Machine learning and deep learning approach for medical image analysis: diagnosis to detection
Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modaliti...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 17; pp. 26731 - 26769 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014–2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy. |
---|---|
AbstractList | Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014–2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy. Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014-2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy.Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the actual origin of appropriate information required for diagnosis of disease. Detection of disease at the initial stage, using various modalities, is one of the most important factors to decrease mortality rate occurring due to cancer and tumors. Modalities help radiologists and doctors to study the internal structure of the detected disease for retrieving the required features. ML has limitations with the present modalities due to large amounts of data, whereas DL works efficiently with any amount of data. Hence, DL is considered as the enhanced technique of ML where ML uses the learning techniques and DL acquires details on how machines should react around people. DL uses a multilayered neural network to get more information about the used datasets. This study aims to present a systematic literature review related to applications of ML and DL for the detection along with classification of multiple diseases. A detailed analysis of 40 primary studies acquired from the well-known journals and conferences between Jan 2014-2022 was done. It provides an overview of different approaches based on ML and DL for the detection along with the classification of multiple diseases, modalities for medical imaging, tools and techniques used for the evaluation, description of datasets. Further, experiments are performed using MRI dataset to provide a comparative analysis of ML classifiers and DL models. This study will assist the healthcare community by enabling medical practitioners and researchers to choose an appropriate diagnosis technique for a given disease with reduced time and high accuracy. |
Author | Bhushan, Megha Rana, Meghavi |
Author_xml | – sequence: 1 givenname: Meghavi surname: Rana fullname: Rana, Meghavi organization: School of Computing, DIT University – sequence: 2 givenname: Megha orcidid: 0000-0003-4309-875X surname: Bhushan fullname: Bhushan, Megha email: mb.meghabhushan@gmail.com organization: School of Computing, DIT University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36588765$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1URH_gBVigSGzYBMZ2bCcskKqKlkpF3ZQtlq8zSV3l2sHOperbM-WW0nbRlUf2d8ZnzuyznZgiMvaWw0cOYD4VzqERNQhR80aCqq9fsD2ujKyNEXyHatlCbRTwXbZfyhUA10o0r9iu1KptjVZ77Od35y9DxGpCl2OIY-ViX_WI84Obec6JsGpIuVpjH7ybqrB2IxLsppsSyueqD26MicpqSaRf0C8hxdfs5eCmgm_uzgP24_jrxdG3-uz85PTo8Kz2jWmWeuBCGOgGRAcgpZIgvHNa8d47qvuV4J1wLU3aDSsOHgePuhG8h0Zr47g8YF-2fefNihx6jEt2k50z2cw3NrlgH7_EcGnH9Nt2pqUkgBp8uGuQ068NlsWuQ_E4TS5i2hQrjAZuRKs1oe-foFdpkykIolrRUkfZKaLePXR0b-Vf9ASILeBzKiXjcI9wsLf7tdv9Wpra_t2vvSZR-0Tkw-Juk6apwvS8VG6lhf6JI-b_tp9R_QHlvbrp |
CitedBy_id | crossref_primary_10_3934_publichealth_2024004 crossref_primary_10_1016_j_inffus_2025_103122 crossref_primary_10_1016_j_eij_2024_100530 crossref_primary_10_1117_1_BIOS_1_2_020901 crossref_primary_10_3390_jimaging9100225 crossref_primary_10_1007_s11042_024_20322_8 crossref_primary_10_1109_ACCESS_2025_3550004 crossref_primary_10_1016_j_imu_2024_101544 crossref_primary_10_32628_CSEIT251112124 crossref_primary_10_1007_s11263_025_02393_8 crossref_primary_10_1007_s10462_024_10777_4 crossref_primary_10_1007_s41870_024_02136_x crossref_primary_10_1109_ACCESS_2024_3456599 crossref_primary_10_1016_j_ibmed_2025_100224 crossref_primary_10_3389_fncom_2024_1434421 crossref_primary_10_46810_tdfd_1339665 crossref_primary_10_1016_j_dajour_2023_100354 crossref_primary_10_1016_j_neunet_2024_106183 crossref_primary_10_1016_j_amc_2024_129129 crossref_primary_10_1007_s11042_024_18358_x crossref_primary_10_1016_j_compbiomed_2025_109822 crossref_primary_10_1177_20406223231209895 crossref_primary_10_1007_s11042_024_18872_y crossref_primary_10_1007_s11042_023_16941_2 crossref_primary_10_3389_fdata_2024_1359703 crossref_primary_10_3390_cancers16040731 crossref_primary_10_1016_j_inffus_2024_102917 crossref_primary_10_29109_gujsc_1441289 crossref_primary_10_1002_jmri_29364 crossref_primary_10_1007_s00521_023_08484_2 crossref_primary_10_1038_s41598_024_79620_8 crossref_primary_10_1109_ACCESS_2025_3526272 crossref_primary_10_1007_s44230_023_00049_9 crossref_primary_10_3390_jimaging10120319 crossref_primary_10_2196_60057 crossref_primary_10_3390_diagnostics14171900 crossref_primary_10_3390_diagnostics14141534 crossref_primary_10_1016_j_heliyon_2024_e40580 crossref_primary_10_1016_j_compbiomed_2024_108844 crossref_primary_10_1016_j_health_2024_100340 crossref_primary_10_5005_jp_journals_11002_0095 crossref_primary_10_3389_fonc_2025_1492758 crossref_primary_10_32604_cmc_2024_055307 crossref_primary_10_1038_s41598_025_91462_6 crossref_primary_10_1186_s12911_024_02503_5 crossref_primary_10_1007_s42519_024_00422_2 crossref_primary_10_3390_jimaging10070168 crossref_primary_10_1016_j_ensm_2024_103670 crossref_primary_10_1016_j_cmpb_2024_108228 crossref_primary_10_3390_cancers16172988 crossref_primary_10_1109_ACCESS_2025_3532719 crossref_primary_10_3389_fmed_2023_1286085 crossref_primary_10_7717_peerj_cs_2464 crossref_primary_10_1186_s12911_024_02686_x crossref_primary_10_1007_s00521_024_09541_0 crossref_primary_10_1007_s10278_024_01046_5 crossref_primary_10_3390_fire7100343 crossref_primary_10_1109_ACCESS_2025_3543136 crossref_primary_10_3390_bioengineering11040399 crossref_primary_10_3390_curroncol31100464 crossref_primary_10_3390_systems12110475 crossref_primary_10_1016_j_heliyon_2024_e27516 crossref_primary_10_3390_diagnostics14040388 crossref_primary_10_1186_s12877_023_04477_x crossref_primary_10_1007_s42452_025_06625_x crossref_primary_10_7717_peerj_cs_2338 crossref_primary_10_1007_s00500_025_10516_z crossref_primary_10_3389_fonc_2024_1440626 crossref_primary_10_3390_app142210524 crossref_primary_10_1007_s00354_024_00278_x crossref_primary_10_3390_jimaging10120332 crossref_primary_10_3390_jpm13121703 crossref_primary_10_1007_s42979_024_02991_2 crossref_primary_10_1007_s11042_023_16938_x crossref_primary_10_3390_app142411605 crossref_primary_10_1080_23279095_2024_2382823 |
Cites_doi | 10.1016/j.bbe.2020.02.001 10.1109/EMBC44109.2020.9175704 10.3348/kjr.2017.18.4.570 10.1007/s12410-022-09563-z 10.1101/2022.09.29.22280521 10.3390/s19020219 10.1007/978-981-15-7907-3_40 10.1016/j.jnca.2021.103164 10.1016/j.neuroimage.2019.04.068 10.1007/978-3-030-33128-3_1 10.1111/exsy.12256 10.1016/j.compbiomed.2018.06.002 10.1016/j.procs.2018.05.154 10.1016/j.asoc.2015.06.029 10.1016/j.jnca.2019.05.005 10.1016/j.jnca.2021.103244 10.1016/j.jnca.2019.04.013 10.1109/TMI.2016.2553401 10.1536/ihj.19-714 10.2174/1573405613666170428154156 10.1109/JBHI.2019.2931395 10.4018/IJFSA.296596 10.1007/s00779-021-01541-4 10.1109/ICASSP.2014.6853873 10.1007/s13198-021-01126-7 10.31838/jcr.07.19.896 10.1109/MECON53876.2022.9752176 10.3389/fnins.2014.00229 10.1016/j.cmpb.2018.01.004 10.1007/s00253-020-11061-5 10.1016/j.jacr.2017.12.028 10.1016/j.media.2016.06.032 10.1016/j.bspc.2017.01.001 10.1007/s12553-018-0265-z 10.1007/978-981-13-1513-8_75 10.1016/j.media.2020.101759 10.1007/s11042-021-11158-7 10.1007/s11042-020-09337-z 10.1109/ICEFEET51821.2022.9848348 10.1016/j.jaip.2021.02.014 10.1007/978-981-10-6544-6_24 10.3390/app12115413 10.1155/2022/2973324 10.1038/s41746-020-00372-6 10.1109/TMI.2014.2366792 10.1109/ICTUS.2017.8286036 10.1001/jama.2017.18391 10.1001/jama.2017.7797 10.1007/s11219-020-09522-1 10.1016/j.infsof.2008.09.009 10.1007/s13204-021-01868-7 10.1007/s00521-019-04551-9 10.1148/radiol.2020192224 10.1111/srt.12726 10.1109/BIOCAS.2019.8919021 10.1109/VLSIDCS53788.2022.9811433 10.1016/j.ultrasmedbio.2020.01.001 10.1109/SMART52563.2021.9676289 10.3390/app7040385 10.4236/jilsa.2017.91001 10.1088/1742-6596/1524/1/012003 10.1016/j.inffus.2013.12.002 10.1007/s00530-020-00694-1 10.1109/TNSE.2019.2961932 10.1109/TMI.2016.2535302 10.3390/app11052415 10.1109/MECON53876.2022.9752020 10.1038/s41573-019-0024-5 10.1016/j.ins.2017.06.027 10.1016/j.eswa.2020.114167 10.1007/s12046-016-0571-y 10.1016/j.jnca.2018.02.008 10.3390/app10155135 10.1080/03091902.2017.1412521 10.1016/j.zemedi.2018.11.002 10.1007/s00521-020-04842-6 10.1016/j.compmedimag.2021.101901 10.1016/j.bspc.2021.103445 10.1109/ICCSEA49143.2020.9132851 10.1007/s11831-020-09469-3 10.3390/brainsci11050668 10.1016/j.compbiomed.2018.12.012 10.1016/j.jss.2017.06.002 10.1109/TIM.2018.2855518 10.1148/radiol.2441052145 10.1093/eurheartj/ehz056 10.1007/s13246-017-0610-y 10.1038/s41598-019-38612-9 10.3390/s21134278 10.1109/ICOMET.2019.8673502 10.1016/j.ultrasmedbio.2015.11.016 10.1016/j.jmir.2019.09.005 10.1093/ehjci/jey003 10.1016/j.eswa.2020.114161 10.1142/S0219519417400036 10.1093/med/9780195369779.003.0041 10.1038/s41598-020-79139-8 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jul 2023 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jul 2023 |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s11042-022-14305-w |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ABI/INFORM Global (Corporate) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 26769 |
ExternalDocumentID | PMC9788870 36588765 10_1007_s11042_022_14305_w |
Genre | Journal Article |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM ABRTQ NPM 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-f122709feea00335302caa651dca302db2192a80229fb10cefce6421d04667a13 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 18:40:24 EDT 2025 Fri Jul 11 12:33:37 EDT 2025 Fri Jul 25 20:52:36 EDT 2025 Mon Jul 21 06:07:51 EDT 2025 Thu Apr 24 22:51:03 EDT 2025 Tue Jul 01 05:08:51 EDT 2025 Thu Apr 10 07:12:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | Deep learning Medical image processing Transfer learning Convolutional neural network Machine learning Healthcare Tumor classification |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-f122709feea00335302caa651dca302db2192a80229fb10cefce6421d04667a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4309-875X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9788870 |
PMID | 36588765 |
PQID | 2828978395 |
PQPubID | 54626 |
PageCount | 39 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9788870 proquest_miscellaneous_2760172866 proquest_journals_2828978395 pubmed_primary_36588765 crossref_primary_10_1007_s11042_022_14305_w crossref_citationtrail_10_1007_s11042_022_14305_w springer_journals_10_1007_s11042_022_14305_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | B Kitchenham (14305_CR50) 2009; 51 M Bhushan (14305_CR19) 2018; 35 14305_CR53 A Caliskan (14305_CR25) 2017; 17 14305_CR51 ML Giger (14305_CR33) 2018; 15 MZ Hoque (14305_CR38) 2021; 90 P Anbeek (14305_CR7) 2005; 27 14305_CR59 MH Kashani (14305_CR45) 2021; 192 14305_CR58 14305_CR57 14305_CR55 M Poongodi (14305_CR72) 2022; 26 M Bhushan (14305_CR22) 2021; 168 R Gupta (14305_CR36) 2020; 1 14305_CR61 14305_CR60 P Samant (14305_CR78) 2019; 31 M Fatima (14305_CR29) 2017; 9 SI Khan (14305_CR48) 2022; 73 14305_CR69 14305_CR67 14305_CR66 14305_CR65 G Currie (14305_CR27) 2019; 50 S Lahmiri (14305_CR54) 2019; 68 N Tajbakhsh (14305_CR94) 2016; 35 D Karimi (14305_CR44) 2020; 65 14305_CR30 D Kostas (14305_CR52) 2019; 9 UJ Schoepf (14305_CR81) 2007; 244 M Bhushan (14305_CR18) 2018; 137 1LP Aggarwal (14305_CR4) 2019; 25 PP Ray (14305_CR75) 2019; 140 M Bhushan (14305_CR16) 2016; 41 P Kaur (14305_CR46) 2018; 14 EH Houssein (14305_CR39) 2021; 167 I Zubarev (14305_CR106) 2019; 197 14305_CR32 P Samant (14305_CR76) 2018; 42 N Al-Najdawi (14305_CR5) 2015; 35 J Virmani (14305_CR98) 2021; 28 G Altan (14305_CR6) 2019; 24 14305_CR8 P Samant (14305_CR77) 2018; 157 14305_CR40 M Bhushan (14305_CR20) 2020; 28 D Pirrone (14305_CR70) 2022; 12 14305_CR49 KD Tzimourta (14305_CR95) 2019; 9 AP James (14305_CR42) 2014 14305_CR47 UR Acharya (14305_CR3) 2017; 415 H Greenspan (14305_CR34) 2016; 35 14305_CR43 AK Jaiswal (14305_CR41) 2018; 41 14305_CR96 14305_CR91 14305_CR90 14305_CR17 G Aceto (14305_CR2) 2018; 107 14305_CR11 14305_CR10 S Pal (14305_CR64) 2019; 139 X Wang (14305_CR99) 2019; 19 SM Plis (14305_CR71) 2014; 8 J Shan (14305_CR84) 2016; 42 J Sun (14305_CR92) 2021; 11 N Caballé-Cervigón (14305_CR23) 2020; 10 M De Bruijne (14305_CR28) 2016; 33 14305_CR26 14305_CR21 SL Oh (14305_CR63) 2019; 105 AL Beam (14305_CR12) 2018; 319 JG Lee (14305_CR56) 2017; 18 R Arya (14305_CR9) 2022; 11 S Grover (14305_CR35) 2018; 132 C Bhatt (14305_CR13) 2021; 27 I Guyon (14305_CR37) 2003; 3 VK Singh (14305_CR88) 2022; 81 J Virmani (14305_CR97) 2020; 79 M Sharma (14305_CR85) 2017; 17 14305_CR74 SL Oh (14305_CR62) 2018; 102 D Shen (14305_CR86) 2017; 19 14305_CR79 P Bhattacharya (14305_CR14) 2019; 8 ST George (14305_CR31) 2020; 40 NS Sworna (14305_CR93) 2021; 196 Y Wang (14305_CR100) 2020; 46 A Bhattacharyya (14305_CR15) 2017; 7 F Cabitza (14305_CR24) 2017; 318 14305_CR101 14305_CR102 14305_CR83 14305_CR103 14305_CR82 14305_CR104 P Rai (14305_CR73) 2021; 105 14305_CR105 14305_CR80 S Patidar (14305_CR68) 2017; 34 14305_CR89 AS Abdulbaqi (14305_CR1) 2022; 13 14305_CR87 |
References_xml | – volume: 40 start-page: 709 issue: 2 year: 2020 ident: 14305_CR31 publication-title: Biocybern Biomed Eng doi: 10.1016/j.bbe.2020.02.001 – ident: 14305_CR69 doi: 10.1109/EMBC44109.2020.9175704 – ident: 14305_CR89 – volume: 18 start-page: 570 issue: 4 year: 2017 ident: 14305_CR56 publication-title: Korean J Radiol doi: 10.3348/kjr.2017.18.4.570 – ident: 14305_CR90 doi: 10.1007/s12410-022-09563-z – ident: 14305_CR40 doi: 10.1101/2022.09.29.22280521 – volume: 19 start-page: 219 issue: 2 year: 2019 ident: 14305_CR99 publication-title: Sensors doi: 10.3390/s19020219 – ident: 14305_CR8 doi: 10.1007/978-981-15-7907-3_40 – volume: 192 start-page: 103164 year: 2021 ident: 14305_CR45 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2021.103164 – volume: 197 start-page: 425 year: 2019 ident: 14305_CR106 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.04.068 – volume: 19 start-page: 221 year: 2017 ident: 14305_CR86 publication-title: Annu Rev Biomed Eng doi: 10.1007/978-3-030-33128-3_1 – volume: 35 start-page: e12256 issue: 3 year: 2018 ident: 14305_CR19 publication-title: Expert Syst doi: 10.1111/exsy.12256 – volume: 102 start-page: 278 year: 2018 ident: 14305_CR62 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.06.002 – volume: 132 start-page: 1788 year: 2018 ident: 14305_CR35 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2018.05.154 – volume: 35 start-page: 175 year: 2015 ident: 14305_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.06.029 – volume: 140 start-page: 1 year: 2019 ident: 14305_CR75 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2019.05.005 – volume: 196 start-page: 103244 year: 2021 ident: 14305_CR93 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2021.103244 – volume: 139 start-page: 57 year: 2019 ident: 14305_CR64 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2019.04.013 – volume: 35 start-page: 1153 issue: 5 year: 2016 ident: 14305_CR34 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2553401 – ident: 14305_CR58 doi: 10.1536/ihj.19-714 – volume: 14 start-page: 675 issue: 5 year: 2018 ident: 14305_CR46 publication-title: Curr Med imaging doi: 10.2174/1573405613666170428154156 – volume: 24 start-page: 1344 issue: 5 year: 2019 ident: 14305_CR6 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2019.2931395 – volume: 11 start-page: 1 issue: 2 year: 2022 ident: 14305_CR9 publication-title: Int J Fuzzy Syst Appl (IJFSA) doi: 10.4018/IJFSA.296596 – volume: 26 start-page: 25 issue: 1 year: 2022 ident: 14305_CR72 publication-title: Personal Uniquit Comput doi: 10.1007/s00779-021-01541-4 – ident: 14305_CR104 doi: 10.1109/ICASSP.2014.6853873 – ident: 14305_CR60 doi: 10.1007/s13198-021-01126-7 – volume: 13 start-page: 773 issue: 1 year: 2022 ident: 14305_CR1 publication-title: Int J Nonlinear Anal Appl – ident: 14305_CR67 doi: 10.31838/jcr.07.19.896 – ident: 14305_CR65 doi: 10.1109/MECON53876.2022.9752176 – volume: 8 start-page: 229 year: 2014 ident: 14305_CR71 publication-title: Front NeuroSci doi: 10.3389/fnins.2014.00229 – volume: 157 start-page: 121 year: 2018 ident: 14305_CR77 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2018.01.004 – volume: 105 start-page: 441 issue: 2 year: 2021 ident: 14305_CR73 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-020-11061-5 – volume: 15 start-page: 512 issue: 3 year: 2018 ident: 14305_CR33 publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2017.12.028 – volume: 33 start-page: 94 year: 2016 ident: 14305_CR28 publication-title: Med Image Anal doi: 10.1016/j.media.2016.06.032 – volume: 34 start-page: 74 year: 2017 ident: 14305_CR68 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2017.01.001 – volume: 9 start-page: 135 issue: 2 year: 2019 ident: 14305_CR95 publication-title: Health Technol doi: 10.1007/s12553-018-0265-z – ident: 14305_CR101 doi: 10.1007/978-981-13-1513-8_75 – volume: 65 start-page: 101759 year: 2020 ident: 14305_CR44 publication-title: Med Image Anal doi: 10.1016/j.media.2020.101759 – volume: 81 start-page: 3 year: 2022 ident: 14305_CR88 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11158-7 – volume: 79 start-page: 27257 issue: 37 year: 2020 ident: 14305_CR97 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-020-09337-z – ident: 14305_CR47 doi: 10.1109/ICEFEET51821.2022.9848348 – volume: 17 start-page: 3311 issue: 2 year: 2017 ident: 14305_CR25 publication-title: IU-J Electr Electron Eng – ident: 14305_CR43 doi: 10.1016/j.jaip.2021.02.014 – ident: 14305_CR61 doi: 10.1007/978-981-10-6544-6_24 – ident: 14305_CR11 – volume: 12 start-page: 5413 issue: 11 year: 2022 ident: 14305_CR70 publication-title: Appl Sci doi: 10.3390/app12115413 – ident: 14305_CR59 doi: 10.1155/2022/2973324 – volume: 1 start-page: 1 issue: 4 year: 2020 ident: 14305_CR36 publication-title: Digit Government: Res Pract doi: 10.1038/s41746-020-00372-6 – volume: 27 start-page: 795 issue: 4 year: 2005 ident: 14305_CR7 publication-title: NeuroImage doi: 10.1109/TMI.2014.2366792 – ident: 14305_CR17 doi: 10.1109/ICTUS.2017.8286036 – volume: 319 start-page: 1317 issue: 13 year: 2018 ident: 14305_CR12 publication-title: JAMA doi: 10.1001/jama.2017.18391 – volume: 318 start-page: 517 issue: 6 year: 2017 ident: 14305_CR24 publication-title: JAMA doi: 10.1001/jama.2017.7797 – volume: 28 start-page: 1507 issue: 4 year: 2020 ident: 14305_CR20 publication-title: Software Qual J doi: 10.1007/s11219-020-09522-1 – volume: 51 start-page: 7 issue: 1 year: 2009 ident: 14305_CR50 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2008.09.009 – ident: 14305_CR53 doi: 10.1007/s13204-021-01868-7 – volume: 31 start-page: 8441 issue: 12 year: 2019 ident: 14305_CR78 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04551-9 – ident: 14305_CR103 doi: 10.1148/radiol.2020192224 – volume: 25 start-page: 815 issue: 6 year: 2019 ident: 14305_CR4 publication-title: Skin Res Technol doi: 10.1111/srt.12726 – ident: 14305_CR57 doi: 10.1109/BIOCAS.2019.8919021 – ident: 14305_CR87 doi: 10.1109/VLSIDCS53788.2022.9811433 – volume: 46 start-page: 1119 issue: 5 year: 2020 ident: 14305_CR100 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2020.01.001 – ident: 14305_CR21 doi: 10.1109/SMART52563.2021.9676289 – ident: 14305_CR10 – volume: 7 start-page: 385 issue: 4 year: 2017 ident: 14305_CR15 publication-title: Appl Sci doi: 10.3390/app7040385 – volume: 9 start-page: 1 issue: 01 year: 2017 ident: 14305_CR29 publication-title: J Intell Learn Syst Appl doi: 10.4236/jilsa.2017.91001 – ident: 14305_CR102 doi: 10.1088/1742-6596/1524/1/012003 – year: 2014 ident: 14305_CR42 publication-title: Inf Fusion doi: 10.1016/j.inffus.2013.12.002 – volume: 27 start-page: 599 issue: 4 year: 2021 ident: 14305_CR13 publication-title: Multimedia Syst doi: 10.1007/s00530-020-00694-1 – volume: 8 start-page: 1242 issue: 2 year: 2019 ident: 14305_CR14 publication-title: IEEE Trans Netw Sci Eng doi: 10.1109/TNSE.2019.2961932 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 14305_CR94 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – ident: 14305_CR30 doi: 10.3390/app11052415 – volume: 3 start-page: 1157 issue: Mar year: 2003 ident: 14305_CR37 publication-title: J Mach Learn Res – ident: 14305_CR74 doi: 10.1109/MECON53876.2022.9752020 – ident: 14305_CR96 doi: 10.1038/s41573-019-0024-5 – volume: 415 start-page: 190 year: 2017 ident: 14305_CR3 publication-title: Inf Sci doi: 10.1016/j.ins.2017.06.027 – volume: 168 start-page: 114167 year: 2021 ident: 14305_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114167 – volume: 41 start-page: 1381 issue: 12 year: 2016 ident: 14305_CR16 publication-title: Sādhanā doi: 10.1007/s12046-016-0571-y – volume: 107 start-page: 125 year: 2018 ident: 14305_CR2 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2018.02.008 – volume: 10 start-page: 5135 issue: 15 year: 2020 ident: 14305_CR23 publication-title: Appl Sci doi: 10.3390/app10155135 – volume: 42 start-page: 35 issue: 1 year: 2018 ident: 14305_CR76 publication-title: J Med Eng Technol doi: 10.1080/03091902.2017.1412521 – ident: 14305_CR82 doi: 10.1016/j.zemedi.2018.11.002 – ident: 14305_CR83 doi: 10.1007/s00521-020-04842-6 – volume: 90 start-page: 101901 year: 2021 ident: 14305_CR38 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2021.101901 – ident: 14305_CR49 – volume: 73 start-page: 103445 year: 2022 ident: 14305_CR48 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103445 – ident: 14305_CR26 doi: 10.1109/ICCSEA49143.2020.9132851 – volume: 28 start-page: 2567 issue: 4 year: 2021 ident: 14305_CR98 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-020-09469-3 – ident: 14305_CR80 doi: 10.3390/brainsci11050668 – volume: 105 start-page: 92 year: 2019 ident: 14305_CR63 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.12.012 – volume: 137 start-page: 605 year: 2018 ident: 14305_CR18 publication-title: J Syst Softw doi: 10.1016/j.jss.2017.06.002 – volume: 68 start-page: 791 issue: 3 year: 2019 ident: 14305_CR54 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2018.2855518 – volume: 244 start-page: 48 issue: 1 year: 2007 ident: 14305_CR81 publication-title: Radiology doi: 10.1148/radiol.2441052145 – ident: 14305_CR51 doi: 10.1093/eurheartj/ehz056 – ident: 14305_CR105 – volume: 41 start-page: 81 issue: 1 year: 2018 ident: 14305_CR41 publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-017-0610-y – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 14305_CR52 publication-title: Sci Rep doi: 10.1038/s41598-019-38612-9 – ident: 14305_CR66 doi: 10.3390/s21134278 – ident: 14305_CR55 doi: 10.1109/ICOMET.2019.8673502 – volume: 42 start-page: 980 issue: 4 year: 2016 ident: 14305_CR84 publication-title: Ultrasound Med Biol doi: 10.1016/j.ultrasmedbio.2015.11.016 – volume: 50 start-page: 477 issue: 4 year: 2019 ident: 14305_CR27 publication-title: J Med imaging radiation Sci doi: 10.1016/j.jmir.2019.09.005 – ident: 14305_CR79 doi: 10.1093/ehjci/jey003 – volume: 167 start-page: 114161 year: 2021 ident: 14305_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114161 – volume: 17 start-page: 1740003 issue: 07 year: 2017 ident: 14305_CR85 publication-title: J Mech Med Biology doi: 10.1142/S0219519417400036 – ident: 14305_CR91 doi: 10.1093/med/9780195369779.003.0041 – ident: 14305_CR32 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 14305_CR92 publication-title: Sci Rep doi: 10.1038/s41598-020-79139-8 |
SSID | ssj0016524 |
Score | 2.6590016 |
Snippet | Computer-aided detection using Deep Learning (DL) and Machine Learning (ML) shows tremendous growth in the medical field. Medical images are considered as the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26731 |
SubjectTerms | CAI Classification Computer assisted instruction Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Deep learning Diagnosis Disease Image analysis Literature reviews Machine learning Medical electronics Medical imaging Medical research Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems Track 2: Medical Applications of Multimedia |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT4MwEL_ofNEHP-YXOk1NfFMSyvj0bTGaxWQ-uWRPklKKLnFscSz7972DwjanJr4BvVLK0fbK_e53ANdowcq2EJYpUzcwnTgmJ6GlTDyTvsQqbpsChXvPXrfvPA3cgQ4Km1Zo98olWczUi2A3TqEkhD7nxFNlzjdhy8W9OwG5-nan9h14rk5lG1gmrodch8r8fI_V5WjNxlyHSn7zlxbL0OM-7Gr7kXVKhR_AhsqasFflZmB6qDZhZ4lo8BBeewVmUjGdJOKNiSxhiVKTpSuaXZyhGctGpf-GDUc436BwyVxyx5ISmTecsnyM9fMCyJUdQf_x4eW-a-rMCqZ0fCc3U27bvhWmSglK5kaZg6QQnssTKfA4iXEeswVF4YZpzC2pUqkoIjbB3bTnC94-hkY2ztQpMCKPCQMuHUviZkuhRZFIL7Vcm6j1RGobwKsXHElNO07ZLz6iBWEyKSXCxqJCKdHcgJu6zqQk3fhTulXpLdIDcBoVO0kfrT_XgKu6GIcO-UNEpsYzlCE8kG8HnmfASanmurk2dgsXCqztr3wAtQDRcq-WZMP3gp47pL8KvmXAbfWpLB7r916c_U_8HLYp8X0JHG5BI_-cqQs0j_L4shgNX-K-ByU priority: 102 providerName: Springer Nature |
Title | Machine learning and deep learning approach for medical image analysis: diagnosis to detection |
URI | https://link.springer.com/article/10.1007/s11042-022-14305-w https://www.ncbi.nlm.nih.gov/pubmed/36588765 https://www.proquest.com/docview/2828978395 https://www.proquest.com/docview/2760172866 https://pubmed.ncbi.nlm.nih.gov/PMC9788870 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5Be4HD8lp2w6PyStzAIk7zKhfUohbEigohKrEXIsdxlkqQdrdB_H1mEielIDj1YVupO_bM2DPzfQAH6MGqtpQ2V6kXcjeOKUhoa46fVKBwiNemQuGroX8xci_vvDtz4TYzaZWVTiwUdTJRdEd-XBwNAjTn3un0HyfWKIquGgqNZWiiCg7DBjR7_eH1TR1H8D1DaxvaHG2jMGUzZfGcoNIUymYXhHvFXxZN0wd_82Pa5LvYaWGSBuvwzfiSrFsKfwOWdLYJaxVPAzPbdhNW34AObsH9VZE_qZkhjPjLZJawROvpm28M0jhDl5Y9lbEcNn5C3YOdSxSTE5aUWXrjGcsnOD4vkrqy7zAa9G_PLrhhWeDKDdycp8JxAruTai2J2I1YhJSUvicSJfF9EqNOcyRV5HbSWNhKp0pTdWyCJ2s_kKK9DY1skumfwAhIphMK5doKD14avYtE-antOQSzJ1PHAlH9wZEyEOTEhPEYzcGTSSgRPiwqhBK9WHBYj5mWABxf9t6r5BaZzTiL5kvHgl91M24jio3ITE-esQ_lBgVO6PsW_CjFXD-ujdNCo4Gjg4UFUHcgiO7Flmz8UEB1d-iGIbAtOKqWyvxnfT6Lna9nsQsrRHpfJg3vQSP__6z30TXK4xYsh4PzFjS7g15vSK_nf373W2ZXYOvI6b4CsDQQPw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_g-aA8qIAfVZQ1kSfc2N1-3ZkYY5TjEI4nSHiibrdbuAR6p1dy8Z_yb3Smu-1xEHjjrR-73W5nZme2M_MbgA9owepAKZ_rIuryMMvISegbjmc60dglCihReHgQD47Cn8fR8RL8a3JhKKyyWRPrhTofa_pH_qneGiSozqOvk9-cqkaRd7UpoWHZYs_8neGWbfpl9wfSd1PK_vbh9wF3VQW4DpOw4oWQMvF7hTGKCplR1RytVByJXCs8zjOUYakoA7VXZMLXptCGskFz3EnGiRIBPvcBPAwD1OSUmd7fab0WceSK6HZ9jppYuCQdm6onKBGGYucFoWzx2aIivGHd3gzSvOaprRVg_xk8cZYr-2ZZbQWWTLkKT5uqEMwtEquwfAXicA1OhnW0pmGuPMUpU2XOcmMmV644XHOGBjS7sJ4jNrrAlQ4bW8yUzyy3MYGjKavG2L-qQ8jK53B0L1__BXTKcWleASPYml5X6NDXuM0zaMvkOi78SBKonyqkB6L5wKl2gOdUd-M8nUM1E1FSHCytiZLOPNhq-0ws3MedrdcbuqVO9KfpnFE9eN_eRqElT4wqzfgS21AkUiK7cezBS0vmdrgAp4UqCnsnCwzQNiBA8MU75eisBgbv0f-MxPfgY8Mq89e6fRav757FBjwaHA730_3dg7038FiikWfDldehU_25NG_RKKuyd7UkMPh136L3Hy6SRdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTkLwMGD8yxhgJHgCa7GbxC0SQsBWbYxVE2LSnhYcx9kqsbRbM1V8NT4dd7GTrkzsbW9NYydx7s53l7v7HcBrtGBNV-uQmyLu8SjLKEgYWo5HRhmcEnepUHhvmGwfRF8P48Ml-NPUwlBaZbMn1ht1Pjb0jXyjdg0UqvN4o_BpEfubg4-TM04dpCjS2rTTcCyya3_P0H2bftjZRFq_kXKw9ePLNvcdBriJVFTxQkipwn5hraamZtRBx2idxCI3Gn_nGcqz1FSN2i8yERpbGEuVoTl6lYnSoovXvQXLiryiDix_3hruf29jGEnsW-r2Qo56WfiSHVe4J6gshjLpBWFu8dmiWrxi615N2fwnblurw8F9WPF2LPvkGO8BLNlyFe41PSKY3zJW4e4lwMOHcLRX525a5ptVHDNd5iy3dnLpH49yztCcZqcujsRGp7jv4WCHoPKe5S5DcDRl1RjnV3VCWfkIDm7k_T-GTjku7VNgBGLT7wkThQadPouWTW6SIowlQfzpQgYgmhecGg9_Tl04fqVz4GYiSoo3S2uipLMA3rZzJg7849rR6w3dUr8RTNM52wbwqj2NIkxxGV3a8QWOobwkJXtJEsATR-b2dl1cFiosnK0WGKAdQPDgi2fK0UkNE96nrxsqDOBdwyrzx_r_KtauX8VLuI1il37bGe4-gzsSLT6Xu7wOner8wj5HC63KXnhRYPDzpqXvLwRLS24 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+and+deep+learning+approach+for+medical+image+analysis%3A+diagnosis+to+detection&rft.jtitle=Multimedia+tools+and+applications&rft.au=Rana%2C+Meghavi&rft.au=Bhushan%2C+Megha&rft.date=2023-07-01&rft.issn=1380-7501&rft.spage=1&rft_id=info:doi/10.1007%2Fs11042-022-14305-w&rft_id=info%3Apmid%2F36588765&rft.externalDocID=36588765 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |