DHHC4 and DHHC5 Facilitate Fatty Acid Uptake by Palmitoylating and Targeting CD36 to the Plasma Membrane

Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 26; no. 1; pp. 209 - 221.e5
Main Authors Wang, Juan, Hao, Jian-Wei, Wang, Xu, Guo, Huiling, Sun, Hui-Hui, Lai, Xiao-Ying, Liu, Li-Ying, Zhu, Mingxia, Wang, Hao-Yan, Li, Yi-Fan, Yu, Li-Yang, Xie, Changchuan, Wang, Hong-Rui, Mo, Wei, Zhou, Hai-Meng, Chen, Shuai, Liang, Guosheng, Zhao, Tong-Jin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4−/− and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake. [Display omitted] •CD36 is a physiological substrate of palmitoyl acyltransferases DHHC4/5•Palmitoylation of CD36 targets it to the plasma membrane•DHHC4/5 are required for the cellular fatty acid uptake activity of CD36•DHHC4/5 regulate fatty acid uptake activity in adipose tissues Regulation of fatty acid uptake remains unclear. Wang et al. show that palmitoylation of CD36 by DHHC4 and DHHC5 is required for its plasma membrane localization and fatty acid uptake activity. Deficiency in DHHC4 or DHHC5 leads to decreased fatty acid uptake and increased susceptibility to cold.
AbstractList Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4-/- and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake.Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4-/- and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake.
Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4 and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake.
Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4−/− and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake. [Display omitted] •CD36 is a physiological substrate of palmitoyl acyltransferases DHHC4/5•Palmitoylation of CD36 targets it to the plasma membrane•DHHC4/5 are required for the cellular fatty acid uptake activity of CD36•DHHC4/5 regulate fatty acid uptake activity in adipose tissues Regulation of fatty acid uptake remains unclear. Wang et al. show that palmitoylation of CD36 by DHHC4 and DHHC5 is required for its plasma membrane localization and fatty acid uptake activity. Deficiency in DHHC4 or DHHC5 leads to decreased fatty acid uptake and increased susceptibility to cold.
Author Mo, Wei
Zhao, Tong-Jin
Zhu, Mingxia
Wang, Xu
Liu, Li-Ying
Yu, Li-Yang
Chen, Shuai
Hao, Jian-Wei
Lai, Xiao-Ying
Wang, Juan
Guo, Huiling
Sun, Hui-Hui
Wang, Hao-Yan
Li, Yi-Fan
Xie, Changchuan
Wang, Hong-Rui
Liang, Guosheng
Zhou, Hai-Meng
Author_xml – sequence: 1
  givenname: Juan
  surname: Wang
  fullname: Wang, Juan
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 2
  givenname: Jian-Wei
  surname: Hao
  fullname: Hao, Jian-Wei
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 3
  givenname: Xu
  surname: Wang
  fullname: Wang, Xu
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 4
  givenname: Huiling
  surname: Guo
  fullname: Guo, Huiling
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 5
  givenname: Hui-Hui
  surname: Sun
  fullname: Sun, Hui-Hui
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 6
  givenname: Xiao-Ying
  surname: Lai
  fullname: Lai, Xiao-Ying
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 7
  givenname: Li-Ying
  surname: Liu
  fullname: Liu, Li-Ying
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 8
  givenname: Mingxia
  surname: Zhu
  fullname: Zhu, Mingxia
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 9
  givenname: Hao-Yan
  surname: Wang
  fullname: Wang, Hao-Yan
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 10
  givenname: Yi-Fan
  surname: Li
  fullname: Li, Yi-Fan
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 11
  givenname: Li-Yang
  surname: Yu
  fullname: Yu, Li-Yang
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 12
  givenname: Changchuan
  surname: Xie
  fullname: Xie, Changchuan
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 13
  givenname: Hong-Rui
  surname: Wang
  fullname: Wang, Hong-Rui
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 14
  givenname: Wei
  surname: Mo
  fullname: Mo, Wei
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
– sequence: 15
  givenname: Hai-Meng
  surname: Zhou
  fullname: Zhou, Hai-Meng
  organization: Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China, 314006
– sequence: 16
  givenname: Shuai
  surname: Chen
  fullname: Chen, Shuai
  organization: MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Pukou District, Nanjing, China, 210061
– sequence: 17
  givenname: Guosheng
  surname: Liang
  fullname: Liang, Guosheng
  organization: Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
– sequence: 18
  givenname: Tong-Jin
  orcidid: 0000-0001-6861-3071
  surname: Zhao
  fullname: Zhao, Tong-Jin
  email: zhaotj@xmu.edu.cn
  organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30605677$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEcxINUfNR-A5EcvXRNstld60EorbVCxR7ac8gm_62p-6hJKvTbmz4U8aC5ZALzG8LMOWrVTQ0IXVISUULTm2WkoLSwihihtxFlEWHsCJ0xRmmXMp61fuhT1HFuScJJCaU9foJO4yCTNMvO0OtwPB5wLGuNtyrBI6lMabz0EKT3G9xXRuP5yss3wPkGT2VZGd9sSulNvdiBM2kXsHsNhnGKfYP9K-BpKV0l8TNUuZU1XKDjQpYOOoe7jeajh9lg3J28PD4N-pOu4hn3XVCMxsAZT1Kl45QTTViRFFwlmU5JrkkmIWF5HCvFCchC8UIromPOc94jMovb6Hqfu7LN-xqcF5Vxoawy_KFZO8FoyikhITpYrw7WdV6BFitrKmk34qudYOB7g7KNcxaKbwslYruDWIr9DmK7g6BMhB0CdvcLU9tCTVN7K035H3y_hyGU9GHACqcM1Aq0saC80I35O-AT2wujLw
CitedBy_id crossref_primary_10_1146_annurev_physiol_032122_030352
crossref_primary_10_3389_fimmu_2024_1337478
crossref_primary_10_1111_febs_15728
crossref_primary_10_3389_fcell_2020_600368
crossref_primary_10_15252_embr_202154229
crossref_primary_10_2147_JHC_S447578
crossref_primary_10_3390_cells10071833
crossref_primary_10_1172_jci_insight_147057
crossref_primary_10_1093_cvr_cvaa319
crossref_primary_10_1016_j_celrep_2024_114962
crossref_primary_10_3390_cells14050385
crossref_primary_10_1007_s00432_022_03957_8
crossref_primary_10_1083_jcb_202307103
crossref_primary_10_2147_JIR_S502314
crossref_primary_10_1016_j_bbalip_2023_159369
crossref_primary_10_1007_s11426_023_1796_0
crossref_primary_10_1038_s41418_024_01397_0
crossref_primary_10_1038_s42255_024_01036_5
crossref_primary_10_1186_s12967_024_05592_y
crossref_primary_10_1002_glia_24113
crossref_primary_10_1007_s11030_023_10633_7
crossref_primary_10_1016_j_tem_2024_10_001
crossref_primary_10_1038_s41467_022_33788_7
crossref_primary_10_12677_BP_2023_132016
crossref_primary_10_1002_jcp_30122
crossref_primary_10_12677_pi_2024_133022
crossref_primary_10_1016_j_celrep_2021_109314
crossref_primary_10_1098_rsob_200411
crossref_primary_10_1111_febs_15709
crossref_primary_10_3389_fonc_2025_1547636
crossref_primary_10_3390_cells11030565
crossref_primary_10_3390_ijms222313094
crossref_primary_10_3389_fcell_2021_673647
crossref_primary_10_1016_j_ajpath_2024_10_005
crossref_primary_10_1021_acschembio_1c00405
crossref_primary_10_3390_genes13122301
crossref_primary_10_1002_jcp_31047
crossref_primary_10_1038_s41580_024_00700_8
crossref_primary_10_1038_s41467_019_11876_5
crossref_primary_10_2337_db21_0708
crossref_primary_10_3390_ijms21249438
crossref_primary_10_1111_exd_14575
crossref_primary_10_1007_s00018_023_05104_z
crossref_primary_10_1016_j_molcel_2024_10_002
crossref_primary_10_1016_j_bbapap_2024_141052
crossref_primary_10_1038_s41401_024_01248_1
crossref_primary_10_1038_s41467_023_44393_7
crossref_primary_10_1016_j_celrep_2022_111806
crossref_primary_10_1016_j_jare_2024_12_041
crossref_primary_10_1097_IN9_0000000000000001
crossref_primary_10_1016_j_bcp_2023_115965
crossref_primary_10_4049_jimmunol_2300241
crossref_primary_10_1016_j_ijbiomac_2024_129731
crossref_primary_10_1128_jvi_01245_23
crossref_primary_10_1007_s11033_022_07809_z
crossref_primary_10_3389_fcell_2023_1225628
crossref_primary_10_1002_mco2_261
crossref_primary_10_3389_fphys_2020_01050
crossref_primary_10_1021_acs_jproteome_0c00409
crossref_primary_10_3390_ijms20143449
crossref_primary_10_1080_10408398_2024_2442064
crossref_primary_10_1016_j_aquaculture_2022_738002
crossref_primary_10_1016_j_arr_2023_101920
crossref_primary_10_1016_j_molmet_2022_101574
crossref_primary_10_1111_liv_16130
crossref_primary_10_1016_j_devcel_2023_12_005
crossref_primary_10_1089_ars_2021_0157
crossref_primary_10_1111_bph_15863
crossref_primary_10_1016_j_celrep_2024_114762
crossref_primary_10_3390_cells12121605
crossref_primary_10_1007_s11427_022_2157_y
crossref_primary_10_1016_j_celrep_2021_109281
crossref_primary_10_1038_s41392_024_01759_7
crossref_primary_10_1002_eji_202350476
crossref_primary_10_1002_mnfr_70012
crossref_primary_10_1016_j_plipres_2022_101193
crossref_primary_10_1016_j_aninu_2023_12_004
crossref_primary_10_1016_j_cbpa_2021_07_002
crossref_primary_10_1016_j_metabol_2024_155905
crossref_primary_10_1186_s13148_025_01814_2
crossref_primary_10_1016_j_jbc_2022_102000
crossref_primary_10_1016_j_celrep_2024_113720
crossref_primary_10_1242_jcs_261319
crossref_primary_10_3389_fimmu_2021_659533
crossref_primary_10_1016_j_celrep_2023_113389
crossref_primary_10_3389_fphys_2023_1122895
crossref_primary_10_1038_s42255_022_00642_5
crossref_primary_10_1039_D4FO00099D
crossref_primary_10_1016_j_chembiol_2019_12_002
crossref_primary_10_1016_j_cmet_2023_09_012
crossref_primary_10_3390_ijms21155539
crossref_primary_10_1038_s41467_020_15109_y
crossref_primary_10_1016_j_chembiol_2021_03_012
crossref_primary_10_1080_10428194_2024_2376178
crossref_primary_10_3389_fphys_2021_669279
crossref_primary_10_1016_j_semcancer_2022_02_010
crossref_primary_10_1016_j_ijbiomac_2023_127324
crossref_primary_10_52601_bpr_2024_240907
crossref_primary_10_3390_jpm12061010
crossref_primary_10_1021_acs_accounts_9b00354
crossref_primary_10_1111_cas_16111
crossref_primary_10_1242_jcs_251819
crossref_primary_10_3389_fcell_2019_00109
crossref_primary_10_1038_s41392_021_00825_8
crossref_primary_10_1111_imm_13822
crossref_primary_10_3390_ijms21072283
crossref_primary_10_1161_CIRCULATIONAHA_123_065213
crossref_primary_10_3389_fcvm_2022_792717
crossref_primary_10_4093_dmj_2020_0053
crossref_primary_10_1002_mco2_752
crossref_primary_10_1126_sciadv_ado3141
crossref_primary_10_1186_s13046_024_03154_0
crossref_primary_10_1021_acs_jafc_2c06791
crossref_primary_10_1038_s41467_020_18565_8
crossref_primary_10_1080_15548627_2023_2196876
crossref_primary_10_1016_j_imlet_2023_12_002
crossref_primary_10_3390_biom11111567
Cites_doi 10.1038/nrm2084
10.1073/pnas.1413627111
10.1016/j.bbalip.2006.03.010
10.1073/pnas.1002271107
10.1074/jbc.M309377200
10.1126/science.1231143
10.1083/jcb.201112098
10.1016/j.bbrc.2014.12.124
10.2337/db14-0369
10.1097/01.mol.0000226119.20307.2b
10.1038/ncomms9200
10.1016/j.cmet.2018.02.021
10.1016/j.cell.2013.04.025
10.1007/s11010-005-9034-1
10.7554/eLife.01293
10.1146/annurev.nutr.22.020402.130846
10.1074/jbc.M111.272369
10.7554/eLife.11306
10.1146/annurev-nutr-071812-161220
10.1074/jbc.M003826200
10.1194/jlr.M600255-JLR200
10.1016/j.cmet.2011.02.005
10.1016/bs.ctm.2015.10.003
10.1016/j.tem.2008.11.001
10.1038/nchembio834
10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T
10.1074/jbc.M111.306183
10.1210/en.2015-1866
10.1007/s11745-001-0809-2
10.1172/JCI99315
10.1074/jbc.M109.079426
10.1038/nchembio.362
10.1073/pnas.1011116107
10.7554/eLife.01295
10.1074/jbc.275.1.261
10.2337/db06-1699
10.1016/j.cbpa.2015.11.008
10.1194/jlr.D011106
10.1194/jlr.R600007-JLR200
10.1016/j.neuron.2011.11.021
10.1038/ncb1454
10.1172/JCI21514
10.1016/j.tibs.2011.01.003
10.1021/bi400914c
10.1016/j.cell.2006.01.040
10.1016/j.bbamcr.2010.07.002
10.1074/jbc.271.37.22315
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.celrep.2018.12.022
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 221.e5
ExternalDocumentID 30605677
10_1016_j_celrep_2018_12_022
S2211124718319338
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-ec213e42456cd3640d02f5f4c57d60bd07ae52b33cc40eafc4fdc0d344b490a73
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Fri Jul 11 01:06:45 EDT 2025
Thu Apr 03 06:56:27 EDT 2025
Tue Jul 01 02:58:59 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Wed May 17 00:03:06 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords CD36
fatty acid uptake
DHHC4
DHHC5
protein palmitoylation
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ec213e42456cd3640d02f5f4c57d60bd07ae52b33cc40eafc4fdc0d344b490a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6861-3071
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124718319338
PMID 30605677
PQID 2164100364
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2164100364
pubmed_primary_30605677
crossref_primary_10_1016_j_celrep_2018_12_022
crossref_citationtrail_10_1016_j_celrep_2018_12_022
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_12_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-02
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dekker, Rocks, Vartak, Menninger, Hedberg, Balamurugan, Wetzel, Renner, Gerauer, Schölermann (bib4) 2010; 6
Peng, Thinon, Hang (bib31) 2016; 30
Thomas, Hayashi, Chiu, Chen, Huganir (bib40) 2012; 73
Zhao, Liang, Li, Xie, Sleeman, Murphy, Valenzuela, Yancopoulos, Goldstein, Brown (bib46) 2010; 107
Forrester, Hess, Thompson, Hultman, Moseley, Stamler, Casey (bib10) 2011; 52
Howie, Reilly, Fraser, Vlachaki Walker, Wypijewski, Ashford, Calaghan, McClafferty, Tian, Shipston (bib18) 2014; 111
Webb, Hermida-Matsumoto, Resh (bib43) 2000; 275
Zhao, Sakata, Li, Liang, Richardson, Brown, Goldstein, Zigman (bib47) 2010; 107
Wilson, Tran, Erion, Vera, Febbraio, Weiss (bib44) 2016; 157
Eguchi, Wang, Yu, Kershaw, Chiu, Dushay, Estall, Klein, Maratos-Flier, Rosen (bib6) 2011; 13
Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (bib3) 2013; 339
Thorne, Ralston, de Bock, Mhaidat, Zhang, Boyd, Burns (bib41) 2010; 1803
Putri, Syamsunarno, Iso, Yamaguchi, Hanaoka, Sunaga, Koitabashi, Matsui, Yamazaki, Kameo (bib33) 2015; 457
Lin, Fine, Lu, Hofmann, Frazier, Hilgemann (bib23) 2013; 2
Wang, Yang, Shivalila, Dawlaty, Cheng, Zhang, Jaenisch (bib42) 2013; 153
Lin, Conibear (bib22) 2015; 4
Moffat, Grueneberg, Yang, Kim, Kloepfer, Hinkle, Piqani, Eisenhaure, Luo, Grenier (bib28) 2006; 124
Hames, Vella, Kemp, Jensen (bib16) 2014; 63
Newberry, Xie, Kennedy, Han, Buhman, Luo, Gross, Davidson (bib29) 2003; 278
Ohno, Kihara, Sano, Igarashi (bib30) 2006; 1761
Greaves, Chamberlain (bib13) 2011; 36
Huang, Zeng, Kim, Yuan, Han, Muallem, Worley (bib19) 2006; 8
Hajri, Hall, Jensen, Pietka, Drover, Tao, Eckel, Abumrad (bib15) 2007; 56
Li, Martin, Cravatt, Hofmann (bib21) 2012; 287
Pepino, Kuda, Samovski, Abumrad (bib32) 2014; 34
Mashek, Coleman (bib26) 2006; 17
Gorleku, Barns, Prescott, Greaves, Chamberlain (bib12) 2011; 286
Resh (bib34) 2006; 2
Linder, Deschenes (bib24) 2007; 8
Hilgemann, Fine, Linder, Jennings, Lin (bib17) 2013; 2
Drover, Ajmal, Nassir, Davidson, Nauli, Sahoo, Tso, Abumrad (bib5) 2005; 115
Fukata, Murakami, Yokoi, Fukata (bib11) 2016; 77
Li, Hu, Höfer, Wong, Cooper, Birnbaum, Hammer, Hofmann (bib20) 2010; 285
Xu, Jay, Brunaldi, Huang, Hamilton (bib45) 2013; 52
Luo, Jiang, Lian, Liu, Shi, Li, Song, Ye, He, Yao (bib25) 2018; 27
Mitchell, Vasudevan, Linder, Deschenes (bib27) 2006; 47
Roux, Kim, Raida, Burke (bib35) 2012; 196
Su, Abumrad (bib38) 2009; 20
Eyre, Cleland, Tandon, Mayrhofer (bib8) 2007; 48
Ehehalt, Füllekrug, Pohl, Ring, Herrmann, Stremmel (bib7) 2006; 284
Hajri, Abumrad (bib14) 2002; 22
Brigidi, Santyr, Shimell, Jovellar, Bamji (bib1) 2015; 6
Son, Basu, Samovski, Pietka, Peche, Willecke, Fang, Yu, Scerbo, Chang (bib36) 2018; 128
Farley, Soriano, Steffen, Dymecki (bib9) 2000; 28
Tao, Wagner, Lublin (bib39) 1996; 271
Coburn, Knapp, Febbraio, Beets, Silverstein, Abumrad (bib2) 2000; 275
Stremmel, Pohl, Ring, Herrmann (bib37) 2001; 36
Fukata (10.1016/j.celrep.2018.12.022_bib11) 2016; 77
Eguchi (10.1016/j.celrep.2018.12.022_bib6) 2011; 13
Webb (10.1016/j.celrep.2018.12.022_bib43) 2000; 275
Xu (10.1016/j.celrep.2018.12.022_bib45) 2013; 52
Linder (10.1016/j.celrep.2018.12.022_bib24) 2007; 8
Farley (10.1016/j.celrep.2018.12.022_bib9) 2000; 28
Greaves (10.1016/j.celrep.2018.12.022_bib13) 2011; 36
Mitchell (10.1016/j.celrep.2018.12.022_bib27) 2006; 47
Howie (10.1016/j.celrep.2018.12.022_bib18) 2014; 111
Thorne (10.1016/j.celrep.2018.12.022_bib41) 2010; 1803
Stremmel (10.1016/j.celrep.2018.12.022_bib37) 2001; 36
Drover (10.1016/j.celrep.2018.12.022_bib5) 2005; 115
Eyre (10.1016/j.celrep.2018.12.022_bib8) 2007; 48
Hajri (10.1016/j.celrep.2018.12.022_bib15) 2007; 56
Coburn (10.1016/j.celrep.2018.12.022_bib2) 2000; 275
Li (10.1016/j.celrep.2018.12.022_bib20) 2010; 285
Wilson (10.1016/j.celrep.2018.12.022_bib44) 2016; 157
Luo (10.1016/j.celrep.2018.12.022_bib25) 2018; 27
Wang (10.1016/j.celrep.2018.12.022_bib42) 2013; 153
Brigidi (10.1016/j.celrep.2018.12.022_bib1) 2015; 6
Li (10.1016/j.celrep.2018.12.022_bib21) 2012; 287
Lin (10.1016/j.celrep.2018.12.022_bib23) 2013; 2
Hilgemann (10.1016/j.celrep.2018.12.022_bib17) 2013; 2
Newberry (10.1016/j.celrep.2018.12.022_bib29) 2003; 278
Pepino (10.1016/j.celrep.2018.12.022_bib32) 2014; 34
Thomas (10.1016/j.celrep.2018.12.022_bib40) 2012; 73
Ehehalt (10.1016/j.celrep.2018.12.022_bib7) 2006; 284
Peng (10.1016/j.celrep.2018.12.022_bib31) 2016; 30
Tao (10.1016/j.celrep.2018.12.022_bib39) 1996; 271
Zhao (10.1016/j.celrep.2018.12.022_bib46) 2010; 107
Hames (10.1016/j.celrep.2018.12.022_bib16) 2014; 63
Su (10.1016/j.celrep.2018.12.022_bib38) 2009; 20
Gorleku (10.1016/j.celrep.2018.12.022_bib12) 2011; 286
Mashek (10.1016/j.celrep.2018.12.022_bib26) 2006; 17
Putri (10.1016/j.celrep.2018.12.022_bib33) 2015; 457
Dekker (10.1016/j.celrep.2018.12.022_bib4) 2010; 6
Son (10.1016/j.celrep.2018.12.022_bib36) 2018; 128
Forrester (10.1016/j.celrep.2018.12.022_bib10) 2011; 52
Hajri (10.1016/j.celrep.2018.12.022_bib14) 2002; 22
Zhao (10.1016/j.celrep.2018.12.022_bib47) 2010; 107
Roux (10.1016/j.celrep.2018.12.022_bib35) 2012; 196
Lin (10.1016/j.celrep.2018.12.022_bib22) 2015; 4
Moffat (10.1016/j.celrep.2018.12.022_bib28) 2006; 124
Cong (10.1016/j.celrep.2018.12.022_bib3) 2013; 339
Resh (10.1016/j.celrep.2018.12.022_bib34) 2006; 2
Huang (10.1016/j.celrep.2018.12.022_bib19) 2006; 8
Ohno (10.1016/j.celrep.2018.12.022_bib30) 2006; 1761
References_xml – volume: 278
  start-page: 51664
  year: 2003
  end-page: 51672
  ident: bib29
  article-title: Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene
  publication-title: J. Biol. Chem.
– volume: 20
  start-page: 72
  year: 2009
  end-page: 77
  ident: bib38
  article-title: Cellular fatty acid uptake: a pathway under construction
  publication-title: Trends Endocrinol. Metab.
– volume: 153
  start-page: 910
  year: 2013
  end-page: 918
  ident: bib42
  article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
– volume: 36
  start-page: 981
  year: 2001
  end-page: 989
  ident: bib37
  article-title: A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids
  publication-title: Lipids
– volume: 48
  start-page: 528
  year: 2007
  end-page: 542
  ident: bib8
  article-title: Importance of the carboxyl terminus of FAT/CD36 for plasma membrane localization and function in long-chain fatty acid uptake
  publication-title: J. Lipid Res.
– volume: 13
  start-page: 249
  year: 2011
  end-page: 259
  ident: bib6
  article-title: Transcriptional control of adipose lipid handling by IRF4
  publication-title: Cell Metab.
– volume: 47
  start-page: 1118
  year: 2006
  end-page: 1127
  ident: bib27
  article-title: Protein palmitoylation by a family of DHHC protein S-acyltransferases
  publication-title: J. Lipid Res.
– volume: 63
  start-page: 3606
  year: 2014
  end-page: 3614
  ident: bib16
  article-title: Free fatty acid uptake in humans with CD36 deficiency
  publication-title: Diabetes
– volume: 73
  start-page: 482
  year: 2012
  end-page: 496
  ident: bib40
  article-title: Palmitoylation by DHHC5/8 targets GRIP1 to dendritic endosomes to regulate AMPA-R trafficking
  publication-title: Neuron
– volume: 77
  start-page: 97
  year: 2016
  end-page: 141
  ident: bib11
  article-title: Local palmitoylation cycles and specialized membrane domain organization
  publication-title: Curr. Top. Membr.
– volume: 128
  start-page: 4329
  year: 2018
  end-page: 4342
  ident: bib36
  article-title: Endothelial cell CD36 optimizes tissue fatty acid uptake
  publication-title: J. Clin. Invest.
– volume: 286
  start-page: 39573
  year: 2011
  end-page: 39584
  ident: bib12
  article-title: Endoplasmic reticulum localization of DHHC palmitoyltransferases mediated by lysine-based sorting signals
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 1003
  year: 2006
  end-page: 1010
  ident: bib19
  article-title: STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels
  publication-title: Nat. Cell Biol.
– volume: 6
  start-page: 449
  year: 2010
  end-page: 456
  ident: bib4
  article-title: Small-molecule inhibition of APT1 affects Ras localization and signaling
  publication-title: Nat. Chem. Biol.
– volume: 124
  start-page: 1283
  year: 2006
  end-page: 1298
  ident: bib28
  article-title: A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen
  publication-title: Cell
– volume: 27
  start-page: 843
  year: 2018
  end-page: 853.e6
  ident: bib25
  article-title: AIDA selectively mediates downregulation of fat synthesis enzymes by ERAD to retard intestinal fat absorption and prevent obesity
  publication-title: Cell Metab.
– volume: 2
  start-page: 584
  year: 2006
  end-page: 590
  ident: bib34
  article-title: Trafficking and signaling by fatty-acylated and prenylated proteins
  publication-title: Nat. Chem. Biol.
– volume: 285
  start-page: 13022
  year: 2010
  end-page: 13031
  ident: bib20
  article-title: DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory
  publication-title: J. Biol. Chem.
– volume: 8
  start-page: 74
  year: 2007
  end-page: 84
  ident: bib24
  article-title: Palmitoylation: policing protein stability and traffic
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 22
  start-page: 383
  year: 2002
  end-page: 415
  ident: bib14
  article-title: Fatty acid transport across membranes: relevance to nutrition and metabolic pathology
  publication-title: Annu. Rev. Nutr.
– volume: 17
  start-page: 274
  year: 2006
  end-page: 278
  ident: bib26
  article-title: Cellular fatty acid uptake: the contribution of metabolism
  publication-title: Curr. Opin. Lipidol.
– volume: 52
  start-page: 393
  year: 2011
  end-page: 398
  ident: bib10
  article-title: Site-specific analysis of protein S-acylation by resin-assisted capture
  publication-title: J. Lipid Res.
– volume: 275
  start-page: 32523
  year: 2000
  end-page: 32529
  ident: bib2
  article-title: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 106
  year: 2000
  end-page: 110
  ident: bib9
  article-title: Widespread recombinase expression using FLPeR (flipper) mice
  publication-title: Genesis
– volume: 271
  start-page: 22315
  year: 1996
  end-page: 22320
  ident: bib39
  article-title: CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails
  publication-title: J. Biol. Chem.
– volume: 107
  start-page: 15868
  year: 2010
  end-page: 15873
  ident: bib47
  article-title: Ghrelin secretion stimulated by β1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 157
  start-page: 570
  year: 2016
  end-page: 585
  ident: bib44
  article-title: Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice
  publication-title: Endocrinology
– volume: 2
  start-page: e01293
  year: 2013
  ident: bib17
  article-title: Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts
  publication-title: eLife
– volume: 1761
  start-page: 474
  year: 2006
  end-page: 483
  ident: bib30
  article-title: Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins
  publication-title: Biochim. Biophys. Acta
– volume: 1803
  start-page: 1298
  year: 2010
  end-page: 1307
  ident: bib41
  article-title: Palmitoylation of CD36/FAT regulates the rate of its post-transcriptional processing in the endoplasmic reticulum
  publication-title: Biochim. Biophys. Acta
– volume: 107
  start-page: 7467
  year: 2010
  end-page: 7472
  ident: bib46
  article-title: Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 2
  start-page: e01295
  year: 2013
  ident: bib23
  article-title: Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle
  publication-title: eLife
– volume: 111
  start-page: 17534
  year: 2014
  end-page: 17539
  ident: bib18
  article-title: Substrate recognition by the cell surface palmitoyl transferase DHHC5
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 56
  start-page: 1872
  year: 2007
  end-page: 1880
  ident: bib15
  article-title: CD36-facilitated fatty acid uptake inhibits leptin production and signaling in adipose tissue
  publication-title: Diabetes
– volume: 287
  start-page: 523
  year: 2012
  end-page: 530
  ident: bib21
  article-title: DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells
  publication-title: J. Biol. Chem.
– volume: 34
  start-page: 281
  year: 2014
  end-page: 303
  ident: bib32
  article-title: Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism
  publication-title: Annu. Rev. Nutr.
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: bib3
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 457
  start-page: 520
  year: 2015
  end-page: 525
  ident: bib33
  article-title: CD36 is indispensable for thermogenesis under conditions of fasting and cold stress
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 30
  start-page: 77
  year: 2016
  end-page: 86
  ident: bib31
  article-title: Proteomic analysis of fatty-acylated proteins
  publication-title: Curr. Opin. Chem. Biol.
– volume: 284
  start-page: 135
  year: 2006
  end-page: 140
  ident: bib7
  article-title: Translocation of long chain fatty acids across the plasma membrane--lipid rafts and fatty acid transport proteins
  publication-title: Mol. Cell. Biochem.
– volume: 275
  start-page: 261
  year: 2000
  end-page: 270
  ident: bib43
  article-title: Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: 8200
  year: 2015
  ident: bib1
  article-title: Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5
  publication-title: Nat. Commun.
– volume: 196
  start-page: 801
  year: 2012
  end-page: 810
  ident: bib35
  article-title: A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells
  publication-title: J. Cell Biol.
– volume: 115
  start-page: 1290
  year: 2005
  end-page: 1297
  ident: bib5
  article-title: CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood
  publication-title: J. Clin. Invest.
– volume: 4
  start-page: e11306
  year: 2015
  ident: bib22
  article-title: ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization
  publication-title: eLife
– volume: 52
  start-page: 7254
  year: 2013
  end-page: 7261
  ident: bib45
  article-title: CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane
  publication-title: Biochemistry
– volume: 36
  start-page: 245
  year: 2011
  end-page: 253
  ident: bib13
  article-title: DHHC palmitoyl transferases: substrate interactions and (patho)physiology
  publication-title: Trends Biochem. Sci.
– volume: 8
  start-page: 74
  year: 2007
  ident: 10.1016/j.celrep.2018.12.022_bib24
  article-title: Palmitoylation: policing protein stability and traffic
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2084
– volume: 111
  start-page: 17534
  year: 2014
  ident: 10.1016/j.celrep.2018.12.022_bib18
  article-title: Substrate recognition by the cell surface palmitoyl transferase DHHC5
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1413627111
– volume: 1761
  start-page: 474
  year: 2006
  ident: 10.1016/j.celrep.2018.12.022_bib30
  article-title: Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2006.03.010
– volume: 107
  start-page: 7467
  year: 2010
  ident: 10.1016/j.celrep.2018.12.022_bib46
  article-title: Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1002271107
– volume: 278
  start-page: 51664
  year: 2003
  ident: 10.1016/j.celrep.2018.12.022_bib29
  article-title: Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M309377200
– volume: 339
  start-page: 819
  year: 2013
  ident: 10.1016/j.celrep.2018.12.022_bib3
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 196
  start-page: 801
  year: 2012
  ident: 10.1016/j.celrep.2018.12.022_bib35
  article-title: A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201112098
– volume: 457
  start-page: 520
  year: 2015
  ident: 10.1016/j.celrep.2018.12.022_bib33
  article-title: CD36 is indispensable for thermogenesis under conditions of fasting and cold stress
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.12.124
– volume: 63
  start-page: 3606
  year: 2014
  ident: 10.1016/j.celrep.2018.12.022_bib16
  article-title: Free fatty acid uptake in humans with CD36 deficiency
  publication-title: Diabetes
  doi: 10.2337/db14-0369
– volume: 17
  start-page: 274
  year: 2006
  ident: 10.1016/j.celrep.2018.12.022_bib26
  article-title: Cellular fatty acid uptake: the contribution of metabolism
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/01.mol.0000226119.20307.2b
– volume: 6
  start-page: 8200
  year: 2015
  ident: 10.1016/j.celrep.2018.12.022_bib1
  article-title: Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9200
– volume: 27
  start-page: 843
  year: 2018
  ident: 10.1016/j.celrep.2018.12.022_bib25
  article-title: AIDA selectively mediates downregulation of fat synthesis enzymes by ERAD to retard intestinal fat absorption and prevent obesity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.02.021
– volume: 153
  start-page: 910
  year: 2013
  ident: 10.1016/j.celrep.2018.12.022_bib42
  article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.025
– volume: 284
  start-page: 135
  year: 2006
  ident: 10.1016/j.celrep.2018.12.022_bib7
  article-title: Translocation of long chain fatty acids across the plasma membrane--lipid rafts and fatty acid transport proteins
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-005-9034-1
– volume: 2
  start-page: e01293
  year: 2013
  ident: 10.1016/j.celrep.2018.12.022_bib17
  article-title: Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts
  publication-title: eLife
  doi: 10.7554/eLife.01293
– volume: 22
  start-page: 383
  year: 2002
  ident: 10.1016/j.celrep.2018.12.022_bib14
  article-title: Fatty acid transport across membranes: relevance to nutrition and metabolic pathology
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev.nutr.22.020402.130846
– volume: 286
  start-page: 39573
  year: 2011
  ident: 10.1016/j.celrep.2018.12.022_bib12
  article-title: Endoplasmic reticulum localization of DHHC palmitoyltransferases mediated by lysine-based sorting signals
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.272369
– volume: 4
  start-page: e11306
  year: 2015
  ident: 10.1016/j.celrep.2018.12.022_bib22
  article-title: ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization
  publication-title: eLife
  doi: 10.7554/eLife.11306
– volume: 34
  start-page: 281
  year: 2014
  ident: 10.1016/j.celrep.2018.12.022_bib32
  article-title: Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-071812-161220
– volume: 275
  start-page: 32523
  year: 2000
  ident: 10.1016/j.celrep.2018.12.022_bib2
  article-title: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M003826200
– volume: 48
  start-page: 528
  year: 2007
  ident: 10.1016/j.celrep.2018.12.022_bib8
  article-title: Importance of the carboxyl terminus of FAT/CD36 for plasma membrane localization and function in long-chain fatty acid uptake
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M600255-JLR200
– volume: 13
  start-page: 249
  year: 2011
  ident: 10.1016/j.celrep.2018.12.022_bib6
  article-title: Transcriptional control of adipose lipid handling by IRF4
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.02.005
– volume: 77
  start-page: 97
  year: 2016
  ident: 10.1016/j.celrep.2018.12.022_bib11
  article-title: Local palmitoylation cycles and specialized membrane domain organization
  publication-title: Curr. Top. Membr.
  doi: 10.1016/bs.ctm.2015.10.003
– volume: 20
  start-page: 72
  year: 2009
  ident: 10.1016/j.celrep.2018.12.022_bib38
  article-title: Cellular fatty acid uptake: a pathway under construction
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2008.11.001
– volume: 2
  start-page: 584
  year: 2006
  ident: 10.1016/j.celrep.2018.12.022_bib34
  article-title: Trafficking and signaling by fatty-acylated and prenylated proteins
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio834
– volume: 28
  start-page: 106
  year: 2000
  ident: 10.1016/j.celrep.2018.12.022_bib9
  article-title: Widespread recombinase expression using FLPeR (flipper) mice
  publication-title: Genesis
  doi: 10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T
– volume: 287
  start-page: 523
  year: 2012
  ident: 10.1016/j.celrep.2018.12.022_bib21
  article-title: DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.306183
– volume: 157
  start-page: 570
  year: 2016
  ident: 10.1016/j.celrep.2018.12.022_bib44
  article-title: Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice
  publication-title: Endocrinology
  doi: 10.1210/en.2015-1866
– volume: 36
  start-page: 981
  year: 2001
  ident: 10.1016/j.celrep.2018.12.022_bib37
  article-title: A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids
  publication-title: Lipids
  doi: 10.1007/s11745-001-0809-2
– volume: 128
  start-page: 4329
  year: 2018
  ident: 10.1016/j.celrep.2018.12.022_bib36
  article-title: Endothelial cell CD36 optimizes tissue fatty acid uptake
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI99315
– volume: 285
  start-page: 13022
  year: 2010
  ident: 10.1016/j.celrep.2018.12.022_bib20
  article-title: DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.079426
– volume: 6
  start-page: 449
  year: 2010
  ident: 10.1016/j.celrep.2018.12.022_bib4
  article-title: Small-molecule inhibition of APT1 affects Ras localization and signaling
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.362
– volume: 107
  start-page: 15868
  year: 2010
  ident: 10.1016/j.celrep.2018.12.022_bib47
  article-title: Ghrelin secretion stimulated by β1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1011116107
– volume: 2
  start-page: e01295
  year: 2013
  ident: 10.1016/j.celrep.2018.12.022_bib23
  article-title: Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle
  publication-title: eLife
  doi: 10.7554/eLife.01295
– volume: 275
  start-page: 261
  year: 2000
  ident: 10.1016/j.celrep.2018.12.022_bib43
  article-title: Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.1.261
– volume: 56
  start-page: 1872
  year: 2007
  ident: 10.1016/j.celrep.2018.12.022_bib15
  article-title: CD36-facilitated fatty acid uptake inhibits leptin production and signaling in adipose tissue
  publication-title: Diabetes
  doi: 10.2337/db06-1699
– volume: 30
  start-page: 77
  year: 2016
  ident: 10.1016/j.celrep.2018.12.022_bib31
  article-title: Proteomic analysis of fatty-acylated proteins
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2015.11.008
– volume: 52
  start-page: 393
  year: 2011
  ident: 10.1016/j.celrep.2018.12.022_bib10
  article-title: Site-specific analysis of protein S-acylation by resin-assisted capture
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.D011106
– volume: 47
  start-page: 1118
  year: 2006
  ident: 10.1016/j.celrep.2018.12.022_bib27
  article-title: Protein palmitoylation by a family of DHHC protein S-acyltransferases
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R600007-JLR200
– volume: 73
  start-page: 482
  year: 2012
  ident: 10.1016/j.celrep.2018.12.022_bib40
  article-title: Palmitoylation by DHHC5/8 targets GRIP1 to dendritic endosomes to regulate AMPA-R trafficking
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.021
– volume: 8
  start-page: 1003
  year: 2006
  ident: 10.1016/j.celrep.2018.12.022_bib19
  article-title: STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1454
– volume: 115
  start-page: 1290
  year: 2005
  ident: 10.1016/j.celrep.2018.12.022_bib5
  article-title: CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI21514
– volume: 36
  start-page: 245
  year: 2011
  ident: 10.1016/j.celrep.2018.12.022_bib13
  article-title: DHHC palmitoyl transferases: substrate interactions and (patho)physiology
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2011.01.003
– volume: 52
  start-page: 7254
  year: 2013
  ident: 10.1016/j.celrep.2018.12.022_bib45
  article-title: CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane
  publication-title: Biochemistry
  doi: 10.1021/bi400914c
– volume: 124
  start-page: 1283
  year: 2006
  ident: 10.1016/j.celrep.2018.12.022_bib28
  article-title: A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen
  publication-title: Cell
  doi: 10.1016/j.cell.2006.01.040
– volume: 1803
  start-page: 1298
  year: 2010
  ident: 10.1016/j.celrep.2018.12.022_bib41
  article-title: Palmitoylation of CD36/FAT regulates the rate of its post-transcriptional processing in the endoplasmic reticulum
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2010.07.002
– volume: 271
  start-page: 22315
  year: 1996
  ident: 10.1016/j.celrep.2018.12.022_bib39
  article-title: CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.37.22315
SSID ssj0000601194
Score 2.5682383
Snippet Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 209
SubjectTerms 3T3-L1 Cells
Acyltransferases - metabolism
Adipose Tissue - metabolism
Amino Acid Sequence
Animals
Biological Transport
CD36
CD36 Antigens - metabolism
Cell Membrane - metabolism
DHHC4
DHHC5
fatty acid uptake
Fatty Acids - metabolism
HEK293 Cells
Humans
Lipoylation
Male
Membrane Proteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
protein palmitoylation
Transfection
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYmpdBL6DNxX6jQ6xatNLuyD6EEp8YUXHqwwTehx2zaxFknzgay_76jfTiXmEBvEqx2l9FjvpFG38fYVysLnbncJW48sgnYzCc2V5Cg1OTtfSCPES8Kz3_lsyX8XGWrAes1WzsD3j4a2kU9qeV2_e3-pv5OE_7kIVfL43qLkX0yHTWbe5IW5Wfkm3TUNJh3gL9dmyPHWTxqljLmcknQ_X26PS_a56_24dHGL01fssMOUPLTdgS8YgMsX7PnrcRk_Yb9OZvNJsBtGXgsZXxqfUvMjVSsqpqf-r-BL68re4nc1TwKqtAsr2OOXHneNFw02eKxNjlTOa82nFAj_024-8ryOV5RwF3iW7ac_lhMZkmnrpB40FAl6GWqsDn49EHlIIKQRVaAz3TIhQtCW8ykU8p7EGgLD0XwIigAB2NhtXrHDspNiceMa4GpHQcsCicAtB-pQlnQGMnA0pCPhkz1NjS-ox6PChhr0-eYXZjW8iZa3qTSkOWHLNm1um6pN554XvfdYzr40MICQ4PliZZf-t40NLvikQnZbXN3ayRFk2nk7IEhO2q7efcvFGwRetT6_X9_9wN7QbVxs6MjP7KDanuHnwjjVO5zM2z_AcNN9rY
  priority: 102
  providerName: Scholars Portal
Title DHHC4 and DHHC5 Facilitate Fatty Acid Uptake by Palmitoylating and Targeting CD36 to the Plasma Membrane
URI https://dx.doi.org/10.1016/j.celrep.2018.12.022
https://www.ncbi.nlm.nih.gov/pubmed/30605677
https://www.proquest.com/docview/2164100364
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahsxUIRAoZfSd522QYVehbXS7Gp9TJ0aU3ApNAbfhB6zrdtkbdLNwX_fkXbX0EMI9LJIQsOKkTQvzYOxj041pvSVF35WOwGuDMJVGgQqQ9w-ROIYKVB49bVaruHLptycsPkYC5PcKgfa39P0TK2HkemAzel-u51-V6S7EHci4krHiDQtosMa6hzEt_l0tLOkfCNFroeY5osEMEbQZTevgNe3mBJXFnW2Cyp1H4e6TwLNnGjxlD0ZREh-0a_yGTvB9jl71BeVPLxgPy-Xyzlw10aeWiVfuNCn4kZqdt2BX4Rt5Ot9534j9weeSqjQvT4kr7j2Rwa8yv7hqTe_1BXvdpzkRP6NJO0bx1d4Qyp2iy_ZevH5ar4UQz0FEcBAJzCoQmN-6gxRVyCjVE3ZQChNrKSP0jgsldc6BJDomgBNDDJqAA8z6Yx-xU7bXYtvGDcSCzeL2DReAphQ60Y7MJjSfxWxqidMjzi0YUg2nmpeXNvRq-yX7TFvE-ZtoSxhfsLEEWrfJ9t4YL4Zt8f-c2gs8YMHID-Mu2npPqVHEsLb7u6PVaQ_FilLD0zY636bj2sh9YrkRWPO_vu_b9lj6s2yDUe9Y6fd7R2-J6mm8-fZGnCeDy99V1D_BQD39AQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYILKq8SKGAkOFrx2t51cuDQJkQb2lRIJFJuxq-FQLuJ2q3Q_i7-YMfe3UgcqkpIvXkfs2t9Y8_DHs8g9EGzQqYmM8QMB5oInVqiMy6IZxK0vXWgMcJB4dlpli_El2W63EF_u7MwIayylf2NTI_Sur3Tb9Hsb1ar_jcGvgtoJxCuMIzA02ojK499_Qf8tstP0zEw-SNjk8_zUU7a0gLECikq4i1LuI-7ftbxTFBHWZEWwqbSZdQ4KrVPmeHcWkG9LqwonKWOC2HEkGrJ4bv30H0gl0EaTJdH24WdkOAkiQUYQwdJ6GF3ZC_GlVl_duFDpsxkEBciGbtJJd5k8kbVN9lDj1ubFR82sDxBO758ih40VSzrZ-jnOM9HAuvS4dBK8UTbJve3h2ZV1fjQrhxebCr922NT41CzBQRJHcLwyh-RcB4D0sPVaMwzXK0xGKb4K5j25xrP_Dn49KV_jhZ3gvILtFuuS_8SYUl9oofOF4WhQkg74AXXQvqQbyxx2aCHeIehsm1281Bk40x1YWy_VIO8CsirhClAvofIlmrTZPe45X3ZsUf9M0oVKKBbKN933FQwgcOuDOC2vrpUDBzWJKQFEj2037B52xfw58BAlfLVf__3HXqYz2cn6mR6evwaPYInw7iAxA7QbnVx5d-ASVWZt3EIY_T9rufMNdhhMBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DHHC4+and+DHHC5+Facilitate+Fatty+Acid+Uptake+by+Palmitoylating+and+Targeting+CD36+to+the+Plasma+Membrane&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Juan&rft.au=Hao%2C+Jian-Wei&rft.au=Wang%2C+Xu&rft.au=Guo%2C+Huiling&rft.date=2019-01-02&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=26&rft.issue=1&rft.spage=209&rft.epage=221.e5&rft_id=info:doi/10.1016%2Fj.celrep.2018.12.022&rft.externalDocID=S2211124718319338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon