophagy is unaltered following high-fat meal.
We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). Muscle biopsies were collected to determine differences in autophagy and mitophagy protein markers and metabolic flexibility under fasting conditions and 4 h following a HFM between endurance-trained male runners (n = 10) and sedentary, non-obese controls (n = 9). Maximal oxygen consumption (ml·kg·min ) was approximately 50% higher (p < 0.05) in endurance-trained runners compared with sedentary controls (65.8 ± 2.3 and 43.1 ± 3.4, respectively). Autophagy markers were similar between groups. Mitophagy and mitochondrial dynamics protein markers were significantly higher in skeletal muscle of endurance-trained runners compared with sedentary controls in the fasted state, although unaffected by the HFM. Skeletal muscle metabolic flexibility was similar between groups when fasted (p > 0.05), but increased in response to the HFM in endurance-trained athletes only (p < 0.005). Key mitophagy markers, phospho-Pink1 and phospho-Parkin (r = 0.64, p < 0.005), and phospo-Parkin and phospho-Drp1 (r = 0.70, p < 0.05) were correlated only within the endurance-trained group. Autophagy and mitophagy markers were not correlated with metabolic flexibility. In summary, mitophagy may be enhanced in endurance-trained runners based on elevated markers of mitophagy and mitochondrial dynamics. The HFM did not alter autophagy or mitophagy in either group. The absence of a relationship between mitophagy markers and metabolic flexibility suggests that mitophagy is not a key determinant of metabolic flexibility in a healthy population, but further investigation is warranted.
Objective: We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be associated with greater metabolic flexibility following a high-fat meal (HFM). Methods: Muscle biopsies were collected to determine differences in autophagy and mitophagy protein markers and metabolic flexibility under fasting conditions and 4 h following a HFM between endurance-trained male runners (n = 10) and sedentary, non-obese controls (n = 9). Results: Maximal oxygen consumption (ml·kg·min−1) was approximately 50% higher (p < 0.05) in endurance-trained runners compared with sedentary controls (65.8 ± 2.3 and 43.1 ± 3.4, respectively). Autophagy markers were similar between groups. Mitophagy and mitochondrial dynamics protein markers were significantly higher in skeletal muscle of endurance-trained runners compared with sedentary controls in the fasted state, although unaffected by the HFM. Skeletal muscle metabolic flexibility was similar between groups when fasted (p > 0.05), but increased in response to the HFM in endurance-trained athletes only (p < 0.005). Key mitophagy markers, phospho-Pink1Thr257 and phospho-ParkinS65 (r = 0.64, p < 0.005), and phospo-ParkinSer65 and phospho-Drp1Ser616 (r = 0.70, p < 0.05) were correlated only within the endurance-trained group. Autophagy and mitophagy markers were not correlated with metabolic flexibility. Conclusion: In summary, mitophagy may be enhanced in endurance-trained runners based on elevated markers of mitophagy and mitochondrial dynamics. The HFM did not alter autophagy or mitophagy in either group. The absence of a relationship between mitophagy markers and metabolic flexibility suggests that mitophagy is not a key determinant of metabolic flexibility in a healthy population, but further investigation is warranted. Author Video: Author Video Watch what authors say about their articles Keywords: Metabolic flexibility, Autophagy, Mitophagy, Endurance training, Skeletal muscle
Author McMillan, Ryan P
Bowser, Suzanne M
Boutagy, Nabil E
Tarpey, Michael D
Davy, Brenda M
Halliday, Tanya M
Frisard, Madlyn I
Hulver, Matthew W
Davy, Kevin P
AuthorAffiliation 1 Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
2 Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA
3 Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA
AuthorAffiliation_xml – name: 3 Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA
– name: 2 Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA
– name: 1 Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
Author_xml – sequence: 1
  givenname: Michael D
  surname: Tarpey
  fullname: Tarpey, Michael D
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
– sequence: 2
  givenname: Kevin P
  surname: Davy
  fullname: Davy, Kevin P
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA
– sequence: 3
  givenname: Ryan P
  surname: McMillan
  fullname: McMillan, Ryan P
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA
– sequence: 4
  givenname: Suzanne M
  surname: Bowser
  fullname: Bowser, Suzanne M
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
– sequence: 5
  givenname: Tanya M
  surname: Halliday
  fullname: Halliday, Tanya M
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
– sequence: 6
  givenname: Nabil E
  surname: Boutagy
  fullname: Boutagy, Nabil E
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
– sequence: 7
  givenname: Brenda M
  surname: Davy
  fullname: Davy, Brenda M
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA
– sequence: 8
  givenname: Madlyn I
  surname: Frisard
  fullname: Frisard, Madlyn I
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA
– sequence: 9
  givenname: Matthew W
  surname: Hulver
  fullname: Hulver, Matthew W
  email: hulvermw@vt.edu
  organization: Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA; Metabolic Phenotyping Core, Virginia Tech, Blacksburg, VA, USA; Fralin Translational Obesity Research Center, Virginia Tech, Blacksburg, VA, USA. Electronic address: hulvermw@vt.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29097020$$D View this record in MEDLINE/PubMed
BookMark eNpVkU9v3CAQxVGVqknTfIOq4tiLtwPGYC6Vqqh_IkXqoe0ZjfGw660NKdiR8u3rzSZRwgXmMe8Ho_eWncQUibH3AjYChP6030xpnGjeSBBmlTYA-hU7k1LIqjWmPXl2PmUXpexhXa3WuhFv2Km0YA1IOGP06y-NNOPIp6X4kTguc7rZ4faOY-z5NDxWQ-QU-yVj9FTNGYdIPc9LjJQL7yikTPcODDNljnw3bHdVwJlPhOM79jrgWOjiYT9nf759_X35o7r--f3q8st15ZVRcxVqbZpempYQre2DQaxVAxpMI6gzqtHgpTKh6doAcGiTvjW6rqE1gizW5-zqyO0T7t1NHibMdy7h4O6FlLcO8zysc7q-8ZY6MKJDoVoPnfRWGVPLIIyooV9Zn4-sm6WbqPcU16nHF9CXN3HYuW26dY221gq1Aj4-AHL6t1CZ3TQUT-OIkdJSnLBa21YpIddWdWz1OZWSKTw9I8AdAnd7dwzcHQI_qGvgq-3D8y8-mR7jrf8DkpGrcg
CitedBy_id crossref_primary_10_3390_cells8111436
crossref_primary_10_1002_jcsm_12611
crossref_primary_10_1016_j_ceca_2021_102357
crossref_primary_10_1038_s42255_023_00930_8
crossref_primary_10_3389_fphys_2022_843784
crossref_primary_10_3390_nu15122749
crossref_primary_10_2174_1381612825666191213115232
crossref_primary_10_1093_jas_sky057
crossref_primary_10_1111_obr_13164
crossref_primary_10_1111_eci_14138
crossref_primary_10_12965_jer_1938380_190
crossref_primary_10_3389_fphys_2023_1151389
crossref_primary_10_14814_phy2_15281
crossref_primary_10_1016_j_exger_2018_08_001
crossref_primary_10_3390_ijms25042052
crossref_primary_10_3389_fphys_2019_01088
crossref_primary_10_3390_ani11010215
crossref_primary_10_3892_ijmm_2022_5191
crossref_primary_10_1016_j_abb_2018_11_004
crossref_primary_10_1152_ajpregu_00404_2017
crossref_primary_10_1155_2021_7382900
crossref_primary_10_1111_apha_13179
crossref_primary_10_1042_CS20210506
crossref_primary_10_1093_nutrit_nuz044
crossref_primary_10_1152_japplphysiol_00576_2019
crossref_primary_10_1016_j_exger_2023_112204
crossref_primary_10_1016_j_metabol_2019_154041
crossref_primary_10_1093_gerona_glac164
crossref_primary_10_5213_inj_1938038_019
crossref_primary_10_14814_phy2_14607
Cites_doi 10.1038/oby.2005.61
10.1126/science.1231031
10.1152/ajpendo.00317.2009
10.2337/db06-0783
10.1073/pnas.1113884108
10.1007/s00125-014-3187-y
10.1007/s12576-016-0440-9
10.1016/S0006-291X(03)00050-0
10.4161/auto.7.6.15123
10.1016/j.cub.2012.02.005
10.1016/j.cmet.2007.10.013
10.2337/dc09-1305
10.1172/JCI25151
10.1155/2014/943162
10.1210/jc.2008-1475
10.2337/diabetes.52.9.2191
10.1152/ajpendo.00257.2014
10.1079/PHN2003585
10.2337/diabetes.51.10.2944
10.1152/japplphysiol.01116.2014
10.1177/1753944712471740
10.1152/japplphysiol.00698.2011
10.1073/pnas.1032913100
10.1079/PNS2004349
10.1016/j.cmet.2007.11.001
10.1074/jbc.M702824200
10.1152/ajpendo.00307.2009
10.1128/MCB.00666-09
10.1098/rsob.120080
10.1093/hmg/ddq419
10.2337/diab.44.9.1010
10.1038/sj.emboj.7601963
10.1152/japplphysiol.00952.2011
10.1007/s00421-011-2287-3
10.1096/fj.13-228486
10.1007/s00125-006-0498-7
10.1371/journal.pone.0051648
10.1007/s00125-007-0594-3
10.1038/ng1180
10.1210/jc.2010-0822
10.1083/jcb.201402104
10.1128/MCB.24.18.8055-8068.2004
10.1101/cshperspect.a011072
10.2337/db09-1322
10.1006/abbi.1999.1494
10.1111/j.1471-4159.2011.07318.x
10.1016/j.soard.2013.03.009
10.1097/00005768-199702000-00017
10.1371/journal.pone.0023211
10.1076/apab.104.2.129.12878
10.1038/nature10758
10.1016/j.cell.2010.01.028
10.1093/hmg/dds325
10.1186/1750-1326-6-34
10.1016/j.mito.2016.09.003
10.1074/jbc.M606116200
10.1249/MSS.0000000000001256
10.1073/pnas.0404161101
10.1152/ajpendo.90558.2008
10.1038/nrn2417
10.1096/fj.02-0367com
10.1172/JCI37048
ContentType Journal Article
Copyright Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
2017 The Authors 2017
Copyright_xml – notice: Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
– notice: 2017 The Authors 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.molmet.2017.10.006
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DAOJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2212-8778
EndPage 1609
ExternalDocumentID oai_doaj_org_article_d5c9eb071ba148c0b2c947732f17130d
10_1016_j_molmet_2017_10_006
29097020
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -IN
.1-
.FO
0R~
0SF
1P~
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEVXI
AEXQZ
AFCTW
AFJKZ
AFRHN
AFTJW
AGHFR
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
CGR
CUY
CVF
DIK
EBS
ECM
EIF
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
NCXOZ
NPM
O-L
O9-
OB0
OK1
ON-
RIG
ROL
RPM
SSZ
Z5R
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c474t-f3675d278eaa99df7aa345060751eb74560c247f5b8f0078ea2c876330871e9a3
IEDL.DBID RPM
ISSN 2212-8778
IngestDate Tue Oct 22 15:13:36 EDT 2024
Tue Sep 17 21:25:17 EDT 2024
Fri Oct 25 21:21:50 EDT 2024
Thu Sep 26 19:11:56 EDT 2024
Sat Sep 28 08:38:54 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Endurance training
Mitophagy
Autophagy
Metabolic flexibility
Skeletal muscle
Language English
License Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-f3675d278eaa99df7aa345060751eb74560c247f5b8f0078ea2c876330871e9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4334-5223
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699914/
PMID 29097020
PQID 1966984412
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_d5c9eb071ba148c0b2c947732f17130d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5699914
proquest_miscellaneous_1966984412
crossref_primary_10_1016_j_molmet_2017_10_006
pubmed_primary_29097020
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Molecular metabolism (Germany)
PublicationTitleAlternate Mol Metab
PublicationYear 2017
Publisher Elsevier
Publisher_xml – name: Elsevier
References Patti (10.1016/j.molmet.2017.10.006_bib10) 2003; 100
Schwalm (10.1016/j.molmet.2017.10.006_bib32) 2017; 49
Clavel (10.1016/j.molmet.2017.10.006_bib42) 2010; 30
Park (10.1016/j.molmet.2017.10.006_bib59) 2011; 6
Zhang (10.1016/j.molmet.2017.10.006_bib58) 2011; 108
Anderson (10.1016/j.molmet.2017.10.006_bib56) 2009; 119
Heilbronn (10.1016/j.molmet.2017.10.006_bib38) 2005; 13
Meex (10.1016/j.molmet.2017.10.006_bib24) 2010; 59
Yao (10.1016/j.molmet.2017.10.006_bib62) 2004; 101
Egan (10.1016/j.molmet.2017.10.006_bib41) 2011; 7
Bergouignan (10.1016/j.molmet.2017.10.006_bib18) 2011; 111
Cai (10.1016/j.molmet.2017.10.006_bib48) 2012; 22
Twig (10.1016/j.molmet.2017.10.006_bib49) 2008; 27
Vijgen (10.1016/j.molmet.2017.10.006_bib14) 2013; 9
Morino (10.1016/j.molmet.2017.10.006_bib4) 2005; 115
Lira (10.1016/j.molmet.2017.10.006_bib31) 2013; 27
Moller (10.1016/j.molmet.2017.10.006_bib40) 2015; 118
van der Bliek (10.1016/j.molmet.2017.10.006_bib50) 2013; 5
Jamart (10.1016/j.molmet.2017.10.006_bib33) 2012; 112
Chen (10.1016/j.molmet.2017.10.006_bib53) 2013; 340
Kondapalli (10.1016/j.molmet.2017.10.006_bib43) 2012; 2
Galgani (10.1016/j.molmet.2017.10.006_bib15) 2008; 295
Mammucari (10.1016/j.molmet.2017.10.006_bib8) 2007; 6
Koves (10.1016/j.molmet.2017.10.006_bib17) 2008; 7
Seibenhener (10.1016/j.molmet.2017.10.006_bib47) 2004; 24
Knott (10.1016/j.molmet.2017.10.006_bib45) 2008; 9
Glauser (10.1016/j.molmet.2017.10.006_bib52) 2011; 118
Swinburn (10.1016/j.molmet.2017.10.006_bib20) 2004; 7
Boushel (10.1016/j.molmet.2017.10.006_bib2) 2007; 50
Kane (10.1016/j.molmet.2017.10.006_bib44) 2014; 205
Bonnard (10.1016/j.molmet.2017.10.006_bib57) 2008; 118
Kaur (10.1016/j.molmet.2017.10.006_bib19) 2014; 2014
He (10.1016/j.molmet.2017.10.006_bib1) 2012; 481
Shojaee-Moradie (10.1016/j.molmet.2017.10.006_bib22) 2007; 50
Mizushima (10.1016/j.molmet.2017.10.006_bib39) 2010; 140
Ju (10.1016/j.molmet.2017.10.006_bib29) 2016; 66
Pankiv (10.1016/j.molmet.2017.10.006_bib46) 2007; 282
Marinik (10.1016/j.molmet.2017.10.006_bib36) 2013; 7
Frisard (10.1016/j.molmet.2017.10.006_bib37) 2010; 298
Kristensen (10.1016/j.molmet.2017.10.006_bib12) 2014; 57
Dela (10.1016/j.molmet.2017.10.006_bib23) 1995; 44
Chomentowski (10.1016/j.molmet.2017.10.006_bib26) 2011; 96
Jamart (10.1016/j.molmet.2017.10.006_bib34) 2012; 112
Goodpaster (10.1016/j.molmet.2017.10.006_bib21) 2003; 52
Baar (10.1016/j.molmet.2017.10.006_bib27) 2002; 16
Ishihara (10.1016/j.molmet.2017.10.006_bib54) 2003; 301
Zielinski (10.1016/j.molmet.2017.10.006_bib63) 2016; 31
Gegg (10.1016/j.molmet.2017.10.006_bib51) 2010; 19
Wright (10.1016/j.molmet.2017.10.006_bib30) 2007; 282
Meng (10.1016/j.molmet.2017.10.006_bib61) 2011; 6
Mootha (10.1016/j.molmet.2017.10.006_bib9) 2003; 34
Freyssenet (10.1016/j.molmet.2017.10.006_bib28) 1996; 104
Hernandez-Alvarez (10.1016/j.molmet.2017.10.006_bib6) 2010; 33
Kelley (10.1016/j.molmet.2017.10.006_bib3) 2002; 51
Ritov (10.1016/j.molmet.2017.10.006_bib7) 2010; 298
Dube (10.1016/j.molmet.2017.10.006_bib25) 2014; 307
van de Weijer (10.1016/j.molmet.2017.10.006_bib13) 2013; 8
Joselin (10.1016/j.molmet.2017.10.006_bib60) 2012; 21
Rabol (10.1016/j.molmet.2017.10.006_bib5) 2009; 94
Duncan (10.1016/j.molmet.2017.10.006_bib35) 1997; 29
Storlien (10.1016/j.molmet.2017.10.006_bib16) 2004; 63
Venditti (10.1016/j.molmet.2017.10.006_bib55) 1999; 372
Befroy (10.1016/j.molmet.2017.10.006_bib11) 2007; 56
References_xml – volume: 13
  start-page: 574
  year: 2005
  ident: 10.1016/j.molmet.2017.10.006_bib38
  article-title: Glucose tolerance and skeletal muscle gene expression in response to alternate day fasting
  publication-title: Obesity Research
  doi: 10.1038/oby.2005.61
  contributor:
    fullname: Heilbronn
– volume: 340
  start-page: 471
  year: 2013
  ident: 10.1016/j.molmet.2017.10.006_bib53
  article-title: PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
  publication-title: Science
  doi: 10.1126/science.1231031
  contributor:
    fullname: Chen
– volume: 298
  start-page: E49
  year: 2010
  ident: 10.1016/j.molmet.2017.10.006_bib7
  article-title: Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity
  publication-title: American Journal of Physiology Endocrinology and Metabolism
  doi: 10.1152/ajpendo.00317.2009
  contributor:
    fullname: Ritov
– volume: 56
  start-page: 1376
  year: 2007
  ident: 10.1016/j.molmet.2017.10.006_bib11
  article-title: Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/db06-0783
  contributor:
    fullname: Befroy
– volume: 108
  start-page: 16259
  year: 2011
  ident: 10.1016/j.molmet.2017.10.006_bib58
  article-title: Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1113884108
  contributor:
    fullname: Zhang
– volume: 57
  start-page: 1006
  year: 2014
  ident: 10.1016/j.molmet.2017.10.006_bib12
  article-title: A PGC-1alpha- and muscle fibre type-related decrease in markers of mitochondrial oxidative metabolism in skeletal muscle of humans with inherited insulin resistance
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3187-y
  contributor:
    fullname: Kristensen
– volume: 66
  start-page: 417
  year: 2016
  ident: 10.1016/j.molmet.2017.10.006_bib29
  article-title: Autophagy plays a role in skeletal muscle mitochondrial biogenesis in an endurance exercise-trained condition
  publication-title: The Journal of Physiological Sciences
  doi: 10.1007/s12576-016-0440-9
  contributor:
    fullname: Ju
– volume: 301
  start-page: 891
  year: 2003
  ident: 10.1016/j.molmet.2017.10.006_bib54
  article-title: Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells
  publication-title: Biochemical and Biophysical Research Communication
  doi: 10.1016/S0006-291X(03)00050-0
  contributor:
    fullname: Ishihara
– volume: 7
  start-page: 643
  year: 2011
  ident: 10.1016/j.molmet.2017.10.006_bib41
  article-title: The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR
  publication-title: Autophagy
  doi: 10.4161/auto.7.6.15123
  contributor:
    fullname: Egan
– volume: 22
  start-page: 545
  year: 2012
  ident: 10.1016/j.molmet.2017.10.006_bib48
  article-title: Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons
  publication-title: Current Biology
  doi: 10.1016/j.cub.2012.02.005
  contributor:
    fullname: Cai
– volume: 7
  start-page: 45
  year: 2008
  ident: 10.1016/j.molmet.2017.10.006_bib17
  article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2007.10.013
  contributor:
    fullname: Koves
– volume: 33
  start-page: 645
  year: 2010
  ident: 10.1016/j.molmet.2017.10.006_bib6
  article-title: Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1{alpha}/Mitofusin-2 regulatory pathway in response to physical activity
  publication-title: Diabetes Care
  doi: 10.2337/dc09-1305
  contributor:
    fullname: Hernandez-Alvarez
– volume: 115
  start-page: 3587
  year: 2005
  ident: 10.1016/j.molmet.2017.10.006_bib4
  article-title: Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents
  publication-title: The Journal of Clinical Investigation
  doi: 10.1172/JCI25151
  contributor:
    fullname: Morino
– volume: 2014
  year: 2014
  ident: 10.1016/j.molmet.2017.10.006_bib19
  article-title: A comprehensive review on metabolic syndrome
  publication-title: Cardiology Research and Practice
  doi: 10.1155/2014/943162
  contributor:
    fullname: Kaur
– volume: 94
  start-page: 1372
  year: 2009
  ident: 10.1016/j.molmet.2017.10.006_bib5
  article-title: Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes
  publication-title: The Journal of Clinical Endocrinology and Metabolism
  doi: 10.1210/jc.2008-1475
  contributor:
    fullname: Rabol
– volume: 52
  start-page: 2191
  year: 2003
  ident: 10.1016/j.molmet.2017.10.006_bib21
  article-title: Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity
  publication-title: Diabetes
  doi: 10.2337/diabetes.52.9.2191
  contributor:
    fullname: Goodpaster
– volume: 307
  start-page: E1117
  year: 2014
  ident: 10.1016/j.molmet.2017.10.006_bib25
  article-title: Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance
  publication-title: American Journal of Physiology Endocrinology and Metabolism
  doi: 10.1152/ajpendo.00257.2014
  contributor:
    fullname: Dube
– volume: 7
  start-page: 123
  year: 2004
  ident: 10.1016/j.molmet.2017.10.006_bib20
  article-title: Diet, nutrition and the prevention of excess weight gain and obesity
  publication-title: Public Health Nutrition
  doi: 10.1079/PHN2003585
  contributor:
    fullname: Swinburn
– volume: 51
  start-page: 2944
  year: 2002
  ident: 10.1016/j.molmet.2017.10.006_bib3
  article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.51.10.2944
  contributor:
    fullname: Kelley
– volume: 118
  start-page: 971
  year: 2015
  ident: 10.1016/j.molmet.2017.10.006_bib40
  article-title: Physical exercise increases autophagic signaling through ULK1 in human skeletal muscle
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.01116.2014
  contributor:
    fullname: Moller
– volume: 7
  start-page: 11
  year: 2013
  ident: 10.1016/j.molmet.2017.10.006_bib36
  article-title: Angiotensin II receptor blockade and insulin sensitivity in overweight and obese adults with elevated blood pressure
  publication-title: Therapeutic Advances in Cardiovascular Disease
  doi: 10.1177/1753944712471740
  contributor:
    fullname: Marinik
– volume: 111
  start-page: 1201
  year: 2011
  ident: 10.1016/j.molmet.2017.10.006_bib18
  article-title: Physical inactivity as the culprit of metabolic inflexibility: evidence from bed-rest studies
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00698.2011
  contributor:
    fullname: Bergouignan
– volume: 100
  start-page: 8466
  year: 2003
  ident: 10.1016/j.molmet.2017.10.006_bib10
  article-title: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1032913100
  contributor:
    fullname: Patti
– volume: 63
  start-page: 363
  year: 2004
  ident: 10.1016/j.molmet.2017.10.006_bib16
  article-title: Metabolic flexibility
  publication-title: The Proceedings of the Nutrition Society
  doi: 10.1079/PNS2004349
  contributor:
    fullname: Storlien
– volume: 6
  start-page: 458
  year: 2007
  ident: 10.1016/j.molmet.2017.10.006_bib8
  article-title: FoxO3 controls autophagy in skeletal muscle in vivo
  publication-title: Cell Metabolism
  doi: 10.1016/j.cmet.2007.11.001
  contributor:
    fullname: Mammucari
– volume: 282
  start-page: 24131
  year: 2007
  ident: 10.1016/j.molmet.2017.10.006_bib46
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M702824200
  contributor:
    fullname: Pankiv
– volume: 298
  start-page: E988
  year: 2010
  ident: 10.1016/j.molmet.2017.10.006_bib37
  article-title: Toll-like receptor 4 modulates skeletal muscle substrate metabolism
  publication-title: American Journal of Physiology – Endocrinology and Metabolism
  doi: 10.1152/ajpendo.00307.2009
  contributor:
    fullname: Frisard
– volume: 30
  start-page: 470
  year: 2010
  ident: 10.1016/j.molmet.2017.10.006_bib42
  article-title: Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.00666-09
  contributor:
    fullname: Clavel
– volume: 2
  year: 2012
  ident: 10.1016/j.molmet.2017.10.006_bib43
  article-title: PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65
  publication-title: Open Biology
  doi: 10.1098/rsob.120080
  contributor:
    fullname: Kondapalli
– volume: 19
  start-page: 4861
  year: 2010
  ident: 10.1016/j.molmet.2017.10.006_bib51
  article-title: Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/ddq419
  contributor:
    fullname: Gegg
– volume: 44
  start-page: 1010
  year: 1995
  ident: 10.1016/j.molmet.2017.10.006_bib23
  article-title: Insulin-stimulated muscle glucose clearance in patients with NIDDM. Effects of one-legged physical training
  publication-title: Diabetes
  doi: 10.2337/diab.44.9.1010
  contributor:
    fullname: Dela
– volume: 27
  start-page: 433
  year: 2008
  ident: 10.1016/j.molmet.2017.10.006_bib49
  article-title: Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
  publication-title: The EMBO Journal
  doi: 10.1038/sj.emboj.7601963
  contributor:
    fullname: Twig
– volume: 112
  start-page: 1529
  year: 2012
  ident: 10.1016/j.molmet.2017.10.006_bib34
  article-title: Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00952.2011
  contributor:
    fullname: Jamart
– volume: 112
  start-page: 3173
  year: 2012
  ident: 10.1016/j.molmet.2017.10.006_bib33
  article-title: Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-011-2287-3
  contributor:
    fullname: Jamart
– volume: 27
  start-page: 4184
  year: 2013
  ident: 10.1016/j.molmet.2017.10.006_bib31
  article-title: Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance
  publication-title: Federation of American Societies for Experimental Biology
  doi: 10.1096/fj.13-228486
  contributor:
    fullname: Lira
– volume: 50
  start-page: 404
  year: 2007
  ident: 10.1016/j.molmet.2017.10.006_bib22
  article-title: Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism
  publication-title: Diabetologia
  doi: 10.1007/s00125-006-0498-7
  contributor:
    fullname: Shojaee-Moradie
– volume: 8
  year: 2013
  ident: 10.1016/j.molmet.2017.10.006_bib13
  article-title: Relationships between mitochondrial function and metabolic flexibility in type 2 diabetes mellitus
  publication-title: PloS One
  doi: 10.1371/journal.pone.0051648
  contributor:
    fullname: van de Weijer
– volume: 50
  start-page: 790
  year: 2007
  ident: 10.1016/j.molmet.2017.10.006_bib2
  article-title: Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle
  publication-title: Diabetologia
  doi: 10.1007/s00125-007-0594-3
  contributor:
    fullname: Boushel
– volume: 34
  start-page: 267
  year: 2003
  ident: 10.1016/j.molmet.2017.10.006_bib9
  article-title: PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
  publication-title: Nature Genetics
  doi: 10.1038/ng1180
  contributor:
    fullname: Mootha
– volume: 96
  start-page: 494
  year: 2011
  ident: 10.1016/j.molmet.2017.10.006_bib26
  article-title: Skeletal muscle mitochondria in insulin resostance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility
  publication-title: The Journal of Clinical Endocrinology and Metabolism
  doi: 10.1210/jc.2010-0822
  contributor:
    fullname: Chomentowski
– volume: 205
  start-page: 143
  year: 2014
  ident: 10.1016/j.molmet.2017.10.006_bib44
  article-title: PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201402104
  contributor:
    fullname: Kane
– volume: 24
  start-page: 8055
  year: 2004
  ident: 10.1016/j.molmet.2017.10.006_bib47
  article-title: Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation
  publication-title: Molecular and Cellular Biology
  doi: 10.1128/MCB.24.18.8055-8068.2004
  contributor:
    fullname: Seibenhener
– volume: 5
  issue: 6
  year: 2013
  ident: 10.1016/j.molmet.2017.10.006_bib50
  article-title: Mechanisms of mitochondrial fission and fusion
  publication-title: Cold Spring Harbor Perspectives in Biology
  doi: 10.1101/cshperspect.a011072
  contributor:
    fullname: van der Bliek
– volume: 59
  start-page: 572
  year: 2010
  ident: 10.1016/j.molmet.2017.10.006_bib24
  article-title: Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity
  publication-title: Diabetes
  doi: 10.2337/db09-1322
  contributor:
    fullname: Meex
– volume: 372
  start-page: 315
  year: 1999
  ident: 10.1016/j.molmet.2017.10.006_bib55
  article-title: Effect of training on H(2)O(2) release by mitochondria from rat skeletal muscle
  publication-title: Archives of Biochemistry and Biophysics
  doi: 10.1006/abbi.1999.1494
  contributor:
    fullname: Venditti
– volume: 118
  start-page: 636
  year: 2011
  ident: 10.1016/j.molmet.2017.10.006_bib52
  article-title: Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1
  publication-title: Journal of Neurochemistry
  doi: 10.1111/j.1471-4159.2011.07318.x
  contributor:
    fullname: Glauser
– volume: 9
  start-page: 936
  year: 2013
  ident: 10.1016/j.molmet.2017.10.006_bib14
  article-title: Impaired skeletal muscle mitochondrial function in morbidly obese patients is normalized one year after bariatric surgery
  publication-title: Surgery for Obesity and Related Diseases: Official Journal of the American Society for Bariatric Surgery
  doi: 10.1016/j.soard.2013.03.009
  contributor:
    fullname: Vijgen
– volume: 29
  start-page: 273
  year: 1997
  ident: 10.1016/j.molmet.2017.10.006_bib35
  article-title: Applicability of VO2max criteria: discontinuous versus continuous protocols
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1097/00005768-199702000-00017
  contributor:
    fullname: Duncan
– volume: 6
  year: 2011
  ident: 10.1016/j.molmet.2017.10.006_bib59
  article-title: Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers
  publication-title: PloS One
  doi: 10.1371/journal.pone.0023211
  contributor:
    fullname: Park
– volume: 104
  start-page: 129
  year: 1996
  ident: 10.1016/j.molmet.2017.10.006_bib28
  article-title: Mitochondrial biogenesis in skeletal muscle in response to endurance exercises
  publication-title: Archives Physiology Biochemistry
  doi: 10.1076/apab.104.2.129.12878
  contributor:
    fullname: Freyssenet
– volume: 481
  start-page: 511
  year: 2012
  ident: 10.1016/j.molmet.2017.10.006_bib1
  article-title: Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
  publication-title: Nature
  doi: 10.1038/nature10758
  contributor:
    fullname: He
– volume: 140
  start-page: 313
  year: 2010
  ident: 10.1016/j.molmet.2017.10.006_bib39
  article-title: Methods in mammalian autophagy research
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.028
  contributor:
    fullname: Mizushima
– volume: 21
  start-page: 4888
  year: 2012
  ident: 10.1016/j.molmet.2017.10.006_bib60
  article-title: ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons
  publication-title: Human Molecular Genetics
  doi: 10.1093/hmg/dds325
  contributor:
    fullname: Joselin
– volume: 6
  start-page: 34
  year: 2011
  ident: 10.1016/j.molmet.2017.10.006_bib61
  article-title: Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation
  publication-title: Molecular Neurodegeneration
  doi: 10.1186/1750-1326-6-34
  contributor:
    fullname: Meng
– volume: 31
  start-page: 45
  year: 2016
  ident: 10.1016/j.molmet.2017.10.006_bib63
  article-title: Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2016.09.003
  contributor:
    fullname: Zielinski
– volume: 282
  start-page: 194
  year: 2007
  ident: 10.1016/j.molmet.2017.10.006_bib30
  article-title: Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.M606116200
  contributor:
    fullname: Wright
– volume: 49
  start-page: 1552
  year: 2017
  ident: 10.1016/j.molmet.2017.10.006_bib32
  article-title: Lack of activation of mitophagy during endurance exercise in humans
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1249/MSS.0000000000001256
  contributor:
    fullname: Schwalm
– volume: 101
  start-page: 10810
  year: 2004
  ident: 10.1016/j.molmet.2017.10.006_bib62
  article-title: Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0404161101
  contributor:
    fullname: Yao
– volume: 295
  start-page: E1009
  year: 2008
  ident: 10.1016/j.molmet.2017.10.006_bib15
  article-title: Metabolic flexibility and insulin resistance
  publication-title: American Journal of Physiology Endocrinology and Metabolism
  doi: 10.1152/ajpendo.90558.2008
  contributor:
    fullname: Galgani
– volume: 9
  start-page: 505
  year: 2008
  ident: 10.1016/j.molmet.2017.10.006_bib45
  article-title: Mitochondrial fragmentation in neurodegeneration
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/nrn2417
  contributor:
    fullname: Knott
– volume: 16
  start-page: 1879
  year: 2002
  ident: 10.1016/j.molmet.2017.10.006_bib27
  article-title: Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1
  publication-title: Federation of American Societies for Experimental Biology
  doi: 10.1096/fj.02-0367com
  contributor:
    fullname: Baar
– volume: 119
  start-page: 573
  year: 2009
  ident: 10.1016/j.molmet.2017.10.006_bib56
  article-title: Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
  publication-title: The Journal of Clinical Investigation
  doi: 10.1172/JCI37048
  contributor:
    fullname: Anderson
– volume: 118
  start-page: 789
  year: 2008
  ident: 10.1016/j.molmet.2017.10.006_bib57
  article-title: Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice
  publication-title: The Journal of Clinical Investigation
  contributor:
    fullname: Bonnard
SSID ssj0000866651
Score 2.3214898
Snippet We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be...
OBJECTIVEWe tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would be...
• Basal autophagy is similar in skeletal muscle of endurance-trained and sedentary males. • Trained and sedentary skeletal muscle autophagy is unaltered...
Objective: We tested the hypothesis that skeletal muscle of endurance-trained male runners would exhibit elevated autophagy and mitophagy markers, which would...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1597
SubjectTerms Adolescent
Adult
Autophagy
Case-Control Studies
Diet, High-Fat
Dietary Fats - metabolism
Endurance Training
Fasting - metabolism
Humans
Male
Mitochondrial Degradation
Muscle, Skeletal - metabolism
Original
Oxygen Consumption
Running - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJKReUIGWboHKSL26TRwnjo-AQAgJLhSJW-SPcdlWGyp2c-DfM2Nv0G6FxKXHOE4ympmMn5WXN4x9a00ItXJGKOkaoSrthdUqiLIEbUrbRJ1INFfXzcWturyr71ZafREnLMsDZ8f9CLU34HAhdBaRuy-c9EZpXclY4v6qCKn6FmZlM5VqcIuwPPVelFib8ZXX7fjfXCJ3zYjvT1TKUn_P5K61dSnJ97-GOf-lTq6sRecf2NYSRPLjbPw2ewf9DtvMbSWfdhnc_MHFBFE1nw1znMDtQPIB9tcTt33gs-l4NO059GGg3hogUrMICPxxoG5cc-4A8SykK1IjcW45aRuLaBd8hvDyI7s9P_t5eiGW7RSEV1otRKxwcxCkbsFaY0LU1laK9AV1XYLTiKQKL5WOtWsjIQew0pNeHWkGlmBs9Ylt9A89fGa8CrJtYqwi4C0wmqZpbWN04REclV7KCROjM7u_WTWjG-lkv7vs_I6cT6Po_Ak7IY-_zCXN6zSAmdAtM6F7KxMm7GiMV4fvCH34sD08DPMOq0xjWgR-aNhejt_Lo6Qp0HBZTJhei-yaLetn-ul90uGuG0LX6sv_MH6fvSd_ZKLMAdtYPA5wiHBn4b6mzH4GGMz7lg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQuiDfLS0bi6ip2nDg-IASIqkKCC6zUW-RnWcpmYXcjsf-eGScpXVQuHOPEeczY8TfKl-8DeNmYECrlDFfS1VyV2nOrVeBCRG2ErZPOJJqPn-qTufpwWp0ewOTZOgZwc2VpR35S8_X3o18_d69xwr_6w9VaEn2fmJFCHw1crWtwXSqs1YnMNwL-_G5uEK5XYvqH7h-dSSHYFEYX5AJ-abnKqv5XQdG_GZWXlqjj23BrxJbszTAY7sBB7O7CjcFtcncP4udzXGPwOdmy3-ABzPakKmDPdsx2gS0X09aiY7ELPVluRJ49JGJg655MujbMRYS5MffI_uLMMpI85slu2RJR532YH7__8u6Ejy4L3CuttjyVWDMEqZtorTEhaWtLRbKDuhLRaQRYhZdKp8o1iQBFtNKTjB1JCYpobPkADrtVFx8BK4Ns6pTKFPEUmGRTN7bGMHrETMJLOQM-BbP9MYhptBPL7Fs75KGlPFAr5mEGbyniF8eSFHZuWK3P2nFmtaHyJjpESs5iaecLJ73Bi5cyCSzAizCDF1O-Wpw69D3EdnHVb1p8-dSmQTyIN_ZwyN_Fpab8z0DvZXbvXvb3dIuvWZ67qgl0q8f_3fMJ3KQgDKSZp3C4XffxGUKfrXueR_NvOpQDzQ
  priority: 102
  providerName: Scholars Portal
Title Skeletal muscle autophagy and mitophagy in endurance-trained runners before and after a high-fat meal
URI https://www.ncbi.nlm.nih.gov/pubmed/29097020
https://search.proquest.com/docview/1966984412
https://pubmed.ncbi.nlm.nih.gov/PMC5699914
https://doaj.org/article/d5c9eb071ba148c0b2c947732f17130d
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLW2ISQuiN90QGUkrm4Tx4njI1RME1IHEkyquET-OTqIO7XNYf_9vs9pphZx4hIpiR1bfo79nDy_j5APtXKuFEYxwU3FRCEt01I4ludeqlxXQSYRzfyiOr8UXxbl4oiUw16YJNq3ZjmJf9pJXP5K2sqb1k4Hndj023xWVkhrxPSYHEMH3Vuip-G3BkZe5sM2uaTlalHej8rJXE56LReaAKtMyQwDfe_NSMm4_19s82_R5N4sdPaEPN7RR_qxr-ZTcuTjM_KwDyh5-5z4779hGgE-TdtuAwmo7tA4QF_dUh0dbZfD2TJSH12HUTU8S2EivKPrDuNwbajxwGR9ypFCiFNN0dWYBb2lLRDLF-Ty7POP2TnbBVJgVkixZaGAZYHjsvZaK-WC1LoQ6Cwoy9wbCRwqs1zIUJo6IGfwmlt0qkO3wNwrXbwkJ3EV_WtCC8frKoQieHgE4KiqWlfQjBZoUW45HxE2NGZz0_tlNIOQ7LrpcWgQB7wKOIzIJ2zx-7Todp0urNZXzQ7zxpVWeQNkyGhYvdnMcKug8IKHHNbYmRuR9wNeDbwd-MtDR7_qNg2ML5WqgfJBxV71-N0XNeA_IvIA2YO6HN6BDpkcuHcd8PS_c74hj7ARel3MW3KyXXf-HbCbrRmnrwJwnIt6TB5czBZff45TD78D-n7-IQ
link.rule.ids 230,315,730,783,787,867,888,2109,2228,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZKEaIX9mUoi5G4OpPFieMjragG6FRItKi3yGsZ2mSqmeTQ_vq-50yqmYoLHOMlsf2e7c_K5-8R8qmU1uZcS8ZTXTCeCcOU4JYliRMyUYUXgUQzPSomJ_zbaX66RfLhLkwg7Rs9i5qLOmpmvwO38rI244EnNv4x3c8LhDV8fI_ch_ka87VDeliAS8DkeTJclAtsrhoJ_sidTETUs7lQBljGUsQY6nttTwrS_X_Dm3dpk2v70MFj8mvoQU8_OY-6Vkfm-o644z938Ql5tEKm9HOf_ZRsueYZedDHqrx6TtzPc9ihAKrTultCAao61CRQZ1dUNZbWs-Fp1lDX2A4DdjgWIlA4SxcdhvhaUu0AJLtQI0Qnp4qiYDLzqqU1YNYX5OTgy_H-hK1iNDDDBW-Zz-DEYVNROqWktF4olXEULRR54rQAeBablAuf69IjHHEqNSiCh0KEiZMqe0m2m3njXhOa2bQsvM-8g1eAi8iiVAXYxwDiSkyajggbrFRd9lIc1cBR-1P1Bq7QwJgKBh6RPTTlbVkU0g4J88VZtRrryuZGOg04Sys4GJpYp0bCx7PUJ3B8j-2IfBwcoYKJh39TVOPm3bKCpauQJaBJaNir3jFuPzU41oiIDZfZaMtmDjhCEPdeGf7Nf9f8QB5OjqeH1eHXo--7ZAcHpKffvCXb7aJz7wBEtfp9mDI3XU8crQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMSFd-nSAkbi6mweThwfaWFVHq0qQaWKS-RnWdpkV7vJofz6zjibarfi1GMcO7E9Y_sb5cs3hHwspbU515LxVBeMZ8IwJbhlSeKETFThRSDRHB0Xh6f821l-tpbqK5D2jZ5GzWUdNdM_gVs5r8144ImNT44O8gJhDR_PrR_fJw9gzcbFWqAeNuEScHmeDD_LBUZXjSR_5E8mIuoZXSgFLGMpYkz3vXYuBfn-_2HO29TJtbNo8pT8HkbRU1Auoq7Vkfl3S-DxTsN8Rp6sECr91Fd5Tu655gV52OesvHpJ3M8LOKkAstO6W0IFqjrUJlDnV1Q1ltbT4WraUNfYDhN3OBYyUThLFx2m-lpS7QAsu9AiZCmniqJwMvOqpTVg11fkdPLl18EhW-VqYIYL3jKfQeRhU1E6paS0XiiVcRQvFHnitACYFpuUC5_r0iMscSo1KIaHgoSJkyrbJlvNrHE7hGY2LQvvM-_gEeAqsihVATYygLwSk6YjwgZLVfNekqMauGp_q97IFRoZS8HII7KP5rypi4LaoWC2OK9W813Z3EinAW9pBQGiiXVqJLw8S30CYXxsR-TD4AwVLED8qqIaN-uWFWxhhSwBVULHXvfOcfOqwblGRGy4zUZfNu-AMwSR75Xx39y55Xvy6OTzpPrx9fj7LnmM89GzcPbIVrvo3FvAUq1-F1bNNT_jHy0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+autophagy+and+mitophagy+in+endurance-trained+runners+before+and+after+a+high-fat+meal&rft.jtitle=Molecular+metabolism+%28Germany%29&rft.au=Tarpey%2C+Michael+D.&rft.au=Davy%2C+Kevin+P.&rft.au=McMillan%2C+Ryan+P.&rft.au=Bowser%2C+Suzanne+M.&rft.date=2017-12-01&rft.pub=Elsevier&rft.eissn=2212-8778&rft.volume=6&rft.issue=12&rft.spage=1597&rft.epage=1609&rft_id=info:doi/10.1016%2Fj.molmet.2017.10.006&rft_id=info%3Apmid%2F29097020&rft.externalDBID=PMC5699914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8778&client=summon