A multimodal transformer to fuse images and metadata for skin disease classification A multimodal transformer to fuse images and metadata for skin disease classification
Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases...
Saved in:
Published in | The Visual computer Vol. 39; no. 7; pp. 2781 - 2793 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model’s effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis. |
---|---|
AbstractList | Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model’s effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis. Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model's effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis.Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose skin diseases could help to meet these challenges. In this study, a novel neural network is proposed for the classification of skin diseases. Since the datasets for the research consist of skin disease images and clinical metadata, we propose a novel multimodal Transformer, which consists of two encoders for both images and metadata and one decoder to fuse the multimodal information. In the proposed network, a suitable Vision Transformer (ViT) model is utilized as the backbone to extract image deep features. As for metadata, they are regarded as labels and a new Soft Label Encoder (SLE) is designed to embed them. Furthermore, in the decoder part, a novel Mutual Attention (MA) block is proposed to better fuse image features and metadata features. To evaluate the model's effectiveness, extensive experiments have been conducted on the private skin disease dataset and the benchmark dataset ISIC 2018. Compared with state-of-the-art methods, the proposed model shows better performance and represents an advancement in skin disease diagnosis. |
Author | Zhu, Yu Yang, Dawei Jiang, Xiaoben Cai, Gan Wu, Yue Ye, Jiongyao |
Author_xml | – sequence: 1 givenname: Gan surname: Cai fullname: Cai, Gan organization: School of Information Science and Engineering, East China University of Science and Technology – sequence: 2 givenname: Yu orcidid: 0000-0003-1535-6520 surname: Zhu fullname: Zhu, Yu email: zhuyu@ecust.edu.cn organization: School of Information Science and Engineering, East China University of Science and Technology – sequence: 3 givenname: Yue surname: Wu fullname: Wu, Yue organization: School of Information Science and Engineering, East China University of Science and Technology – sequence: 4 givenname: Xiaoben surname: Jiang fullname: Jiang, Xiaoben organization: School of Information Science and Engineering, East China University of Science and Technology – sequence: 5 givenname: Jiongyao surname: Ye fullname: Ye, Jiongyao organization: School of Information Science and Engineering, East China University of Science and Technology – sequence: 6 givenname: Dawei surname: Yang fullname: Yang, Dawei email: yang_dw@hotmail.com organization: Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35540957$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrVTEUhYNU7G3rH3AgASdOjs3rnJ1MhFJ8QaGTOg65eVxTz0lqkiP47429bdUOOggh5Ft7r73XETpIOXmEXlHyjhICp5UQDnQgjPUjFBvEM7ShgrOBcToeoA2hIAcGUh2io1qvSX-DUC_QIR9HQdQIG3R1hpd1bnHJzsy4FZNqyGXxBbeMw1o9jovZ-YpNcnjxzTjTDO4Irt9jwi5WbzpkZ1NrDNGaFnM6Qc-Dmat_eXcfo68fP1ydfx4uLj99OT-7GKwA0QYfJkcmJeQUIJjJAWcyjI4asFyaAJwAOK6kDxykIdZLspUMtiC8IyAMP0bv93Vv1u3infWpDzDrm9I9l186m6j__0nxm97ln1oRIAqgF3h7V6DkH6uvTS-xWj_PJvm8Vs2miY2CqZF29M0j9DqvJfXxNFNUEj5NXHbq9b-OHqzcL7wDbA_YkmstPjwglOg_qep9qrqnqm9T1aKL5CORje12032qOD8t5Xtp7X3Szpe_tp9Q_QYfi7b_ |
CitedBy_id | crossref_primary_10_1007_s00371_023_03164_7 crossref_primary_10_3390_diagnostics13233506 crossref_primary_10_1016_j_bspc_2024_107141 crossref_primary_10_3390_jcm12185960 crossref_primary_10_1007_s41060_025_00715_0 crossref_primary_10_1016_j_treng_2024_100228 crossref_primary_10_1016_j_compbiomed_2024_108742 crossref_primary_10_3390_healthcare10050962 crossref_primary_10_1007_s10586_024_04331_8 crossref_primary_10_1007_s42979_024_03601_x crossref_primary_10_1186_s12891_024_07934_9 crossref_primary_10_3390_s23135795 crossref_primary_10_1016_j_cmpb_2024_108568 crossref_primary_10_1016_j_smhl_2024_100520 crossref_primary_10_1088_2516_1091_acc2fe crossref_primary_10_1016_j_displa_2024_102698 crossref_primary_10_1109_ACCESS_2024_3432904 crossref_primary_10_1016_j_procs_2024_10_243 crossref_primary_10_1016_j_eswa_2025_127077 crossref_primary_10_14801_jkiit_2024_22_7_55 crossref_primary_10_1177_20552076241257087 crossref_primary_10_3389_fsurg_2022_1029991 crossref_primary_10_1016_j_compbiomed_2025_110007 crossref_primary_10_1108_DTA_01_2023_0005 crossref_primary_10_1007_s00371_024_03381_8 crossref_primary_10_1109_ACCESS_2023_3324042 crossref_primary_10_1016_j_patcog_2024_110742 crossref_primary_10_1007_s10278_024_01271_y crossref_primary_10_1016_j_compbiomed_2025_109721 crossref_primary_10_1016_j_inffus_2024_102424 crossref_primary_10_1007_s10845_024_02378_3 crossref_primary_10_1002_ima_70045 crossref_primary_10_1016_j_infrared_2025_105780 crossref_primary_10_1109_ACCESS_2024_3409077 crossref_primary_10_1007_s00371_024_03535_8 crossref_primary_10_3389_frai_2023_1202990 crossref_primary_10_1109_ACCESS_2023_3345225 crossref_primary_10_1177_20552076231207197 crossref_primary_10_1007_s00371_023_03011_9 crossref_primary_10_1016_j_microc_2025_112870 crossref_primary_10_1038_s41598_024_82402_x crossref_primary_10_1007_s00371_023_02827_9 crossref_primary_10_1016_j_imu_2024_101495 crossref_primary_10_7717_peerj_cs_2298 crossref_primary_10_3390_s24113440 crossref_primary_10_2174_0118750362358444250120070327 crossref_primary_10_1016_j_imavis_2024_105166 crossref_primary_10_1089_aipo_2024_0023 |
Cites_doi | 10.1109/ICIP42928.2021.9506341 10.1038/sdata.2018.161 10.1109/CVPR.2016.90 10.1109/ICIP42928.2021.9506211 10.1007/s00371-022-02430-4 10.18653/v1/P17-1021 10.1109/ICICIS46948.2019.9014823 10.1016/j.mex.2020.100864 10.1109/ICCV48922.2021.00041 10.1109/ICCV.2017.202 10.21203/rs.3.rs-812932/v1 10.1109/ICCISci.2019.8716400 10.1109/TPAMI.2005.17 10.1109/JBHI.2020.2977013 10.1109/ICCV48922.2021.00986 10.1109/JBHI.2018.2824327 10.1109/JBHI.2021.3062002 10.1109/JBHI.2020.2973614 10.1109/ICCV48922.2021.00061 10.1109/DeSE.2019.00039 10.1109/JBHI.2018.2806962 10.2196/20708 10.1109/ICBAIE52039.2021.9389983 10.1007/s00371-020-01941-2 10.1109/CVPR.2017.243 10.1109/JBHI.2019.2942429 10.1016/j.compbiomed.2019.103423 10.1109/TMI.2020.2995518 10.1111/1346-8138.15683 10.1016/j.media.2019.02.010 10.2147/JMDH.S306284 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Copyright Springer Nature B.V. Jul 2023 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. – notice: Copyright Springer Nature B.V. Jul 2023 |
DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s00371-022-02492-4 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1432-2315 |
EndPage | 2793 |
ExternalDocumentID | PMC9070977 35540957 10_1007_s00371_022_02492_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Science and Technology Commission of Shanghai Municipality grantid: 20DZ2254400; 21DZ2200600 funderid: http://dx.doi.org/10.13039/501100003399 – fundername: National Scientific Foundation of China grantid: 82170110 – fundername: Shanghai Pujiang Program grantid: 20PJ1402400 – fundername: ; grantid: 82170110 – fundername: ; grantid: 20PJ1402400 – fundername: ; grantid: 20DZ2254400; 21DZ2200600 |
GroupedDBID | -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PHGZT PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM ABRTQ NPM PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-ef6d069486f7fa6d7328f5d1a7c38af73077d398ef378a0ce80b827b74ed074a3 |
IEDL.DBID | U2A |
ISSN | 0178-2789 |
IngestDate | Thu Aug 21 18:45:47 EDT 2025 Fri Jul 11 15:44:01 EDT 2025 Sat Jul 19 20:40:14 EDT 2025 Mon Jul 21 05:43:59 EDT 2025 Tue Jul 01 05:13:04 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Thu Apr 10 07:49:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Deep learning Skin disease Transformer Multimodal fusion Attention |
Language | English |
License | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-ef6d069486f7fa6d7328f5d1a7c38af73077d398ef378a0ce80b827b74ed074a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1535-6520 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9070977 |
PMID | 35540957 |
PQID | 2918036638 |
PQPubID | 2043737 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9070977 proquest_miscellaneous_2662542951 proquest_journals_2918036638 pubmed_primary_35540957 crossref_primary_10_1007_s00371_022_02492_4 crossref_citationtrail_10_1007_s00371_022_02492_4 springer_journals_10_1007_s00371_022_02492_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-01 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | International Journal of Computer Graphics |
PublicationTitle | The Visual computer |
PublicationTitleAbbrev | Vis Comput |
PublicationTitleAlternate | Vis Comput |
PublicationYear | 2023 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | J Höhn (2492_CR30) 2021; 23 2492_CR40 DNA Ningrum (2492_CR31) 2021; 14 K Karthik (2492_CR6) 2021; 37 J Zhang (2492_CR17) 2019; 54 SL Phung (2492_CR16) 2005; 27 N Gessert (2492_CR29) 2020; 7 2492_CR2 2492_CR1 L Song (2492_CR24) 2020; 24 2492_CR27 J Kawahara (2492_CR26) 2018; 23 2492_CR28 P Tschandl (2492_CR37) 2018; 5 2492_CR22 2492_CR20 Y Gu (2492_CR43) 2019; 24 P Tang (2492_CR25) 2020; 24 I Gonzalez-Diaz (2492_CR23) 2018; 23 HW Huang (2492_CR41) 2021; 48 AG Pacheco (2492_CR32) 2021; 25 2492_CR9 2492_CR8 Q Liu (2492_CR42) 2020; 39 2492_CR7 2492_CR5 2492_CR4 2492_CR3 2492_CR18 2492_CR38 2492_CR39 KB Salah (2492_CR21) 2021; 38 2492_CR10 2492_CR11 2492_CR33 S Serte (2492_CR19) 2019; 113 2492_CR14 2492_CR36 2492_CR15 2492_CR12 2492_CR34 2492_CR13 2492_CR35 |
References_xml | – ident: 2492_CR36 doi: 10.1109/ICIP42928.2021.9506341 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 2492_CR37 publication-title: Sci. Data doi: 10.1038/sdata.2018.161 – ident: 2492_CR1 doi: 10.1109/CVPR.2016.90 – ident: 2492_CR28 doi: 10.1109/ICIP42928.2021.9506211 – ident: 2492_CR18 doi: 10.1007/s00371-022-02430-4 – ident: 2492_CR34 – ident: 2492_CR22 doi: 10.18653/v1/P17-1021 – ident: 2492_CR4 doi: 10.1109/ICICIS46948.2019.9014823 – volume: 7 year: 2020 ident: 2492_CR29 publication-title: MethodsX doi: 10.1016/j.mex.2020.100864 – ident: 2492_CR13 – ident: 2492_CR11 doi: 10.1109/ICCV48922.2021.00041 – ident: 2492_CR39 doi: 10.1109/ICCV.2017.202 – ident: 2492_CR3 doi: 10.21203/rs.3.rs-812932/v1 – ident: 2492_CR40 doi: 10.1109/ICCISci.2019.8716400 – volume: 27 start-page: 148 issue: 1 year: 2005 ident: 2492_CR16 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.17 – volume: 24 start-page: 2870 issue: 10 year: 2020 ident: 2492_CR25 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2977013 – ident: 2492_CR14 – ident: 2492_CR9 doi: 10.1109/ICCV48922.2021.00986 – volume: 23 start-page: 538 issue: 2 year: 2018 ident: 2492_CR26 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2824327 – volume: 25 start-page: 3554 issue: 9 year: 2021 ident: 2492_CR32 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3062002 – volume: 24 start-page: 2912 issue: 10 year: 2020 ident: 2492_CR24 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2973614 – ident: 2492_CR7 doi: 10.1109/ICCV48922.2021.00061 – ident: 2492_CR20 doi: 10.1109/DeSE.2019.00039 – volume: 23 start-page: 547 issue: 2 year: 2018 ident: 2492_CR23 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2806962 – volume: 23 issue: 7 year: 2021 ident: 2492_CR30 publication-title: J. Med. Internet Res. doi: 10.2196/20708 – ident: 2492_CR5 doi: 10.1109/ICBAIE52039.2021.9389983 – volume: 37 start-page: 1837 issue: 7 year: 2021 ident: 2492_CR6 publication-title: Vis. Comput. doi: 10.1007/s00371-020-01941-2 – ident: 2492_CR2 doi: 10.1109/CVPR.2017.243 – volume: 24 start-page: 1379 issue: 5 year: 2019 ident: 2492_CR43 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2019.2942429 – volume: 38 start-page: 1 year: 2021 ident: 2492_CR21 publication-title: Vis. Comput. – ident: 2492_CR10 – ident: 2492_CR35 – ident: 2492_CR12 – ident: 2492_CR33 – ident: 2492_CR8 – volume: 113 year: 2019 ident: 2492_CR19 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.103423 – ident: 2492_CR15 – volume: 39 start-page: 3429 issue: 11 year: 2020 ident: 2492_CR42 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2995518 – ident: 2492_CR38 – volume: 48 start-page: 310 issue: 3 year: 2021 ident: 2492_CR41 publication-title: J. Dermatol. doi: 10.1111/1346-8138.15683 – volume: 54 start-page: 10 year: 2019 ident: 2492_CR17 publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.02.010 – ident: 2492_CR27 doi: 10.1109/JBHI.2021.3062002 – volume: 14 start-page: 877 year: 2021 ident: 2492_CR31 publication-title: J. Multidiscip. Healthc. doi: 10.2147/JMDH.S306284 |
SSID | ssj0017749 |
Score | 2.5586584 |
Snippet | Skin disease cases are rising in prevalence, and the diagnosis of skin diseases is always a challenging task in the clinic. Utilizing deep learning to diagnose... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2781 |
SubjectTerms | Artificial Intelligence Classification Coders Computer Graphics Computer Science Datasets Deep learning Design Diagnosis Experiments Image Processing and Computer Vision Labels Machine learning Medical diagnosis Medical imaging Medical research Metadata Neural networks Original Original Article Skin diseases |
Subtitle | A multimodal transformer to fuse images and metadata for skin disease classification |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB5RuLQHVKC0aQEZiRu1unnaOSFAIMQBIQQSt8jxQ121mwDJ_v_OeJ3Agso5k5fHnvnsmfkG4CDJ67hISs2tcpajxy-5ylXO00KT969tVvtsi6vi4i67vM_vw4FbF9IqB5voDbVpNZ2R_0rKWKK1xfuPHh45dY2i6GpoofEB1tAES9x8rZ2cXV3fjHEEBDceAMe4V6Kaz1A244vnPFsdp2x2T5vHs2XX9AZvvk2bfBU79S7p_DOsByzJjhfK34AV22zCpxcMg1twe8x8yuCsNSjZDyjVPrG-ZW7eWTadoUXpmGoMm9leUcYoQxHW_Zk2LIRvmCaMTUlFXo9f4O787Pb0godGClxnIuu5dYWhAldZOOFUYYigx-UmVkKnUjlc5EKYtJTWpUKqibZyUstE1CKzBiGGSrdhtWkb-w1YTZWriUPNx_hsVKvS9US6UuU2FdYUEcTDGFY6sIxTs4u_1ciP7Me9wnGv_LhXWQSH4z0PC46Nd6V3BtVUYb111fPsiGB_vIwrhcIfqrHtHGUK3Ouh-83jCL4uNDm-jlAXgk0RgVjS8ShALNzLV5rpb8_GXaLRRBAdwc9hNjx_1v__4vv7f_EDPlJf-0Ve8A6s9k9zu4vop6_3whT_B55eAfg priority: 102 providerName: ProQuest |
Title | A multimodal transformer to fuse images and metadata for skin disease classification |
URI | https://link.springer.com/article/10.1007/s00371-022-02492-4 https://www.ncbi.nlm.nih.gov/pubmed/35540957 https://www.proquest.com/docview/2918036638 https://www.proquest.com/docview/2662542951 https://pubmed.ncbi.nlm.nih.gov/PMC9070977 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0BvcCBpWxhqYzEDSw1q51jQV0EUoUQleAUOYktKmiKSPr_jN0kUApInHrIOGnyPJ5nzcwzwLnjx3bghAmVQkmKET-kwhc-dYNER_9YerGpthgGg5F38-g_lk1heVXtXqUkzUpdN7sZdTmqq8-NzB31VqHh6707zuKR06lzB0hoDOm1cX-k-zzLVpmf77EYjpY45nKp5Ld8qQlDvW3YLPkj6cwB34EVmTVhqzqbgZSu2oSNL0KDu_DQIaZycDJNcXBRkVUcUEyJmuWSjCe4sOREZCmZyELowlGCJiR_GWekzOKQRFNtXVtk4NyDUa_7cD2g5XkKNPGYV1CpglT3ufJAMSWCVOv0KD-1BUtcLhT6OmOpG3KpXMZFO5G8HXOHxcyTKTIN4e7DWjbN5CGQWDewOgongI33RnRFEre5CoUvXSbTwAK7-qxRUoqN6zMvXqNaJtlAESEUkYEi8iy4qMe8zaU2_rQ-qdCKSrfLIye0OYZknGQWnNWX0WF0FkRkcjpDmwC3fBiFfduCgzm49eM0-ULOySxgC7DXBlqMe_FKNn42otwhrp3IpS24rCbI59_6_S2O_md-DOv6uPt5ufAJrBXvM3mKpKiIW7DKe_0WNDr9p9su_l51h3f3LeMZH6idB8M |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEG8CBYwEJ7C6edo5IFQBy5aWnrZSb8HxQ6zoJqXJCvGn-I3MOI-yVPTWcyZOMh7PfM7MfAZ4GaVlmEW55lY5yzHi51ylKuVxpin6lzYpfbXFYTY7Sj4fp8cb8HvohaGyysEnekdtak3_yHeiPJTobfH-d6c_OJ0aRdnV4QiNziz27a-fuGVr3u59wPl9FUXTj_P3M96fKsB1IpKWW5cZ6vaUmRNOZYbYalxqQiV0LJVDixfCxLm0LhZSTbSVk1JGohSJNRhvVYzjXoPrSRzntKLk9NOYtUAo5eF2iDsz6jDtm3R8q57nxuNUO-9J-niyHggvoNuLRZr_ZGp9AJzehls9cmW7nandgQ1b3YWtv_gM78F8l_kCxWVtULIdMLE9Y23N3KqxbLFE_9UwVRm2tK2i-lSGIqz5vqhYnyximhA9lTB5q7kPR1ei4AewWdWVfQSspD7ZyKGdhTg2GpHS5US6XKU2FtZkAYSDDgvdc5rT0RonxcjG7PVeoN4Lr_ciCeD1eM9px-hxqfT2MDVFv7qb4twWA3gxXsZ1SckWVdl6hTIZ7iwx2KdhAA-7mRwfRxgPoa0IQKzN8ShAnN_rV6rFN8_9naOLRsgewJvBGs5f6_9f8fjyr3gON2bzLwfFwd7h_hO4GSGO6yqSt2GzPVvZp4i72vKZN3YGX696df0B0Cw9ig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BkRAcWMoWViNxA4tmdXKsgKosqji0ErfIiW1RQVNE0_9n7Cy0bBLnjJ3leTwvmplngDPHT-zAiVIquZIUI35Euc996gapjv6J9BJTbdELugPv7sl_muniN9XuVUqy6GnQKk1Zfvkm1GXd-GaU5qiuRDeSd9RbhCXcjm29rgdOu84jILkxBNjGfyXd81m2zfw8x3xo-sY3v5dNfsmdmpDU2YC1kkuSdgH-JizIrAnr1TkNpHTbJqzOiA5uQb9NTBXhaCxwcF4RVxyQj4maTiQZjnCTmRCeCTKSOddFpARNyORlmJEyo0NSTbt1nZGBdhsGnZv-VZeWZyvQ1GNeTqUKhO55DQPFFA-E1uxRvrA5S92QK_R7xoQbhVK5LOStVIatJHRYwjwpkHVwdwca2TiTe0AS3czqKFwMNs6NSPM0aYUq4r50mRSBBXb1WeO0FB7X51-8xrVksoEiRihiA0XsWXBej3krZDf-tD6s0IpLF5zETmSHGJ5xwVlwWl9G59EZEZ7J8RRtAvz9w4js2xbsFuDWt9NEDPkns4DNwV4baGHu-SvZ8NkIdEe4jyKvtuCiWiCfj_X7W-z_z_wElh-vO_HDbe_-AFYc5F5FFfEhNPL3qTxCrpQnx8YdPgB8jgre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multimodal+transformer+to+fuse+images+and+metadata+for+skin+disease+classification&rft.jtitle=The+Visual+computer&rft.au=Cai%2C+Gan&rft.au=Zhu%2C+Yu&rft.au=Wu%2C+Yue&rft.au=Jiang%2C+Xiaoben&rft.date=2023-07-01&rft.issn=0178-2789&rft.spage=1&rft_id=info:doi/10.1007%2Fs00371-022-02492-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2789&client=summon |