A multimodal transformer to fuse images and metadata for skin disease classification A multimodal transformer to fuse images and metadata for skin disease classification

Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases...

Full description

Saved in:
Bibliographic Details
Published inThe Visual computer Vol. 39; no. 7; pp. 2781 - 2793
Main Authors Cai, Gan, Zhu, Yu, Wu, Yue, Jiang, Xiaoben, Ye, Jiongyao, Yang, Dawei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model’s effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis.
AbstractList Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model’s effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis.
Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model's effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis.Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model's effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis.
Author Zhu, Yu
Yang, Dawei
Jiang, Xiaoben
Cai, Gan
Wu, Yue
Ye, Jiongyao
Author_xml – sequence: 1
  givenname: Gan
  surname: Cai
  fullname: Cai, Gan
  organization: School of Information Science and Engineering, East China University of Science and Technology
– sequence: 2
  givenname: Yu
  orcidid: 0000-0003-1535-6520
  surname: Zhu
  fullname: Zhu, Yu
  email: zhuyu@ecust.edu.cn
  organization: School of Information Science and Engineering, East China University of Science and Technology
– sequence: 3
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
  organization: School of Information Science and Engineering, East China University of Science and Technology
– sequence: 4
  givenname: Xiaoben
  surname: Jiang
  fullname: Jiang, Xiaoben
  organization: School of Information Science and Engineering, East China University of Science and Technology
– sequence: 5
  givenname: Jiongyao
  surname: Ye
  fullname: Ye, Jiongyao
  organization: School of Information Science and Engineering, East China University of Science and Technology
– sequence: 6
  givenname: Dawei
  surname: Yang
  fullname: Yang, Dawei
  email: yang_dw@hotmail.com
  organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35540957$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrVTEUhYNU7G3rH3AgASdOjs3rnJ1MhFJ8QaGTOg65eVxTz0lqkiP47429bdUOOggh5Ft7r73XETpIOXmEXlHyjhICp5UQDnQgjPUjFBvEM7ShgrOBcToeoA2hIAcGUh2io1qvSX-DUC_QIR9HQdQIG3R1hpd1bnHJzsy4FZNqyGXxBbeMw1o9jovZ-YpNcnjxzTjTDO4Irt9jwi5WbzpkZ1NrDNGaFnM6Qc-Dmat_eXcfo68fP1ydfx4uLj99OT-7GKwA0QYfJkcmJeQUIJjJAWcyjI4asFyaAJwAOK6kDxykIdZLspUMtiC8IyAMP0bv93Vv1u3infWpDzDrm9I9l186m6j__0nxm97ln1oRIAqgF3h7V6DkH6uvTS-xWj_PJvm8Vs2miY2CqZF29M0j9DqvJfXxNFNUEj5NXHbq9b-OHqzcL7wDbA_YkmstPjwglOg_qep9qrqnqm9T1aKL5CORje12032qOD8t5Xtp7X3Szpe_tp9Q_QYfi7b_
CitedBy_id crossref_primary_10_1007_s00371_023_03164_7
crossref_primary_10_3390_diagnostics13233506
crossref_primary_10_1016_j_bspc_2024_107141
crossref_primary_10_3390_jcm12185960
crossref_primary_10_1007_s41060_025_00715_0
crossref_primary_10_1016_j_treng_2024_100228
crossref_primary_10_1016_j_compbiomed_2024_108742
crossref_primary_10_3390_healthcare10050962
crossref_primary_10_1007_s10586_024_04331_8
crossref_primary_10_1007_s42979_024_03601_x
crossref_primary_10_1186_s12891_024_07934_9
crossref_primary_10_3390_s23135795
crossref_primary_10_1016_j_cmpb_2024_108568
crossref_primary_10_1016_j_smhl_2024_100520
crossref_primary_10_1088_2516_1091_acc2fe
crossref_primary_10_1016_j_displa_2024_102698
crossref_primary_10_1109_ACCESS_2024_3432904
crossref_primary_10_1016_j_procs_2024_10_243
crossref_primary_10_1016_j_eswa_2025_127077
crossref_primary_10_14801_jkiit_2024_22_7_55
crossref_primary_10_1177_20552076241257087
crossref_primary_10_3389_fsurg_2022_1029991
crossref_primary_10_1016_j_compbiomed_2025_110007
crossref_primary_10_1108_DTA_01_2023_0005
crossref_primary_10_1007_s00371_024_03381_8
crossref_primary_10_1109_ACCESS_2023_3324042
crossref_primary_10_1016_j_patcog_2024_110742
crossref_primary_10_1007_s10278_024_01271_y
crossref_primary_10_1016_j_compbiomed_2025_109721
crossref_primary_10_1016_j_inffus_2024_102424
crossref_primary_10_1007_s10845_024_02378_3
crossref_primary_10_1002_ima_70045
crossref_primary_10_1016_j_infrared_2025_105780
crossref_primary_10_1109_ACCESS_2024_3409077
crossref_primary_10_1007_s00371_024_03535_8
crossref_primary_10_3389_frai_2023_1202990
crossref_primary_10_1109_ACCESS_2023_3345225
crossref_primary_10_1177_20552076231207197
crossref_primary_10_1007_s00371_023_03011_9
crossref_primary_10_1016_j_microc_2025_112870
crossref_primary_10_1038_s41598_024_82402_x
crossref_primary_10_1007_s00371_023_02827_9
crossref_primary_10_1016_j_imu_2024_101495
crossref_primary_10_7717_peerj_cs_2298
crossref_primary_10_3390_s24113440
crossref_primary_10_2174_0118750362358444250120070327
crossref_primary_10_1016_j_imavis_2024_105166
crossref_primary_10_1089_aipo_2024_0023
Cites_doi 10.1109/ICIP42928.2021.9506341
10.1038/sdata.2018.161
10.1109/CVPR.2016.90
10.1109/ICIP42928.2021.9506211
10.1007/s00371-022-02430-4
10.18653/v1/P17-1021
10.1109/ICICIS46948.2019.9014823
10.1016/j.mex.2020.100864
10.1109/ICCV48922.2021.00041
10.1109/ICCV.2017.202
10.21203/rs.3.rs-812932/v1
10.1109/ICCISci.2019.8716400
10.1109/TPAMI.2005.17
10.1109/JBHI.2020.2977013
10.1109/ICCV48922.2021.00986
10.1109/JBHI.2018.2824327
10.1109/JBHI.2021.3062002
10.1109/JBHI.2020.2973614
10.1109/ICCV48922.2021.00061
10.1109/DeSE.2019.00039
10.1109/JBHI.2018.2806962
10.2196/20708
10.1109/ICBAIE52039.2021.9389983
10.1007/s00371-020-01941-2
10.1109/CVPR.2017.243
10.1109/JBHI.2019.2942429
10.1016/j.compbiomed.2019.103423
10.1109/TMI.2020.2995518
10.1111/1346-8138.15683
10.1016/j.media.2019.02.010
10.2147/JMDH.S306284
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright Springer Nature B.V. Jul 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
– notice: Copyright Springer Nature B.V. Jul 2023
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00371-022-02492-4
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Advanced Technologies & Aerospace Collection
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1432-2315
EndPage 2793
ExternalDocumentID PMC9070977
35540957
10_1007_s00371_022_02492_4
Genre Journal Article
GrantInformation_xml – fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 20DZ2254400; 21DZ2200600
  funderid: http://dx.doi.org/10.13039/501100003399
– fundername: National Scientific Foundation of China
  grantid: 82170110
– fundername: Shanghai Pujiang Program
  grantid: 20PJ1402400
– fundername: ;
  grantid: 82170110
– fundername: ;
  grantid: 20PJ1402400
– fundername: ;
  grantid: 20DZ2254400; 21DZ2200600
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
NPM
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-ef6d069486f7fa6d7328f5d1a7c38af73077d398ef378a0ce80b827b74ed074a3
IEDL.DBID U2A
ISSN 0178-2789
IngestDate Thu Aug 21 18:45:47 EDT 2025
Fri Jul 11 15:44:01 EDT 2025
Sat Jul 19 20:40:14 EDT 2025
Mon Jul 21 05:43:59 EDT 2025
Tue Jul 01 05:13:04 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Thu Apr 10 07:49:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Skin disease
Transformer
Multimodal fusion
Attention
Language English
License The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ef6d069486f7fa6d7328f5d1a7c38af73077d398ef378a0ce80b827b74ed074a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1535-6520
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9070977
PMID 35540957
PQID 2918036638
PQPubID 2043737
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9070977
proquest_miscellaneous_2662542951
proquest_journals_2918036638
pubmed_primary_35540957
crossref_primary_10_1007_s00371_022_02492_4
crossref_citationtrail_10_1007_s00371_022_02492_4
springer_journals_10_1007_s00371_022_02492_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of Computer Graphics
PublicationTitle The Visual computer
PublicationTitleAbbrev Vis Comput
PublicationTitleAlternate Vis Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References J Höhn (2492_CR30) 2021; 23
2492_CR40
DNA Ningrum (2492_CR31) 2021; 14
K Karthik (2492_CR6) 2021; 37
J Zhang (2492_CR17) 2019; 54
SL Phung (2492_CR16) 2005; 27
N Gessert (2492_CR29) 2020; 7
2492_CR2
2492_CR1
L Song (2492_CR24) 2020; 24
2492_CR27
J Kawahara (2492_CR26) 2018; 23
2492_CR28
P Tschandl (2492_CR37) 2018; 5
2492_CR22
2492_CR20
Y Gu (2492_CR43) 2019; 24
P Tang (2492_CR25) 2020; 24
I Gonzalez-Diaz (2492_CR23) 2018; 23
HW Huang (2492_CR41) 2021; 48
AG Pacheco (2492_CR32) 2021; 25
2492_CR9
2492_CR8
Q Liu (2492_CR42) 2020; 39
2492_CR7
2492_CR5
2492_CR4
2492_CR3
2492_CR18
2492_CR38
2492_CR39
KB Salah (2492_CR21) 2021; 38
2492_CR10
2492_CR11
2492_CR33
S Serte (2492_CR19) 2019; 113
2492_CR14
2492_CR36
2492_CR15
2492_CR12
2492_CR34
2492_CR13
2492_CR35
References_xml – ident: 2492_CR36
  doi: 10.1109/ICIP42928.2021.9506341
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 2492_CR37
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.161
– ident: 2492_CR1
  doi: 10.1109/CVPR.2016.90
– ident: 2492_CR28
  doi: 10.1109/ICIP42928.2021.9506211
– ident: 2492_CR18
  doi: 10.1007/s00371-022-02430-4
– ident: 2492_CR34
– ident: 2492_CR22
  doi: 10.18653/v1/P17-1021
– ident: 2492_CR4
  doi: 10.1109/ICICIS46948.2019.9014823
– volume: 7
  year: 2020
  ident: 2492_CR29
  publication-title: MethodsX
  doi: 10.1016/j.mex.2020.100864
– ident: 2492_CR13
– ident: 2492_CR11
  doi: 10.1109/ICCV48922.2021.00041
– ident: 2492_CR39
  doi: 10.1109/ICCV.2017.202
– ident: 2492_CR3
  doi: 10.21203/rs.3.rs-812932/v1
– ident: 2492_CR40
  doi: 10.1109/ICCISci.2019.8716400
– volume: 27
  start-page: 148
  issue: 1
  year: 2005
  ident: 2492_CR16
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.17
– volume: 24
  start-page: 2870
  issue: 10
  year: 2020
  ident: 2492_CR25
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2977013
– ident: 2492_CR14
– ident: 2492_CR9
  doi: 10.1109/ICCV48922.2021.00986
– volume: 23
  start-page: 538
  issue: 2
  year: 2018
  ident: 2492_CR26
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2824327
– volume: 25
  start-page: 3554
  issue: 9
  year: 2021
  ident: 2492_CR32
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3062002
– volume: 24
  start-page: 2912
  issue: 10
  year: 2020
  ident: 2492_CR24
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2973614
– ident: 2492_CR7
  doi: 10.1109/ICCV48922.2021.00061
– ident: 2492_CR20
  doi: 10.1109/DeSE.2019.00039
– volume: 23
  start-page: 547
  issue: 2
  year: 2018
  ident: 2492_CR23
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2806962
– volume: 23
  issue: 7
  year: 2021
  ident: 2492_CR30
  publication-title: J. Med. Internet Res.
  doi: 10.2196/20708
– ident: 2492_CR5
  doi: 10.1109/ICBAIE52039.2021.9389983
– volume: 37
  start-page: 1837
  issue: 7
  year: 2021
  ident: 2492_CR6
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01941-2
– ident: 2492_CR2
  doi: 10.1109/CVPR.2017.243
– volume: 24
  start-page: 1379
  issue: 5
  year: 2019
  ident: 2492_CR43
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2942429
– volume: 38
  start-page: 1
  year: 2021
  ident: 2492_CR21
  publication-title: Vis. Comput.
– ident: 2492_CR10
– ident: 2492_CR35
– ident: 2492_CR12
– ident: 2492_CR33
– ident: 2492_CR8
– volume: 113
  year: 2019
  ident: 2492_CR19
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.103423
– ident: 2492_CR15
– volume: 39
  start-page: 3429
  issue: 11
  year: 2020
  ident: 2492_CR42
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2995518
– ident: 2492_CR38
– volume: 48
  start-page: 310
  issue: 3
  year: 2021
  ident: 2492_CR41
  publication-title: J. Dermatol.
  doi: 10.1111/1346-8138.15683
– volume: 54
  start-page: 10
  year: 2019
  ident: 2492_CR17
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.02.010
– ident: 2492_CR27
  doi: 10.1109/JBHI.2021.3062002
– volume: 14
  start-page: 877
  year: 2021
  ident: 2492_CR31
  publication-title: J. Multidiscip. Healthc.
  doi: 10.2147/JMDH.S306284
SSID ssj0017749
Score 2.5586584
Snippet Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2781
SubjectTerms Artificial Intelligence
Classification
Coders
Computer Graphics
Computer Science
Datasets
Deep learning
Design
Diagnosis
Experiments
Image Processing and Computer Vision
Labels
Machine learning
Medical diagnosis
Medical imaging
Medical research
Metadata
Neural networks
Original
Original Article
Skin diseases
Subtitle A multimodal transformer to fuse images and metadata for skin disease classification
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuLQHVKC0aQEZiRu1unnaOSFAIMQBIQQSt8jxQ121mwDJ_v_OeJ3Agso5k5fHnvnsmfkG4CDJ67hISs2tcpajxy-5ylXO00KT969tVvtsi6vi4i67vM_vw4FbF9IqB5voDbVpNZ2R_0rKWKK1xfuPHh45dY2i6GpoofEB1tAES9x8rZ2cXV3fjHEEBDceAMe4V6Kaz1A244vnPFsdp2x2T5vHs2XX9AZvvk2bfBU79S7p_DOsByzJjhfK34AV22zCpxcMg1twe8x8yuCsNSjZDyjVPrG-ZW7eWTadoUXpmGoMm9leUcYoQxHW_Zk2LIRvmCaMTUlFXo9f4O787Pb0godGClxnIuu5dYWhAldZOOFUYYigx-UmVkKnUjlc5EKYtJTWpUKqibZyUstE1CKzBiGGSrdhtWkb-w1YTZWriUPNx_hsVKvS9US6UuU2FdYUEcTDGFY6sIxTs4u_1ciP7Me9wnGv_LhXWQSH4z0PC46Nd6V3BtVUYb111fPsiGB_vIwrhcIfqrHtHGUK3Ouh-83jCL4uNDm-jlAXgk0RgVjS8ShALNzLV5rpb8_GXaLRRBAdwc9hNjx_1v__4vv7f_EDPlJf-0Ve8A6s9k9zu4vop6_3whT_B55eAfg
  priority: 102
  providerName: ProQuest
Title A multimodal transformer to fuse images and metadata for skin disease classification
URI https://link.springer.com/article/10.1007/s00371-022-02492-4
https://www.ncbi.nlm.nih.gov/pubmed/35540957
https://www.proquest.com/docview/2918036638
https://www.proquest.com/docview/2662542951
https://pubmed.ncbi.nlm.nih.gov/PMC9070977
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0BvcCBpWxhqYzEDSw1q51jQV0EUoUQleAUOYktKmiKSPr_jN0kUApInHrIOGnyPJ5nzcwzwLnjx3bghAmVQkmKET-kwhc-dYNER_9YerGpthgGg5F38-g_lk1heVXtXqUkzUpdN7sZdTmqq8-NzB31VqHh6707zuKR06lzB0hoDOm1cX-k-zzLVpmf77EYjpY45nKp5Ld8qQlDvW3YLPkj6cwB34EVmTVhqzqbgZSu2oSNL0KDu_DQIaZycDJNcXBRkVUcUEyJmuWSjCe4sOREZCmZyELowlGCJiR_GWekzOKQRFNtXVtk4NyDUa_7cD2g5XkKNPGYV1CpglT3ufJAMSWCVOv0KD-1BUtcLhT6OmOpG3KpXMZFO5G8HXOHxcyTKTIN4e7DWjbN5CGQWDewOgongI33RnRFEre5CoUvXSbTwAK7-qxRUoqN6zMvXqNaJtlAESEUkYEi8iy4qMe8zaU2_rQ-qdCKSrfLIye0OYZknGQWnNWX0WF0FkRkcjpDmwC3fBiFfduCgzm49eM0-ULOySxgC7DXBlqMe_FKNn42otwhrp3IpS24rCbI59_6_S2O_md-DOv6uPt5ufAJrBXvM3mKpKiIW7DKe_0WNDr9p9su_l51h3f3LeMZH6idB8M
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBYwEJ7C6edo5IFQBy5aWnrZSb8HxQ6zoJqXJCvGn-I3MOI-yVPTWcyZOMh7PfM7MfAZ4GaVlmEW55lY5yzHi51ylKuVxpin6lzYpfbXFYTY7Sj4fp8cb8HvohaGyysEnekdtak3_yHeiPJTobfH-d6c_OJ0aRdnV4QiNziz27a-fuGVr3u59wPl9FUXTj_P3M96fKsB1IpKWW5cZ6vaUmRNOZYbYalxqQiV0LJVDixfCxLm0LhZSTbSVk1JGohSJNRhvVYzjXoPrSRzntKLk9NOYtUAo5eF2iDsz6jDtm3R8q57nxuNUO-9J-niyHggvoNuLRZr_ZGp9AJzehls9cmW7nandgQ1b3YWtv_gM78F8l_kCxWVtULIdMLE9Y23N3KqxbLFE_9UwVRm2tK2i-lSGIqz5vqhYnyximhA9lTB5q7kPR1ei4AewWdWVfQSspD7ZyKGdhTg2GpHS5US6XKU2FtZkAYSDDgvdc5rT0RonxcjG7PVeoN4Lr_ciCeD1eM9px-hxqfT2MDVFv7qb4twWA3gxXsZ1SckWVdl6hTIZ7iwx2KdhAA-7mRwfRxgPoa0IQKzN8ShAnN_rV6rFN8_9naOLRsgewJvBGs5f6_9f8fjyr3gON2bzLwfFwd7h_hO4GSGO6yqSt2GzPVvZp4i72vKZN3YGX696df0B0Cw9ig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAcWMoWViNxA4tmdXKsgKosqji0ErfIiW1RQVNE0_9n7Cy0bBLnjJ3leTwvmplngDPHT-zAiVIquZIUI35Euc996gapjv6J9BJTbdELugPv7sl_muniN9XuVUqy6GnQKk1Zfvkm1GXd-GaU5qiuRDeSd9RbhCXcjm29rgdOu84jILkxBNjGfyXd81m2zfw8x3xo-sY3v5dNfsmdmpDU2YC1kkuSdgH-JizIrAnr1TkNpHTbJqzOiA5uQb9NTBXhaCxwcF4RVxyQj4maTiQZjnCTmRCeCTKSOddFpARNyORlmJEyo0NSTbt1nZGBdhsGnZv-VZeWZyvQ1GNeTqUKhO55DQPFFA-E1uxRvrA5S92QK_R7xoQbhVK5LOStVIatJHRYwjwpkHVwdwca2TiTe0AS3czqKFwMNs6NSPM0aYUq4r50mRSBBXb1WeO0FB7X51-8xrVksoEiRihiA0XsWXBej3krZDf-tD6s0IpLF5zETmSHGJ5xwVlwWl9G59EZEZ7J8RRtAvz9w4js2xbsFuDWt9NEDPkns4DNwV4baGHu-SvZ8NkIdEe4jyKvtuCiWiCfj_X7W-z_z_wElh-vO_HDbe_-AFYc5F5FFfEhNPL3qTxCrpQnx8YdPgB8jgre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multimodal+transformer+to+fuse+images+and+metadata+for+skin+disease+classification&rft.jtitle=The+Visual+computer&rft.au=Cai%2C+Gan&rft.au=Zhu%2C+Yu&rft.au=Wu%2C+Yue&rft.au=Jiang%2C+Xiaoben&rft.date=2023-07-01&rft.issn=0178-2789&rft.spage=1&rft_id=info:doi/10.1007%2Fs00371-022-02492-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon