Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease

Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound a...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 139; no. 1; pp. 161 - 173
Main Authors Zhang, Jiaxiang, Rittman, Timothy, Nombela, Cristina, Fois, Alessandro, Coyle-Gilchrist, Ian, Barker, Roger A., Hughes, Laura E., Rowe, James B.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2016
Subjects
Online AccessGet full text
ISSN0006-8950
1460-2156
1460-2156
DOI10.1093/brain/awv331

Cover

Abstract Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.
AbstractList Both progressive supranuclear palsy and Parkinson’s disease cause impulsivity and impair executive function. Using a saccadic Go/No-Go paradigm and hierarchical Bayesian models, Zhang et al. show differential decision-making deficits in the two disorders, and that model parameters are better than common behavioural measures for single-patient classification of the diseases. Both progressive supranuclear palsy and Parkinson’s disease cause impulsivity and impair executive function. Using a saccadic Go/No-Go paradigm and hierarchical Bayesian models, Zhang et al. show differential decision-making deficits in the two disorders, and that model parameters are better than common behavioural measures for single-patient classification of the diseases. Progressive supranuclear palsy and Parkinson’s disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson’s syndrome), 24 patients with clinically diagnosed Parkinson’s disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift–diffusion model to individual participants’ single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson’s patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants’ poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.
Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.
Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.
Author Nombela, Cristina
Rittman, Timothy
Barker, Roger A.
Fois, Alessandro
Zhang, Jiaxiang
Rowe, James B.
Coyle-Gilchrist, Ian
Hughes, Laura E.
AuthorAffiliation 1 1 School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
3 3 Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2QQ, UK
2 2 Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, UK
4 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK
AuthorAffiliation_xml – name: 4 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK
– name: 1 1 School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
– name: 3 3 Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2QQ, UK
– name: 2 2 Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, UK
Author_xml – sequence: 1
  givenname: Jiaxiang
  surname: Zhang
  fullname: Zhang, Jiaxiang
– sequence: 2
  givenname: Timothy
  surname: Rittman
  fullname: Rittman, Timothy
– sequence: 3
  givenname: Cristina
  surname: Nombela
  fullname: Nombela, Cristina
– sequence: 4
  givenname: Alessandro
  surname: Fois
  fullname: Fois, Alessandro
– sequence: 5
  givenname: Ian
  surname: Coyle-Gilchrist
  fullname: Coyle-Gilchrist, Ian
– sequence: 6
  givenname: Roger A.
  surname: Barker
  fullname: Barker, Roger A.
– sequence: 7
  givenname: Laura E.
  surname: Hughes
  fullname: Hughes, Laura E.
– sequence: 8
  givenname: James B.
  surname: Rowe
  fullname: Rowe, James B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26582559$$D View this record in MEDLINE/PubMed
BookMark eNptkstu1DAUhi1URKeFHWuUJQtCfYtjb5BQSwGpEixgbZ04Jx1Dxg52MlV3vAav1yfB02kRRaxs6Xzn_8_tiByEGJCQ54y-ZtSIky6BDydwtRWCPSIrJhWtOWvUAVlRSlWtTUMPyVHO3yhlUnD1hBxy1WjeNGZF0pkfBkwY5qpH57OPoXwG7_ycK7-ZwKcqYZ5iyFj5sPadn3eMD9WU4mUJZb_FKi9TgrC4ESFVE4z5uoLQV58hffchx3Dz81euep8RMj4lj4dC4LO795h8PX_35fRDffHp_cfTtxe1k62caxxERw2HpjUc-x6QMmgM0xo1dYqikuCc64xr0AjsWy2EHAboFBdYBLg4JrDXzVc4LZ2dkt9AurYRvJ1immG0pfxSsFvbcbEZbaFG72DXYLYKeSuE7i0ABysl7SxoRKsHKvte6gG5KR5v9h4ldYO9K3NMRfeB1YNI8Gt7GbdWGmmEYUXg5Z1Aij8WzLPd-OxwHCFgXLJlraK6VYKLgr742-uPyf0yC8D3gEsx54SDLVu87aZY-9EyancXY28vxu4vpiS9-ifpXve_-G_owcyx
CitedBy_id crossref_primary_10_1016_j_neuroimage_2016_06_038
crossref_primary_10_1093_braincomms_fcae065
crossref_primary_10_3389_fpsyt_2019_00029
crossref_primary_10_3758_s13428_018_1054_3
crossref_primary_10_1016_j_neubiorev_2018_04_011
crossref_primary_10_1016_j_neuropsychologia_2019_02_003
crossref_primary_10_3389_fnhum_2022_951313
crossref_primary_10_1016_j_cortex_2020_08_001
crossref_primary_10_1111_cogs_70041
crossref_primary_10_1007_s42113_020_00096_6
crossref_primary_10_1093_brain_awaa010
crossref_primary_10_1038_s42003_024_06416_x
crossref_primary_10_3389_fpsyg_2022_1039172
crossref_primary_10_1523_JNEUROSCI_1103_20_2020
crossref_primary_10_14802_jmd_17067
crossref_primary_10_1038_srep40606
crossref_primary_10_1038_s41598_023_35758_5
crossref_primary_10_1093_brain_awx101
crossref_primary_10_1017_S0033291722001003
crossref_primary_10_1093_braincomms_fcaa199
crossref_primary_10_1093_braincomms_fcab089
crossref_primary_10_1016_j_neuroimage_2023_120098
crossref_primary_10_1212_WNL_0000000000005175
crossref_primary_10_1038_s42003_024_06210_9
crossref_primary_10_1523_JNEUROSCI_0289_22_2023
crossref_primary_10_1007_s11571_020_09661_y
crossref_primary_10_1155_2019_5480913
crossref_primary_10_2217_nmt_2016_0027
crossref_primary_10_1002_wcs_1460
crossref_primary_10_1186_s13023_019_1218_y
crossref_primary_10_1523_JNEUROSCI_0182_21_2021
crossref_primary_10_1016_j_cobeha_2017_12_015
crossref_primary_10_1002_mdc3_13339
crossref_primary_10_1016_j_bpsc_2017_04_007
crossref_primary_10_1007_s12144_025_07371_4
crossref_primary_10_1093_cercor_bhab393
crossref_primary_10_1016_j_cortex_2023_04_016
crossref_primary_10_3758_s13428_019_01269_3
crossref_primary_10_3389_fneur_2021_694872
crossref_primary_10_1080_20445911_2024_2384666
crossref_primary_10_1016_j_concog_2024_103786
crossref_primary_10_1038_s41598_020_60405_8
crossref_primary_10_1371_journal_pone_0207698
crossref_primary_10_1080_07317115_2019_1694115
crossref_primary_10_1016_j_cortex_2020_12_019
crossref_primary_10_1016_j_neuroimage_2021_118468
crossref_primary_10_1038_s41514_024_00171_3
crossref_primary_10_1093_brain_awy176
crossref_primary_10_1093_brain_awaa305
crossref_primary_10_1093_schbul_sbw168
crossref_primary_10_1177_17470218241283630
crossref_primary_10_1093_brain_awx327
crossref_primary_10_1093_braincomms_fcae297
crossref_primary_10_1097_WCO_0000000000000514
Cites_doi 10.1007/s002210000457
10.1152/jn.2001.85.6.2545
10.1002/mds.22836
10.1007/s00221-006-0412-z
10.1002/mds.20115
10.1371/journal.pone.0076467
10.1097/00005072-199601000-00010
10.1152/physrev.2000.80.3.953
10.1093/brain/awu058
10.1016/S0022-510X(03)00014-5
10.1136/jnnp.51.6.745
10.1038/nature05289
10.1046/j.1460-9568.2000.00298.x
10.1152/jn.2001.86.4.1916
10.1136/jnnp.2007.122028
10.1007/s00221-002-1122-9
10.1037/0096-3445.136.3.389
10.1093/brain/awh035
10.1371/journal.pone.0085747
10.1152/jn.00854.2001
10.1016/j.neuropsychologia.2007.02.024
10.1212/WNL.44.11.2015
10.1371/journal.pone.0074486
10.1016/S0079-6123(08)62678-3
10.1016/j.visres.2013.02.007
10.1016/j.neuropsychologia.2005.11.015
10.1212/WNL.0b013e3181d31e0b
10.1001/archneurol.2010.65
10.1136/jnnp.2003.016469
10.1093/brain/aws128
10.1002/mds.25872
10.1523/JNEUROSCI.6135-10.2011
10.1017/CBO9780511662973
10.1093/brain/112.2.471
10.1093/brain/awm032
10.1523/JNEUROSCI.2837-07.2007
10.1201/9781482296426
10.1080/09541440802205067
10.1037/a0021765
10.3389/fninf.2013.00014
10.1214/088342304000000116
10.1146/annurev.neuro.24.1.981
10.1176/appi.neuropsych.13.1.42
10.1126/science.1146157
10.1212/WNL.47.1.1
9463418
10.1162/jocn.2006.18.4.626
10.3200/JMBR.36.3.245-252
10.1016/j.neuron.2011.01.020
10.1162/neco.2008.12-06-420
10.1016/j.bandc.2004.09.016
10.1093/brain/awu032
10.1136/jnnp.50.7.853
10.1152/jn.01049.2002
10.1016/j.neubiorev.2008.08.014
10.1136/jnnp.2003.027367
10.1016/j.nbd.2011.01.032
10.1037/0033-295X.111.1.159
10.1523/JNEUROSCI.2600-10.2011
10.1016/j.neuroimage.2010.02.045
10.1126/science.1233912
10.1002/mds.22902
10.1002/mds.23453
10.1111/1467-9868.00353
10.1152/jn.00276.2015
10.1016/S0197-4580(02)00065-9
10.1016/S0028-3932(01)00045-8
10.1016/j.neuroimage.2012.06.058
10.1016/0272-7358(88)90050-5
10.1016/j.biopsych.2014.01.024
10.1016/S0149-7634(98)00014-1
10.1002/ana.410350408
10.1136/jnnp.54.7.599
10.1038/5739
10.3758/BF03193779
10.1523/JNEUROSCI.4156-11.2012
10.1007/s00221-011-2736-6
10.3389/fnins.2014.00069
10.1038/nn.2925
10.1016/j.neuropsychologia.2004.06.026
10.1037/0033-295X.111.2.333
10.1002/mds.21933
10.1146/annurev-clinpsy-032813-153705
10.1136/jnnp.2010.226340.49
10.1007/s00415-011-6338-9
10.1212/WNL.0000000000000066
10.1037/0096-1523.16.1.164
10.1016/j.neuropsychologia.2009.06.018
10.3389/fnsys.2013.00118
10.1023/A:1017550507839
9463444
10.1007/s002210050934
10.1016/j.neuroimage.2012.06.012
10.1016/S1353-8020(02)00094-9
10.1201/9780429258480
ContentType Journal Article
Copyright The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. 2015
Copyright_xml – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
– notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. 2015
CorporateAuthor Strategiska forskningsområden (SFO)
Strategic research areas (SRA)
MultiPark: Multidisciplinary research focused on Parkinson's disease
Profile areas and other strong research environments
Lunds universitet
Lund University
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Strategiska forskningsområden (SFO)
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Profile areas and other strong research environments
– name: Strategic research areas (SRA)
– name: MultiPark: Multidisciplinary research focused on Parkinson's disease
– name: Lunds universitet
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTPV
AOWAS
D95
DOI 10.1093/brain/awv331
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 173
ExternalDocumentID oai_portal_research_lu_se_publications_6e27338d_aa2a_440b_a8ee_8f04dd48fe29
PMC4949391
26582559
10_1093_brain_awv331
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G1100464
– fundername: Wellcome Trust
  grantid: 103838
– fundername: Wellcome Trust
  grantid: 093875
– fundername: Medical Research Council
  grantid: MC-A060-5PQ30
– fundername: Medical Research Council
  grantid: MC_U105597119
– fundername: Medical Research Council
  grantid: G0001354
– fundername: ; ; ;
GroupedDBID ---
-E4
-~X
.2P
.55
.GJ
.I3
.XZ
.ZR
0R~
1CY
1TH
23N
2WC
354
3O-
4.4
41~
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAGKA
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPGJ
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAWTL
AAYJJ
AAYXX
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIME
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ABZEO
ACBNA
ACFRR
ACGFS
ACIWK
ACPQN
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ACVCV
ACYHN
ACZBC
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADMTO
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFQV
AFFZL
AFGWE
AFIYH
AFOFC
AFSHK
AFXAL
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AI.
AIJHB
AJBYB
AJDVS
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQKUS
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVNTJ
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
BZKNY
C1A
C45
CAG
CDBKE
CITATION
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EIHJH
EJD
ELUNK
EMOBN
ENERS
F5P
F9B
FECEO
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MBLQV
MBTAY
MHKGH
ML0
MVM
N4W
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OBFPC
OBOKY
OCZFY
ODMLO
OHH
OHT
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
TCN
TCURE
TEORI
TJX
TLC
TMA
TR2
VH1
VVN
W8F
WH7
WOQ
X7H
X7M
XJT
XOL
YAYTL
YKOAZ
YQJ
YSK
YXANX
ZCG
ZGI
ZKB
ZKX
ZXP
~91
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c474t-ef3b092a5792eddae01a59188e80c60e64acccb9c5e93ed78334ffab623e47423
ISSN 0006-8950
1460-2156
IngestDate Tue Sep 09 23:14:24 EDT 2025
Thu Aug 21 14:28:19 EDT 2025
Fri Jul 11 04:35:45 EDT 2025
Sat May 31 02:06:17 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
Tue Jul 01 00:46:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bayesian hierarchical model
saccadic inhibition
Parkinson’s disease
drift-diffusion model
progressive supranuclear palsy
Language English
License The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-ef3b092a5792eddae01a59188e80c60e64acccb9c5e93ed78334ffab623e47423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4949391
PMID 26582559
PQID 1760876323
PQPubID 23479
PageCount 13
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_6e27338d_aa2a_440b_a8ee_8f04dd48fe29
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4949391
proquest_miscellaneous_1760876323
pubmed_primary_26582559
crossref_citationtrail_10_1093_brain_awv331
crossref_primary_10_1093_brain_awv331
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References 2016021102572086000_139.1.161.45
2016021102572086000_139.1.161.44
2016021102572086000_139.1.161.47
2016021102572086000_139.1.161.46
2016021102572086000_139.1.161.49
2016021102572086000_139.1.161.48
Brenneis (2016021102572086000_139.1.161.11) 2004; 75
2016021102572086000_139.1.161.40
2016021102572086000_139.1.161.39
2016021102572086000_139.1.161.32
2016021102572086000_139.1.161.31
2016021102572086000_139.1.161.34
2016021102572086000_139.1.161.33
2016021102572086000_139.1.161.36
2016021102572086000_139.1.161.35
2016021102572086000_139.1.161.38
2016021102572086000_139.1.161.37
2016021102572086000_139.1.161.30
2016021102572086000_139.1.161.1
2016021102572086000_139.1.161.3
2016021102572086000_139.1.161.5
Ye (2016021102572086000_139.1.161.97) 2014; 77
2016021102572086000_139.1.161.4
2016021102572086000_139.1.161.7
2016021102572086000_139.1.161.6
2016021102572086000_139.1.161.9
2016021102572086000_139.1.161.8
2016021102572086000_139.1.161.65
2016021102572086000_139.1.161.64
2016021102572086000_139.1.161.66
2016021102572086000_139.1.161.69
2016021102572086000_139.1.161.68
2016021102572086000_139.1.161.61
2016021102572086000_139.1.161.60
2016021102572086000_139.1.161.63
2016021102572086000_139.1.161.62
Jahanshahi (2016021102572086000_139.1.161.42) 2014; 00
2016021102572086000_139.1.161.54
2016021102572086000_139.1.161.53
2016021102572086000_139.1.161.56
2016021102572086000_139.1.161.55
2016021102572086000_139.1.161.58
2016021102572086000_139.1.161.57
2016021102572086000_139.1.161.59
2016021102572086000_139.1.161.50
2016021102572086000_139.1.161.52
2016021102572086000_139.1.161.51
Snyder (2016021102572086000_139.1.161.82) 2002; 87
Zhang (2016021102572086000_139.1.161.100) 2014; 8
2016021102572086000_139.1.161.87
Alexander (2016021102572086000_139.1.161.2) 1990; 85
2016021102572086000_139.1.161.86
2016021102572086000_139.1.161.89
2016021102572086000_139.1.161.88
2016021102572086000_139.1.161.80
2016021102572086000_139.1.161.83
2016021102572086000_139.1.161.85
2016021102572086000_139.1.161.84
2016021102572086000_139.1.161.76
2016021102572086000_139.1.161.75
2016021102572086000_139.1.161.78
2016021102572086000_139.1.161.77
2016021102572086000_139.1.161.79
Hikosaka (2016021102572086000_139.1.161.41) 2000; 80
2016021102572086000_139.1.161.70
2016021102572086000_139.1.161.72
2016021102572086000_139.1.161.71
2016021102572086000_139.1.161.74
2016021102572086000_139.1.161.73
Shadlen (2016021102572086000_139.1.161.81) 2001; 86
2016021102572086000_139.1.161.29
2016021102572086000_139.1.161.28
2016021102572086000_139.1.161.21
2016021102572086000_139.1.161.20
2016021102572086000_139.1.161.23
2016021102572086000_139.1.161.22
Jahanshahi (2016021102572086000_139.1.161.43) 2013; 7
2016021102572086000_139.1.161.25
2016021102572086000_139.1.161.24
2016021102572086000_139.1.161.27
2016021102572086000_139.1.161.26
Paré (2016021102572086000_139.1.161.67) 2001; 85
2016021102572086000_139.1.161.18
2016021102572086000_139.1.161.17
2016021102572086000_139.1.161.19
2016021102572086000_139.1.161.10
2016021102572086000_139.1.161.98
2016021102572086000_139.1.161.12
2016021102572086000_139.1.161.99
2016021102572086000_139.1.161.14
2016021102572086000_139.1.161.13
2016021102572086000_139.1.161.16
2016021102572086000_139.1.161.15
2016021102572086000_139.1.161.90
2016021102572086000_139.1.161.92
2016021102572086000_139.1.161.91
2016021102572086000_139.1.161.94
2016021102572086000_139.1.161.93
2016021102572086000_139.1.161.96
2016021102572086000_139.1.161.95
References_xml – ident: 2016021102572086000_139.1.161.80
  doi: 10.1007/s002210000457
– volume: 85
  start-page: 2545
  year: 2001
  ident: 2016021102572086000_139.1.161.67
  article-title: Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.85.6.2545
– ident: 2016021102572086000_139.1.161.77
  doi: 10.1002/mds.22836
– ident: 2016021102572086000_139.1.161.58
  doi: 10.1007/s00221-006-0412-z
– ident: 2016021102572086000_139.1.161.8
  doi: 10.1002/mds.20115
– ident: 2016021102572086000_139.1.161.44
  doi: 10.1371/journal.pone.0076467
– ident: 2016021102572086000_139.1.161.56
  doi: 10.1097/00005072-199601000-00010
– volume: 80
  start-page: 953
  year: 2000
  ident: 2016021102572086000_139.1.161.41
  article-title: Role of the basal ganglia in the control of purposive saccadic eye movements
  publication-title: Physiol Rev
  doi: 10.1152/physrev.2000.80.3.953
– ident: 2016021102572086000_139.1.161.64
  doi: 10.1093/brain/awu058
– ident: 2016021102572086000_139.1.161.46
  doi: 10.1016/S0022-510X(03)00014-5
– ident: 2016021102572086000_139.1.161.32
  doi: 10.1136/jnnp.51.6.745
– ident: 2016021102572086000_139.1.161.66
  doi: 10.1038/nature05289
– ident: 2016021102572086000_139.1.161.57
  doi: 10.1046/j.1460-9568.2000.00298.x
– volume: 86
  start-page: 1916
  year: 2001
  ident: 2016021102572086000_139.1.161.81
  article-title: Neural basis of a perceptual decision in the parietal cortex (Area LIP) of the rhesus monkey
  publication-title: J Neurophysiol
  doi: 10.1152/jn.2001.86.4.1916
– ident: 2016021102572086000_139.1.161.91
  doi: 10.1136/jnnp.2007.122028
– ident: 2016021102572086000_139.1.161.37
  doi: 10.1007/s00221-002-1122-9
– ident: 2016021102572086000_139.1.161.35
  doi: 10.1037/0096-3445.136.3.389
– ident: 2016021102572086000_139.1.161.50
  doi: 10.1093/brain/awh035
– ident: 2016021102572086000_139.1.161.60
  doi: 10.1371/journal.pone.0085747
– volume: 87
  start-page: 2279
  year: 2002
  ident: 2016021102572086000_139.1.161.82
  article-title: Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00854.2001
– ident: 2016021102572086000_139.1.161.40
  doi: 10.1016/j.neuropsychologia.2007.02.024
– ident: 2016021102572086000_139.1.161.39
  doi: 10.1212/WNL.44.11.2015
– ident: 2016021102572086000_139.1.161.31
  doi: 10.1371/journal.pone.0074486
– volume: 85
  start-page: 119
  year: 1990
  ident: 2016021102572086000_139.1.161.2
  article-title: Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions
  publication-title: Prog Brain Res
  doi: 10.1016/S0079-6123(08)62678-3
– ident: 2016021102572086000_139.1.161.4
  doi: 10.1016/j.visres.2013.02.007
– ident: 2016021102572086000_139.1.161.3
  doi: 10.1016/j.neuropsychologia.2005.11.015
– ident: 2016021102572086000_139.1.161.98
  doi: 10.1212/WNL.0b013e3181d31e0b
– ident: 2016021102572086000_139.1.161.92
  doi: 10.1001/archneurol.2010.65
– ident: 2016021102572086000_139.1.161.22
– ident: 2016021102572086000_139.1.161.26
  doi: 10.1136/jnnp.2003.016469
– ident: 2016021102572086000_139.1.161.30
  doi: 10.1093/brain/aws128
– ident: 2016021102572086000_139.1.161.15
  doi: 10.1002/mds.25872
– ident: 2016021102572086000_139.1.161.84
  doi: 10.1523/JNEUROSCI.6135-10.2011
– ident: 2016021102572086000_139.1.161.54
  doi: 10.1017/CBO9780511662973
– ident: 2016021102572086000_139.1.161.69
  doi: 10.1093/brain/112.2.471
– ident: 2016021102572086000_139.1.161.34
  doi: 10.1093/brain/awm032
– ident: 2016021102572086000_139.1.161.51
  doi: 10.1523/JNEUROSCI.2837-07.2007
– ident: 2016021102572086000_139.1.161.24
  doi: 10.1201/9781482296426
– ident: 2016021102572086000_139.1.161.89
  doi: 10.1080/09541440802205067
– ident: 2016021102572086000_139.1.161.86
  doi: 10.1037/a0021765
– ident: 2016021102572086000_139.1.161.93
  doi: 10.3389/fninf.2013.00014
– ident: 2016021102572086000_139.1.161.7
  doi: 10.1214/088342304000000116
– ident: 2016021102572086000_139.1.161.78
  doi: 10.1146/annurev.neuro.24.1.981
– ident: 2016021102572086000_139.1.161.1
  doi: 10.1176/appi.neuropsych.13.1.42
– ident: 2016021102572086000_139.1.161.23
  doi: 10.1126/science.1146157
– ident: 2016021102572086000_139.1.161.55
  doi: 10.1212/WNL.47.1.1
– ident: 2016021102572086000_139.1.161.21
  doi: 9463418
– ident: 2016021102572086000_139.1.161.94
  doi: 10.1162/jocn.2006.18.4.626
– ident: 2016021102572086000_139.1.161.19
  doi: 10.3200/JMBR.36.3.245-252
– ident: 2016021102572086000_139.1.161.18
  doi: 10.1016/j.neuron.2011.01.020
– ident: 2016021102572086000_139.1.161.74
  doi: 10.1162/neco.2008.12-06-420
– ident: 2016021102572086000_139.1.161.62
– ident: 2016021102572086000_139.1.161.76
  doi: 10.1016/j.bandc.2004.09.016
– ident: 2016021102572086000_139.1.161.96
  doi: 10.1093/brain/awu032
– ident: 2016021102572086000_139.1.161.33
  doi: 10.1136/jnnp.50.7.853
– ident: 2016021102572086000_139.1.161.72
  doi: 10.1152/jn.01049.2002
– ident: 2016021102572086000_139.1.161.87
  doi: 10.1016/j.neubiorev.2008.08.014
– ident: 2016021102572086000_139.1.161.25
  doi: 10.1136/jnnp.2003.027367
– ident: 2016021102572086000_139.1.161.68
  doi: 10.1016/j.nbd.2011.01.032
– ident: 2016021102572086000_139.1.161.73
  doi: 10.1037/0033-295X.111.1.159
– ident: 2016021102572086000_139.1.161.65
  doi: 10.1523/JNEUROSCI.2600-10.2011
– ident: 2016021102572086000_139.1.161.79
  doi: 10.1016/j.neuroimage.2010.02.045
– ident: 2016021102572086000_139.1.161.14
  doi: 10.1126/science.1233912
– ident: 2016021102572086000_139.1.161.61
  doi: 10.1002/mds.22902
– ident: 2016021102572086000_139.1.161.85
  doi: 10.1002/mds.23453
– ident: 2016021102572086000_139.1.161.83
  doi: 10.1111/1467-9868.00353
– ident: 2016021102572086000_139.1.161.36
  doi: 10.1152/jn.00276.2015
– ident: 2016021102572086000_139.1.161.10
  doi: 10.1016/S0197-4580(02)00065-9
– ident: 2016021102572086000_139.1.161.12
  doi: 10.1016/S0028-3932(01)00045-8
– ident: 2016021102572086000_139.1.161.99
  doi: 10.1016/j.neuroimage.2012.06.058
– ident: 2016021102572086000_139.1.161.6
  doi: 10.1016/0272-7358(88)90050-5
– volume: 77
  start-page: 740
  year: 2014
  ident: 2016021102572086000_139.1.161.97
  article-title: Improving response inhibition in parkinson’s disease with atomoxetine
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2014.01.024
– ident: 2016021102572086000_139.1.161.27
  doi: 10.1016/S0149-7634(98)00014-1
– ident: 2016021102572086000_139.1.161.88
  doi: 10.1002/ana.410350408
– ident: 2016021102572086000_139.1.161.71
  doi: 10.1136/jnnp.54.7.599
– ident: 2016021102572086000_139.1.161.47
  doi: 10.1038/5739
– ident: 2016021102572086000_139.1.161.9
  doi: 10.3758/BF03193779
– ident: 2016021102572086000_139.1.161.59
  doi: 10.1523/JNEUROSCI.4156-11.2012
– ident: 2016021102572086000_139.1.161.63
  doi: 10.1007/s00221-011-2736-6
– volume: 8
  start-page: 1
  year: 2014
  ident: 2016021102572086000_139.1.161.100
  article-title: Dissociable mechanisms of speed-accuracy tradeoff during visual perceptual learning are revealed by a hierarchical drift-diffusion model
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2014.00069
– ident: 2016021102572086000_139.1.161.16
  doi: 10.1038/nn.2925
– volume: 00
  start-page: 1
  year: 2014
  ident: 2016021102572086000_139.1.161.42
  article-title: Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity
  publication-title: Mov Disord
– ident: 2016021102572086000_139.1.161.17
  doi: 10.1016/j.neuropsychologia.2004.06.026
– ident: 2016021102572086000_139.1.161.75
  doi: 10.1037/0033-295X.111.2.333
– ident: 2016021102572086000_139.1.161.20
  doi: 10.1002/mds.21933
– ident: 2016021102572086000_139.1.161.5
  doi: 10.1146/annurev-clinpsy-032813-153705
– ident: 2016021102572086000_139.1.161.29
  doi: 10.1136/jnnp.2010.226340.49
– ident: 2016021102572086000_139.1.161.53
  doi: 10.1007/s00415-011-6338-9
– ident: 2016021102572086000_139.1.161.95
  doi: 10.1212/WNL.0000000000000066
– ident: 2016021102572086000_139.1.161.45
  doi: 10.1037/0096-1523.16.1.164
– ident: 2016021102572086000_139.1.161.48
  doi: 10.1016/j.neuropsychologia.2009.06.018
– volume: 7
  start-page: 118
  year: 2013
  ident: 2016021102572086000_139.1.161.43
  article-title: Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson’s disease
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2013.00118
– ident: 2016021102572086000_139.1.161.90
  doi: 10.1023/A:1017550507839
– ident: 2016021102572086000_139.1.161.38
  doi: 9463444
– ident: 2016021102572086000_139.1.161.49
– ident: 2016021102572086000_139.1.161.13
  doi: 10.1007/s002210050934
– ident: 2016021102572086000_139.1.161.70
  doi: 10.1016/j.neuroimage.2012.06.012
– ident: 2016021102572086000_139.1.161.52
  doi: 10.1016/S1353-8020(02)00094-9
– ident: 2016021102572086000_139.1.161.28
  doi: 10.1201/9780429258480
– volume: 75
  start-page: 246
  year: 2004
  ident: 2016021102572086000_139.1.161.11
  article-title: Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy
  publication-title: J Neurol Neurosurg Psychiatry
SSID ssj0014326
Score 2.4459171
Snippet Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to...
Both progressive supranuclear palsy and Parkinson’s disease cause impulsivity and impair executive function. Using a saccadic Go/No-Go paradigm and...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 161
SubjectTerms Aged
Bayes Theorem
Case-Control Studies
Decision Making
Female
Humans
Male
Models, Neurological
Neural Inhibition
Original
Parkinson Disease - physiopathology
Parkinson Disease - psychology
Saccades
Supranuclear Palsy, Progressive - physiopathology
Supranuclear Palsy, Progressive - psychology
Title Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease
URI https://www.ncbi.nlm.nih.gov/pubmed/26582559
https://www.proquest.com/docview/1760876323
https://pubmed.ncbi.nlm.nih.gov/PMC4949391
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRUJcEG9SHlokOEVuHXtt7x5RoVSViji0UsVltbbH1FLqRIlTECf-Br-MO7-E2Yc3Nmkl6MVaOY7XyXzeeezMN4S85pFIAJIkiJICHZSoEkFeVlnAgGeo3rQTq3d0jz-mh6fs6Cw529r61ctaWrX5bvH9yrqSm0gVz6FcdZXsf0jW3xRP4Bjli0eUMB7_ScbvXHeTdly6Vjk40JQQ7dKUP9aL8cLmwGpqkPM6r7vURpOWpTNgL2G8XM1RYWleY017jQ9tKZl0PbQtDXP5EGI52M7xrEiqbq5sDGKjDTzjvWiDj08f1eobIvOL3_Cp29YFYx18fJh6dpHD1Ni4-2ZFarwmOZi5ZspT3chFUy_0gxiTv4MY1xRHDhbuNODCctTugl2rWRoGaLGkg8XcUiMNUGuX5oklfXdafmIbqGwoEEuulS9MWOZAfb10BWU9NM0vDJwitN20P7ZWpD698dPxvib9iTWrwq0oy0z-wIczn3uENqrpA-h_lavIwMn3zNR7dmLNVO1mGZpNG77QZkrvgPjWGEsn98hd5-XQtxay98kWNA_I7WOXx_GQLDxyaYdc2iGXWuTSDrl0jVwc0h5yaR-51CCXIgqoR-7vHz-X1GH2ETk9eH-yfxi47h9BwTLWBlDFeSgilWQigrJUEE5UIiacAw-LNISUqaIoclEkIGIoMx7HrKpUjvY8MJ1_8JhsN7MGnhLKRJkUikVMKMHKTHEBhUhxzEHFqqpGZNz9ubJw1Pi6Q8tU2hSNWBqpSCuVEXnjr55bSphrrnvVyUnimq034lQDs9VSTrLUMEFG8Yg8sXLzd-oEPiLZQKL-As0HP_ykqc8NL7zD3Ih8trIffsV489JRiJ3L6UouQc57ewMyBfRlYl5KpSIlGQtzqTiA5FXIypLxCiKxc-PHekburN_852S7XazgBRr0bf7SvBx_AG1ZBDE
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+decision+deficits+impair+response+inhibition+in+progressive+supranuclear+palsy+and+Parkinson%E2%80%99s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Zhang%2C+Jiaxiang&rft.au=Rittman%2C+Timothy&rft.au=Nombela%2C+Cristina&rft.au=Fois%2C+Alessandro&rft.date=2016-01-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=139&rft.issue=1&rft.spage=161&rft.epage=173&rft_id=info:doi/10.1093%2Fbrain%2Fawv331&rft_id=info%3Apmid%2F26582559&rft.externalDocID=PMC4949391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon