Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse
Abstract A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributo...
Saved in:
Published in | Human molecular genetics Vol. 27; no. 7; pp. 1252 - 1262 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans. |
---|---|
AbstractList | A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked
Hprt
gene. Escape-level expression and corresponding low promoter DNA methylation of human genes
RPS4X
and
CITED1
demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans. A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans.A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans. A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans. Abstract A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization of the inactive X chromosome. As 20% or more of human X-linked genes escape from inactivation, such genes are an important contributor to sex differences in gene expression. Although both human and mouse have genes that escape from XCI, more genes escape in humans than mice, with human escape genes often clustering in larger domains than the single escape genes of mouse. Mouse models offer a well-characterized and readily manipulated system in which to study XCI, but given the differences in genes that escape it is unclear whether the mechanism of escape gene regulation is conserved. To address conservation of the process and the potential to identify elements by modelling human escape gene regulation using mouse, we integrated a human and a mouse BAC each containing an escape gene and flanking subject genes at the mouse X-linked Hprt gene. Escape-level expression and corresponding low promoter DNA methylation of human genes RPS4X and CITED1 demonstrated that the mouse system is capable of recognizing human elements and therefore can be used as a model for further refinement of critical elements necessary for escape from XCI in humans. |
Author | Korecki, Andrea J Brown, Carolyn J Peeters, Samantha B Simpson, Elizabeth M |
AuthorAffiliation | 1 Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 2 Centre for Molecular Medicine and Therapeutics at British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada |
AuthorAffiliation_xml | – name: 2 Centre for Molecular Medicine and Therapeutics at British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada – name: 1 Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada |
Author_xml | – sequence: 1 givenname: Samantha B surname: Peeters fullname: Peeters, Samantha B organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada – sequence: 2 givenname: Andrea J surname: Korecki fullname: Korecki, Andrea J organization: Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada – sequence: 3 givenname: Elizabeth M surname: Simpson fullname: Simpson, Elizabeth M organization: Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada – sequence: 4 givenname: Carolyn J surname: Brown fullname: Brown, Carolyn J email: carolyn.brown@ubc.ca organization: Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29401310$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVFLHTEQhUNR6tX2pT-g7ItQCquZm2z25kUQ0VoQfLHQh0LIzs7em7JJrptdwX_f6FppRXyakHznzGTOPtsJMRBjn4AfAdfieOPXx217z4V-xxYgFS-XfCV22IJrJUuludpj-yn95hyUFPV7trfUkoMAvmC_LidvQ4EulRZHF9YF9eQpjKkYaD31dr5LaLdUdEP0xc8SN7nGFD0VLjyo7jIVQ9FNAR8PLhQ-Tok-sN3O9ok-PtUD9uPi_Obssry6_vb97PSqRFnLsSQSdVuJtqpJ1Y3U1AjZIkAn1aqx2ACgrRvkJEHiquto1QIKAdDUy67CVhywk9l3OzWeWszjD7Y328F5O9ybaJ35_yW4jVnHO6Og0pWossGXJ4Mh3k6URuNdQup7Gyh_xIDWFVQK5DKjn__t9dzk70oz8HUGcIgpDdQ9I8DNQ14m52XmvDLMX8Doxsdt5jld_7rkcJbEafuW9R_prqnG |
CitedBy_id | crossref_primary_10_1016_j_nbd_2021_105314 crossref_primary_10_1007_s10529_020_02826_z crossref_primary_10_1007_s40123_023_00729_6 crossref_primary_10_1161_ATVBAHA_120_314407 crossref_primary_10_1002_ajmg_c_31800 crossref_primary_10_1186_s12915_025_02137_7 crossref_primary_10_1016_j_nbd_2023_106138 crossref_primary_10_1002_ajmg_c_31672 crossref_primary_10_1186_s13072_021_00404_9 crossref_primary_10_1534_genetics_119_301984 crossref_primary_10_3389_fcell_2019_00219 crossref_primary_10_1093_nargab_lqad052 crossref_primary_10_1186_s12864_019_5507_6 crossref_primary_10_1186_s13072_021_00386_8 crossref_primary_10_3389_fcell_2019_00241 crossref_primary_10_1007_s00281_018_0704_y crossref_primary_10_1186_s40246_018_0185_z crossref_primary_10_1002_dvg_23589 crossref_primary_10_1089_hum_2024_170 crossref_primary_10_1038_s44319_024_00136_3 crossref_primary_10_3390_epigenomes7040029 |
Cites_doi | 10.1186/1471-2164-11-614 10.1098/rstb.2015.0113 10.1038/nature03479 10.1073/pnas.1617597113 10.1098/rstb.2016.0355 10.1007/s00439-011-1007-8 10.1007/s00439-011-0994-9 10.1007/s12031-008-9128-9 10.1093/hmg/ddt553 10.1016/j.stem.2016.10.006 10.1073/pnas.93.17.9067 10.1093/hmg/5.9.1355 10.1038/nature13206 10.1146/annurev.ge.17.120183.001103 10.1038/ng.3726 10.1038/srep37324 10.1371/journal.pcbi.0020113 10.1186/s13059-015-0618-0 10.1007/s12041-015-0574-1 10.1007/s00439-014-1420-x 10.1016/j.cell.2012.10.037 10.1073/pnas.0807765105 10.1093/hmg/5.9.1361 10.1038/nature18589 10.1073/pnas.0603754103 10.1016/j.cell.2014.11.021 10.1016/j.tig.2016.03.007 10.1093/nar/gkp860 10.1186/s13059-015-0698-x 10.1083/jcb.200405117 10.1016/j.ygeno.2008.09.014 10.1016/j.devcel.2004.10.018 10.1186/s13059-015-0728-8 10.1093/molbev/msq143 10.1534/genetics.114.162800 10.1534/genetics.112.143743 10.1101/gr.2575904 10.1086/427563 10.1073/pnas.100127597 10.1126/science.aad3346 10.1371/journal.pgen.1002544 10.1016/j.celrep.2016.11.054 10.1093/hmg/ddu564 10.1371/journal.pgen.1003952 10.1038/ng0597-19 10.1186/s13293-015-0053-7 10.1038/11887 10.1371/journal.pgen.1005079 10.1093/hmg/ddt513 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press. 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press. 2018 |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/hmg/ddy039 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1460-2083 |
EndPage | 1262 |
ExternalDocumentID | PMC6159535 29401310 10_1093_hmg_ddy039 10.1093/hmg/ddy039 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research grantid: MOP-119586 funderid: 10.13039/501100000024 – fundername: NINDS funderid: 10.13039/100000065 – fundername: NIDA funderid: 10.13039/100000026 – fundername: NHLBI funderid: 10.13039/100000050 – fundername: National Institutes of Health funderid: 10.13039/100000002 – fundername: NCI funderid: 10.13039/100000054 – fundername: NHGRI funderid: 10.13039/100000051 – fundername: NIMH funderid: 10.13039/100000025 – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 – fundername: CIHR grantid: MOP-119586 – fundername: ; ; grantid: MOP-119586 – fundername: ; ; |
GroupedDBID | --- -DZ -E4 .2P .I3 .XZ .ZR 0R~ 18M 1TH 29I 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN ABEUO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFO ACGFS ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXEN AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM C45 CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBS EE~ EJD EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 ML0 N9A NGC NLBLG NOMLY NOYVH NU- O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG ROL ROX ROZ RUSNO RW1 RXO SJN TEORI TJX TLC TMA TOX TR2 W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADNBA AFYAG AGORE AHMMS AJBYB AJNCP ALXQX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c474t-ee37d53d57e67b49eb34dc11f468bacb11ca7bc0e414c8ffe8d1c3311b72f5cd3 |
IEDL.DBID | TOX |
ISSN | 0964-6906 1460-2083 |
IngestDate | Thu Aug 21 14:07:30 EDT 2025 Thu Jul 10 23:21:39 EDT 2025 Wed Feb 19 02:32:32 EST 2025 Thu Apr 24 23:08:00 EDT 2025 Tue Jul 01 00:24:25 EDT 2025 Wed Sep 11 04:52:53 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-ee37d53d57e67b49eb34dc11f468bacb11ca7bc0e414c8ffe8d1c3311b72f5cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/hmg/ddy039 |
PMID | 29401310 |
PQID | 1995156142 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6159535 proquest_miscellaneous_1995156142 pubmed_primary_29401310 crossref_primary_10_1093_hmg_ddy039 crossref_citationtrail_10_1093_hmg_ddy039 oup_primary_10_1093_hmg_ddy039 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Human molecular genetics |
PublicationTitleAlternate | Hum Mol Genet |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Yang ( key 20180319053908_ddy039-B15) 2011; 130 Li ( key 20180319053908_ddy039-B16) 2008; 105 Filippova ( key 20180319053908_ddy039-B32) 2005; 8 Rao ( key 20180319053908_ddy039-B25) 2014; 159 Cotton ( key 20180319053908_ddy039-B7) 2015; 24 Carrel ( key 20180319053908_ddy039-B4) 2017; 372 Calabrese ( key 20180319053908_ddy039-B13) 2012; 151 Gartler ( key 20180319053908_ddy039-B21) 1983; 17 Tsuchiya ( key 20180319053908_ddy039-B24) 2004; 14 Wang ( key 20180319053908_ddy039-B40) 2006; 2 Carrel ( key 20180319053908_ddy039-B1) 2005; 434 Berletch ( key 20180319053908_ddy039-B6) 2015; 11 Balaton ( key 20180319053908_ddy039-B5) 2016; 32 Marks ( key 20180319053908_ddy039-B12) 2015; 16 Lessing ( key 20180319053908_ddy039-B42) 2016; 113 Bronson ( key 20180319053908_ddy039-B23) 1996; 93 Cotton ( key 20180319053908_ddy039-B8) 2011; 130 Horvath ( key 20180319053908_ddy039-B17) 2013; 9 Arnold ( key 20180319053908_ddy039-B26) 2016; 371 Csankovszki ( key 20180319053908_ddy039-B45) 1999; 22 Jensen ( key 20180319053908_ddy039-B29) 2005; 76 Patel ( key 20180319053908_ddy039-B18) 2017; 18 Schmouth ( key 20180319053908_ddy039-B22) 2012; 8 Reinius ( key 20180319053908_ddy039-B11) 2010; 11 Deng ( key 20180319053908_ddy039-B33) 2015; 16 Yang ( key 20180319053908_ddy039-B38) 2015; 16 Yang ( key 20180319053908_ddy039-B20) 2012; 192 Sheardown ( key 20180319053908_ddy039-B27) 1996; 5 Carrel ( key 20180319053908_ddy039-B28) 1996; 5 Chen ( key 20180319053908_ddy039-B37) 2016; 6 Balaton ( key 20180319053908_ddy039-B9) 2015; 6 Bala Tannan ( key 20180319053908_ddy039-B39) 2014; 23 Yang ( key 20180319053908_ddy039-B44) 2009; 93 Gribnau ( key 20180319053908_ddy039-B47) 2005; 168 Sahakyan ( key 20180319053908_ddy039-B19) 2017; 20 Cotton ( key 20180319053908_ddy039-B41) 2014; 23 Bellott ( key 20180319053908_ddy039-B30) 2014; 508 Park ( key 20180319053908_ddy039-B31) 2010; 27 Giorgetti ( key 20180319053908_ddy039-B14) 2016; 535 Dunford ( key 20180319053908_ddy039-B3) 2017; 49 Ciavatta ( key 20180319053908_ddy039-B34) 2006; 103 Sigova ( key 20180319053908_ddy039-B49) 2015; 350 Disteche ( key 20180319053908_ddy039-B10) 2015; 94 Goto ( key 20180319053908_ddy039-B36) 2009; 37 Boda ( key 20180319053908_ddy039-B48) 2009; 37 Hook ( key 20180319053908_ddy039-B2) 2014; 133 Mugford ( key 20180319053908_ddy039-B35) 2014; 197 Simpson ( key 20180319053908_ddy039-B46) 1997; 16 Yu ( key 20180319053908_ddy039-B43) 2000; 97 |
References_xml | – volume: 11 start-page: 614. year: 2010 ident: key 20180319053908_ddy039-B11 article-title: Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse publication-title: BMC Genomics doi: 10.1186/1471-2164-11-614 – volume: 371 start-page: 20150113. year: 2016 ident: key 20180319053908_ddy039-B26 article-title: The importance of having two X chromosomes publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci doi: 10.1098/rstb.2015.0113 – volume: 434 start-page: 400 year: 2005 ident: key 20180319053908_ddy039-B1 article-title: X-inactivation profile reveals extensive variability in X-linked gene expression in females publication-title: Nature doi: 10.1038/nature03479 – volume: 113 start-page: 14366 year: 2016 ident: key 20180319053908_ddy039-B42 article-title: A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1617597113 – volume: 372 start-page: 20160355. year: 2017 ident: key 20180319053908_ddy039-B4 article-title: When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci doi: 10.1098/rstb.2016.0355 – volume: 130 start-page: 187 year: 2011 ident: key 20180319053908_ddy039-B8 article-title: Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation publication-title: Hum. Genet doi: 10.1007/s00439-011-1007-8 – volume: 130 start-page: 175 year: 2011 ident: key 20180319053908_ddy039-B15 article-title: X-chromosome inactivation: molecular mechanisms from the human perspective publication-title: Hum. Genet doi: 10.1007/s00439-011-0994-9 – volume: 37 start-page: 238 year: 2009 ident: key 20180319053908_ddy039-B48 article-title: Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain publication-title: J. Mol. Neurosci doi: 10.1007/s12031-008-9128-9 – volume: 23 start-page: 1224 year: 2014 ident: key 20180319053908_ddy039-B39 article-title: DNA methylation profiling in X; autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation publication-title: Hum. Mol. Genet doi: 10.1093/hmg/ddt553 – volume: 20 start-page: 87 year: 2017 ident: key 20180319053908_ddy039-B19 article-title: Human naive pluripotent stem cells model X chromosome dampening and X inactivation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.10.006 – volume: 93 start-page: 9067 year: 1996 ident: key 20180319053908_ddy039-B23 article-title: Single-copy transgenic mice with chosen-site integration publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.17.9067 – volume: 5 start-page: 1355 year: 1996 ident: key 20180319053908_ddy039-B27 article-title: The mouse Smcx gene exhibits developmental and tissue specific variation in degree of escape from X inactivation publication-title: Hum. Mol. Genet doi: 10.1093/hmg/5.9.1355 – volume: 508 start-page: 494 year: 2014 ident: key 20180319053908_ddy039-B30 article-title: Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators publication-title: Nature doi: 10.1038/nature13206 – volume: 17 start-page: 155 year: 1983 ident: key 20180319053908_ddy039-B21 article-title: Mammalian X-Chromosome inactivation publication-title: Annu. Rev. Genet doi: 10.1146/annurev.ge.17.120183.001103 – volume: 49 start-page: 10 year: 2017 ident: key 20180319053908_ddy039-B3 article-title: Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias publication-title: Nat. Genet doi: 10.1038/ng.3726 – volume: 6 start-page: 37324. year: 2016 ident: key 20180319053908_ddy039-B37 article-title: YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses publication-title: Sci. Rep doi: 10.1038/srep37324 – volume: 2 start-page: e113 year: 2006 ident: key 20180319053908_ddy039-B40 article-title: Evidence of influence of genomic DNA sequence on human X chromosome inactivation publication-title: PLoS Comp. Biol doi: 10.1371/journal.pcbi.0020113 – volume: 16 start-page: 52 year: 2015 ident: key 20180319053908_ddy039-B38 article-title: The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation publication-title: Genome Biol doi: 10.1186/s13059-015-0618-0 – volume: 94 start-page: 591 year: 2015 ident: key 20180319053908_ddy039-B10 article-title: X-chromosome inactivation and escape publication-title: J. Genet doi: 10.1007/s12041-015-0574-1 – volume: 133 start-page: 417 year: 2014 ident: key 20180319053908_ddy039-B2 article-title: Turner syndrome revisited: review of new data supports the hypothesis that all viable 45, X cases are cryptic mosaics with a rescue cell line, implying an origin by mitotic loss publication-title: Hum. Genet doi: 10.1007/s00439-014-1420-x – volume: 151 start-page: 951 year: 2012 ident: key 20180319053908_ddy039-B13 article-title: Site-specific silencing of regulatory elements as a mechanism of X inactivation publication-title: Cell doi: 10.1016/j.cell.2012.10.037 – volume: 105 start-page: 17055 year: 2008 ident: key 20180319053908_ddy039-B16 article-title: Escape from X chromosome inactivation is an intrinsic property of the Jarid1c locus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0807765105 – volume: 5 start-page: 1361 year: 1996 ident: key 20180319053908_ddy039-B28 article-title: Tissue and lineage-specific variation in inactive X chromosome expression of the murine Smcx gene publication-title: Hum. Mol. Genet doi: 10.1093/hmg/5.9.1361 – volume: 535 start-page: 575 year: 2016 ident: key 20180319053908_ddy039-B14 article-title: Structural organization of the inactive X chromosome in the mouse publication-title: Nature doi: 10.1038/nature18589 – volume: 103 start-page: 9958 year: 2006 ident: key 20180319053908_ddy039-B34 article-title: A DNA insulator prevents repression of a targeted X-linked transgene but not its random or imprinted X inactivation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0603754103 – volume: 159 start-page: 1665 year: 2014 ident: key 20180319053908_ddy039-B25 article-title: A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping publication-title: Cell doi: 10.1016/j.cell.2014.11.021 – volume: 32 start-page: 348 year: 2016 ident: key 20180319053908_ddy039-B5 article-title: Escape artists of the X chromosome publication-title: Trends Genet doi: 10.1016/j.tig.2016.03.007 – volume: 37 start-page: 7416 year: 2009 ident: key 20180319053908_ddy039-B36 article-title: Inactive X chromosome-specific histone H3 modifications and CpG hypomethylation flank a chromatin boundary between an X-inactivated and an escape gene publication-title: Nucl. Acids Res doi: 10.1093/nar/gkp860 – volume: 16 start-page: 149. year: 2015 ident: key 20180319053908_ddy039-B12 article-title: Dynamics of gene silencing during X inactivation using allele-specific RNA-seq publication-title: Genome Biol doi: 10.1186/s13059-015-0698-x – volume: 168 start-page: 365 year: 2005 ident: key 20180319053908_ddy039-B47 article-title: X chromosome choice occurs independently of asynchronous replication timing publication-title: J. Cell. Biol doi: 10.1083/jcb.200405117 – volume: 93 start-page: 196 year: 2009 ident: key 20180319053908_ddy039-B44 article-title: Next generation tools for high-throughput promoter and expression analysis employing single-copy knock-ins at the Hprt1 locus publication-title: Genomics doi: 10.1016/j.ygeno.2008.09.014 – volume: 8 start-page: 31 year: 2005 ident: key 20180319053908_ddy039-B32 article-title: Boundaries between chromosomal domains of X inactivation and escape bind CTCF and lack CpG methylation during early development publication-title: Dev. Cell doi: 10.1016/j.devcel.2004.10.018 – volume: 16 start-page: 152. year: 2015 ident: key 20180319053908_ddy039-B33 article-title: Bipartite structure of the inactive mouse X chromosome publication-title: Genome Biol doi: 10.1186/s13059-015-0728-8 – volume: 27 start-page: 2446 year: 2010 ident: key 20180319053908_ddy039-B31 article-title: Strong purifying selection at genes escaping X chromosome inactivation publication-title: Mol. Biol. Evol doi: 10.1093/molbev/msq143 – volume: 197 start-page: 715 year: 2014 ident: key 20180319053908_ddy039-B35 article-title: Evidence for local regulatory control of escape from imprinted X chromosome inactivation publication-title: Genetics doi: 10.1534/genetics.114.162800 – volume: 192 start-page: 1281 year: 2012 ident: key 20180319053908_ddy039-B20 article-title: Targeting of >1.5 Mb of human DNA into the mouse X chromosome reveals presence of cis-acting regulators of epigenetic silencing publication-title: Genetics doi: 10.1534/genetics.112.143743 – volume: 14 start-page: 1275 year: 2004 ident: key 20180319053908_ddy039-B24 article-title: Comparative sequence and X-inactivation analyses of a domain of escape in human xp11.2 and the conserved segment in mouse publication-title: Genome Res doi: 10.1101/gr.2575904 – volume: 76 start-page: 227 year: 2005 ident: key 20180319053908_ddy039-B29 article-title: Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation publication-title: Am. J. Hum. Genet doi: 10.1086/427563 – volume: 97 start-page: 5978 year: 2000 ident: key 20180319053908_ddy039-B43 article-title: An efficient recombination system for chromosome engineering in Escherichia coli publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.100127597 – volume: 350 start-page: 978 year: 2015 ident: key 20180319053908_ddy039-B49 article-title: Transcription factor trapping by RNA in gene regulatory elements publication-title: Science doi: 10.1126/science.aad3346 – volume: 8 start-page: e1002544. year: 2012 ident: key 20180319053908_ddy039-B22 article-title: Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002544 – volume: 18 start-page: 54 year: 2017 ident: key 20180319053908_ddy039-B18 article-title: Human embryonic stem cells do not change their X inactivation status during differentiation publication-title: Cell Rep doi: 10.1016/j.celrep.2016.11.054 – volume: 24 start-page: 1528 year: 2015 ident: key 20180319053908_ddy039-B7 article-title: Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation publication-title: Hum. Mol. Genet doi: 10.1093/hmg/ddu564 – volume: 9 start-page: e1003952 year: 2013 ident: key 20180319053908_ddy039-B17 article-title: Deletion of an X-inactivation boundary disrupts adjacent gene silencing publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003952 – volume: 16 start-page: 19 year: 1997 ident: key 20180319053908_ddy039-B46 article-title: Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice publication-title: Nat. Genet doi: 10.1038/ng0597-19 – volume: 6 start-page: 35 year: 2015 ident: key 20180319053908_ddy039-B9 article-title: Derivation of consensus inactivation status for X-linked genes from genome-wide studies publication-title: Biol. Sex. Dif doi: 10.1186/s13293-015-0053-7 – volume: 22 start-page: 323 year: 1999 ident: key 20180319053908_ddy039-B45 article-title: Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation publication-title: Nat. Genet doi: 10.1038/11887 – volume: 11 start-page: e1005079. year: 2015 ident: key 20180319053908_ddy039-B6 article-title: Escape from X inactivation varies in mouse tissues publication-title: PLoS Genet doi: 10.1371/journal.pgen.1005079 – volume: 23 start-page: 1211 year: 2014 ident: key 20180319053908_ddy039-B41 article-title: Spread of X-chromosome inactivation into autosomal sequences: role for DNA elements, chromatin features and chromosomal domains publication-title: Hum. Mol. Genet doi: 10.1093/hmg/ddt513 |
SSID | ssj0016437 |
Score | 2.3852584 |
Snippet | Abstract
A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide... A long-standing question concerning X-chromosome inactivation (XCI) has been how some genes avoid the otherwise stable chromosome-wide heterochromatinization... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1252 |
SubjectTerms | Animals Female Humans Male Mice Mice, Transgenic Nuclear Proteins - genetics Nuclear Proteins - metabolism Sex Characteristics Transcription Factors - genetics Transcription Factors - metabolism X Chromosome - genetics X Chromosome - metabolism X Chromosome Inactivation |
Title | Human cis-acting elements regulating escape from X-chromosome inactivation function in mouse |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29401310 https://www.proquest.com/docview/1995156142 https://pubmed.ncbi.nlm.nih.gov/PMC6159535 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEF6koHgRra_6KCt68bC029089ihiqUr10kIPQsg-0hZsKk099N-7k01DI0VvIZkNy0zCzM588w1Cd9YFCqFjwDy1GeHGMCINEyQImfFD60_czMj-m98b8peRNypANNmWEr5grcls3NJ61WbQpme9LzDkD95HZa0ASk85o57PCdDurklIK0srbqfSyrYRUf4GRm54mu4hOihCRPzgbHqEdkxaR7tuaOSqjvb6RTn8GH3kKXisphmB_oR0jI1Dg2d44WbM5_cyADlhaCTBI6ImAMDL5jODpymscjlZDA4uv5imGNIB5gQNu0-Dxx4pxiUQxQO-JFbPgfaY9gLjB5ILe0zmWlGacD-UsZKUqjiQqm045SpMEhNqqhijVAadxFOanaJaOk_NOcI5JwxXyouBbl-y2NdUSF_IRMUdyToNdL_WZqQKLnEYafEZuZo2i6zmI6f5BrotZb8cg8ZWqaY1yp8CN2t7RfYPgLJGnBqrjgiazCkQmtptnTn7le_pCDg_0nYDBRXLlgLArl19kk4nOcu2DfWEx7yL_zZ2ifZtEBU6NM8Vqi0X3-baBipL2bQh-vNrM_9afwBYVeol |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+cis-acting+elements+regulating+escape+from+X-chromosome+inactivation+function+in+mouse&rft.jtitle=Human+molecular+genetics&rft.au=Peeters%2C+Samantha+B&rft.au=Korecki%2C+Andrea+J&rft.au=Simpson%2C+Elizabeth+M&rft.au=Brown%2C+Carolyn+J&rft.date=2018-04-01&rft.eissn=1460-2083&rft.volume=27&rft.issue=7&rft.spage=1252&rft_id=info:doi/10.1093%2Fhmg%2Fddy039&rft_id=info%3Apmid%2F29401310&rft.externalDocID=29401310 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon |