Machine learning and deep learning approach for medical image analysis: diagnosis to detection

Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modaliti...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 17; pp. 26731 - 26769
Main Authors Rana, Meghavi, Bhushan, Megha
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014–2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy.
AbstractList Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014–2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy.
Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014-2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy.Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014-2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy.
Author Bhushan, Megha
Rana, Meghavi
Author_xml – sequence: 1
  givenname: Meghavi
  surname: Rana
  fullname: Rana, Meghavi
  organization: School of Computing, DIT University
– sequence: 2
  givenname: Megha
  orcidid: 0000-0003-4309-875X
  surname: Bhushan
  fullname: Bhushan, Megha
  email: mb.meghabhushan@gmail.com
  organization: School of Computing, DIT University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36588765$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URH_gBVigSGzYBMZ2bCcskKqKlkpF3ZQtlq8zSV3l2sHOperbM-WW0nbRlUf2d8ZnzuyznZgiMvaWw0cOYD4VzqERNQhR80aCqq9fsD2ujKyNEXyHatlCbRTwXbZfyhUA10o0r9iu1KptjVZ77Od35y9DxGpCl2OIY-ViX_WI84Obec6JsGpIuVpjH7ybqrB2IxLsppsSyueqD26MicpqSaRf0C8hxdfs5eCmgm_uzgP24_jrxdG3-uz85PTo8Kz2jWmWeuBCGOgGRAcgpZIgvHNa8d47qvuV4J1wLU3aDSsOHgePuhG8h0Zr47g8YF-2fefNihx6jEt2k50z2cw3NrlgH7_EcGnH9Nt2pqUkgBp8uGuQ068NlsWuQ_E4TS5i2hQrjAZuRKs1oe-foFdpkykIolrRUkfZKaLePXR0b-Vf9ASILeBzKiXjcI9wsLf7tdv9Wpra_t2vvSZR-0Tkw-Juk6apwvS8VG6lhf6JI-b_tp9R_QHlvbrp
CitedBy_id crossref_primary_10_3934_publichealth_2024004
crossref_primary_10_1016_j_inffus_2025_103122
crossref_primary_10_1016_j_eij_2024_100530
crossref_primary_10_1117_1_BIOS_1_2_020901
crossref_primary_10_3390_jimaging9100225
crossref_primary_10_1007_s11042_024_20322_8
crossref_primary_10_1109_ACCESS_2025_3550004
crossref_primary_10_1016_j_imu_2024_101544
crossref_primary_10_32628_CSEIT251112124
crossref_primary_10_1007_s11263_025_02393_8
crossref_primary_10_1007_s10462_024_10777_4
crossref_primary_10_1007_s41870_024_02136_x
crossref_primary_10_1109_ACCESS_2024_3456599
crossref_primary_10_1016_j_ibmed_2025_100224
crossref_primary_10_3389_fncom_2024_1434421
crossref_primary_10_46810_tdfd_1339665
crossref_primary_10_1016_j_dajour_2023_100354
crossref_primary_10_1016_j_neunet_2024_106183
crossref_primary_10_1016_j_amc_2024_129129
crossref_primary_10_1007_s11042_024_18358_x
crossref_primary_10_1016_j_compbiomed_2025_109822
crossref_primary_10_1177_20406223231209895
crossref_primary_10_1007_s11042_024_18872_y
crossref_primary_10_1007_s11042_023_16941_2
crossref_primary_10_3389_fdata_2024_1359703
crossref_primary_10_3390_cancers16040731
crossref_primary_10_1016_j_inffus_2024_102917
crossref_primary_10_29109_gujsc_1441289
crossref_primary_10_1002_jmri_29364
crossref_primary_10_1007_s00521_023_08484_2
crossref_primary_10_1038_s41598_024_79620_8
crossref_primary_10_1109_ACCESS_2025_3526272
crossref_primary_10_1007_s44230_023_00049_9
crossref_primary_10_3390_jimaging10120319
crossref_primary_10_2196_60057
crossref_primary_10_3390_diagnostics14171900
crossref_primary_10_3390_diagnostics14141534
crossref_primary_10_1016_j_heliyon_2024_e40580
crossref_primary_10_1016_j_compbiomed_2024_108844
crossref_primary_10_1016_j_health_2024_100340
crossref_primary_10_5005_jp_journals_11002_0095
crossref_primary_10_3389_fonc_2025_1492758
crossref_primary_10_32604_cmc_2024_055307
crossref_primary_10_1038_s41598_025_91462_6
crossref_primary_10_1186_s12911_024_02503_5
crossref_primary_10_1007_s42519_024_00422_2
crossref_primary_10_3390_jimaging10070168
crossref_primary_10_1016_j_ensm_2024_103670
crossref_primary_10_1016_j_cmpb_2024_108228
crossref_primary_10_3390_cancers16172988
crossref_primary_10_1109_ACCESS_2025_3532719
crossref_primary_10_3389_fmed_2023_1286085
crossref_primary_10_7717_peerj_cs_2464
crossref_primary_10_1186_s12911_024_02686_x
crossref_primary_10_1007_s00521_024_09541_0
crossref_primary_10_1007_s10278_024_01046_5
crossref_primary_10_3390_fire7100343
crossref_primary_10_1109_ACCESS_2025_3543136
crossref_primary_10_3390_bioengineering11040399
crossref_primary_10_3390_curroncol31100464
crossref_primary_10_3390_systems12110475
crossref_primary_10_1016_j_heliyon_2024_e27516
crossref_primary_10_3390_diagnostics14040388
crossref_primary_10_1186_s12877_023_04477_x
crossref_primary_10_1007_s42452_025_06625_x
crossref_primary_10_7717_peerj_cs_2338
crossref_primary_10_1007_s00500_025_10516_z
crossref_primary_10_3389_fonc_2024_1440626
crossref_primary_10_3390_app142210524
crossref_primary_10_1007_s00354_024_00278_x
crossref_primary_10_3390_jimaging10120332
crossref_primary_10_3390_jpm13121703
crossref_primary_10_1007_s42979_024_02991_2
crossref_primary_10_1007_s11042_023_16938_x
crossref_primary_10_3390_app142411605
crossref_primary_10_1080_23279095_2024_2382823
Cites_doi 10.1016/j.bbe.2020.02.001
10.1109/EMBC44109.2020.9175704
10.3348/kjr.2017.18.4.570
10.1007/s12410-022-09563-z
10.1101/2022.09.29.22280521
10.3390/s19020219
10.1007/978-981-15-7907-3_40
10.1016/j.jnca.2021.103164
10.1016/j.neuroimage.2019.04.068
10.1007/978-3-030-33128-3_1
10.1111/exsy.12256
10.1016/j.compbiomed.2018.06.002
10.1016/j.procs.2018.05.154
10.1016/j.asoc.2015.06.029
10.1016/j.jnca.2019.05.005
10.1016/j.jnca.2021.103244
10.1016/j.jnca.2019.04.013
10.1109/TMI.2016.2553401
10.1536/ihj.19-714
10.2174/1573405613666170428154156
10.1109/JBHI.2019.2931395
10.4018/IJFSA.296596
10.1007/s00779-021-01541-4
10.1109/ICASSP.2014.6853873
10.1007/s13198-021-01126-7
10.31838/jcr.07.19.896
10.1109/MECON53876.2022.9752176
10.3389/fnins.2014.00229
10.1016/j.cmpb.2018.01.004
10.1007/s00253-020-11061-5
10.1016/j.jacr.2017.12.028
10.1016/j.media.2016.06.032
10.1016/j.bspc.2017.01.001
10.1007/s12553-018-0265-z
10.1007/978-981-13-1513-8_75
10.1016/j.media.2020.101759
10.1007/s11042-021-11158-7
10.1007/s11042-020-09337-z
10.1109/ICEFEET51821.2022.9848348
10.1016/j.jaip.2021.02.014
10.1007/978-981-10-6544-6_24
10.3390/app12115413
10.1155/2022/2973324
10.1038/s41746-020-00372-6
10.1109/TMI.2014.2366792
10.1109/ICTUS.2017.8286036
10.1001/jama.2017.18391
10.1001/jama.2017.7797
10.1007/s11219-020-09522-1
10.1016/j.infsof.2008.09.009
10.1007/s13204-021-01868-7
10.1007/s00521-019-04551-9
10.1148/radiol.2020192224
10.1111/srt.12726
10.1109/BIOCAS.2019.8919021
10.1109/VLSIDCS53788.2022.9811433
10.1016/j.ultrasmedbio.2020.01.001
10.1109/SMART52563.2021.9676289
10.3390/app7040385
10.4236/jilsa.2017.91001
10.1088/1742-6596/1524/1/012003
10.1016/j.inffus.2013.12.002
10.1007/s00530-020-00694-1
10.1109/TNSE.2019.2961932
10.1109/TMI.2016.2535302
10.3390/app11052415
10.1109/MECON53876.2022.9752020
10.1038/s41573-019-0024-5
10.1016/j.ins.2017.06.027
10.1016/j.eswa.2020.114167
10.1007/s12046-016-0571-y
10.1016/j.jnca.2018.02.008
10.3390/app10155135
10.1080/03091902.2017.1412521
10.1016/j.zemedi.2018.11.002
10.1007/s00521-020-04842-6
10.1016/j.compmedimag.2021.101901
10.1016/j.bspc.2021.103445
10.1109/ICCSEA49143.2020.9132851
10.1007/s11831-020-09469-3
10.3390/brainsci11050668
10.1016/j.compbiomed.2018.12.012
10.1016/j.jss.2017.06.002
10.1109/TIM.2018.2855518
10.1148/radiol.2441052145
10.1093/eurheartj/ehz056
10.1007/s13246-017-0610-y
10.1038/s41598-019-38612-9
10.3390/s21134278
10.1109/ICOMET.2019.8673502
10.1016/j.ultrasmedbio.2015.11.016
10.1016/j.jmir.2019.09.005
10.1093/ehjci/jey003
10.1016/j.eswa.2020.114161
10.1142/S0219519417400036
10.1093/med/9780195369779.003.0041
10.1038/s41598-020-79139-8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jul 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jul 2023
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s11042-022-14305-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList
ABI/INFORM Global (Corporate)

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 26769
ExternalDocumentID PMC9788870
36588765
10_1007_s11042_022_14305_w
Genre Journal Article
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
NPM
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-f122709feea00335302caa651dca302db2192a80229fb10cefce6421d04667a13
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Thu Aug 21 18:40:24 EDT 2025
Fri Jul 11 12:33:37 EDT 2025
Fri Jul 25 20:52:36 EDT 2025
Mon Jul 21 06:07:51 EDT 2025
Thu Apr 24 22:51:03 EDT 2025
Tue Jul 01 05:08:51 EDT 2025
Thu Apr 10 07:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Deep learning
Medical image processing
Transfer learning
Convolutional neural network
Machine learning
Healthcare
Tumor classification
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-f122709feea00335302caa651dca302db2192a80229fb10cefce6421d04667a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4309-875X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9788870
PMID 36588765
PQID 2828978395
PQPubID 54626
PageCount 39
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9788870
proquest_miscellaneous_2760172866
proquest_journals_2828978395
pubmed_primary_36588765
crossref_primary_10_1007_s11042_022_14305_w
crossref_citationtrail_10_1007_s11042_022_14305_w
springer_journals_10_1007_s11042_022_14305_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References B Kitchenham (14305_CR50) 2009; 51
M Bhushan (14305_CR19) 2018; 35
14305_CR53
A Caliskan (14305_CR25) 2017; 17
14305_CR51
ML Giger (14305_CR33) 2018; 15
MZ Hoque (14305_CR38) 2021; 90
P Anbeek (14305_CR7) 2005; 27
14305_CR59
MH Kashani (14305_CR45) 2021; 192
14305_CR58
14305_CR57
14305_CR55
M Poongodi (14305_CR72) 2022; 26
M Bhushan (14305_CR22) 2021; 168
R Gupta (14305_CR36) 2020; 1
14305_CR61
14305_CR60
P Samant (14305_CR78) 2019; 31
M Fatima (14305_CR29) 2017; 9
SI Khan (14305_CR48) 2022; 73
14305_CR69
14305_CR67
14305_CR66
14305_CR65
G Currie (14305_CR27) 2019; 50
S Lahmiri (14305_CR54) 2019; 68
N Tajbakhsh (14305_CR94) 2016; 35
D Karimi (14305_CR44) 2020; 65
14305_CR30
D Kostas (14305_CR52) 2019; 9
UJ Schoepf (14305_CR81) 2007; 244
M Bhushan (14305_CR18) 2018; 137
1LP Aggarwal (14305_CR4) 2019; 25
PP Ray (14305_CR75) 2019; 140
M Bhushan (14305_CR16) 2016; 41
P Kaur (14305_CR46) 2018; 14
EH Houssein (14305_CR39) 2021; 167
I Zubarev (14305_CR106) 2019; 197
14305_CR32
P Samant (14305_CR76) 2018; 42
N Al-Najdawi (14305_CR5) 2015; 35
J Virmani (14305_CR98) 2021; 28
G Altan (14305_CR6) 2019; 24
14305_CR8
P Samant (14305_CR77) 2018; 157
14305_CR40
M Bhushan (14305_CR20) 2020; 28
D Pirrone (14305_CR70) 2022; 12
14305_CR49
KD Tzimourta (14305_CR95) 2019; 9
AP James (14305_CR42) 2014
14305_CR47
UR Acharya (14305_CR3) 2017; 415
H Greenspan (14305_CR34) 2016; 35
14305_CR43
AK Jaiswal (14305_CR41) 2018; 41
14305_CR96
14305_CR91
14305_CR90
14305_CR17
G Aceto (14305_CR2) 2018; 107
14305_CR11
14305_CR10
S Pal (14305_CR64) 2019; 139
X Wang (14305_CR99) 2019; 19
SM Plis (14305_CR71) 2014; 8
J Shan (14305_CR84) 2016; 42
J Sun (14305_CR92) 2021; 11
N Caballé-Cervigón (14305_CR23) 2020; 10
M De Bruijne (14305_CR28) 2016; 33
14305_CR26
14305_CR21
SL Oh (14305_CR63) 2019; 105
AL Beam (14305_CR12) 2018; 319
JG Lee (14305_CR56) 2017; 18
R Arya (14305_CR9) 2022; 11
S Grover (14305_CR35) 2018; 132
C Bhatt (14305_CR13) 2021; 27
I Guyon (14305_CR37) 2003; 3
VK Singh (14305_CR88) 2022; 81
J Virmani (14305_CR97) 2020; 79
M Sharma (14305_CR85) 2017; 17
14305_CR74
SL Oh (14305_CR62) 2018; 102
D Shen (14305_CR86) 2017; 19
14305_CR79
P Bhattacharya (14305_CR14) 2019; 8
ST George (14305_CR31) 2020; 40
NS Sworna (14305_CR93) 2021; 196
Y Wang (14305_CR100) 2020; 46
A Bhattacharyya (14305_CR15) 2017; 7
F Cabitza (14305_CR24) 2017; 318
14305_CR101
14305_CR102
14305_CR83
14305_CR103
14305_CR82
14305_CR104
P Rai (14305_CR73) 2021; 105
14305_CR105
14305_CR80
S Patidar (14305_CR68) 2017; 34
14305_CR89
AS Abdulbaqi (14305_CR1) 2022; 13
14305_CR87
References_xml – volume: 40
  start-page: 709
  issue: 2
  year: 2020
  ident: 14305_CR31
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2020.02.001
– ident: 14305_CR69
  doi: 10.1109/EMBC44109.2020.9175704
– ident: 14305_CR89
– volume: 18
  start-page: 570
  issue: 4
  year: 2017
  ident: 14305_CR56
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2017.18.4.570
– ident: 14305_CR90
  doi: 10.1007/s12410-022-09563-z
– ident: 14305_CR40
  doi: 10.1101/2022.09.29.22280521
– volume: 19
  start-page: 219
  issue: 2
  year: 2019
  ident: 14305_CR99
  publication-title: Sensors
  doi: 10.3390/s19020219
– ident: 14305_CR8
  doi: 10.1007/978-981-15-7907-3_40
– volume: 192
  start-page: 103164
  year: 2021
  ident: 14305_CR45
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2021.103164
– volume: 197
  start-page: 425
  year: 2019
  ident: 14305_CR106
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.04.068
– volume: 19
  start-page: 221
  year: 2017
  ident: 14305_CR86
  publication-title: Annu Rev Biomed Eng
  doi: 10.1007/978-3-030-33128-3_1
– volume: 35
  start-page: e12256
  issue: 3
  year: 2018
  ident: 14305_CR19
  publication-title: Expert Syst
  doi: 10.1111/exsy.12256
– volume: 102
  start-page: 278
  year: 2018
  ident: 14305_CR62
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 132
  start-page: 1788
  year: 2018
  ident: 14305_CR35
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.05.154
– volume: 35
  start-page: 175
  year: 2015
  ident: 14305_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.06.029
– volume: 140
  start-page: 1
  year: 2019
  ident: 14305_CR75
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.05.005
– volume: 196
  start-page: 103244
  year: 2021
  ident: 14305_CR93
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2021.103244
– volume: 139
  start-page: 57
  year: 2019
  ident: 14305_CR64
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.04.013
– volume: 35
  start-page: 1153
  issue: 5
  year: 2016
  ident: 14305_CR34
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2553401
– ident: 14305_CR58
  doi: 10.1536/ihj.19-714
– volume: 14
  start-page: 675
  issue: 5
  year: 2018
  ident: 14305_CR46
  publication-title: Curr Med imaging
  doi: 10.2174/1573405613666170428154156
– volume: 24
  start-page: 1344
  issue: 5
  year: 2019
  ident: 14305_CR6
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2019.2931395
– volume: 11
  start-page: 1
  issue: 2
  year: 2022
  ident: 14305_CR9
  publication-title: Int J Fuzzy Syst Appl (IJFSA)
  doi: 10.4018/IJFSA.296596
– volume: 26
  start-page: 25
  issue: 1
  year: 2022
  ident: 14305_CR72
  publication-title: Personal Uniquit Comput
  doi: 10.1007/s00779-021-01541-4
– ident: 14305_CR104
  doi: 10.1109/ICASSP.2014.6853873
– ident: 14305_CR60
  doi: 10.1007/s13198-021-01126-7
– volume: 13
  start-page: 773
  issue: 1
  year: 2022
  ident: 14305_CR1
  publication-title: Int J Nonlinear Anal Appl
– ident: 14305_CR67
  doi: 10.31838/jcr.07.19.896
– ident: 14305_CR65
  doi: 10.1109/MECON53876.2022.9752176
– volume: 8
  start-page: 229
  year: 2014
  ident: 14305_CR71
  publication-title: Front NeuroSci
  doi: 10.3389/fnins.2014.00229
– volume: 157
  start-page: 121
  year: 2018
  ident: 14305_CR77
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2018.01.004
– volume: 105
  start-page: 441
  issue: 2
  year: 2021
  ident: 14305_CR73
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-020-11061-5
– volume: 15
  start-page: 512
  issue: 3
  year: 2018
  ident: 14305_CR33
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2017.12.028
– volume: 33
  start-page: 94
  year: 2016
  ident: 14305_CR28
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2016.06.032
– volume: 34
  start-page: 74
  year: 2017
  ident: 14305_CR68
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.01.001
– volume: 9
  start-page: 135
  issue: 2
  year: 2019
  ident: 14305_CR95
  publication-title: Health Technol
  doi: 10.1007/s12553-018-0265-z
– ident: 14305_CR101
  doi: 10.1007/978-981-13-1513-8_75
– volume: 65
  start-page: 101759
  year: 2020
  ident: 14305_CR44
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2020.101759
– volume: 81
  start-page: 3
  year: 2022
  ident: 14305_CR88
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11158-7
– volume: 79
  start-page: 27257
  issue: 37
  year: 2020
  ident: 14305_CR97
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-020-09337-z
– ident: 14305_CR47
  doi: 10.1109/ICEFEET51821.2022.9848348
– volume: 17
  start-page: 3311
  issue: 2
  year: 2017
  ident: 14305_CR25
  publication-title: IU-J Electr Electron Eng
– ident: 14305_CR43
  doi: 10.1016/j.jaip.2021.02.014
– ident: 14305_CR61
  doi: 10.1007/978-981-10-6544-6_24
– ident: 14305_CR11
– volume: 12
  start-page: 5413
  issue: 11
  year: 2022
  ident: 14305_CR70
  publication-title: Appl Sci
  doi: 10.3390/app12115413
– ident: 14305_CR59
  doi: 10.1155/2022/2973324
– volume: 1
  start-page: 1
  issue: 4
  year: 2020
  ident: 14305_CR36
  publication-title: Digit Government: Res Pract
  doi: 10.1038/s41746-020-00372-6
– volume: 27
  start-page: 795
  issue: 4
  year: 2005
  ident: 14305_CR7
  publication-title: NeuroImage
  doi: 10.1109/TMI.2014.2366792
– ident: 14305_CR17
  doi: 10.1109/ICTUS.2017.8286036
– volume: 319
  start-page: 1317
  issue: 13
  year: 2018
  ident: 14305_CR12
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– volume: 318
  start-page: 517
  issue: 6
  year: 2017
  ident: 14305_CR24
  publication-title: JAMA
  doi: 10.1001/jama.2017.7797
– volume: 28
  start-page: 1507
  issue: 4
  year: 2020
  ident: 14305_CR20
  publication-title: Software Qual J
  doi: 10.1007/s11219-020-09522-1
– volume: 51
  start-page: 7
  issue: 1
  year: 2009
  ident: 14305_CR50
  publication-title: ‎Inf Softw Technol
  doi: 10.1016/j.infsof.2008.09.009
– ident: 14305_CR53
  doi: 10.1007/s13204-021-01868-7
– volume: 31
  start-page: 8441
  issue: 12
  year: 2019
  ident: 14305_CR78
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04551-9
– ident: 14305_CR103
  doi: 10.1148/radiol.2020192224
– volume: 25
  start-page: 815
  issue: 6
  year: 2019
  ident: 14305_CR4
  publication-title: Skin Res Technol
  doi: 10.1111/srt.12726
– ident: 14305_CR57
  doi: 10.1109/BIOCAS.2019.8919021
– ident: 14305_CR87
  doi: 10.1109/VLSIDCS53788.2022.9811433
– volume: 46
  start-page: 1119
  issue: 5
  year: 2020
  ident: 14305_CR100
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2020.01.001
– ident: 14305_CR21
  doi: 10.1109/SMART52563.2021.9676289
– ident: 14305_CR10
– volume: 7
  start-page: 385
  issue: 4
  year: 2017
  ident: 14305_CR15
  publication-title: Appl Sci
  doi: 10.3390/app7040385
– volume: 9
  start-page: 1
  issue: 01
  year: 2017
  ident: 14305_CR29
  publication-title: J Intell Learn Syst Appl
  doi: 10.4236/jilsa.2017.91001
– ident: 14305_CR102
  doi: 10.1088/1742-6596/1524/1/012003
– year: 2014
  ident: 14305_CR42
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2013.12.002
– volume: 27
  start-page: 599
  issue: 4
  year: 2021
  ident: 14305_CR13
  publication-title: Multimedia Syst
  doi: 10.1007/s00530-020-00694-1
– volume: 8
  start-page: 1242
  issue: 2
  year: 2019
  ident: 14305_CR14
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2019.2961932
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 14305_CR94
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: 14305_CR30
  doi: 10.3390/app11052415
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 14305_CR37
  publication-title: J Mach Learn Res
– ident: 14305_CR74
  doi: 10.1109/MECON53876.2022.9752020
– ident: 14305_CR96
  doi: 10.1038/s41573-019-0024-5
– volume: 415
  start-page: 190
  year: 2017
  ident: 14305_CR3
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2017.06.027
– volume: 168
  start-page: 114167
  year: 2021
  ident: 14305_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114167
– volume: 41
  start-page: 1381
  issue: 12
  year: 2016
  ident: 14305_CR16
  publication-title: Sādhanā
  doi: 10.1007/s12046-016-0571-y
– volume: 107
  start-page: 125
  year: 2018
  ident: 14305_CR2
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2018.02.008
– volume: 10
  start-page: 5135
  issue: 15
  year: 2020
  ident: 14305_CR23
  publication-title: Appl Sci
  doi: 10.3390/app10155135
– volume: 42
  start-page: 35
  issue: 1
  year: 2018
  ident: 14305_CR76
  publication-title: J Med Eng Technol
  doi: 10.1080/03091902.2017.1412521
– ident: 14305_CR82
  doi: 10.1016/j.zemedi.2018.11.002
– ident: 14305_CR83
  doi: 10.1007/s00521-020-04842-6
– volume: 90
  start-page: 101901
  year: 2021
  ident: 14305_CR38
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2021.101901
– ident: 14305_CR49
– volume: 73
  start-page: 103445
  year: 2022
  ident: 14305_CR48
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103445
– ident: 14305_CR26
  doi: 10.1109/ICCSEA49143.2020.9132851
– volume: 28
  start-page: 2567
  issue: 4
  year: 2021
  ident: 14305_CR98
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09469-3
– ident: 14305_CR80
  doi: 10.3390/brainsci11050668
– volume: 105
  start-page: 92
  year: 2019
  ident: 14305_CR63
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.12.012
– volume: 137
  start-page: 605
  year: 2018
  ident: 14305_CR18
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2017.06.002
– volume: 68
  start-page: 791
  issue: 3
  year: 2019
  ident: 14305_CR54
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2018.2855518
– volume: 244
  start-page: 48
  issue: 1
  year: 2007
  ident: 14305_CR81
  publication-title: Radiology
  doi: 10.1148/radiol.2441052145
– ident: 14305_CR51
  doi: 10.1093/eurheartj/ehz056
– ident: 14305_CR105
– volume: 41
  start-page: 81
  issue: 1
  year: 2018
  ident: 14305_CR41
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-017-0610-y
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 14305_CR52
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-38612-9
– ident: 14305_CR66
  doi: 10.3390/s21134278
– ident: 14305_CR55
  doi: 10.1109/ICOMET.2019.8673502
– volume: 42
  start-page: 980
  issue: 4
  year: 2016
  ident: 14305_CR84
  publication-title: Ultrasound Med Biol
  doi: 10.1016/j.ultrasmedbio.2015.11.016
– volume: 50
  start-page: 477
  issue: 4
  year: 2019
  ident: 14305_CR27
  publication-title: J Med imaging radiation Sci
  doi: 10.1016/j.jmir.2019.09.005
– ident: 14305_CR79
  doi: 10.1093/ehjci/jey003
– volume: 167
  start-page: 114161
  year: 2021
  ident: 14305_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114161
– volume: 17
  start-page: 1740003
  issue: 07
  year: 2017
  ident: 14305_CR85
  publication-title: J Mech Med Biology
  doi: 10.1142/S0219519417400036
– ident: 14305_CR91
  doi: 10.1093/med/9780195369779.003.0041
– ident: 14305_CR32
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 14305_CR92
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79139-8
SSID ssj0016524
Score 2.6590016
Snippet Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26731
SubjectTerms CAI
Classification
Computer assisted instruction
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Deep learning
Diagnosis
Disease
Image analysis
Literature reviews
Machine learning
Medical electronics
Medical imaging
Medical research
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Track 2: Medical Applications of Multimedia
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT4MwEL_ofNEHP-YXOk1NfFMSyvj0bTGaxWQ-uWRPklKKLnFscSz7972DwjanJr4BvVLK0fbK_e53ANdowcq2EJYpUzcwnTgmJ6GlTDyTvsQqbpsChXvPXrfvPA3cgQ4Km1Zo98olWczUi2A3TqEkhD7nxFNlzjdhy8W9OwG5-nan9h14rk5lG1gmrodch8r8fI_V5WjNxlyHSn7zlxbL0OM-7Gr7kXVKhR_AhsqasFflZmB6qDZhZ4lo8BBeewVmUjGdJOKNiSxhiVKTpSuaXZyhGctGpf-GDUc436BwyVxyx5ISmTecsnyM9fMCyJUdQf_x4eW-a-rMCqZ0fCc3U27bvhWmSglK5kaZg6QQnssTKfA4iXEeswVF4YZpzC2pUqkoIjbB3bTnC94-hkY2ztQpMCKPCQMuHUviZkuhRZFIL7Vcm6j1RGobwKsXHElNO07ZLz6iBWEyKSXCxqJCKdHcgJu6zqQk3fhTulXpLdIDcBoVO0kfrT_XgKu6GIcO-UNEpsYzlCE8kG8HnmfASanmurk2dgsXCqztr3wAtQDRcq-WZMP3gp47pL8KvmXAbfWpLB7r916c_U_8HLYp8X0JHG5BI_-cqQs0j_L4shgNX-K-ByU
  priority: 102
  providerName: Springer Nature
Title Machine learning and deep learning approach for medical image analysis: diagnosis to detection
URI https://link.springer.com/article/10.1007/s11042-022-14305-w
https://www.ncbi.nlm.nih.gov/pubmed/36588765
https://www.proquest.com/docview/2828978395
https://www.proquest.com/docview/2760172866
https://pubmed.ncbi.nlm.nih.gov/PMC9788870
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be4HD8lp2w6PyStzAIk7zKhfUohbEigohKrEXIsdxlkqQdrdB_H1mEielIDj1YVupO_bM2DPzfQAH6MGqtpQ2V6kXcjeOKUhoa46fVKBwiNemQuGroX8xci_vvDtz4TYzaZWVTiwUdTJRdEd-XBwNAjTn3un0HyfWKIquGgqNZWiiCg7DBjR7_eH1TR1H8D1DaxvaHG2jMGUzZfGcoNIUymYXhHvFXxZN0wd_82Pa5LvYaWGSBuvwzfiSrFsKfwOWdLYJaxVPAzPbdhNW34AObsH9VZE_qZkhjPjLZJawROvpm28M0jhDl5Y9lbEcNn5C3YOdSxSTE5aUWXrjGcsnOD4vkrqy7zAa9G_PLrhhWeDKDdycp8JxAruTai2J2I1YhJSUvicSJfF9EqNOcyRV5HbSWNhKp0pTdWyCJ2s_kKK9DY1skumfwAhIphMK5doKD14avYtE-antOQSzJ1PHAlH9wZEyEOTEhPEYzcGTSSgRPiwqhBK9WHBYj5mWABxf9t6r5BaZzTiL5kvHgl91M24jio3ITE-esQ_lBgVO6PsW_CjFXD-ujdNCo4Gjg4UFUHcgiO7Flmz8UEB1d-iGIbAtOKqWyvxnfT6Lna9nsQsrRHpfJg3vQSP__6z30TXK4xYsh4PzFjS7g15vSK_nf373W2ZXYOvI6b4CsDQQPw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_g-aA8qIAfVZQ1kSfc2N1-3ZkYY5TjEI4nSHiibrdbuAR6p1dy8Z_yb3Smu-1xEHjjrR-73W5nZme2M_MbgA9owepAKZ_rIuryMMvISegbjmc60dglCihReHgQD47Cn8fR8RL8a3JhKKyyWRPrhTofa_pH_qneGiSozqOvk9-cqkaRd7UpoWHZYs_8neGWbfpl9wfSd1PK_vbh9wF3VQW4DpOw4oWQMvF7hTGKCplR1RytVByJXCs8zjOUYakoA7VXZMLXptCGskFz3EnGiRIBPvcBPAwD1OSUmd7fab0WceSK6HZ9jppYuCQdm6onKBGGYucFoWzx2aIivGHd3gzSvOaprRVg_xk8cZYr-2ZZbQWWTLkKT5uqEMwtEquwfAXicA1OhnW0pmGuPMUpU2XOcmMmV644XHOGBjS7sJ4jNrrAlQ4bW8yUzyy3MYGjKavG2L-qQ8jK53B0L1__BXTKcWleASPYml5X6NDXuM0zaMvkOi78SBKonyqkB6L5wKl2gOdUd-M8nUM1E1FSHCytiZLOPNhq-0ws3MedrdcbuqVO9KfpnFE9eN_eRqElT4wqzfgS21AkUiK7cezBS0vmdrgAp4UqCnsnCwzQNiBA8MU75eisBgbv0f-MxPfgY8Mq89e6fRav757FBjwaHA730_3dg7038FiikWfDldehU_25NG_RKKuyd7UkMPh136L3Hy6SRdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkLwMGD8yxhgJHgCa7GbxC0SQsBWbYxVE2LSnhYcx9kqsbRbM1V8NT4dd7GTrkzsbW9NYydx7s53l7v7HcBrtGBNV-uQmyLu8SjLKEgYWo5HRhmcEnepUHhvmGwfRF8P48Ml-NPUwlBaZbMn1ht1Pjb0jXyjdg0UqvN4o_BpEfubg4-TM04dpCjS2rTTcCyya3_P0H2bftjZRFq_kXKw9ePLNvcdBriJVFTxQkipwn5hraamZtRBx2idxCI3Gn_nGcqz1FSN2i8yERpbGEuVoTl6lYnSoovXvQXLiryiDix_3hruf29jGEnsW-r2Qo56WfiSHVe4J6gshjLpBWFu8dmiWrxi615N2fwnblurw8F9WPF2LPvkGO8BLNlyFe41PSKY3zJW4e4lwMOHcLRX525a5ptVHDNd5iy3dnLpH49yztCcZqcujsRGp7jv4WCHoPKe5S5DcDRl1RjnV3VCWfkIDm7k_T-GTjku7VNgBGLT7wkThQadPouWTW6SIowlQfzpQgYgmhecGg9_Tl04fqVz4GYiSoo3S2uipLMA3rZzJg7849rR6w3dUr8RTNM52wbwqj2NIkxxGV3a8QWOobwkJXtJEsATR-b2dl1cFiosnK0WGKAdQPDgi2fK0UkNE96nrxsqDOBdwyrzx_r_KtauX8VLuI1il37bGe4-gzsSLT6Xu7wOner8wj5HC63KXnhRYPDzpqXvLwRLS24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+deep+learning+approach+for+medical+image+analysis%3A+diagnosis+to+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Rana%2C+Meghavi&rft.au=Bhushan%2C+Megha&rft.date=2023-07-01&rft.issn=1380-7501&rft.spage=1&rft_id=info:doi/10.1007%2Fs11042-022-14305-w&rft_id=info%3Apmid%2F36588765&rft.externalDocID=36588765
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon