Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease
Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound a...
Saved in:
Published in | Brain (London, England : 1878) Vol. 139; no. 1; pp. 161 - 173 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awv331 |
Cover
Abstract | Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders. |
---|---|
AbstractList | Both progressive supranuclear palsy and Parkinson’s disease cause impulsivity and impair executive function. Using a saccadic Go/No-Go paradigm and hierarchical Bayesian models, Zhang
et al.
show differential decision-making deficits in the two disorders, and that model parameters are better than common behavioural measures for single-patient classification of the diseases.
Both progressive supranuclear palsy and Parkinson’s disease cause impulsivity and impair executive function. Using a saccadic Go/No-Go paradigm and hierarchical Bayesian models, Zhang
et al.
show differential decision-making deficits in the two disorders, and that model parameters are better than common behavioural measures for single-patient classification of the diseases.
Progressive supranuclear palsy and Parkinson’s disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson’s syndrome), 24 patients with clinically diagnosed Parkinson’s disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift–diffusion model to individual participants’ single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson’s patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants’ poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders. Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders. Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson's syndrome), 24 patients with clinically diagnosed Parkinson's disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift-diffusion model to individual participants' single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson's patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants' poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders. |
Author | Nombela, Cristina Rittman, Timothy Barker, Roger A. Fois, Alessandro Zhang, Jiaxiang Rowe, James B. Coyle-Gilchrist, Ian Hughes, Laura E. |
AuthorAffiliation | 1 1 School of Psychology, Cardiff University, Cardiff CF10 3AT, UK 3 3 Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2QQ, UK 2 2 Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, UK 4 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK |
AuthorAffiliation_xml | – name: 4 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK – name: 1 1 School of Psychology, Cardiff University, Cardiff CF10 3AT, UK – name: 3 3 Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2QQ, UK – name: 2 2 Cognition and Brain Sciences Unit, Medical Research Council, Cambridge CB2 7EF, UK |
Author_xml | – sequence: 1 givenname: Jiaxiang surname: Zhang fullname: Zhang, Jiaxiang – sequence: 2 givenname: Timothy surname: Rittman fullname: Rittman, Timothy – sequence: 3 givenname: Cristina surname: Nombela fullname: Nombela, Cristina – sequence: 4 givenname: Alessandro surname: Fois fullname: Fois, Alessandro – sequence: 5 givenname: Ian surname: Coyle-Gilchrist fullname: Coyle-Gilchrist, Ian – sequence: 6 givenname: Roger A. surname: Barker fullname: Barker, Roger A. – sequence: 7 givenname: Laura E. surname: Hughes fullname: Hughes, Laura E. – sequence: 8 givenname: James B. surname: Rowe fullname: Rowe, James B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26582559$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstu1DAUhi1URKeFHWuUJQtCfYtjb5BQSwGpEixgbZ04Jx1Dxg52MlV3vAav1yfB02kRRaxs6Xzn_8_tiByEGJCQ54y-ZtSIky6BDydwtRWCPSIrJhWtOWvUAVlRSlWtTUMPyVHO3yhlUnD1hBxy1WjeNGZF0pkfBkwY5qpH57OPoXwG7_ycK7-ZwKcqYZ5iyFj5sPadn3eMD9WU4mUJZb_FKi9TgrC4ESFVE4z5uoLQV58hffchx3Dz81euep8RMj4lj4dC4LO795h8PX_35fRDffHp_cfTtxe1k62caxxERw2HpjUc-x6QMmgM0xo1dYqikuCc64xr0AjsWy2EHAboFBdYBLg4JrDXzVc4LZ2dkt9AurYRvJ1immG0pfxSsFvbcbEZbaFG72DXYLYKeSuE7i0ABysl7SxoRKsHKvte6gG5KR5v9h4ldYO9K3NMRfeB1YNI8Gt7GbdWGmmEYUXg5Z1Aij8WzLPd-OxwHCFgXLJlraK6VYKLgr742-uPyf0yC8D3gEsx54SDLVu87aZY-9EyancXY28vxu4vpiS9-ifpXve_-G_owcyx |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2016_06_038 crossref_primary_10_1093_braincomms_fcae065 crossref_primary_10_3389_fpsyt_2019_00029 crossref_primary_10_3758_s13428_018_1054_3 crossref_primary_10_1016_j_neubiorev_2018_04_011 crossref_primary_10_1016_j_neuropsychologia_2019_02_003 crossref_primary_10_3389_fnhum_2022_951313 crossref_primary_10_1016_j_cortex_2020_08_001 crossref_primary_10_1111_cogs_70041 crossref_primary_10_1007_s42113_020_00096_6 crossref_primary_10_1093_brain_awaa010 crossref_primary_10_1038_s42003_024_06416_x crossref_primary_10_3389_fpsyg_2022_1039172 crossref_primary_10_1523_JNEUROSCI_1103_20_2020 crossref_primary_10_14802_jmd_17067 crossref_primary_10_1038_srep40606 crossref_primary_10_1038_s41598_023_35758_5 crossref_primary_10_1093_brain_awx101 crossref_primary_10_1017_S0033291722001003 crossref_primary_10_1093_braincomms_fcaa199 crossref_primary_10_1093_braincomms_fcab089 crossref_primary_10_1016_j_neuroimage_2023_120098 crossref_primary_10_1212_WNL_0000000000005175 crossref_primary_10_1038_s42003_024_06210_9 crossref_primary_10_1523_JNEUROSCI_0289_22_2023 crossref_primary_10_1007_s11571_020_09661_y crossref_primary_10_1155_2019_5480913 crossref_primary_10_2217_nmt_2016_0027 crossref_primary_10_1002_wcs_1460 crossref_primary_10_1186_s13023_019_1218_y crossref_primary_10_1523_JNEUROSCI_0182_21_2021 crossref_primary_10_1016_j_cobeha_2017_12_015 crossref_primary_10_1002_mdc3_13339 crossref_primary_10_1016_j_bpsc_2017_04_007 crossref_primary_10_1007_s12144_025_07371_4 crossref_primary_10_1093_cercor_bhab393 crossref_primary_10_1016_j_cortex_2023_04_016 crossref_primary_10_3758_s13428_019_01269_3 crossref_primary_10_3389_fneur_2021_694872 crossref_primary_10_1080_20445911_2024_2384666 crossref_primary_10_1016_j_concog_2024_103786 crossref_primary_10_1038_s41598_020_60405_8 crossref_primary_10_1371_journal_pone_0207698 crossref_primary_10_1080_07317115_2019_1694115 crossref_primary_10_1016_j_cortex_2020_12_019 crossref_primary_10_1016_j_neuroimage_2021_118468 crossref_primary_10_1038_s41514_024_00171_3 crossref_primary_10_1093_brain_awy176 crossref_primary_10_1093_brain_awaa305 crossref_primary_10_1093_schbul_sbw168 crossref_primary_10_1177_17470218241283630 crossref_primary_10_1093_brain_awx327 crossref_primary_10_1093_braincomms_fcae297 crossref_primary_10_1097_WCO_0000000000000514 |
Cites_doi | 10.1007/s002210000457 10.1152/jn.2001.85.6.2545 10.1002/mds.22836 10.1007/s00221-006-0412-z 10.1002/mds.20115 10.1371/journal.pone.0076467 10.1097/00005072-199601000-00010 10.1152/physrev.2000.80.3.953 10.1093/brain/awu058 10.1016/S0022-510X(03)00014-5 10.1136/jnnp.51.6.745 10.1038/nature05289 10.1046/j.1460-9568.2000.00298.x 10.1152/jn.2001.86.4.1916 10.1136/jnnp.2007.122028 10.1007/s00221-002-1122-9 10.1037/0096-3445.136.3.389 10.1093/brain/awh035 10.1371/journal.pone.0085747 10.1152/jn.00854.2001 10.1016/j.neuropsychologia.2007.02.024 10.1212/WNL.44.11.2015 10.1371/journal.pone.0074486 10.1016/S0079-6123(08)62678-3 10.1016/j.visres.2013.02.007 10.1016/j.neuropsychologia.2005.11.015 10.1212/WNL.0b013e3181d31e0b 10.1001/archneurol.2010.65 10.1136/jnnp.2003.016469 10.1093/brain/aws128 10.1002/mds.25872 10.1523/JNEUROSCI.6135-10.2011 10.1017/CBO9780511662973 10.1093/brain/112.2.471 10.1093/brain/awm032 10.1523/JNEUROSCI.2837-07.2007 10.1201/9781482296426 10.1080/09541440802205067 10.1037/a0021765 10.3389/fninf.2013.00014 10.1214/088342304000000116 10.1146/annurev.neuro.24.1.981 10.1176/appi.neuropsych.13.1.42 10.1126/science.1146157 10.1212/WNL.47.1.1 9463418 10.1162/jocn.2006.18.4.626 10.3200/JMBR.36.3.245-252 10.1016/j.neuron.2011.01.020 10.1162/neco.2008.12-06-420 10.1016/j.bandc.2004.09.016 10.1093/brain/awu032 10.1136/jnnp.50.7.853 10.1152/jn.01049.2002 10.1016/j.neubiorev.2008.08.014 10.1136/jnnp.2003.027367 10.1016/j.nbd.2011.01.032 10.1037/0033-295X.111.1.159 10.1523/JNEUROSCI.2600-10.2011 10.1016/j.neuroimage.2010.02.045 10.1126/science.1233912 10.1002/mds.22902 10.1002/mds.23453 10.1111/1467-9868.00353 10.1152/jn.00276.2015 10.1016/S0197-4580(02)00065-9 10.1016/S0028-3932(01)00045-8 10.1016/j.neuroimage.2012.06.058 10.1016/0272-7358(88)90050-5 10.1016/j.biopsych.2014.01.024 10.1016/S0149-7634(98)00014-1 10.1002/ana.410350408 10.1136/jnnp.54.7.599 10.1038/5739 10.3758/BF03193779 10.1523/JNEUROSCI.4156-11.2012 10.1007/s00221-011-2736-6 10.3389/fnins.2014.00069 10.1038/nn.2925 10.1016/j.neuropsychologia.2004.06.026 10.1037/0033-295X.111.2.333 10.1002/mds.21933 10.1146/annurev-clinpsy-032813-153705 10.1136/jnnp.2010.226340.49 10.1007/s00415-011-6338-9 10.1212/WNL.0000000000000066 10.1037/0096-1523.16.1.164 10.1016/j.neuropsychologia.2009.06.018 10.3389/fnsys.2013.00118 10.1023/A:1017550507839 9463444 10.1007/s002210050934 10.1016/j.neuroimage.2012.06.012 10.1016/S1353-8020(02)00094-9 10.1201/9780429258480 |
ContentType | Journal Article |
Copyright | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. 2015 |
Copyright_xml | – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. – notice: The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. 2015 |
CorporateAuthor | Strategiska forskningsområden (SFO) Strategic research areas (SRA) MultiPark: Multidisciplinary research focused on Parkinson's disease Profile areas and other strong research environments Lunds universitet Lund University Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Strategiska forskningsområden (SFO) – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Profile areas and other strong research environments – name: Strategic research areas (SRA) – name: MultiPark: Multidisciplinary research focused on Parkinson's disease – name: Lunds universitet |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTPV AOWAS D95 |
DOI | 10.1093/brain/awv331 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 173 |
ExternalDocumentID | oai_portal_research_lu_se_publications_6e27338d_aa2a_440b_a8ee_8f04dd48fe29 PMC4949391 26582559 10_1093_brain_awv331 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G1100464 – fundername: Wellcome Trust grantid: 103838 – fundername: Wellcome Trust grantid: 093875 – fundername: Medical Research Council grantid: MC-A060-5PQ30 – fundername: Medical Research Council grantid: MC_U105597119 – fundername: Medical Research Council grantid: G0001354 – fundername: ; ; ; |
GroupedDBID | --- -E4 -~X .2P .55 .GJ .I3 .XZ .ZR 0R~ 1CY 1TH 23N 2WC 354 3O- 4.4 41~ 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAGKA AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPGJ AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT AAWTL AAYJJ AAYXX ABDFA ABDPE ABEJV ABEUO ABGNP ABIME ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPIB ABPQP ABPTD ABQLI ABQNK ABSMQ ABVGC ABWST ABXVV ABXZS ABZBJ ABZEO ACBNA ACFRR ACGFS ACIWK ACPQN ACPRK ACUFI ACUKT ACUTJ ACUTO ACVCV ACYHN ACZBC ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADMTO ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEHUL AEJOX AEKPW AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFQV AFFZL AFGWE AFIYH AFOFC AFSHK AFXAL AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AI. AIJHB AJBYB AJDVS AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APJGH APWMN AQDSO AQKUS ARIXL ASAOO ASPBG ATDFG ATGXG ATTQO AVNTJ AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM BZKNY C1A C45 CAG CDBKE CITATION COF CS3 CXTWN CZ4 DAKXR DFGAJ DIK DILTD DU5 D~K E3Z EBS EE~ EIHJH EJD ELUNK EMOBN ENERS F5P F9B FECEO FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MBLQV MBTAY MHKGH ML0 MVM N4W N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAUYM OAWHX OBFPC OBOKY OCZFY ODMLO OHH OHT OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO TCN TCURE TEORI TJX TLC TMA TR2 VH1 VVN W8F WH7 WOQ X7H X7M XJT XOL YAYTL YKOAZ YQJ YSK YXANX ZCG ZGI ZKB ZKX ZXP ~91 CGR CUY CVF ECM EIF M49 NPM 7X8 5PM ADTPV AOWAS D95 |
ID | FETCH-LOGICAL-c474t-ef3b092a5792eddae01a59188e80c60e64acccb9c5e93ed78334ffab623e47423 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Tue Sep 09 23:14:24 EDT 2025 Thu Aug 21 14:28:19 EDT 2025 Fri Jul 11 04:35:45 EDT 2025 Sat May 31 02:06:17 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 Tue Jul 01 00:46:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bayesian hierarchical model saccadic inhibition Parkinson’s disease drift-diffusion model progressive supranuclear palsy |
Language | English |
License | The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-ef3b092a5792eddae01a59188e80c60e64acccb9c5e93ed78334ffab623e47423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4949391 |
PMID | 26582559 |
PQID | 1760876323 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_6e27338d_aa2a_440b_a8ee_8f04dd48fe29 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4949391 proquest_miscellaneous_1760876323 pubmed_primary_26582559 crossref_citationtrail_10_1093_brain_awv331 crossref_primary_10_1093_brain_awv331 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2016 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | 2016021102572086000_139.1.161.45 2016021102572086000_139.1.161.44 2016021102572086000_139.1.161.47 2016021102572086000_139.1.161.46 2016021102572086000_139.1.161.49 2016021102572086000_139.1.161.48 Brenneis (2016021102572086000_139.1.161.11) 2004; 75 2016021102572086000_139.1.161.40 2016021102572086000_139.1.161.39 2016021102572086000_139.1.161.32 2016021102572086000_139.1.161.31 2016021102572086000_139.1.161.34 2016021102572086000_139.1.161.33 2016021102572086000_139.1.161.36 2016021102572086000_139.1.161.35 2016021102572086000_139.1.161.38 2016021102572086000_139.1.161.37 2016021102572086000_139.1.161.30 2016021102572086000_139.1.161.1 2016021102572086000_139.1.161.3 2016021102572086000_139.1.161.5 Ye (2016021102572086000_139.1.161.97) 2014; 77 2016021102572086000_139.1.161.4 2016021102572086000_139.1.161.7 2016021102572086000_139.1.161.6 2016021102572086000_139.1.161.9 2016021102572086000_139.1.161.8 2016021102572086000_139.1.161.65 2016021102572086000_139.1.161.64 2016021102572086000_139.1.161.66 2016021102572086000_139.1.161.69 2016021102572086000_139.1.161.68 2016021102572086000_139.1.161.61 2016021102572086000_139.1.161.60 2016021102572086000_139.1.161.63 2016021102572086000_139.1.161.62 Jahanshahi (2016021102572086000_139.1.161.42) 2014; 00 2016021102572086000_139.1.161.54 2016021102572086000_139.1.161.53 2016021102572086000_139.1.161.56 2016021102572086000_139.1.161.55 2016021102572086000_139.1.161.58 2016021102572086000_139.1.161.57 2016021102572086000_139.1.161.59 2016021102572086000_139.1.161.50 2016021102572086000_139.1.161.52 2016021102572086000_139.1.161.51 Snyder (2016021102572086000_139.1.161.82) 2002; 87 Zhang (2016021102572086000_139.1.161.100) 2014; 8 2016021102572086000_139.1.161.87 Alexander (2016021102572086000_139.1.161.2) 1990; 85 2016021102572086000_139.1.161.86 2016021102572086000_139.1.161.89 2016021102572086000_139.1.161.88 2016021102572086000_139.1.161.80 2016021102572086000_139.1.161.83 2016021102572086000_139.1.161.85 2016021102572086000_139.1.161.84 2016021102572086000_139.1.161.76 2016021102572086000_139.1.161.75 2016021102572086000_139.1.161.78 2016021102572086000_139.1.161.77 2016021102572086000_139.1.161.79 Hikosaka (2016021102572086000_139.1.161.41) 2000; 80 2016021102572086000_139.1.161.70 2016021102572086000_139.1.161.72 2016021102572086000_139.1.161.71 2016021102572086000_139.1.161.74 2016021102572086000_139.1.161.73 Shadlen (2016021102572086000_139.1.161.81) 2001; 86 2016021102572086000_139.1.161.29 2016021102572086000_139.1.161.28 2016021102572086000_139.1.161.21 2016021102572086000_139.1.161.20 2016021102572086000_139.1.161.23 2016021102572086000_139.1.161.22 Jahanshahi (2016021102572086000_139.1.161.43) 2013; 7 2016021102572086000_139.1.161.25 2016021102572086000_139.1.161.24 2016021102572086000_139.1.161.27 2016021102572086000_139.1.161.26 Paré (2016021102572086000_139.1.161.67) 2001; 85 2016021102572086000_139.1.161.18 2016021102572086000_139.1.161.17 2016021102572086000_139.1.161.19 2016021102572086000_139.1.161.10 2016021102572086000_139.1.161.98 2016021102572086000_139.1.161.12 2016021102572086000_139.1.161.99 2016021102572086000_139.1.161.14 2016021102572086000_139.1.161.13 2016021102572086000_139.1.161.16 2016021102572086000_139.1.161.15 2016021102572086000_139.1.161.90 2016021102572086000_139.1.161.92 2016021102572086000_139.1.161.91 2016021102572086000_139.1.161.94 2016021102572086000_139.1.161.93 2016021102572086000_139.1.161.96 2016021102572086000_139.1.161.95 |
References_xml | – ident: 2016021102572086000_139.1.161.80 doi: 10.1007/s002210000457 – volume: 85 start-page: 2545 year: 2001 ident: 2016021102572086000_139.1.161.67 article-title: Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus publication-title: J Neurophysiol doi: 10.1152/jn.2001.85.6.2545 – ident: 2016021102572086000_139.1.161.77 doi: 10.1002/mds.22836 – ident: 2016021102572086000_139.1.161.58 doi: 10.1007/s00221-006-0412-z – ident: 2016021102572086000_139.1.161.8 doi: 10.1002/mds.20115 – ident: 2016021102572086000_139.1.161.44 doi: 10.1371/journal.pone.0076467 – ident: 2016021102572086000_139.1.161.56 doi: 10.1097/00005072-199601000-00010 – volume: 80 start-page: 953 year: 2000 ident: 2016021102572086000_139.1.161.41 article-title: Role of the basal ganglia in the control of purposive saccadic eye movements publication-title: Physiol Rev doi: 10.1152/physrev.2000.80.3.953 – ident: 2016021102572086000_139.1.161.64 doi: 10.1093/brain/awu058 – ident: 2016021102572086000_139.1.161.46 doi: 10.1016/S0022-510X(03)00014-5 – ident: 2016021102572086000_139.1.161.32 doi: 10.1136/jnnp.51.6.745 – ident: 2016021102572086000_139.1.161.66 doi: 10.1038/nature05289 – ident: 2016021102572086000_139.1.161.57 doi: 10.1046/j.1460-9568.2000.00298.x – volume: 86 start-page: 1916 year: 2001 ident: 2016021102572086000_139.1.161.81 article-title: Neural basis of a perceptual decision in the parietal cortex (Area LIP) of the rhesus monkey publication-title: J Neurophysiol doi: 10.1152/jn.2001.86.4.1916 – ident: 2016021102572086000_139.1.161.91 doi: 10.1136/jnnp.2007.122028 – ident: 2016021102572086000_139.1.161.37 doi: 10.1007/s00221-002-1122-9 – ident: 2016021102572086000_139.1.161.35 doi: 10.1037/0096-3445.136.3.389 – ident: 2016021102572086000_139.1.161.50 doi: 10.1093/brain/awh035 – ident: 2016021102572086000_139.1.161.60 doi: 10.1371/journal.pone.0085747 – volume: 87 start-page: 2279 year: 2002 ident: 2016021102572086000_139.1.161.82 article-title: Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement publication-title: J Neurophysiol doi: 10.1152/jn.00854.2001 – ident: 2016021102572086000_139.1.161.40 doi: 10.1016/j.neuropsychologia.2007.02.024 – ident: 2016021102572086000_139.1.161.39 doi: 10.1212/WNL.44.11.2015 – ident: 2016021102572086000_139.1.161.31 doi: 10.1371/journal.pone.0074486 – volume: 85 start-page: 119 year: 1990 ident: 2016021102572086000_139.1.161.2 article-title: Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions publication-title: Prog Brain Res doi: 10.1016/S0079-6123(08)62678-3 – ident: 2016021102572086000_139.1.161.4 doi: 10.1016/j.visres.2013.02.007 – ident: 2016021102572086000_139.1.161.3 doi: 10.1016/j.neuropsychologia.2005.11.015 – ident: 2016021102572086000_139.1.161.98 doi: 10.1212/WNL.0b013e3181d31e0b – ident: 2016021102572086000_139.1.161.92 doi: 10.1001/archneurol.2010.65 – ident: 2016021102572086000_139.1.161.22 – ident: 2016021102572086000_139.1.161.26 doi: 10.1136/jnnp.2003.016469 – ident: 2016021102572086000_139.1.161.30 doi: 10.1093/brain/aws128 – ident: 2016021102572086000_139.1.161.15 doi: 10.1002/mds.25872 – ident: 2016021102572086000_139.1.161.84 doi: 10.1523/JNEUROSCI.6135-10.2011 – ident: 2016021102572086000_139.1.161.54 doi: 10.1017/CBO9780511662973 – ident: 2016021102572086000_139.1.161.69 doi: 10.1093/brain/112.2.471 – ident: 2016021102572086000_139.1.161.34 doi: 10.1093/brain/awm032 – ident: 2016021102572086000_139.1.161.51 doi: 10.1523/JNEUROSCI.2837-07.2007 – ident: 2016021102572086000_139.1.161.24 doi: 10.1201/9781482296426 – ident: 2016021102572086000_139.1.161.89 doi: 10.1080/09541440802205067 – ident: 2016021102572086000_139.1.161.86 doi: 10.1037/a0021765 – ident: 2016021102572086000_139.1.161.93 doi: 10.3389/fninf.2013.00014 – ident: 2016021102572086000_139.1.161.7 doi: 10.1214/088342304000000116 – ident: 2016021102572086000_139.1.161.78 doi: 10.1146/annurev.neuro.24.1.981 – ident: 2016021102572086000_139.1.161.1 doi: 10.1176/appi.neuropsych.13.1.42 – ident: 2016021102572086000_139.1.161.23 doi: 10.1126/science.1146157 – ident: 2016021102572086000_139.1.161.55 doi: 10.1212/WNL.47.1.1 – ident: 2016021102572086000_139.1.161.21 doi: 9463418 – ident: 2016021102572086000_139.1.161.94 doi: 10.1162/jocn.2006.18.4.626 – ident: 2016021102572086000_139.1.161.19 doi: 10.3200/JMBR.36.3.245-252 – ident: 2016021102572086000_139.1.161.18 doi: 10.1016/j.neuron.2011.01.020 – ident: 2016021102572086000_139.1.161.74 doi: 10.1162/neco.2008.12-06-420 – ident: 2016021102572086000_139.1.161.62 – ident: 2016021102572086000_139.1.161.76 doi: 10.1016/j.bandc.2004.09.016 – ident: 2016021102572086000_139.1.161.96 doi: 10.1093/brain/awu032 – ident: 2016021102572086000_139.1.161.33 doi: 10.1136/jnnp.50.7.853 – ident: 2016021102572086000_139.1.161.72 doi: 10.1152/jn.01049.2002 – ident: 2016021102572086000_139.1.161.87 doi: 10.1016/j.neubiorev.2008.08.014 – ident: 2016021102572086000_139.1.161.25 doi: 10.1136/jnnp.2003.027367 – ident: 2016021102572086000_139.1.161.68 doi: 10.1016/j.nbd.2011.01.032 – ident: 2016021102572086000_139.1.161.73 doi: 10.1037/0033-295X.111.1.159 – ident: 2016021102572086000_139.1.161.65 doi: 10.1523/JNEUROSCI.2600-10.2011 – ident: 2016021102572086000_139.1.161.79 doi: 10.1016/j.neuroimage.2010.02.045 – ident: 2016021102572086000_139.1.161.14 doi: 10.1126/science.1233912 – ident: 2016021102572086000_139.1.161.61 doi: 10.1002/mds.22902 – ident: 2016021102572086000_139.1.161.85 doi: 10.1002/mds.23453 – ident: 2016021102572086000_139.1.161.83 doi: 10.1111/1467-9868.00353 – ident: 2016021102572086000_139.1.161.36 doi: 10.1152/jn.00276.2015 – ident: 2016021102572086000_139.1.161.10 doi: 10.1016/S0197-4580(02)00065-9 – ident: 2016021102572086000_139.1.161.12 doi: 10.1016/S0028-3932(01)00045-8 – ident: 2016021102572086000_139.1.161.99 doi: 10.1016/j.neuroimage.2012.06.058 – ident: 2016021102572086000_139.1.161.6 doi: 10.1016/0272-7358(88)90050-5 – volume: 77 start-page: 740 year: 2014 ident: 2016021102572086000_139.1.161.97 article-title: Improving response inhibition in parkinson’s disease with atomoxetine publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2014.01.024 – ident: 2016021102572086000_139.1.161.27 doi: 10.1016/S0149-7634(98)00014-1 – ident: 2016021102572086000_139.1.161.88 doi: 10.1002/ana.410350408 – ident: 2016021102572086000_139.1.161.71 doi: 10.1136/jnnp.54.7.599 – ident: 2016021102572086000_139.1.161.47 doi: 10.1038/5739 – ident: 2016021102572086000_139.1.161.9 doi: 10.3758/BF03193779 – ident: 2016021102572086000_139.1.161.59 doi: 10.1523/JNEUROSCI.4156-11.2012 – ident: 2016021102572086000_139.1.161.63 doi: 10.1007/s00221-011-2736-6 – volume: 8 start-page: 1 year: 2014 ident: 2016021102572086000_139.1.161.100 article-title: Dissociable mechanisms of speed-accuracy tradeoff during visual perceptual learning are revealed by a hierarchical drift-diffusion model publication-title: Front. Neurosci doi: 10.3389/fnins.2014.00069 – ident: 2016021102572086000_139.1.161.16 doi: 10.1038/nn.2925 – volume: 00 start-page: 1 year: 2014 ident: 2016021102572086000_139.1.161.42 article-title: Parkinson’s disease, the subthalamic nucleus, inhibition, and impulsivity publication-title: Mov Disord – ident: 2016021102572086000_139.1.161.17 doi: 10.1016/j.neuropsychologia.2004.06.026 – ident: 2016021102572086000_139.1.161.75 doi: 10.1037/0033-295X.111.2.333 – ident: 2016021102572086000_139.1.161.20 doi: 10.1002/mds.21933 – ident: 2016021102572086000_139.1.161.5 doi: 10.1146/annurev-clinpsy-032813-153705 – ident: 2016021102572086000_139.1.161.29 doi: 10.1136/jnnp.2010.226340.49 – ident: 2016021102572086000_139.1.161.53 doi: 10.1007/s00415-011-6338-9 – ident: 2016021102572086000_139.1.161.95 doi: 10.1212/WNL.0000000000000066 – ident: 2016021102572086000_139.1.161.45 doi: 10.1037/0096-1523.16.1.164 – ident: 2016021102572086000_139.1.161.48 doi: 10.1016/j.neuropsychologia.2009.06.018 – volume: 7 start-page: 118 year: 2013 ident: 2016021102572086000_139.1.161.43 article-title: Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson’s disease publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2013.00118 – ident: 2016021102572086000_139.1.161.90 doi: 10.1023/A:1017550507839 – ident: 2016021102572086000_139.1.161.38 doi: 9463444 – ident: 2016021102572086000_139.1.161.49 – ident: 2016021102572086000_139.1.161.13 doi: 10.1007/s002210050934 – ident: 2016021102572086000_139.1.161.70 doi: 10.1016/j.neuroimage.2012.06.012 – ident: 2016021102572086000_139.1.161.52 doi: 10.1016/S1353-8020(02)00094-9 – ident: 2016021102572086000_139.1.161.28 doi: 10.1201/9780429258480 – volume: 75 start-page: 246 year: 2004 ident: 2016021102572086000_139.1.161.11 article-title: Voxel based morphometry reveals a distinct pattern of frontal atrophy in progressive supranuclear palsy publication-title: J Neurol Neurosurg Psychiatry |
SSID | ssj0014326 |
Score | 2.4459171 |
Snippet | Progressive supranuclear palsy and Parkinson's disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to... Both progressive supranuclear palsy and Parkinson’s disease cause impulsivity and impair executive function. Using a saccadic Go/No-Go paradigm and... |
SourceID | swepub pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 161 |
SubjectTerms | Aged Bayes Theorem Case-Control Studies Decision Making Female Humans Male Models, Neurological Neural Inhibition Original Parkinson Disease - physiopathology Parkinson Disease - psychology Saccades Supranuclear Palsy, Progressive - physiopathology Supranuclear Palsy, Progressive - psychology |
Title | Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26582559 https://www.proquest.com/docview/1760876323 https://pubmed.ncbi.nlm.nih.gov/PMC4949391 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRUJcEG9SHlokOEVuHXtt7x5RoVSViji0UsVltbbH1FLqRIlTECf-Br-MO7-E2Yc3Nmkl6MVaOY7XyXzeeezMN4S85pFIAJIkiJICHZSoEkFeVlnAgGeo3rQTq3d0jz-mh6fs6Cw529r61ctaWrX5bvH9yrqSm0gVz6FcdZXsf0jW3xRP4Bjli0eUMB7_ScbvXHeTdly6Vjk40JQQ7dKUP9aL8cLmwGpqkPM6r7vURpOWpTNgL2G8XM1RYWleY017jQ9tKZl0PbQtDXP5EGI52M7xrEiqbq5sDGKjDTzjvWiDj08f1eobIvOL3_Cp29YFYx18fJh6dpHD1Ni4-2ZFarwmOZi5ZspT3chFUy_0gxiTv4MY1xRHDhbuNODCctTugl2rWRoGaLGkg8XcUiMNUGuX5oklfXdafmIbqGwoEEuulS9MWOZAfb10BWU9NM0vDJwitN20P7ZWpD698dPxvib9iTWrwq0oy0z-wIczn3uENqrpA-h_lavIwMn3zNR7dmLNVO1mGZpNG77QZkrvgPjWGEsn98hd5-XQtxay98kWNA_I7WOXx_GQLDxyaYdc2iGXWuTSDrl0jVwc0h5yaR-51CCXIgqoR-7vHz-X1GH2ETk9eH-yfxi47h9BwTLWBlDFeSgilWQigrJUEE5UIiacAw-LNISUqaIoclEkIGIoMx7HrKpUjvY8MJ1_8JhsN7MGnhLKRJkUikVMKMHKTHEBhUhxzEHFqqpGZNz9ubJw1Pi6Q8tU2hSNWBqpSCuVEXnjr55bSphrrnvVyUnimq034lQDs9VSTrLUMEFG8Yg8sXLzd-oEPiLZQKL-As0HP_ykqc8NL7zD3Ih8trIffsV489JRiJ3L6UouQc57ewMyBfRlYl5KpSIlGQtzqTiA5FXIypLxCiKxc-PHekburN_852S7XazgBRr0bf7SvBx_AG1ZBDE |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+decision+deficits+impair+response+inhibition+in+progressive+supranuclear+palsy+and+Parkinson%E2%80%99s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Zhang%2C+Jiaxiang&rft.au=Rittman%2C+Timothy&rft.au=Nombela%2C+Cristina&rft.au=Fois%2C+Alessandro&rft.date=2016-01-01&rft.pub=Oxford+University+Press&rft.issn=0006-8950&rft.eissn=1460-2156&rft.volume=139&rft.issue=1&rft.spage=161&rft.epage=173&rft_id=info:doi/10.1093%2Fbrain%2Fawv331&rft_id=info%3Apmid%2F26582559&rft.externalDocID=PMC4949391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |