DHHC4 and DHHC5 Facilitate Fatty Acid Uptake by Palmitoylating and Targeting CD36 to the Plasma Membrane
Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is...
Saved in:
Published in | Cell reports (Cambridge) Vol. 26; no. 1; pp. 209 - 221.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4−/− and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake.
[Display omitted]
•CD36 is a physiological substrate of palmitoyl acyltransferases DHHC4/5•Palmitoylation of CD36 targets it to the plasma membrane•DHHC4/5 are required for the cellular fatty acid uptake activity of CD36•DHHC4/5 regulate fatty acid uptake activity in adipose tissues
Regulation of fatty acid uptake remains unclear. Wang et al. show that palmitoylation of CD36 by DHHC4 and DHHC5 is required for its plasma membrane localization and fatty acid uptake activity. Deficiency in DHHC4 or DHHC5 leads to decreased fatty acid uptake and increased susceptibility to cold. |
---|---|
AbstractList | Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4-/- and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake.Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4-/- and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake. Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4 and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake. Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl modification that plays a key regulatory role in protein targeting and trafficking; however, its function in regulating fatty acid metabolism is unknown. Here, we show that two of the Asp-His-His-Cys (DHHC) motif-containing palmitoyl acyltransferases, DHHC4 and DHHC5, regulate fatty acid uptake. DHHC4 and DHHC5 function at different subcellular localizations to control the palmitoylation, plasma membrane localization, and fatty acid uptake activity of the scavenger receptor CD36. Depletion of either DHHC4 or DHHC5 in cells disrupts CD36-dependent fatty acid uptake. Furthermore, both Dhhc4−/− and adipose-specific Dhhc5 knockout mice show decreased fatty acid uptake activity in adipose tissues and develop severe hypothermia upon acute cold exposure. These findings demonstrate a critical role of DHHC4 and DHHC5 in regulating fatty acid uptake. [Display omitted] •CD36 is a physiological substrate of palmitoyl acyltransferases DHHC4/5•Palmitoylation of CD36 targets it to the plasma membrane•DHHC4/5 are required for the cellular fatty acid uptake activity of CD36•DHHC4/5 regulate fatty acid uptake activity in adipose tissues Regulation of fatty acid uptake remains unclear. Wang et al. show that palmitoylation of CD36 by DHHC4 and DHHC5 is required for its plasma membrane localization and fatty acid uptake activity. Deficiency in DHHC4 or DHHC5 leads to decreased fatty acid uptake and increased susceptibility to cold. |
Author | Mo, Wei Zhao, Tong-Jin Zhu, Mingxia Wang, Xu Liu, Li-Ying Yu, Li-Yang Chen, Shuai Hao, Jian-Wei Lai, Xiao-Ying Wang, Juan Guo, Huiling Sun, Hui-Hui Wang, Hao-Yan Li, Yi-Fan Xie, Changchuan Wang, Hong-Rui Liang, Guosheng Zhou, Hai-Meng |
Author_xml | – sequence: 1 givenname: Juan surname: Wang fullname: Wang, Juan organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 2 givenname: Jian-Wei surname: Hao fullname: Hao, Jian-Wei organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 3 givenname: Xu surname: Wang fullname: Wang, Xu organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 4 givenname: Huiling surname: Guo fullname: Guo, Huiling organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 5 givenname: Hui-Hui surname: Sun fullname: Sun, Hui-Hui organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 6 givenname: Xiao-Ying surname: Lai fullname: Lai, Xiao-Ying organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 7 givenname: Li-Ying surname: Liu fullname: Liu, Li-Ying organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 8 givenname: Mingxia surname: Zhu fullname: Zhu, Mingxia organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 9 givenname: Hao-Yan surname: Wang fullname: Wang, Hao-Yan organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 10 givenname: Yi-Fan surname: Li fullname: Li, Yi-Fan organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 11 givenname: Li-Yang surname: Yu fullname: Yu, Li-Yang organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 12 givenname: Changchuan surname: Xie fullname: Xie, Changchuan organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 13 givenname: Hong-Rui surname: Wang fullname: Wang, Hong-Rui organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 14 givenname: Wei surname: Mo fullname: Mo, Wei organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 – sequence: 15 givenname: Hai-Meng surname: Zhou fullname: Zhou, Hai-Meng organization: Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China, 314006 – sequence: 16 givenname: Shuai surname: Chen fullname: Chen, Shuai organization: MOE Key Laboratory of Model Animal for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Pukou District, Nanjing, China, 210061 – sequence: 17 givenname: Guosheng surname: Liang fullname: Liang, Guosheng organization: Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA – sequence: 18 givenname: Tong-Jin orcidid: 0000-0001-6861-3071 surname: Zhao fullname: Zhao, Tong-Jin email: zhaotj@xmu.edu.cn organization: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China, 361102 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30605677$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEcxINUfNR-A5EcvXRNstld60EorbVCxR7ac8gm_62p-6hJKvTbmz4U8aC5ZALzG8LMOWrVTQ0IXVISUULTm2WkoLSwihihtxFlEWHsCJ0xRmmXMp61fuhT1HFuScJJCaU9foJO4yCTNMvO0OtwPB5wLGuNtyrBI6lMabz0EKT3G9xXRuP5yss3wPkGT2VZGd9sSulNvdiBM2kXsHsNhnGKfYP9K-BpKV0l8TNUuZU1XKDjQpYOOoe7jeajh9lg3J28PD4N-pOu4hn3XVCMxsAZT1Kl45QTTViRFFwlmU5JrkkmIWF5HCvFCchC8UIromPOc94jMovb6Hqfu7LN-xqcF5Vxoawy_KFZO8FoyikhITpYrw7WdV6BFitrKmk34qudYOB7g7KNcxaKbwslYruDWIr9DmK7g6BMhB0CdvcLU9tCTVN7K035H3y_hyGU9GHACqcM1Aq0saC80I35O-AT2wujLw |
CitedBy_id | crossref_primary_10_1146_annurev_physiol_032122_030352 crossref_primary_10_3389_fimmu_2024_1337478 crossref_primary_10_1111_febs_15728 crossref_primary_10_3389_fcell_2020_600368 crossref_primary_10_15252_embr_202154229 crossref_primary_10_2147_JHC_S447578 crossref_primary_10_3390_cells10071833 crossref_primary_10_1172_jci_insight_147057 crossref_primary_10_1093_cvr_cvaa319 crossref_primary_10_1016_j_celrep_2024_114962 crossref_primary_10_3390_cells14050385 crossref_primary_10_1007_s00432_022_03957_8 crossref_primary_10_1083_jcb_202307103 crossref_primary_10_2147_JIR_S502314 crossref_primary_10_1016_j_bbalip_2023_159369 crossref_primary_10_1007_s11426_023_1796_0 crossref_primary_10_1038_s41418_024_01397_0 crossref_primary_10_1038_s42255_024_01036_5 crossref_primary_10_1186_s12967_024_05592_y crossref_primary_10_1002_glia_24113 crossref_primary_10_1007_s11030_023_10633_7 crossref_primary_10_1016_j_tem_2024_10_001 crossref_primary_10_1038_s41467_022_33788_7 crossref_primary_10_12677_BP_2023_132016 crossref_primary_10_1002_jcp_30122 crossref_primary_10_12677_pi_2024_133022 crossref_primary_10_1016_j_celrep_2021_109314 crossref_primary_10_1098_rsob_200411 crossref_primary_10_1111_febs_15709 crossref_primary_10_3389_fonc_2025_1547636 crossref_primary_10_3390_cells11030565 crossref_primary_10_3390_ijms222313094 crossref_primary_10_3389_fcell_2021_673647 crossref_primary_10_1016_j_ajpath_2024_10_005 crossref_primary_10_1021_acschembio_1c00405 crossref_primary_10_3390_genes13122301 crossref_primary_10_1002_jcp_31047 crossref_primary_10_1038_s41580_024_00700_8 crossref_primary_10_1038_s41467_019_11876_5 crossref_primary_10_2337_db21_0708 crossref_primary_10_3390_ijms21249438 crossref_primary_10_1111_exd_14575 crossref_primary_10_1007_s00018_023_05104_z crossref_primary_10_1016_j_molcel_2024_10_002 crossref_primary_10_1016_j_bbapap_2024_141052 crossref_primary_10_1038_s41401_024_01248_1 crossref_primary_10_1038_s41467_023_44393_7 crossref_primary_10_1016_j_celrep_2022_111806 crossref_primary_10_1016_j_jare_2024_12_041 crossref_primary_10_1097_IN9_0000000000000001 crossref_primary_10_1016_j_bcp_2023_115965 crossref_primary_10_4049_jimmunol_2300241 crossref_primary_10_1016_j_ijbiomac_2024_129731 crossref_primary_10_1128_jvi_01245_23 crossref_primary_10_1007_s11033_022_07809_z crossref_primary_10_3389_fcell_2023_1225628 crossref_primary_10_1002_mco2_261 crossref_primary_10_3389_fphys_2020_01050 crossref_primary_10_1021_acs_jproteome_0c00409 crossref_primary_10_3390_ijms20143449 crossref_primary_10_1080_10408398_2024_2442064 crossref_primary_10_1016_j_aquaculture_2022_738002 crossref_primary_10_1016_j_arr_2023_101920 crossref_primary_10_1016_j_molmet_2022_101574 crossref_primary_10_1111_liv_16130 crossref_primary_10_1016_j_devcel_2023_12_005 crossref_primary_10_1089_ars_2021_0157 crossref_primary_10_1111_bph_15863 crossref_primary_10_1016_j_celrep_2024_114762 crossref_primary_10_3390_cells12121605 crossref_primary_10_1007_s11427_022_2157_y crossref_primary_10_1016_j_celrep_2021_109281 crossref_primary_10_1038_s41392_024_01759_7 crossref_primary_10_1002_eji_202350476 crossref_primary_10_1002_mnfr_70012 crossref_primary_10_1016_j_plipres_2022_101193 crossref_primary_10_1016_j_aninu_2023_12_004 crossref_primary_10_1016_j_cbpa_2021_07_002 crossref_primary_10_1016_j_metabol_2024_155905 crossref_primary_10_1186_s13148_025_01814_2 crossref_primary_10_1016_j_jbc_2022_102000 crossref_primary_10_1016_j_celrep_2024_113720 crossref_primary_10_1242_jcs_261319 crossref_primary_10_3389_fimmu_2021_659533 crossref_primary_10_1016_j_celrep_2023_113389 crossref_primary_10_3389_fphys_2023_1122895 crossref_primary_10_1038_s42255_022_00642_5 crossref_primary_10_1039_D4FO00099D crossref_primary_10_1016_j_chembiol_2019_12_002 crossref_primary_10_1016_j_cmet_2023_09_012 crossref_primary_10_3390_ijms21155539 crossref_primary_10_1038_s41467_020_15109_y crossref_primary_10_1016_j_chembiol_2021_03_012 crossref_primary_10_1080_10428194_2024_2376178 crossref_primary_10_3389_fphys_2021_669279 crossref_primary_10_1016_j_semcancer_2022_02_010 crossref_primary_10_1016_j_ijbiomac_2023_127324 crossref_primary_10_52601_bpr_2024_240907 crossref_primary_10_3390_jpm12061010 crossref_primary_10_1021_acs_accounts_9b00354 crossref_primary_10_1111_cas_16111 crossref_primary_10_1242_jcs_251819 crossref_primary_10_3389_fcell_2019_00109 crossref_primary_10_1038_s41392_021_00825_8 crossref_primary_10_1111_imm_13822 crossref_primary_10_3390_ijms21072283 crossref_primary_10_1161_CIRCULATIONAHA_123_065213 crossref_primary_10_3389_fcvm_2022_792717 crossref_primary_10_4093_dmj_2020_0053 crossref_primary_10_1002_mco2_752 crossref_primary_10_1126_sciadv_ado3141 crossref_primary_10_1186_s13046_024_03154_0 crossref_primary_10_1021_acs_jafc_2c06791 crossref_primary_10_1038_s41467_020_18565_8 crossref_primary_10_1080_15548627_2023_2196876 crossref_primary_10_1016_j_imlet_2023_12_002 crossref_primary_10_3390_biom11111567 |
Cites_doi | 10.1038/nrm2084 10.1073/pnas.1413627111 10.1016/j.bbalip.2006.03.010 10.1073/pnas.1002271107 10.1074/jbc.M309377200 10.1126/science.1231143 10.1083/jcb.201112098 10.1016/j.bbrc.2014.12.124 10.2337/db14-0369 10.1097/01.mol.0000226119.20307.2b 10.1038/ncomms9200 10.1016/j.cmet.2018.02.021 10.1016/j.cell.2013.04.025 10.1007/s11010-005-9034-1 10.7554/eLife.01293 10.1146/annurev.nutr.22.020402.130846 10.1074/jbc.M111.272369 10.7554/eLife.11306 10.1146/annurev-nutr-071812-161220 10.1074/jbc.M003826200 10.1194/jlr.M600255-JLR200 10.1016/j.cmet.2011.02.005 10.1016/bs.ctm.2015.10.003 10.1016/j.tem.2008.11.001 10.1038/nchembio834 10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T 10.1074/jbc.M111.306183 10.1210/en.2015-1866 10.1007/s11745-001-0809-2 10.1172/JCI99315 10.1074/jbc.M109.079426 10.1038/nchembio.362 10.1073/pnas.1011116107 10.7554/eLife.01295 10.1074/jbc.275.1.261 10.2337/db06-1699 10.1016/j.cbpa.2015.11.008 10.1194/jlr.D011106 10.1194/jlr.R600007-JLR200 10.1016/j.neuron.2011.11.021 10.1038/ncb1454 10.1172/JCI21514 10.1016/j.tibs.2011.01.003 10.1021/bi400914c 10.1016/j.cell.2006.01.040 10.1016/j.bbamcr.2010.07.002 10.1074/jbc.271.37.22315 |
ContentType | Journal Article |
Copyright | 2018 The Author(s) Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 The Author(s) – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.celrep.2018.12.022 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 221.e5 |
ExternalDocumentID | 30605677 10_1016_j_celrep_2018_12_022 S2211124718319338 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c474t-ec213e42456cd3640d02f5f4c57d60bd07ae52b33cc40eafc4fdc0d344b490a73 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Fri Jul 11 01:06:45 EDT 2025 Thu Apr 03 06:56:27 EDT 2025 Tue Jul 01 02:58:59 EDT 2025 Thu Apr 24 22:57:01 EDT 2025 Wed May 17 00:03:06 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | CD36 fatty acid uptake DHHC4 DHHC5 protein palmitoylation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-ec213e42456cd3640d02f5f4c57d60bd07ae52b33cc40eafc4fdc0d344b490a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6861-3071 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124718319338 |
PMID | 30605677 |
PQID | 2164100364 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2164100364 pubmed_primary_30605677 crossref_primary_10_1016_j_celrep_2018_12_022 crossref_citationtrail_10_1016_j_celrep_2018_12_022 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_12_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-02 |
PublicationDateYYYYMMDD | 2019-01-02 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dekker, Rocks, Vartak, Menninger, Hedberg, Balamurugan, Wetzel, Renner, Gerauer, Schölermann (bib4) 2010; 6 Peng, Thinon, Hang (bib31) 2016; 30 Thomas, Hayashi, Chiu, Chen, Huganir (bib40) 2012; 73 Zhao, Liang, Li, Xie, Sleeman, Murphy, Valenzuela, Yancopoulos, Goldstein, Brown (bib46) 2010; 107 Forrester, Hess, Thompson, Hultman, Moseley, Stamler, Casey (bib10) 2011; 52 Howie, Reilly, Fraser, Vlachaki Walker, Wypijewski, Ashford, Calaghan, McClafferty, Tian, Shipston (bib18) 2014; 111 Webb, Hermida-Matsumoto, Resh (bib43) 2000; 275 Zhao, Sakata, Li, Liang, Richardson, Brown, Goldstein, Zigman (bib47) 2010; 107 Wilson, Tran, Erion, Vera, Febbraio, Weiss (bib44) 2016; 157 Eguchi, Wang, Yu, Kershaw, Chiu, Dushay, Estall, Klein, Maratos-Flier, Rosen (bib6) 2011; 13 Cong, Ran, Cox, Lin, Barretto, Habib, Hsu, Wu, Jiang, Marraffini, Zhang (bib3) 2013; 339 Thorne, Ralston, de Bock, Mhaidat, Zhang, Boyd, Burns (bib41) 2010; 1803 Putri, Syamsunarno, Iso, Yamaguchi, Hanaoka, Sunaga, Koitabashi, Matsui, Yamazaki, Kameo (bib33) 2015; 457 Lin, Fine, Lu, Hofmann, Frazier, Hilgemann (bib23) 2013; 2 Wang, Yang, Shivalila, Dawlaty, Cheng, Zhang, Jaenisch (bib42) 2013; 153 Lin, Conibear (bib22) 2015; 4 Moffat, Grueneberg, Yang, Kim, Kloepfer, Hinkle, Piqani, Eisenhaure, Luo, Grenier (bib28) 2006; 124 Hames, Vella, Kemp, Jensen (bib16) 2014; 63 Newberry, Xie, Kennedy, Han, Buhman, Luo, Gross, Davidson (bib29) 2003; 278 Ohno, Kihara, Sano, Igarashi (bib30) 2006; 1761 Greaves, Chamberlain (bib13) 2011; 36 Huang, Zeng, Kim, Yuan, Han, Muallem, Worley (bib19) 2006; 8 Hajri, Hall, Jensen, Pietka, Drover, Tao, Eckel, Abumrad (bib15) 2007; 56 Li, Martin, Cravatt, Hofmann (bib21) 2012; 287 Pepino, Kuda, Samovski, Abumrad (bib32) 2014; 34 Mashek, Coleman (bib26) 2006; 17 Gorleku, Barns, Prescott, Greaves, Chamberlain (bib12) 2011; 286 Resh (bib34) 2006; 2 Linder, Deschenes (bib24) 2007; 8 Hilgemann, Fine, Linder, Jennings, Lin (bib17) 2013; 2 Drover, Ajmal, Nassir, Davidson, Nauli, Sahoo, Tso, Abumrad (bib5) 2005; 115 Fukata, Murakami, Yokoi, Fukata (bib11) 2016; 77 Li, Hu, Höfer, Wong, Cooper, Birnbaum, Hammer, Hofmann (bib20) 2010; 285 Xu, Jay, Brunaldi, Huang, Hamilton (bib45) 2013; 52 Luo, Jiang, Lian, Liu, Shi, Li, Song, Ye, He, Yao (bib25) 2018; 27 Mitchell, Vasudevan, Linder, Deschenes (bib27) 2006; 47 Roux, Kim, Raida, Burke (bib35) 2012; 196 Su, Abumrad (bib38) 2009; 20 Eyre, Cleland, Tandon, Mayrhofer (bib8) 2007; 48 Ehehalt, Füllekrug, Pohl, Ring, Herrmann, Stremmel (bib7) 2006; 284 Hajri, Abumrad (bib14) 2002; 22 Brigidi, Santyr, Shimell, Jovellar, Bamji (bib1) 2015; 6 Son, Basu, Samovski, Pietka, Peche, Willecke, Fang, Yu, Scerbo, Chang (bib36) 2018; 128 Farley, Soriano, Steffen, Dymecki (bib9) 2000; 28 Tao, Wagner, Lublin (bib39) 1996; 271 Coburn, Knapp, Febbraio, Beets, Silverstein, Abumrad (bib2) 2000; 275 Stremmel, Pohl, Ring, Herrmann (bib37) 2001; 36 Fukata (10.1016/j.celrep.2018.12.022_bib11) 2016; 77 Eguchi (10.1016/j.celrep.2018.12.022_bib6) 2011; 13 Webb (10.1016/j.celrep.2018.12.022_bib43) 2000; 275 Xu (10.1016/j.celrep.2018.12.022_bib45) 2013; 52 Linder (10.1016/j.celrep.2018.12.022_bib24) 2007; 8 Farley (10.1016/j.celrep.2018.12.022_bib9) 2000; 28 Greaves (10.1016/j.celrep.2018.12.022_bib13) 2011; 36 Mitchell (10.1016/j.celrep.2018.12.022_bib27) 2006; 47 Howie (10.1016/j.celrep.2018.12.022_bib18) 2014; 111 Thorne (10.1016/j.celrep.2018.12.022_bib41) 2010; 1803 Stremmel (10.1016/j.celrep.2018.12.022_bib37) 2001; 36 Drover (10.1016/j.celrep.2018.12.022_bib5) 2005; 115 Eyre (10.1016/j.celrep.2018.12.022_bib8) 2007; 48 Hajri (10.1016/j.celrep.2018.12.022_bib15) 2007; 56 Coburn (10.1016/j.celrep.2018.12.022_bib2) 2000; 275 Li (10.1016/j.celrep.2018.12.022_bib20) 2010; 285 Wilson (10.1016/j.celrep.2018.12.022_bib44) 2016; 157 Luo (10.1016/j.celrep.2018.12.022_bib25) 2018; 27 Wang (10.1016/j.celrep.2018.12.022_bib42) 2013; 153 Brigidi (10.1016/j.celrep.2018.12.022_bib1) 2015; 6 Li (10.1016/j.celrep.2018.12.022_bib21) 2012; 287 Lin (10.1016/j.celrep.2018.12.022_bib23) 2013; 2 Hilgemann (10.1016/j.celrep.2018.12.022_bib17) 2013; 2 Newberry (10.1016/j.celrep.2018.12.022_bib29) 2003; 278 Pepino (10.1016/j.celrep.2018.12.022_bib32) 2014; 34 Thomas (10.1016/j.celrep.2018.12.022_bib40) 2012; 73 Ehehalt (10.1016/j.celrep.2018.12.022_bib7) 2006; 284 Peng (10.1016/j.celrep.2018.12.022_bib31) 2016; 30 Tao (10.1016/j.celrep.2018.12.022_bib39) 1996; 271 Zhao (10.1016/j.celrep.2018.12.022_bib46) 2010; 107 Hames (10.1016/j.celrep.2018.12.022_bib16) 2014; 63 Su (10.1016/j.celrep.2018.12.022_bib38) 2009; 20 Gorleku (10.1016/j.celrep.2018.12.022_bib12) 2011; 286 Mashek (10.1016/j.celrep.2018.12.022_bib26) 2006; 17 Putri (10.1016/j.celrep.2018.12.022_bib33) 2015; 457 Dekker (10.1016/j.celrep.2018.12.022_bib4) 2010; 6 Son (10.1016/j.celrep.2018.12.022_bib36) 2018; 128 Forrester (10.1016/j.celrep.2018.12.022_bib10) 2011; 52 Hajri (10.1016/j.celrep.2018.12.022_bib14) 2002; 22 Zhao (10.1016/j.celrep.2018.12.022_bib47) 2010; 107 Roux (10.1016/j.celrep.2018.12.022_bib35) 2012; 196 Lin (10.1016/j.celrep.2018.12.022_bib22) 2015; 4 Moffat (10.1016/j.celrep.2018.12.022_bib28) 2006; 124 Cong (10.1016/j.celrep.2018.12.022_bib3) 2013; 339 Resh (10.1016/j.celrep.2018.12.022_bib34) 2006; 2 Huang (10.1016/j.celrep.2018.12.022_bib19) 2006; 8 Ohno (10.1016/j.celrep.2018.12.022_bib30) 2006; 1761 |
References_xml | – volume: 278 start-page: 51664 year: 2003 end-page: 51672 ident: bib29 article-title: Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene publication-title: J. Biol. Chem. – volume: 20 start-page: 72 year: 2009 end-page: 77 ident: bib38 article-title: Cellular fatty acid uptake: a pathway under construction publication-title: Trends Endocrinol. Metab. – volume: 153 start-page: 910 year: 2013 end-page: 918 ident: bib42 article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering publication-title: Cell – volume: 36 start-page: 981 year: 2001 end-page: 989 ident: bib37 article-title: A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids publication-title: Lipids – volume: 48 start-page: 528 year: 2007 end-page: 542 ident: bib8 article-title: Importance of the carboxyl terminus of FAT/CD36 for plasma membrane localization and function in long-chain fatty acid uptake publication-title: J. Lipid Res. – volume: 13 start-page: 249 year: 2011 end-page: 259 ident: bib6 article-title: Transcriptional control of adipose lipid handling by IRF4 publication-title: Cell Metab. – volume: 47 start-page: 1118 year: 2006 end-page: 1127 ident: bib27 article-title: Protein palmitoylation by a family of DHHC protein S-acyltransferases publication-title: J. Lipid Res. – volume: 63 start-page: 3606 year: 2014 end-page: 3614 ident: bib16 article-title: Free fatty acid uptake in humans with CD36 deficiency publication-title: Diabetes – volume: 73 start-page: 482 year: 2012 end-page: 496 ident: bib40 article-title: Palmitoylation by DHHC5/8 targets GRIP1 to dendritic endosomes to regulate AMPA-R trafficking publication-title: Neuron – volume: 77 start-page: 97 year: 2016 end-page: 141 ident: bib11 article-title: Local palmitoylation cycles and specialized membrane domain organization publication-title: Curr. Top. Membr. – volume: 128 start-page: 4329 year: 2018 end-page: 4342 ident: bib36 article-title: Endothelial cell CD36 optimizes tissue fatty acid uptake publication-title: J. Clin. Invest. – volume: 286 start-page: 39573 year: 2011 end-page: 39584 ident: bib12 article-title: Endoplasmic reticulum localization of DHHC palmitoyltransferases mediated by lysine-based sorting signals publication-title: J. Biol. Chem. – volume: 8 start-page: 1003 year: 2006 end-page: 1010 ident: bib19 article-title: STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels publication-title: Nat. Cell Biol. – volume: 6 start-page: 449 year: 2010 end-page: 456 ident: bib4 article-title: Small-molecule inhibition of APT1 affects Ras localization and signaling publication-title: Nat. Chem. Biol. – volume: 124 start-page: 1283 year: 2006 end-page: 1298 ident: bib28 article-title: A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen publication-title: Cell – volume: 27 start-page: 843 year: 2018 end-page: 853.e6 ident: bib25 article-title: AIDA selectively mediates downregulation of fat synthesis enzymes by ERAD to retard intestinal fat absorption and prevent obesity publication-title: Cell Metab. – volume: 2 start-page: 584 year: 2006 end-page: 590 ident: bib34 article-title: Trafficking and signaling by fatty-acylated and prenylated proteins publication-title: Nat. Chem. Biol. – volume: 285 start-page: 13022 year: 2010 end-page: 13031 ident: bib20 article-title: DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory publication-title: J. Biol. Chem. – volume: 8 start-page: 74 year: 2007 end-page: 84 ident: bib24 article-title: Palmitoylation: policing protein stability and traffic publication-title: Nat. Rev. Mol. Cell Biol. – volume: 22 start-page: 383 year: 2002 end-page: 415 ident: bib14 article-title: Fatty acid transport across membranes: relevance to nutrition and metabolic pathology publication-title: Annu. Rev. Nutr. – volume: 17 start-page: 274 year: 2006 end-page: 278 ident: bib26 article-title: Cellular fatty acid uptake: the contribution of metabolism publication-title: Curr. Opin. Lipidol. – volume: 52 start-page: 393 year: 2011 end-page: 398 ident: bib10 article-title: Site-specific analysis of protein S-acylation by resin-assisted capture publication-title: J. Lipid Res. – volume: 275 start-page: 32523 year: 2000 end-page: 32529 ident: bib2 article-title: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice publication-title: J. Biol. Chem. – volume: 28 start-page: 106 year: 2000 end-page: 110 ident: bib9 article-title: Widespread recombinase expression using FLPeR (flipper) mice publication-title: Genesis – volume: 271 start-page: 22315 year: 1996 end-page: 22320 ident: bib39 article-title: CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails publication-title: J. Biol. Chem. – volume: 107 start-page: 15868 year: 2010 end-page: 15873 ident: bib47 article-title: Ghrelin secretion stimulated by β1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 157 start-page: 570 year: 2016 end-page: 585 ident: bib44 article-title: Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice publication-title: Endocrinology – volume: 2 start-page: e01293 year: 2013 ident: bib17 article-title: Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts publication-title: eLife – volume: 1761 start-page: 474 year: 2006 end-page: 483 ident: bib30 article-title: Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins publication-title: Biochim. Biophys. Acta – volume: 1803 start-page: 1298 year: 2010 end-page: 1307 ident: bib41 article-title: Palmitoylation of CD36/FAT regulates the rate of its post-transcriptional processing in the endoplasmic reticulum publication-title: Biochim. Biophys. Acta – volume: 107 start-page: 7467 year: 2010 end-page: 7472 ident: bib46 article-title: Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 2 start-page: e01295 year: 2013 ident: bib23 article-title: Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle publication-title: eLife – volume: 111 start-page: 17534 year: 2014 end-page: 17539 ident: bib18 article-title: Substrate recognition by the cell surface palmitoyl transferase DHHC5 publication-title: Proc. Natl. Acad. Sci. USA – volume: 56 start-page: 1872 year: 2007 end-page: 1880 ident: bib15 article-title: CD36-facilitated fatty acid uptake inhibits leptin production and signaling in adipose tissue publication-title: Diabetes – volume: 287 start-page: 523 year: 2012 end-page: 530 ident: bib21 article-title: DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells publication-title: J. Biol. Chem. – volume: 34 start-page: 281 year: 2014 end-page: 303 ident: bib32 article-title: Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism publication-title: Annu. Rev. Nutr. – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: bib3 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 457 start-page: 520 year: 2015 end-page: 525 ident: bib33 article-title: CD36 is indispensable for thermogenesis under conditions of fasting and cold stress publication-title: Biochem. Biophys. Res. Commun. – volume: 30 start-page: 77 year: 2016 end-page: 86 ident: bib31 article-title: Proteomic analysis of fatty-acylated proteins publication-title: Curr. Opin. Chem. Biol. – volume: 284 start-page: 135 year: 2006 end-page: 140 ident: bib7 article-title: Translocation of long chain fatty acids across the plasma membrane--lipid rafts and fatty acid transport proteins publication-title: Mol. Cell. Biochem. – volume: 275 start-page: 261 year: 2000 end-page: 270 ident: bib43 article-title: Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids publication-title: J. Biol. Chem. – volume: 6 start-page: 8200 year: 2015 ident: bib1 article-title: Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5 publication-title: Nat. Commun. – volume: 196 start-page: 801 year: 2012 end-page: 810 ident: bib35 article-title: A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells publication-title: J. Cell Biol. – volume: 115 start-page: 1290 year: 2005 end-page: 1297 ident: bib5 article-title: CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood publication-title: J. Clin. Invest. – volume: 4 start-page: e11306 year: 2015 ident: bib22 article-title: ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization publication-title: eLife – volume: 52 start-page: 7254 year: 2013 end-page: 7261 ident: bib45 article-title: CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane publication-title: Biochemistry – volume: 36 start-page: 245 year: 2011 end-page: 253 ident: bib13 article-title: DHHC palmitoyl transferases: substrate interactions and (patho)physiology publication-title: Trends Biochem. Sci. – volume: 8 start-page: 74 year: 2007 ident: 10.1016/j.celrep.2018.12.022_bib24 article-title: Palmitoylation: policing protein stability and traffic publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2084 – volume: 111 start-page: 17534 year: 2014 ident: 10.1016/j.celrep.2018.12.022_bib18 article-title: Substrate recognition by the cell surface palmitoyl transferase DHHC5 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1413627111 – volume: 1761 start-page: 474 year: 2006 ident: 10.1016/j.celrep.2018.12.022_bib30 article-title: Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2006.03.010 – volume: 107 start-page: 7467 year: 2010 ident: 10.1016/j.celrep.2018.12.022_bib46 article-title: Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1002271107 – volume: 278 start-page: 51664 year: 2003 ident: 10.1016/j.celrep.2018.12.022_bib29 article-title: Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with deletion of the liver fatty acid-binding protein gene publication-title: J. Biol. Chem. doi: 10.1074/jbc.M309377200 – volume: 339 start-page: 819 year: 2013 ident: 10.1016/j.celrep.2018.12.022_bib3 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 196 start-page: 801 year: 2012 ident: 10.1016/j.celrep.2018.12.022_bib35 article-title: A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells publication-title: J. Cell Biol. doi: 10.1083/jcb.201112098 – volume: 457 start-page: 520 year: 2015 ident: 10.1016/j.celrep.2018.12.022_bib33 article-title: CD36 is indispensable for thermogenesis under conditions of fasting and cold stress publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.12.124 – volume: 63 start-page: 3606 year: 2014 ident: 10.1016/j.celrep.2018.12.022_bib16 article-title: Free fatty acid uptake in humans with CD36 deficiency publication-title: Diabetes doi: 10.2337/db14-0369 – volume: 17 start-page: 274 year: 2006 ident: 10.1016/j.celrep.2018.12.022_bib26 article-title: Cellular fatty acid uptake: the contribution of metabolism publication-title: Curr. Opin. Lipidol. doi: 10.1097/01.mol.0000226119.20307.2b – volume: 6 start-page: 8200 year: 2015 ident: 10.1016/j.celrep.2018.12.022_bib1 article-title: Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5 publication-title: Nat. Commun. doi: 10.1038/ncomms9200 – volume: 27 start-page: 843 year: 2018 ident: 10.1016/j.celrep.2018.12.022_bib25 article-title: AIDA selectively mediates downregulation of fat synthesis enzymes by ERAD to retard intestinal fat absorption and prevent obesity publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.02.021 – volume: 153 start-page: 910 year: 2013 ident: 10.1016/j.celrep.2018.12.022_bib42 article-title: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering publication-title: Cell doi: 10.1016/j.cell.2013.04.025 – volume: 284 start-page: 135 year: 2006 ident: 10.1016/j.celrep.2018.12.022_bib7 article-title: Translocation of long chain fatty acids across the plasma membrane--lipid rafts and fatty acid transport proteins publication-title: Mol. Cell. Biochem. doi: 10.1007/s11010-005-9034-1 – volume: 2 start-page: e01293 year: 2013 ident: 10.1016/j.celrep.2018.12.022_bib17 article-title: Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts publication-title: eLife doi: 10.7554/eLife.01293 – volume: 22 start-page: 383 year: 2002 ident: 10.1016/j.celrep.2018.12.022_bib14 article-title: Fatty acid transport across membranes: relevance to nutrition and metabolic pathology publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev.nutr.22.020402.130846 – volume: 286 start-page: 39573 year: 2011 ident: 10.1016/j.celrep.2018.12.022_bib12 article-title: Endoplasmic reticulum localization of DHHC palmitoyltransferases mediated by lysine-based sorting signals publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.272369 – volume: 4 start-page: e11306 year: 2015 ident: 10.1016/j.celrep.2018.12.022_bib22 article-title: ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization publication-title: eLife doi: 10.7554/eLife.11306 – volume: 34 start-page: 281 year: 2014 ident: 10.1016/j.celrep.2018.12.022_bib32 article-title: Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-071812-161220 – volume: 275 start-page: 32523 year: 2000 ident: 10.1016/j.celrep.2018.12.022_bib2 article-title: Defective uptake and utilization of long chain fatty acids in muscle and adipose tissues of CD36 knockout mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M003826200 – volume: 48 start-page: 528 year: 2007 ident: 10.1016/j.celrep.2018.12.022_bib8 article-title: Importance of the carboxyl terminus of FAT/CD36 for plasma membrane localization and function in long-chain fatty acid uptake publication-title: J. Lipid Res. doi: 10.1194/jlr.M600255-JLR200 – volume: 13 start-page: 249 year: 2011 ident: 10.1016/j.celrep.2018.12.022_bib6 article-title: Transcriptional control of adipose lipid handling by IRF4 publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.02.005 – volume: 77 start-page: 97 year: 2016 ident: 10.1016/j.celrep.2018.12.022_bib11 article-title: Local palmitoylation cycles and specialized membrane domain organization publication-title: Curr. Top. Membr. doi: 10.1016/bs.ctm.2015.10.003 – volume: 20 start-page: 72 year: 2009 ident: 10.1016/j.celrep.2018.12.022_bib38 article-title: Cellular fatty acid uptake: a pathway under construction publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2008.11.001 – volume: 2 start-page: 584 year: 2006 ident: 10.1016/j.celrep.2018.12.022_bib34 article-title: Trafficking and signaling by fatty-acylated and prenylated proteins publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio834 – volume: 28 start-page: 106 year: 2000 ident: 10.1016/j.celrep.2018.12.022_bib9 article-title: Widespread recombinase expression using FLPeR (flipper) mice publication-title: Genesis doi: 10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T – volume: 287 start-page: 523 year: 2012 ident: 10.1016/j.celrep.2018.12.022_bib21 article-title: DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.306183 – volume: 157 start-page: 570 year: 2016 ident: 10.1016/j.celrep.2018.12.022_bib44 article-title: Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice publication-title: Endocrinology doi: 10.1210/en.2015-1866 – volume: 36 start-page: 981 year: 2001 ident: 10.1016/j.celrep.2018.12.022_bib37 article-title: A new concept of cellular uptake and intracellular trafficking of long-chain fatty acids publication-title: Lipids doi: 10.1007/s11745-001-0809-2 – volume: 128 start-page: 4329 year: 2018 ident: 10.1016/j.celrep.2018.12.022_bib36 article-title: Endothelial cell CD36 optimizes tissue fatty acid uptake publication-title: J. Clin. Invest. doi: 10.1172/JCI99315 – volume: 285 start-page: 13022 year: 2010 ident: 10.1016/j.celrep.2018.12.022_bib20 article-title: DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.079426 – volume: 6 start-page: 449 year: 2010 ident: 10.1016/j.celrep.2018.12.022_bib4 article-title: Small-molecule inhibition of APT1 affects Ras localization and signaling publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.362 – volume: 107 start-page: 15868 year: 2010 ident: 10.1016/j.celrep.2018.12.022_bib47 article-title: Ghrelin secretion stimulated by β1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1011116107 – volume: 2 start-page: e01295 year: 2013 ident: 10.1016/j.celrep.2018.12.022_bib23 article-title: Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle publication-title: eLife doi: 10.7554/eLife.01295 – volume: 275 start-page: 261 year: 2000 ident: 10.1016/j.celrep.2018.12.022_bib43 article-title: Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.1.261 – volume: 56 start-page: 1872 year: 2007 ident: 10.1016/j.celrep.2018.12.022_bib15 article-title: CD36-facilitated fatty acid uptake inhibits leptin production and signaling in adipose tissue publication-title: Diabetes doi: 10.2337/db06-1699 – volume: 30 start-page: 77 year: 2016 ident: 10.1016/j.celrep.2018.12.022_bib31 article-title: Proteomic analysis of fatty-acylated proteins publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2015.11.008 – volume: 52 start-page: 393 year: 2011 ident: 10.1016/j.celrep.2018.12.022_bib10 article-title: Site-specific analysis of protein S-acylation by resin-assisted capture publication-title: J. Lipid Res. doi: 10.1194/jlr.D011106 – volume: 47 start-page: 1118 year: 2006 ident: 10.1016/j.celrep.2018.12.022_bib27 article-title: Protein palmitoylation by a family of DHHC protein S-acyltransferases publication-title: J. Lipid Res. doi: 10.1194/jlr.R600007-JLR200 – volume: 73 start-page: 482 year: 2012 ident: 10.1016/j.celrep.2018.12.022_bib40 article-title: Palmitoylation by DHHC5/8 targets GRIP1 to dendritic endosomes to regulate AMPA-R trafficking publication-title: Neuron doi: 10.1016/j.neuron.2011.11.021 – volume: 8 start-page: 1003 year: 2006 ident: 10.1016/j.celrep.2018.12.022_bib19 article-title: STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels publication-title: Nat. Cell Biol. doi: 10.1038/ncb1454 – volume: 115 start-page: 1290 year: 2005 ident: 10.1016/j.celrep.2018.12.022_bib5 article-title: CD36 deficiency impairs intestinal lipid secretion and clearance of chylomicrons from the blood publication-title: J. Clin. Invest. doi: 10.1172/JCI21514 – volume: 36 start-page: 245 year: 2011 ident: 10.1016/j.celrep.2018.12.022_bib13 article-title: DHHC palmitoyl transferases: substrate interactions and (patho)physiology publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2011.01.003 – volume: 52 start-page: 7254 year: 2013 ident: 10.1016/j.celrep.2018.12.022_bib45 article-title: CD36 enhances fatty acid uptake by increasing the rate of intracellular esterification but not transport across the plasma membrane publication-title: Biochemistry doi: 10.1021/bi400914c – volume: 124 start-page: 1283 year: 2006 ident: 10.1016/j.celrep.2018.12.022_bib28 article-title: A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen publication-title: Cell doi: 10.1016/j.cell.2006.01.040 – volume: 1803 start-page: 1298 year: 2010 ident: 10.1016/j.celrep.2018.12.022_bib41 article-title: Palmitoylation of CD36/FAT regulates the rate of its post-transcriptional processing in the endoplasmic reticulum publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2010.07.002 – volume: 271 start-page: 22315 year: 1996 ident: 10.1016/j.celrep.2018.12.022_bib39 article-title: CD36 is palmitoylated on both N- and C-terminal cytoplasmic tails publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.37.22315 |
SSID | ssj0000601194 |
Score | 2.5682383 |
Snippet | Fatty acid uptake is the first step in fatty acid utilization, but it remains unclear how the process is regulated. Protein palmitoylation is a fatty acyl... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 209 |
SubjectTerms | 3T3-L1 Cells Acyltransferases - metabolism Adipose Tissue - metabolism Amino Acid Sequence Animals Biological Transport CD36 CD36 Antigens - metabolism Cell Membrane - metabolism DHHC4 DHHC5 fatty acid uptake Fatty Acids - metabolism HEK293 Cells Humans Lipoylation Male Membrane Proteins - metabolism Mice Mice, Inbred C57BL Mice, Knockout protein palmitoylation Transfection |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBYmpdBL6DNxX6jQ6xatNLuyD6EEp8YUXHqwwTehx2zaxFknzgay_76jfTiXmEBvEqx2l9FjvpFG38fYVysLnbncJW48sgnYzCc2V5Cg1OTtfSCPES8Kz3_lsyX8XGWrAes1WzsD3j4a2kU9qeV2_e3-pv5OE_7kIVfL43qLkX0yHTWbe5IW5Wfkm3TUNJh3gL9dmyPHWTxqljLmcknQ_X26PS_a56_24dHGL01fssMOUPLTdgS8YgMsX7PnrcRk_Yb9OZvNJsBtGXgsZXxqfUvMjVSsqpqf-r-BL68re4nc1TwKqtAsr2OOXHneNFw02eKxNjlTOa82nFAj_024-8ryOV5RwF3iW7ac_lhMZkmnrpB40FAl6GWqsDn49EHlIIKQRVaAz3TIhQtCW8ykU8p7EGgLD0XwIigAB2NhtXrHDspNiceMa4GpHQcsCicAtB-pQlnQGMnA0pCPhkz1NjS-ox6PChhr0-eYXZjW8iZa3qTSkOWHLNm1um6pN554XvfdYzr40MICQ4PliZZf-t40NLvikQnZbXN3ayRFk2nk7IEhO2q7efcvFGwRetT6_X9_9wN7QbVxs6MjP7KDanuHnwjjVO5zM2z_AcNN9rY priority: 102 providerName: Scholars Portal |
Title | DHHC4 and DHHC5 Facilitate Fatty Acid Uptake by Palmitoylating and Targeting CD36 to the Plasma Membrane |
URI | https://dx.doi.org/10.1016/j.celrep.2018.12.022 https://www.ncbi.nlm.nih.gov/pubmed/30605677 https://www.proquest.com/docview/2164100364 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahsxUIRAoZfSd522QYVehbXS7Gp9TJ0aU3ApNAbfhB6zrdtkbdLNwX_fkXbX0EMI9LJIQsOKkTQvzYOxj041pvSVF35WOwGuDMJVGgQqQ9w-ROIYKVB49bVaruHLptycsPkYC5PcKgfa39P0TK2HkemAzel-u51-V6S7EHci4krHiDQtosMa6hzEt_l0tLOkfCNFroeY5osEMEbQZTevgNe3mBJXFnW2Cyp1H4e6TwLNnGjxlD0ZREh-0a_yGTvB9jl71BeVPLxgPy-Xyzlw10aeWiVfuNCn4kZqdt2BX4Rt5Ot9534j9weeSqjQvT4kr7j2Rwa8yv7hqTe_1BXvdpzkRP6NJO0bx1d4Qyp2iy_ZevH5ar4UQz0FEcBAJzCoQmN-6gxRVyCjVE3ZQChNrKSP0jgsldc6BJDomgBNDDJqAA8z6Yx-xU7bXYtvGDcSCzeL2DReAphQ60Y7MJjSfxWxqidMjzi0YUg2nmpeXNvRq-yX7TFvE-ZtoSxhfsLEEWrfJ9t4YL4Zt8f-c2gs8YMHID-Mu2npPqVHEsLb7u6PVaQ_FilLD0zY636bj2sh9YrkRWPO_vu_b9lj6s2yDUe9Y6fd7R2-J6mm8-fZGnCeDy99V1D_BQD39AQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYILKq8SKGAkOFrx2t51cuDQJkQb2lRIJFJuxq-FQLuJ2q3Q_i7-YMfe3UgcqkpIvXkfs2t9Y8_DHs8g9EGzQqYmM8QMB5oInVqiMy6IZxK0vXWgMcJB4dlpli_El2W63EF_u7MwIayylf2NTI_Sur3Tb9Hsb1ar_jcGvgtoJxCuMIzA02ojK499_Qf8tstP0zEw-SNjk8_zUU7a0gLECikq4i1LuI-7ftbxTFBHWZEWwqbSZdQ4KrVPmeHcWkG9LqwonKWOC2HEkGrJ4bv30H0gl0EaTJdH24WdkOAkiQUYQwdJ6GF3ZC_GlVl_duFDpsxkEBciGbtJJd5k8kbVN9lDj1ubFR82sDxBO758ih40VSzrZ-jnOM9HAuvS4dBK8UTbJve3h2ZV1fjQrhxebCr922NT41CzBQRJHcLwyh-RcB4D0sPVaMwzXK0xGKb4K5j25xrP_Dn49KV_jhZ3gvILtFuuS_8SYUl9oofOF4WhQkg74AXXQvqQbyxx2aCHeIehsm1281Bk40x1YWy_VIO8CsirhClAvofIlmrTZPe45X3ZsUf9M0oVKKBbKN933FQwgcOuDOC2vrpUDBzWJKQFEj2037B52xfw58BAlfLVf__3HXqYz2cn6mR6evwaPYInw7iAxA7QbnVx5d-ASVWZt3EIY_T9rufMNdhhMBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DHHC4+and+DHHC5+Facilitate+Fatty+Acid+Uptake+by+Palmitoylating+and+Targeting+CD36+to+the+Plasma+Membrane&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Juan&rft.au=Hao%2C+Jian-Wei&rft.au=Wang%2C+Xu&rft.au=Guo%2C+Huiling&rft.date=2019-01-02&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=26&rft.issue=1&rft.spage=209&rft.epage=221.e5&rft_id=info:doi/10.1016%2Fj.celrep.2018.12.022&rft.externalDocID=S2211124718319338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |