Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse

Abstract A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributo...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 27; no. 7; pp. 1252 - 1262
Main Authors Peeters, Samantha B, Korecki, Andrea J, Simpson, Elizabeth M, Brown, Carolyn J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.
AbstractList A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.
A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.
A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.
Abstract A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.
Author Korecki, Andrea J
Brown, Carolyn J
Peeters, Samantha B
Simpson, Elizabeth M
AuthorAffiliation 1 Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
2 Centre for Molecular Medicine and Therapeutics at British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
AuthorAffiliation_xml – name: 2 Centre for Molecular Medicine and Therapeutics at British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– name: 1 Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
Author_xml – sequence: 1
  givenname: Samantha B
  surname: Peeters
  fullname: Peeters, Samantha B
  organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– sequence: 2
  givenname: Andrea J
  surname: Korecki
  fullname: Korecki, Andrea J
  organization: Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– sequence: 3
  givenname: Elizabeth M
  surname: Simpson
  fullname: Simpson, Elizabeth M
  organization: Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– sequence: 4
  givenname: Carolyn J
  surname: Brown
  fullname: Brown, Carolyn J
  email: carolyn.brown@ubc.ca
  organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29401310$$D View this record in MEDLINE/PubMed
BookMark eNp9kVFLHTEQhUNR6tX2pT-g7ItQCquZm2z25kUQ0VoQfLHQh0LIzs7em7JJrptdwX_f6FppRXyakHznzGTOPtsJMRBjn4AfAdfieOPXx217z4V-xxYgFS-XfCV22IJrJUuludpj-yn95hyUFPV7trfUkoMAvmC_LidvQ4EulRZHF9YF9eQpjKkYaD31dr5LaLdUdEP0xc8SN7nGFD0VLjyo7jIVQ9FNAR8PLhQ-Tok-sN3O9ok-PtUD9uPi_Obssry6_vb97PSqRFnLsSQSdVuJtqpJ1Y3U1AjZIkAn1aqx2ACgrRvkJEHiquto1QIKAdDUy67CVhywk9l3OzWeWszjD7Y328F5O9ybaJ35_yW4jVnHO6Og0pWossGXJ4Mh3k6URuNdQup7Gyh_xIDWFVQK5DKjn__t9dzk70oz8HUGcIgpDdQ9I8DNQ14m52XmvDLMX8Doxsdt5jld_7rkcJbEafuW9R_prqnG
CitedBy_id crossref_primary_10_1016_j_nbd_2021_105314
crossref_primary_10_1007_s10529_020_02826_z
crossref_primary_10_1007_s40123_023_00729_6
crossref_primary_10_1161_ATVBAHA_120_314407
crossref_primary_10_1002_ajmg_c_31800
crossref_primary_10_1186_s12915_025_02137_7
crossref_primary_10_1016_j_nbd_2023_106138
crossref_primary_10_1002_ajmg_c_31672
crossref_primary_10_1186_s13072_021_00404_9
crossref_primary_10_1534_genetics_119_301984
crossref_primary_10_3389_fcell_2019_00219
crossref_primary_10_1093_nargab_lqad052
crossref_primary_10_1186_s12864_019_5507_6
crossref_primary_10_1186_s13072_021_00386_8
crossref_primary_10_3389_fcell_2019_00241
crossref_primary_10_1007_s00281_018_0704_y
crossref_primary_10_1186_s40246_018_0185_z
crossref_primary_10_1002_dvg_23589
crossref_primary_10_1089_hum_2024_170
crossref_primary_10_1038_s44319_024_00136_3
crossref_primary_10_3390_epigenomes7040029
Cites_doi 10.1186/1471-2164-11-614
10.1098/rstb.2015.0113
10.1038/nature03479
10.1073/pnas.1617597113
10.1098/rstb.2016.0355
10.1007/s00439-011-1007-8
10.1007/s00439-011-0994-9
10.1007/s12031-008-9128-9
10.1093/hmg/ddt553
10.1016/j.stem.2016.10.006
10.1073/pnas.93.17.9067
10.1093/hmg/5.9.1355
10.1038/nature13206
10.1146/annurev.ge.17.120183.001103
10.1038/ng.3726
10.1038/srep37324
10.1371/journal.pcbi.0020113
10.1186/s13059-015-0618-0
10.1007/s12041-015-0574-1
10.1007/s00439-014-1420-x
10.1016/j.cell.2012.10.037
10.1073/pnas.0807765105
10.1093/hmg/5.9.1361
10.1038/nature18589
10.1073/pnas.0603754103
10.1016/j.cell.2014.11.021
10.1016/j.tig.2016.03.007
10.1093/nar/gkp860
10.1186/s13059-015-0698-x
10.1083/jcb.200405117
10.1016/j.ygeno.2008.09.014
10.1016/j.devcel.2004.10.018
10.1186/s13059-015-0728-8
10.1093/molbev/msq143
10.1534/genetics.114.162800
10.1534/genetics.112.143743
10.1101/gr.2575904
10.1086/427563
10.1073/pnas.100127597
10.1126/science.aad3346
10.1371/journal.pgen.1002544
10.1016/j.celrep.2016.11.054
10.1093/hmg/ddu564
10.1371/journal.pgen.1003952
10.1038/ng0597-19
10.1186/s13293-015-0053-7
10.1038/11887
10.1371/journal.pgen.1005079
10.1093/hmg/ddt513
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. 2018
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/hmg/ddy039
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
EndPage 1262
ExternalDocumentID PMC6159535
29401310
10_1093_hmg_ddy039
10.1093/hmg/ddy039
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  grantid: MOP-119586
  funderid: 10.13039/501100000024
– fundername: NINDS
  funderid: 10.13039/100000065
– fundername: NIDA
  funderid: 10.13039/100000026
– fundername: NHLBI
  funderid: 10.13039/100000050
– fundername: National Institutes of Health
  funderid: 10.13039/100000002
– fundername: NCI
  funderid: 10.13039/100000054
– fundername: NHGRI
  funderid: 10.13039/100000051
– fundername: NIMH
  funderid: 10.13039/100000025
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
– fundername: CIHR
  grantid: MOP-119586
– fundername: ; ;
  grantid: MOP-119586
– fundername: ; ;
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
ABEUO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
C45
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
SJN
TEORI
TJX
TLC
TMA
TOX
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AFYAG
AGORE
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c474t-ee37d53d57e67b49eb34dc11f468bacb11ca7bc0e414c8ffe8d1c3311b72f5cd3
IEDL.DBID TOX
ISSN 0964-6906
1460-2083
IngestDate Thu Aug 21 14:07:30 EDT 2025
Thu Jul 10 23:21:39 EDT 2025
Wed Feb 19 02:32:32 EST 2025
Thu Apr 24 23:08:00 EDT 2025
Tue Jul 01 00:24:25 EDT 2025
Wed Sep 11 04:52:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ee37d53d57e67b49eb34dc11f468bacb11ca7bc0e414c8ffe8d1c3311b72f5cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/hmg/ddy039
PMID 29401310
PQID 1995156142
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6159535
proquest_miscellaneous_1995156142
pubmed_primary_29401310
crossref_primary_10_1093_hmg_ddy039
crossref_citationtrail_10_1093_hmg_ddy039
oup_primary_10_1093_hmg_ddy039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Yang ( key 20180319053908_ddy039-B15) 2011; 130
Li ( key 20180319053908_ddy039-B16) 2008; 105
Filippova ( key 20180319053908_ddy039-B32) 2005; 8
Rao ( key 20180319053908_ddy039-B25) 2014; 159
Cotton ( key 20180319053908_ddy039-B7) 2015; 24
Carrel ( key 20180319053908_ddy039-B4) 2017; 372
Calabrese ( key 20180319053908_ddy039-B13) 2012; 151
Gartler ( key 20180319053908_ddy039-B21) 1983; 17
Tsuchiya ( key 20180319053908_ddy039-B24) 2004; 14
Wang ( key 20180319053908_ddy039-B40) 2006; 2
Carrel ( key 20180319053908_ddy039-B1) 2005; 434
Berletch ( key 20180319053908_ddy039-B6) 2015; 11
Balaton ( key 20180319053908_ddy039-B5) 2016; 32
Marks ( key 20180319053908_ddy039-B12) 2015; 16
Lessing ( key 20180319053908_ddy039-B42) 2016; 113
Bronson ( key 20180319053908_ddy039-B23) 1996; 93
Cotton ( key 20180319053908_ddy039-B8) 2011; 130
Horvath ( key 20180319053908_ddy039-B17) 2013; 9
Arnold ( key 20180319053908_ddy039-B26) 2016; 371
Csankovszki ( key 20180319053908_ddy039-B45) 1999; 22
Jensen ( key 20180319053908_ddy039-B29) 2005; 76
Patel ( key 20180319053908_ddy039-B18) 2017; 18
Schmouth ( key 20180319053908_ddy039-B22) 2012; 8
Reinius ( key 20180319053908_ddy039-B11) 2010; 11
Deng ( key 20180319053908_ddy039-B33) 2015; 16
Yang ( key 20180319053908_ddy039-B38) 2015; 16
Yang ( key 20180319053908_ddy039-B20) 2012; 192
Sheardown ( key 20180319053908_ddy039-B27) 1996; 5
Carrel ( key 20180319053908_ddy039-B28) 1996; 5
Chen ( key 20180319053908_ddy039-B37) 2016; 6
Balaton ( key 20180319053908_ddy039-B9) 2015; 6
Bala Tannan ( key 20180319053908_ddy039-B39) 2014; 23
Yang ( key 20180319053908_ddy039-B44) 2009; 93
Gribnau ( key 20180319053908_ddy039-B47) 2005; 168
Sahakyan ( key 20180319053908_ddy039-B19) 2017; 20
Cotton ( key 20180319053908_ddy039-B41) 2014; 23
Bellott ( key 20180319053908_ddy039-B30) 2014; 508
Park ( key 20180319053908_ddy039-B31) 2010; 27
Giorgetti ( key 20180319053908_ddy039-B14) 2016; 535
Dunford ( key 20180319053908_ddy039-B3) 2017; 49
Ciavatta ( key 20180319053908_ddy039-B34) 2006; 103
Sigova ( key 20180319053908_ddy039-B49) 2015; 350
Disteche ( key 20180319053908_ddy039-B10) 2015; 94
Goto ( key 20180319053908_ddy039-B36) 2009; 37
Boda ( key 20180319053908_ddy039-B48) 2009; 37
Hook ( key 20180319053908_ddy039-B2) 2014; 133
Mugford ( key 20180319053908_ddy039-B35) 2014; 197
Simpson ( key 20180319053908_ddy039-B46) 1997; 16
Yu ( key 20180319053908_ddy039-B43) 2000; 97
References_xml – volume: 11
  start-page: 614.
  year: 2010
  ident: key 20180319053908_ddy039-B11
  article-title: Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-614
– volume: 371
  start-page: 20150113.
  year: 2016
  ident: key 20180319053908_ddy039-B26
  article-title: The importance of having two X chromosomes
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci
  doi: 10.1098/rstb.2015.0113
– volume: 434
  start-page: 400
  year: 2005
  ident: key 20180319053908_ddy039-B1
  article-title: X-inactivation profile reveals extensive variability in X-linked gene expression in females
  publication-title: Nature
  doi: 10.1038/nature03479
– volume: 113
  start-page: 14366
  year: 2016
  ident: key 20180319053908_ddy039-B42
  article-title: A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1617597113
– volume: 372
  start-page: 20160355.
  year: 2017
  ident: key 20180319053908_ddy039-B4
  article-title: When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci
  doi: 10.1098/rstb.2016.0355
– volume: 130
  start-page: 187
  year: 2011
  ident: key 20180319053908_ddy039-B8
  article-title: Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation
  publication-title: Hum. Genet
  doi: 10.1007/s00439-011-1007-8
– volume: 130
  start-page: 175
  year: 2011
  ident: key 20180319053908_ddy039-B15
  article-title: X-chromosome inactivation: molecular mechanisms from the human perspective
  publication-title: Hum. Genet
  doi: 10.1007/s00439-011-0994-9
– volume: 37
  start-page: 238
  year: 2009
  ident: key 20180319053908_ddy039-B48
  article-title: Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain
  publication-title: J. Mol. Neurosci
  doi: 10.1007/s12031-008-9128-9
– volume: 23
  start-page: 1224
  year: 2014
  ident: key 20180319053908_ddy039-B39
  article-title: DNA methylation profiling in X; autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/ddt553
– volume: 20
  start-page: 87
  year: 2017
  ident: key 20180319053908_ddy039-B19
  article-title: Human naive pluripotent stem cells model X chromosome dampening and X inactivation
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.10.006
– volume: 93
  start-page: 9067
  year: 1996
  ident: key 20180319053908_ddy039-B23
  article-title: Single-copy transgenic mice with chosen-site integration
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.17.9067
– volume: 5
  start-page: 1355
  year: 1996
  ident: key 20180319053908_ddy039-B27
  article-title: The mouse Smcx gene exhibits developmental and tissue specific variation in degree of escape from X inactivation
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/5.9.1355
– volume: 508
  start-page: 494
  year: 2014
  ident: key 20180319053908_ddy039-B30
  article-title: Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators
  publication-title: Nature
  doi: 10.1038/nature13206
– volume: 17
  start-page: 155
  year: 1983
  ident: key 20180319053908_ddy039-B21
  article-title: Mammalian X-Chromosome inactivation
  publication-title: Annu. Rev. Genet
  doi: 10.1146/annurev.ge.17.120183.001103
– volume: 49
  start-page: 10
  year: 2017
  ident: key 20180319053908_ddy039-B3
  article-title: Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias
  publication-title: Nat. Genet
  doi: 10.1038/ng.3726
– volume: 6
  start-page: 37324.
  year: 2016
  ident: key 20180319053908_ddy039-B37
  article-title: YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses
  publication-title: Sci. Rep
  doi: 10.1038/srep37324
– volume: 2
  start-page: e113
  year: 2006
  ident: key 20180319053908_ddy039-B40
  article-title: Evidence of influence of genomic DNA sequence on human X chromosome inactivation
  publication-title: PLoS Comp. Biol
  doi: 10.1371/journal.pcbi.0020113
– volume: 16
  start-page: 52
  year: 2015
  ident: key 20180319053908_ddy039-B38
  article-title: The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0618-0
– volume: 94
  start-page: 591
  year: 2015
  ident: key 20180319053908_ddy039-B10
  article-title: X-chromosome inactivation and escape
  publication-title: J. Genet
  doi: 10.1007/s12041-015-0574-1
– volume: 133
  start-page: 417
  year: 2014
  ident: key 20180319053908_ddy039-B2
  article-title: Turner syndrome revisited: review of new data supports the hypothesis that all viable 45, X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss
  publication-title: Hum. Genet
  doi: 10.1007/s00439-014-1420-x
– volume: 151
  start-page: 951
  year: 2012
  ident: key 20180319053908_ddy039-B13
  article-title: Site-specific silencing of regulatory elements as a mechanism of X inactivation
  publication-title: Cell
  doi: 10.1016/j.cell.2012.10.037
– volume: 105
  start-page: 17055
  year: 2008
  ident: key 20180319053908_ddy039-B16
  article-title: Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807765105
– volume: 5
  start-page: 1361
  year: 1996
  ident: key 20180319053908_ddy039-B28
  article-title: Tissue and lineage-specific variation in inactive X chromosome expression of the murine Smcx gene
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/5.9.1361
– volume: 535
  start-page: 575
  year: 2016
  ident: key 20180319053908_ddy039-B14
  article-title: Structural organization of the inactive X chromosome in the mouse
  publication-title: Nature
  doi: 10.1038/nature18589
– volume: 103
  start-page: 9958
  year: 2006
  ident: key 20180319053908_ddy039-B34
  article-title: A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0603754103
– volume: 159
  start-page: 1665
  year: 2014
  ident: key 20180319053908_ddy039-B25
  article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.021
– volume: 32
  start-page: 348
  year: 2016
  ident: key 20180319053908_ddy039-B5
  article-title: Escape artists of the X chromosome
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2016.03.007
– volume: 37
  start-page: 7416
  year: 2009
  ident: key 20180319053908_ddy039-B36
  article-title: Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene
  publication-title: Nucl. Acids Res
  doi: 10.1093/nar/gkp860
– volume: 16
  start-page: 149.
  year: 2015
  ident: key 20180319053908_ddy039-B12
  article-title: Dynamics of gene silencing during X inactivation using allele-specific RNA-seq
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0698-x
– volume: 168
  start-page: 365
  year: 2005
  ident: key 20180319053908_ddy039-B47
  article-title: X chromosome choice occurs independently of asynchronous replication timing
  publication-title: J. Cell. Biol
  doi: 10.1083/jcb.200405117
– volume: 93
  start-page: 196
  year: 2009
  ident: key 20180319053908_ddy039-B44
  article-title: Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2008.09.014
– volume: 8
  start-page: 31
  year: 2005
  ident: key 20180319053908_ddy039-B32
  article-title: Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2004.10.018
– volume: 16
  start-page: 152.
  year: 2015
  ident: key 20180319053908_ddy039-B33
  article-title: Bipartite structure of the inactive mouse X chromosome
  publication-title: Genome Biol
  doi: 10.1186/s13059-015-0728-8
– volume: 27
  start-page: 2446
  year: 2010
  ident: key 20180319053908_ddy039-B31
  article-title: Strong purifying selection at genes escaping X chromosome inactivation
  publication-title: Mol. Biol. Evol
  doi: 10.1093/molbev/msq143
– volume: 197
  start-page: 715
  year: 2014
  ident: key 20180319053908_ddy039-B35
  article-title: Evidence for local regulatory control of escape from imprinted X chromosome inactivation
  publication-title: Genetics
  doi: 10.1534/genetics.114.162800
– volume: 192
  start-page: 1281
  year: 2012
  ident: key 20180319053908_ddy039-B20
  article-title: Targeting of >1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing
  publication-title: Genetics
  doi: 10.1534/genetics.112.143743
– volume: 14
  start-page: 1275
  year: 2004
  ident: key 20180319053908_ddy039-B24
  article-title: Comparative sequence and X-inactivation analyses of a domain of escape in human xp11.2 and the conserved segment in mouse
  publication-title: Genome Res
  doi: 10.1101/gr.2575904
– volume: 76
  start-page: 227
  year: 2005
  ident: key 20180319053908_ddy039-B29
  article-title: Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation
  publication-title: Am. J. Hum. Genet
  doi: 10.1086/427563
– volume: 97
  start-page: 5978
  year: 2000
  ident: key 20180319053908_ddy039-B43
  article-title: An efficient recombination system for chromosome engineering in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.100127597
– volume: 350
  start-page: 978
  year: 2015
  ident: key 20180319053908_ddy039-B49
  article-title: Transcription factor trapping by RNA in gene regulatory elements
  publication-title: Science
  doi: 10.1126/science.aad3346
– volume: 8
  start-page: e1002544.
  year: 2012
  ident: key 20180319053908_ddy039-B22
  article-title: Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002544
– volume: 18
  start-page: 54
  year: 2017
  ident: key 20180319053908_ddy039-B18
  article-title: Human embryonic stem cells do not change their X inactivation status during differentiation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.11.054
– volume: 24
  start-page: 1528
  year: 2015
  ident: key 20180319053908_ddy039-B7
  article-title: Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/ddu564
– volume: 9
  start-page: e1003952
  year: 2013
  ident: key 20180319053908_ddy039-B17
  article-title: Deletion of an X-inactivation boundary disrupts adjacent gene silencing
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003952
– volume: 16
  start-page: 19
  year: 1997
  ident: key 20180319053908_ddy039-B46
  article-title: Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice
  publication-title: Nat. Genet
  doi: 10.1038/ng0597-19
– volume: 6
  start-page: 35
  year: 2015
  ident: key 20180319053908_ddy039-B9
  article-title: Derivation of consensus inactivation status for X-linked genes from genome-wide studies
  publication-title: Biol. Sex. Dif
  doi: 10.1186/s13293-015-0053-7
– volume: 22
  start-page: 323
  year: 1999
  ident: key 20180319053908_ddy039-B45
  article-title: Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation
  publication-title: Nat. Genet
  doi: 10.1038/11887
– volume: 11
  start-page: e1005079.
  year: 2015
  ident: key 20180319053908_ddy039-B6
  article-title: Escape from X inactivation varies in mouse tissues
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1005079
– volume: 23
  start-page: 1211
  year: 2014
  ident: key 20180319053908_ddy039-B41
  article-title: Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/ddt513
SSID ssj0016437
Score 2.3852584
Snippet Abstract A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide...
A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1252
SubjectTerms Animals
Female
Humans
Male
Mice
Mice, Transgenic
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Sex Characteristics
Transcription Factors - genetics
Transcription Factors - metabolism
X Chromosome - genetics
X Chromosome - metabolism
X Chromosome Inactivation
Title Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse
URI https://www.ncbi.nlm.nih.gov/pubmed/29401310
https://www.proquest.com/docview/1995156142
https://pubmed.ncbi.nlm.nih.gov/PMC6159535
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6koHgRra_6KCt68bC029089ihiqUr10kIPQsg-0hZsKk099N-7k01DI0VvIZkNy0zCzM588w1Cd9YFCqFjwDy1GeHGMCINEyQImfFD60_czMj-m98b8peRNypANNmWEr5grcls3NJ61WbQpme9LzDkD95HZa0ASk85o57PCdDurklIK0srbqfSyrYRUf4GRm54mu4hOihCRPzgbHqEdkxaR7tuaOSqjvb6RTn8GH3kKXisphmB_oR0jI1Dg2d44WbM5_cyADlhaCTBI6ImAMDL5jODpymscjlZDA4uv5imGNIB5gQNu0-Dxx4pxiUQxQO-JFbPgfaY9gLjB5ILe0zmWlGacD-UsZKUqjiQqm045SpMEhNqqhijVAadxFOanaJaOk_NOcI5JwxXyouBbl-y2NdUSF_IRMUdyToNdL_WZqQKLnEYafEZuZo2i6zmI6f5BrotZb8cg8ZWqaY1yp8CN2t7RfYPgLJGnBqrjgiazCkQmtptnTn7le_pCDg_0nYDBRXLlgLArl19kk4nOcu2DfWEx7yL_zZ2ifZtEBU6NM8Vqi0X3-baBipL2bQh-vNrM_9afwBYVeol
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+cis-acting+elements+regulating+escape+from+X-chromosome+inactivation+function+in+mouse&rft.jtitle=Human+molecular+genetics&rft.au=Peeters%2C+Samantha+B&rft.au=Korecki%2C+Andrea+J&rft.au=Simpson%2C+Elizabeth+M&rft.au=Brown%2C+Carolyn+J&rft.date=2018-04-01&rft.eissn=1460-2083&rft.volume=27&rft.issue=7&rft.spage=1252&rft_id=info:doi/10.1093%2Fhmg%2Fddy039&rft_id=info%3Apmid%2F29401310&rft.externalDocID=29401310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon