Spatiotemporal transcriptomic divergence across human and macaque brain development

Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative a...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 362; no. 6420
Main Authors Zhu, Ying, Sousa, André M M, Gao, Tianliuyun, Skarica, Mario, Li, Mingfeng, Santpere, Gabriel, Esteller-Cucala, Paula, Juan, David, Ferrández-Peral, Luis, Gulden, Forrest O, Yang, Mo, Miller, Daniel J, Marques-Bonet, Tomas, Imamura Kawasawa, Yuka, Zhao, Hongyu, Sestan, Nenad
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 14.12.2018
American Association for the Advancement of Science (AAAS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.
AbstractList INTRODUCTIONImproved understanding of how the developing human nervous system differs from that of closely related nonhuman primates is fundamental for teasing out human-specific aspects of behavior, cognition, and disorders.RATIONALEThe shared and unique functional properties of the human nervous system are rooted in the complex transcriptional programs governing the development of distinct cell types, neural circuits, and regions. However, the precise molecular mechanisms underlying shared and unique features of the developing human nervous system have been only minimally characterized.RESULTSWe generated complementary tissue-level and single-cell transcriptomic datasets from up to 16 brain regions covering prenatal and postnatal development in humans and rhesus macaques (Macaca mulatta), a closely related species and the most commonly studied nonhuman primate. We created and applied TranscriptomeAge and TempShift algorithms to age-match developing specimens between the species and to more rigorously identify temporal differences in gene expression within and across the species. By analyzing regional and temporal patterns of gene expression in both the developing human and macaque brain, and comparing these patterns to a complementary dataset that included transcriptomic information from the adult chimpanzee, we identified shared and divergent transcriptomic features of human brain development. Furthermore, integration with single-cell and single-nucleus transcriptomic data covering prenatal and adult periods of both species revealed that the developmental divergence between humans and macaques can be traced to distinct cell types enriched in different developmental times and brain regions, including the prefrontal cortex, a region of the brain associated with distinctly human aspects of cognition and behavior.We found two phases of prominent species differences: embryonic to late midfetal development and adolescence/young adulthood. This evolutionary cup-shaped or hourglass-like pattern, with high divergence in prenatal development and adolescence/young adulthood and lower divergence in early postnatal development, resembles the developmental cup-shaped pattern described in the accompanying study by Li et al. Even though the developmental (ontogenetic) and evolutionary (phylogenetic) patterns have similar profiles, the overlap of genes driving these two patterns is not substantial, indicating the existence of different molecular mechanisms and constraints for regional specification and species divergence.Notably, we also identified numerous genes and gene coexpression modules exhibiting human-distinct patterns in either temporal (heterochronic) or spatial (heterotopic) gene expression, as well as genes with human-distinct developmental expression, linked to autism spectrum disorder, schizophrenia, and other neurological or psychiatric diseases. This finding potentially suggests mechanistic underpinnings of these disorders.CONCLUSIONOur study provides insights into the evolution of gene expression in the developing human brain and may shed some light on potentially human-specific underpinnings of certain neuropsychiatric disorders.Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.
Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.
Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.
INTRODUCTION Improved understanding of how the developing human nervous system differs from that of closely related nonhuman primates is fundamental for teasing out human-specific aspects of behavior, cognition, and disorders. RATIONALE The shared and unique functional properties of the human nervous system are rooted in the complex transcriptional programs governing the development of distinct cell types, neural circuits, and regions. However, the precise molecular mechanisms underlying shared and unique features of the developing human nervous system have been only minimally characterized. RESULTS We generated complementary tissue-level and single-cell transcriptomic datasets from up to 16 brain regions covering prenatal and postnatal development in humans and rhesus macaques ( Macaca mulatta ), a closely related species and the most commonly studied nonhuman primate. We created and applied TranscriptomeAge and TempShift algorithms to age-match developing specimens between the species and to more rigorously identify temporal differences in gene expression within and across the species. By analyzing regional and temporal patterns of gene expression in both the developing human and macaque brain, and comparing these patterns to a complementary dataset that included transcriptomic information from the adult chimpanzee, we identified shared and divergent transcriptomic features of human brain development. Furthermore, integration with single-cell and single-nucleus transcriptomic data covering prenatal and adult periods of both species revealed that the developmental divergence between humans and macaques can be traced to distinct cell types enriched in different developmental times and brain regions, including the prefrontal cortex, a region of the brain associated with distinctly human aspects of cognition and behavior. We found two phases of prominent species differences: embryonic to late midfetal development and adolescence/young adulthood. This evolutionary cup-shaped or hourglass-like pattern, with high divergence in prenatal development and adolescence/young adulthood and lower divergence in early postnatal development, resembles the developmental cup-shaped pattern described in the accompanying study by Li et al . Even though the developmental (ontogenetic) and evolutionary (phylogenetic) patterns have similar profiles, the overlap of genes driving these two patterns is not substantial, indicating the existence of different molecular mechanisms and constraints for regional specification and species divergence. Notably, we also identified numerous genes and gene coexpression modules exhibiting human-distinct patterns in either temporal (heterochronic) or spatial (heterotopic) gene expression, as well as genes with human-distinct developmental expression, linked to autism spectrum disorder, schizophrenia, and other neurological or psychiatric diseases. This finding potentially suggests mechanistic underpinnings of these disorders. CONCLUSION Our study provides insights into the evolution of gene expression in the developing human brain and may shed some light on potentially human-specific underpinnings of certain neuropsychiatric disorders. Concerted ontogenetic and phylogenetic transcriptomic divergence in human and macaque brain. Left: Human and macaque brain regions spanning both prenatal and postnatal development were age-matched using TranscriptomeAge. Right: Phylogenetic transcriptomic divergence between humans and macaques resembles the developmental (ontogenetic) cup-shaped pattern of each species, with high divergence in prenatal development and adolescence/young adulthood and lower divergence during the early postnatal period (from perinatal to adolescence). Single-cell transcriptomics revealed shared and divergent transcriptomic features of distinct cell types. Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.
Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders. Also supported by BFU2017-86471-P (MINECO/FEDER, UE), U01 MH106874 grant, Howard Hughes International Early Career, 3P30AG021342-16S2 (H.Z.); Obra Social “La Caixa” and Secretaria d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880) (T.M.-B.); a Formació de Personal Investigador fellowship from Generalitat de Catalunya (FI_B00122) (P.E.-C.); La Caixa Foundation (L.F.-P.); a Juan de la Cierva fellowship (FJCI-2016-29558) from MICINN (D.J.); and NIH grants MH109904 and MH106874, the Kavli Foundation, and the James S. McDonnell Foundation.
Author Zhu, Ying
Skarica, Mario
Sousa, André M M
Gao, Tianliuyun
Gulden, Forrest O
Zhao, Hongyu
Esteller-Cucala, Paula
Santpere, Gabriel
Sestan, Nenad
Yang, Mo
Li, Mingfeng
Miller, Daniel J
Ferrández-Peral, Luis
Marques-Bonet, Tomas
Juan, David
Imamura Kawasawa, Yuka
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhu
  fullname: Zhu, Ying
  organization: Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
– sequence: 2
  givenname: André M M
  orcidid: 0000-0003-1740-5066
  surname: Sousa
  fullname: Sousa, André M M
  organization: Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
– sequence: 3
  givenname: Tianliuyun
  orcidid: 0000-0002-6261-8303
  surname: Gao
  fullname: Gao, Tianliuyun
  organization: Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
– sequence: 4
  givenname: Mario
  orcidid: 0000-0002-2478-014X
  surname: Skarica
  fullname: Skarica, Mario
  organization: Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
– sequence: 5
  givenname: Mingfeng
  orcidid: 0000-0002-7959-6008
  surname: Li
  fullname: Li, Mingfeng
  organization: Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
– sequence: 6
  givenname: Gabriel
  orcidid: 0000-0001-5909-8637
  surname: Santpere
  fullname: Santpere, Gabriel
  organization: Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
– sequence: 7
  givenname: Paula
  orcidid: 0000-0003-3048-4280
  surname: Esteller-Cucala
  fullname: Esteller-Cucala, Paula
  organization: Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
– sequence: 8
  givenname: David
  orcidid: 0000-0003-1912-9667
  surname: Juan
  fullname: Juan, David
  organization: Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
– sequence: 9
  givenname: Luis
  orcidid: 0000-0003-0338-0603
  surname: Ferrández-Peral
  fullname: Ferrández-Peral, Luis
  organization: Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona, Spain
– sequence: 10
  givenname: Forrest O
  orcidid: 0000-0003-3523-0247
  surname: Gulden
  fullname: Gulden, Forrest O
  organization: Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
– sequence: 11
  givenname: Mo
  orcidid: 0000-0003-1670-5243
  surname: Yang
  fullname: Yang, Mo
  organization: Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
– sequence: 12
  givenname: Daniel J
  orcidid: 0000-0002-4844-0828
  surname: Miller
  fullname: Miller, Daniel J
  organization: Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
– sequence: 13
  givenname: Tomas
  orcidid: 0000-0002-5597-3075
  surname: Marques-Bonet
  fullname: Marques-Bonet, Tomas
  organization: Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
– sequence: 14
  givenname: Yuka
  orcidid: 0000-0002-8638-6738
  surname: Imamura Kawasawa
  fullname: Imamura Kawasawa, Yuka
  organization: Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State University College of Medicine, Hershey, PA, USA
– sequence: 15
  givenname: Hongyu
  surname: Zhao
  fullname: Zhao, Hongyu
  organization: Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
– sequence: 16
  givenname: Nenad
  orcidid: 0000-0003-0966-9619
  surname: Sestan
  fullname: Sestan, Nenad
  email: nenad.sestan@yale.edu
  organization: Departments of Genetics, Psychiatry, and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30545855$$D View this record in MEDLINE/PubMed
BookMark eNpdkb9v1zAQxS1URL8tzGwoEgtLWl_s2PGIqvJDqsRQmK2LcwFXiR1spxL_PYkaQGKwLPs-7_zO74KdhRiIsdfArwAadZ2dp-DoCrF0XOtn7ATctLVpuDhjJ86Fqrf79pxd5PzA-VYz4gU7F7yVbde2J3Z_v2DxsdC8xIRTVRKG7JJfSpy9qwb_SOn7_kSFLsWcqx_rjKHCMFQzOvy5UtUn9KEa6JGmuMwUykv2fMQp06tjv2TfPtx-vflU3335-Pnm_V3tpJalJhw72SDJFtSwOZWdwK7v3Ng3gP2ohZFCwmi0EMY4PrqGdDcY1TlABT2ISwZPfV1enU3kKDksNqL_d9hXw3VjhdJcyE3z7kmzpLiZz8XOPjuaJgwU12wbaLVSAHxH3_6HPsQ1hW2inVLGAIeduj5M7N-TaLRL8jOmXxa43TOyR0b2yGhTvDn6rv1Mw1_-TyjiN5uzkU0
CitedBy_id crossref_primary_10_1016_j_cell_2023_06_009
crossref_primary_10_1016_j_celrep_2020_03_053
crossref_primary_10_3389_fncel_2019_00559
crossref_primary_10_1126_science_abo7257
crossref_primary_10_1016_j_neuron_2019_09_036
crossref_primary_10_1098_rstb_2019_0612
crossref_primary_10_1038_s41392_024_01809_0
crossref_primary_10_1101_gr_256958_119
crossref_primary_10_1016_j_celrep_2024_114168
crossref_primary_10_1016_j_cell_2019_10_041
crossref_primary_10_1038_s41380_022_01876_1
crossref_primary_10_1016_j_tics_2022_02_003
crossref_primary_10_1016_j_celrep_2022_111585
crossref_primary_10_3389_fncir_2021_788560
crossref_primary_10_1016_j_semcdb_2022_05_013
crossref_primary_10_1242_dev_200180
crossref_primary_10_1111_1755_0998_13775
crossref_primary_10_1038_s41398_023_02392_8
crossref_primary_10_1093_hmg_ddaa117
crossref_primary_10_1016_j_ymthe_2022_03_001
crossref_primary_10_1016_j_mcpro_2022_100261
crossref_primary_10_1016_j_neuron_2023_03_010
crossref_primary_10_1038_s41467_021_23397_1
crossref_primary_10_1007_s00018_021_04063_7
crossref_primary_10_1016_j_gde_2020_06_006
crossref_primary_10_1172_jci_insight_162101
crossref_primary_10_3390_genes10030193
crossref_primary_10_1016_j_isci_2020_101717
crossref_primary_10_1177_1073858420921378
crossref_primary_10_1038_s41588_023_01475_y
crossref_primary_10_1093_molbev_msae001
crossref_primary_10_1093_molbev_msae123
crossref_primary_10_1002_wrna_1865
crossref_primary_10_1016_j_cell_2021_06_023
crossref_primary_10_1038_s41598_022_21496_7
crossref_primary_10_1038_s41583_023_00760_3
crossref_primary_10_1073_pnas_2210967120
crossref_primary_10_1186_s11689_024_09545_w
crossref_primary_10_1038_s41586_021_03952_y
crossref_primary_10_1186_s13073_023_01210_6
crossref_primary_10_3390_ijms24043597
crossref_primary_10_1016_j_jneumeth_2024_110139
crossref_primary_10_1016_j_biosystems_2021_104486
crossref_primary_10_1038_s41576_023_00626_5
crossref_primary_10_1038_s41421_023_00525_3
crossref_primary_10_1038_s41467_020_17051_5
crossref_primary_10_1186_s13229_020_00346_1
crossref_primary_10_1093_database_baad035
crossref_primary_10_1038_s41576_022_00554_w
crossref_primary_10_1073_pnas_2208654120
crossref_primary_10_1038_s41398_023_02693_y
crossref_primary_10_1093_cercor_bhaa342
crossref_primary_10_20900_jpbs_20190012
crossref_primary_10_1016_j_neuron_2023_09_014
crossref_primary_10_1093_nar_gkad955
crossref_primary_10_1016_j_celrep_2019_04_044
crossref_primary_10_1038_s41431_023_01461_2
crossref_primary_10_1038_s41467_024_46529_9
crossref_primary_10_1126_science_adf3786
crossref_primary_10_1038_s41586_023_06984_8
crossref_primary_10_1002_ctm2_886
crossref_primary_10_1016_j_scib_2021_01_003
crossref_primary_10_1038_s41467_022_34590_1
crossref_primary_10_3389_fnins_2023_1198041
crossref_primary_10_1038_s41591_023_02238_2
crossref_primary_10_1002_aur_2675
crossref_primary_10_1016_j_diff_2022_10_002
crossref_primary_10_1073_pnas_2020125118
crossref_primary_10_1038_s41586_021_03953_x
crossref_primary_10_1098_rspb_2021_0079
crossref_primary_10_1073_pnas_2024795118
crossref_primary_10_1016_j_cell_2022_06_031
crossref_primary_10_1007_s00335_021_09922_z
crossref_primary_10_1002_brb3_2309
crossref_primary_10_1073_pnas_2219137121
crossref_primary_10_2174_1389202921999200604123914
crossref_primary_10_1007_s13238_022_00912_8
crossref_primary_10_1038_s41467_022_31730_5
crossref_primary_10_1126_sciadv_abh1663
crossref_primary_10_1186_s13229_020_00322_9
crossref_primary_10_1093_molbev_msad173
crossref_primary_10_1176_appi_ajp_2020_20081187
crossref_primary_10_1016_j_cmet_2024_01_003
crossref_primary_10_1038_s41583_023_00675_z
crossref_primary_10_1002_dneu_22819
crossref_primary_10_1093_nar_gkae021
crossref_primary_10_1093_icb_icaa109
crossref_primary_10_1016_j_cell_2021_10_003
crossref_primary_10_1111_ejn_16304
crossref_primary_10_1523_JNEUROSCI_1506_21_2022
crossref_primary_10_1038_s41398_020_01158_w
crossref_primary_10_1186_s12864_022_08450_7
crossref_primary_10_3390_biology12091241
crossref_primary_10_1159_000501797
crossref_primary_10_1016_j_neuron_2019_07_009
crossref_primary_10_1038_s41593_023_01379_4
crossref_primary_10_1111_acer_14052
crossref_primary_10_1038_s41467_022_34367_6
crossref_primary_10_3389_fphys_2021_690540
crossref_primary_10_1016_j_pneurobio_2020_101883
crossref_primary_10_3389_fncel_2021_726479
crossref_primary_10_1073_pnas_1919091117
crossref_primary_10_1016_j_brainres_2019_146582
crossref_primary_10_1016_j_stem_2022_09_010
crossref_primary_10_1098_rspb_2020_2987
crossref_primary_10_1186_s13059_023_02846_8
crossref_primary_10_1093_nsr_nwad248
crossref_primary_10_1038_s41467_023_39411_7
crossref_primary_10_1016_j_bpsgos_2022_03_013
crossref_primary_10_3389_fnins_2021_636259
crossref_primary_10_1016_j_omtm_2024_101243
crossref_primary_10_1038_s41576_021_00444_7
crossref_primary_10_1016_j_devcel_2023_11_004
crossref_primary_10_1093_nsr_nwad281
crossref_primary_10_1016_j_celrep_2020_107599
crossref_primary_10_1016_j_isci_2022_104800
crossref_primary_10_1016_j_bpsgos_2022_08_003
crossref_primary_10_1016_j_cell_2020_11_037
crossref_primary_10_1016_j_gpb_2019_03_003
crossref_primary_10_1016_j_neuron_2021_08_005
crossref_primary_10_1038_s41586_023_06338_4
crossref_primary_10_1038_s41576_022_00568_4
crossref_primary_10_1080_15592294_2022_2080993
crossref_primary_10_1093_cercor_bhaa033
crossref_primary_10_1093_cercor_bhaa035
crossref_primary_10_1126_science_aat7615
crossref_primary_10_1093_gbe_evaa054
crossref_primary_10_1126_sciadv_abm7825
crossref_primary_10_1038_s41593_020_0604_z
crossref_primary_10_1016_j_cell_2021_01_001
crossref_primary_10_1016_j_conb_2023_102699
crossref_primary_10_1016_j_jare_2024_05_013
crossref_primary_10_1126_sciadv_adg2615
crossref_primary_10_3390_brainsci13071070
crossref_primary_10_3389_fcell_2023_1209320
crossref_primary_10_1016_j_lfs_2023_121734
crossref_primary_10_1038_s41467_019_14269_w
crossref_primary_10_1038_s44220_024_00223_3
crossref_primary_10_1016_j_celrep_2020_108308
crossref_primary_10_1016_j_gde_2020_05_043
crossref_primary_10_3390_sym14010128
crossref_primary_10_3389_fgene_2021_650874
crossref_primary_10_1038_s41593_020_00748_7
crossref_primary_10_1038_s41467_023_37246_w
crossref_primary_10_3389_fgene_2019_00891
crossref_primary_10_3389_fphys_2019_00214
crossref_primary_10_1038_s41586_022_05016_1
crossref_primary_10_1038_s41586_024_07521_x
crossref_primary_10_1016_j_cell_2020_10_018
crossref_primary_10_1038_s41598_022_12953_4
crossref_primary_10_1093_cercor_bhac009
crossref_primary_10_1073_pnas_2110416119
crossref_primary_10_1093_nar_gkaa486
crossref_primary_10_1126_science_abj6641
crossref_primary_10_1007_s12031_021_01874_y
crossref_primary_10_1016_j_conb_2020_10_018
crossref_primary_10_3390_ijms21207447
crossref_primary_10_1016_j_celrep_2023_113439
crossref_primary_10_1007_s10803_022_05824_4
crossref_primary_10_1093_bfgp_elab024
crossref_primary_10_1016_j_neuron_2022_09_010
crossref_primary_10_1038_s41587_023_01974_7
crossref_primary_10_1073_pnas_2011884117
crossref_primary_10_7554_eLife_90325
crossref_primary_10_1038_s41386_022_01305_5
crossref_primary_10_1038_s41467_022_34413_3
crossref_primary_10_1016_j_gde_2024_102182
crossref_primary_10_1073_pnas_1907982116
crossref_primary_10_3389_fnins_2021_668293
crossref_primary_10_1146_annurev_genet_071719_020705
crossref_primary_10_1126_sciadv_add2911
crossref_primary_10_1038_s41586_019_1654_9
crossref_primary_10_1126_science_aat6720
crossref_primary_10_1186_s13100_021_00250_2
crossref_primary_10_1038_s41596_023_00820_z
crossref_primary_10_1111_ejn_16133
crossref_primary_10_1093_gerona_glad134
crossref_primary_10_1016_j_bbr_2019_112458
crossref_primary_10_1016_j_crmeth_2023_100409
crossref_primary_10_1186_s13059_020_02257_z
crossref_primary_10_1007_s00429_024_02819_y
crossref_primary_10_1126_sciadv_aaz2978
crossref_primary_10_1016_j_xgen_2024_100589
crossref_primary_10_1016_j_gpb_2019_02_002
crossref_primary_10_1038_s41467_022_31403_3
crossref_primary_10_3390_pathogens9121036
crossref_primary_10_2217_epi_2019_0319
crossref_primary_10_1038_s41586_022_04510_w
crossref_primary_10_3390_ijerph16091586
crossref_primary_10_1016_j_neures_2019_05_007
crossref_primary_10_1016_j_tins_2024_05_009
crossref_primary_10_1186_s40035_023_00377_7
crossref_primary_10_1016_j_pneurobio_2021_102183
crossref_primary_10_1038_s41586_022_05277_w
crossref_primary_10_1016_j_gde_2020_05_004
crossref_primary_10_1093_gbe_evae023
crossref_primary_10_1038_s41467_020_14368_z
crossref_primary_10_1016_j_ygeno_2023_110671
crossref_primary_10_1016_j_ygeno_2024_110873
crossref_primary_10_3390_ijms22031248
crossref_primary_10_1016_j_neuron_2021_10_035
crossref_primary_10_1016_j_neuron_2021_10_036
crossref_primary_10_1038_s41467_021_21917_7
crossref_primary_10_3389_fgene_2022_1009390
crossref_primary_10_1186_s12862_020_01633_4
crossref_primary_10_1016_j_neures_2021_08_004
crossref_primary_10_3389_fcell_2021_661113
crossref_primary_10_1093_pnasnexus_pgad230
crossref_primary_10_1093_brain_awad060
crossref_primary_10_1007_s12539_024_00603_4
crossref_primary_10_1038_s41586_023_06542_2
crossref_primary_10_1016_j_biopsych_2021_02_012
crossref_primary_10_7554_eLife_90325_3
crossref_primary_10_3389_fnana_2024_1410791
crossref_primary_10_3389_fnins_2022_871979
crossref_primary_10_1038_s41593_022_01197_0
crossref_primary_10_1126_sciadv_ade2812
crossref_primary_10_1111_dgd_12750
Cites_doi 10.1525/aa.1955.57.1.02a00030
10.1186/1471-2164-15-343
10.1186/s13059-015-0580-x
10.1016/j.neuron.2012.03.034
10.1261/rna.043075.113
10.1073/pnas.0605296103
10.18637/jss.v033.i01
10.1038/nn1008
10.1101/gr.121095.111
10.1073/pnas.0800387105
10.1038/nature08537
10.1146/annurev.genom.9.081307.164420
10.1093/bioinformatics/bts635
10.1016/j.cub.2007.10.019
10.1016/j.neuron.2013.11.018
10.1093/bioinformatics/btt656
10.1146/annurev-neuro-070815-013858
10.1371/journal.pone.0008809
10.1038/nature05084
10.1080/13816810600976871
10.1016/S0166-4328(01)00297-2
10.7551/mitpress/3206.001.0001
10.1186/gb-2010-11-10-r106
10.1186/1471-2105-9-559
10.1126/science.3952506
10.1038/nn1230
10.1016/j.neuron.2015.09.016
10.1073/pnas.1201894109
10.1101/gr.127324.111
10.1242/jcs.023465
10.1136/adc.48.10.757
10.1073/pnas.1117943109
10.1007/978-1-4684-1280-2_54
10.1038/nature25975
10.1016/B978-0-444-53860-4.00011-8
10.1038/nature10523
10.1016/S0306-4522(01)00171-3
10.1096/fj.05-4650fje
10.1016/j.neuron.2015.12.008
10.1101/cshperspect.a001917
10.1093/hmg/ddu309
10.1038/nrn.2017.138
10.7554/eLife.05005
10.1038/s41598-017-04434-w
10.1016/0028-2243(86)90014-6
10.1126/science.aat7615
10.1146/annurev.anthro.28.1.109
10.1016/j.molcel.2010.05.004
10.1093/nar/gkx1067
10.1073/pnas.1307202110
10.1186/1471-2105-11-367
10.1093/nar/gkn714
10.1038/nbt.4096
10.1038/nrn2513
10.1101/gr.229102
10.1093/bioinformatics/btm563
10.1038/cr.2017.95
10.1186/s13059-014-0550-8
10.1016/j.cell.2017.06.036
10.1093/nar/gkv350
10.1016/j.neuron.2009.03.027
10.1038/sj.npp.1301553
10.5962/bhl.title.7192
10.1038/nature04103
10.15252/embj.201591206
10.1073/pnas.0900544106
10.1242/dev.065938
10.1016/j.neuron.2015.03.021
10.1038/nn.4362
10.1016/j.stem.2016.03.003
10.1038/13158
10.1038/nmeth.3337
10.1038/nature13185
10.1038/nature25980
10.1038/nature09634
10.1038/cr.2011.144
10.1523/JNEUROSCI.5746-12.2013
10.1038/nn.4229
10.1038/nature09632
10.1186/gb-2006-7-s1-s4
10.1038/nrg3336
10.1126/science.aaf1204
10.1038/nmeth.1226
10.1523/JNEUROSCI.2986-07.2008
10.1038/ng.836
10.1371/journal.pmed.1000245
10.1016/S0140-6736(01)01429-5
10.1038/s10038-017-0351-5
10.1186/1471-2164-4-31
10.1016/j.cell.2011.06.030
10.1016/j.neuron.2013.10.046
10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
10.1126/science.aan3456
10.1016/j.cell.2016.01.015
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science. 2018; 362(6420). pii: eaat8077. DOI 10.1126/science.aat8077. info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science. 2018; 362(6420). pii: eaat8077. DOI 10.1126/science.aat8077. info:eu-repo/semantics/openAccess
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
XX2
DOI 10.1126/science.aat8077
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Recercat
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID oai_recercat_cat_2072_367034
10_1126_science_aat8077
30545855
Genre Research Support, Non-U.S. Gov't
Dataset
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH110927
– fundername: NIMH NIH HHS
  grantid: P50 MH106934
– fundername: NIH HHS
  grantid: S10 OD030363
– fundername: NIMH NIH HHS
  grantid: U01 MH103339
– fundername: Howard Hughes Medical Institute
– fundername: NIMH NIH HHS
  grantid: U01 MH103365
– fundername: NIMH NIH HHS
  grantid: U01 MH103392
– fundername: NIMH NIH HHS
  grantid: R01 MH105898
– fundername: NIMH NIH HHS
  grantid: R01 MH113257
– fundername: NIMH NIH HHS
  grantid: R21 MH105881
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADDRP
ADMHC
ADUKH
AEGBM
AENEX
AEUPB
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AFRQD
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
B-7
BKF
BLC
C45
C51
CGR
CS3
CUY
CVF
DB2
DU5
EBS
ECM
EIF
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
NPM
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHF
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
ZKG
~02
~G0
~KM
~ZZ
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
AETEA
.GJ
.GO
.HR
0-V
186
2XV
3EH
3V.
4.4
41~
42X
4R4
68V
692
79B
7X7
7XC
88A
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAJYS
AAKAS
AAYJJ
AAYOK
ABBHK
ABJCF
ABPMR
ABTAH
ABUWG
ACQAM
ACTDY
ADACV
ADBBV
ADULT
ADZCM
AEXZC
AFCHL
AFKRA
AJUXI
ALSLI
ANJGP
AQVQM
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DCCCD
DOOOF
DWQXO
D~A
EAU
EGS
EWM
EX3
F20
FYUFA
G8K
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IPSME
ISN
ISR
ITC
J5H
J9C
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
JSODD
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0L
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
P62
PATMY
PCBAR
PDBOC
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QJJ
R05
RNS
RZL
SA0
SJFOW
SKT
UBY
UHU
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
XX2
YJ6
YXB
ZCG
ZGI
ZVL
ZVM
ZXP
ZY4
~H1
ID FETCH-LOGICAL-c474t-eaf842ae4516d036483a8b8cfb21abf7394341f973399c0fc2e78d968c1a61b13
ISSN 0036-8075
1095-9203
IngestDate Fri Oct 11 12:27:21 EDT 2024
Tue Aug 27 04:42:50 EDT 2024
Thu Oct 10 18:09:31 EDT 2024
Thu Sep 26 17:18:45 EDT 2024
Tue Oct 15 08:55:20 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6420
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-eaf842ae4516d036483a8b8cfb21abf7394341f973399c0fc2e78d968c1a61b13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0003-1912-9667
0000-0002-4844-0828
0000-0003-3523-0247
0000-0002-7959-6008
0000-0002-8638-6738
0000-0001-5909-8637
0000-0003-0966-9619
0000-0003-3048-4280
0000-0002-2478-014X
0000-0003-1670-5243
0000-0003-1740-5066
0000-0002-5597-3075
0000-0003-0338-0603
0000-0002-6261-8303
OpenAccessLink https://recercat.cat/handle/2072/367034
PMID 30545855
PQID 2156991014
PQPubID 1256
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_367034
proquest_miscellaneous_2157661104
proquest_journals_2156991014
crossref_primary_10_1126_science_aat8077
pubmed_primary_30545855
PublicationCentury 2000
PublicationDate 2018-12-14
PublicationDateYYYYMMDD 2018-12-14
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science (AAAS)
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_81_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
References_xml – ident: e_1_3_2_2_2
  doi: 10.1525/aa.1955.57.1.02a00030
– ident: e_1_3_2_38_2
  doi: 10.1186/1471-2164-15-343
– ident: e_1_3_2_83_2
  doi: 10.1186/s13059-015-0580-x
– ident: e_1_3_2_64_2
  doi: 10.1016/j.neuron.2012.03.034
– ident: e_1_3_2_85_2
  doi: 10.1261/rna.043075.113
– ident: e_1_3_2_55_2
  doi: 10.1073/pnas.0605296103
– ident: e_1_3_2_84_2
  doi: 10.18637/jss.v033.i01
– ident: e_1_3_2_47_2
  doi: 10.1038/nn1008
– ident: e_1_3_2_76_2
  doi: 10.1101/gr.121095.111
– ident: e_1_3_2_16_2
  doi: 10.1073/pnas.0800387105
– ident: e_1_3_2_10_2
  doi: 10.1038/nature08537
– ident: e_1_3_2_24_2
  doi: 10.1146/annurev.genom.9.081307.164420
– ident: e_1_3_2_77_2
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_3_2_63_2
  doi: 10.1016/j.cub.2007.10.019
– ident: e_1_3_2_31_2
  doi: 10.1016/j.neuron.2013.11.018
– ident: e_1_3_2_80_2
  doi: 10.1093/bioinformatics/btt656
– ident: e_1_3_2_13_2
  doi: 10.1146/annurev-neuro-070815-013858
– ident: e_1_3_2_42_2
  doi: 10.1371/journal.pone.0008809
– ident: e_1_3_2_53_2
  doi: 10.1038/nature05084
– ident: e_1_3_2_62_2
  doi: 10.1080/13816810600976871
– ident: e_1_3_2_88_2
  doi: 10.1016/S0166-4328(01)00297-2
– ident: e_1_3_2_90_2
  doi: 10.7551/mitpress/3206.001.0001
– ident: e_1_3_2_97_2
  doi: 10.1186/gb-2010-11-10-r106
– ident: e_1_3_2_93_2
  doi: 10.1186/1471-2105-9-559
– ident: e_1_3_2_49_2
  doi: 10.1126/science.3952506
– ident: e_1_3_2_19_2
  doi: 10.1038/nn1230
– ident: e_1_3_2_65_2
  doi: 10.1016/j.neuron.2015.09.016
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.1201894109
– ident: e_1_3_2_32_2
  doi: 10.1101/gr.127324.111
– ident: e_1_3_2_9_2
  doi: 10.1242/jcs.023465
– ident: e_1_3_2_3_2
  doi: 10.1136/adc.48.10.757
– ident: e_1_3_2_75_2
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.1117943109
– ident: e_1_3_2_61_2
  doi: 10.1007/978-1-4684-1280-2_54
– ident: e_1_3_2_50_2
  doi: 10.1038/nature25975
– ident: e_1_3_2_21_2
  doi: 10.1016/B978-0-444-53860-4.00011-8
– ident: e_1_3_2_30_2
  doi: 10.1038/nature10523
– ident: e_1_3_2_41_2
  doi: 10.1016/S0306-4522(01)00171-3
– ident: e_1_3_2_57_2
  doi: 10.1096/fj.05-4650fje
– ident: e_1_3_2_7_2
  doi: 10.1016/j.neuron.2015.12.008
– ident: e_1_3_2_51_2
  doi: 10.1101/cshperspect.a001917
– ident: e_1_3_2_92_2
  doi: 10.1093/hmg/ddu309
– ident: e_1_3_2_14_2
  doi: 10.1038/nrn.2017.138
– ident: e_1_3_2_66_2
  doi: 10.7554/eLife.05005
– ident: e_1_3_2_70_2
  doi: 10.1038/s41598-017-04434-w
– ident: e_1_3_2_4_2
  doi: 10.1016/0028-2243(86)90014-6
– ident: e_1_3_2_34_2
  doi: 10.1126/science.aat7615
– ident: e_1_3_2_5_2
  doi: 10.1146/annurev.anthro.28.1.109
– ident: e_1_3_2_96_2
  doi: 10.1016/j.molcel.2010.05.004
– ident: e_1_3_2_68_2
  doi: 10.1093/nar/gkx1067
– ident: e_1_3_2_98_2
  doi: 10.1073/pnas.1307202110
– ident: e_1_3_2_86_2
  doi: 10.1186/1471-2105-11-367
– ident: e_1_3_2_67_2
  doi: 10.1093/nar/gkn714
– ident: e_1_3_2_82_2
  doi: 10.1038/nbt.4096
– ident: e_1_3_2_15_2
  doi: 10.1038/nrn2513
– ident: e_1_3_2_6_2
– ident: e_1_3_2_79_2
  doi: 10.1101/gr.229102
– ident: e_1_3_2_94_2
  doi: 10.1093/bioinformatics/btm563
– ident: e_1_3_2_74_2
  doi: 10.1038/cr.2017.95
– ident: e_1_3_2_99_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_2_22_2
  doi: 10.1016/j.cell.2017.06.036
– ident: e_1_3_2_91_2
  doi: 10.1093/nar/gkv350
– ident: e_1_3_2_28_2
  doi: 10.1016/j.neuron.2009.03.027
– ident: e_1_3_2_46_2
  doi: 10.1038/sj.npp.1301553
– ident: e_1_3_2_40_2
  doi: 10.5962/bhl.title.7192
– ident: e_1_3_2_8_2
  doi: 10.1038/nature04103
– ident: e_1_3_2_56_2
  doi: 10.15252/embj.201591206
– ident: e_1_3_2_29_2
  doi: 10.1073/pnas.0900544106
– ident: e_1_3_2_52_2
  doi: 10.1242/dev.065938
– ident: e_1_3_2_25_2
  doi: 10.1016/j.neuron.2015.03.021
– ident: e_1_3_2_26_2
  doi: 10.1038/nn.4362
– ident: e_1_3_2_71_2
  doi: 10.1016/j.stem.2016.03.003
– ident: e_1_3_2_45_2
  doi: 10.1038/13158
– ident: e_1_3_2_89_2
  doi: 10.1038/nmeth.3337
– ident: e_1_3_2_37_2
  doi: 10.1038/nature13185
– ident: e_1_3_2_36_2
  doi: 10.1038/nature25980
– ident: e_1_3_2_73_2
  doi: 10.1038/nature09634
– ident: e_1_3_2_54_2
  doi: 10.1038/cr.2011.144
– ident: e_1_3_2_39_2
  doi: 10.1523/JNEUROSCI.5746-12.2013
– ident: e_1_3_2_95_2
  doi: 10.1186/gb-2010-11-10-r106
– ident: e_1_3_2_59_2
  doi: 10.1038/nn.4229
– ident: e_1_3_2_72_2
  doi: 10.1038/nature09632
– ident: e_1_3_2_78_2
  doi: 10.1186/gb-2006-7-s1-s4
– ident: e_1_3_2_18_2
  doi: 10.1038/nrg3336
– ident: e_1_3_2_60_2
  doi: 10.1126/science.aaf1204
– ident: e_1_3_2_81_2
  doi: 10.1038/nmeth.1226
– ident: e_1_3_2_69_2
  doi: 10.1523/JNEUROSCI.2986-07.2008
– ident: e_1_3_2_17_2
  doi: 10.1038/ng.836
– ident: e_1_3_2_23_2
  doi: 10.1371/journal.pmed.1000245
– ident: e_1_3_2_48_2
  doi: 10.1016/S0140-6736(01)01429-5
– ident: e_1_3_2_27_2
  doi: 10.1038/s10038-017-0351-5
– ident: e_1_3_2_87_2
  doi: 10.1186/1471-2164-4-31
– ident: e_1_3_2_11_2
  doi: 10.1016/j.cell.2011.06.030
– ident: e_1_3_2_12_2
  doi: 10.1016/j.neuron.2013.10.046
– ident: e_1_3_2_43_2
  doi: 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
– ident: e_1_3_2_35_2
  doi: 10.1126/science.aan3456
– ident: e_1_3_2_58_2
  doi: 10.1016/j.cell.2016.01.015
SSID ssj0009593
Score 2.6858025
Snippet Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated...
INTRODUCTION Improved understanding of how the developing human nervous system differs from that of closely related nonhuman primates is fundamental for...
INTRODUCTIONImproved understanding of how the developing human nervous system differs from that of closely related nonhuman primates is fundamental for teasing...
SourceID csuc
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Adolescents
Adults
Age
Animals
Autism
Autism Spectrum Disorder - genetics
Biological evolution
Brain
Brain - embryology
Brain - growth & development
Child development
Cognition
Disorders
Divergence
Embryogenesis
Evolution
Fetuses
Gene expression
Gene Expression Regulation, Developmental
Gene regulation
Genes
Human behavior
Humans
Macaca mulatta
Mental disorders
Meta Analysis
Molecular modelling
Nervous system
Neural networks
Neurogenesis - genetics
Nuclei (cytology)
Ontogeny
Pathogenesis
Phylogenetics
Phylogeny
Prefrontal cortex
Prefrontal Cortex - enzymology
Prefrontal Cortex - growth & development
Primates
Regional analysis
Regional development
Schizophrenia
Schizophrenia - genetics
Species
Temporal cortex
Tissues
Transcription
Transcriptome
Uniqueness
Title Spatiotemporal transcriptomic divergence across human and macaque brain development
URI https://www.ncbi.nlm.nih.gov/pubmed/30545855
https://www.proquest.com/docview/2156991014
https://www.proquest.com/docview/2157661104/abstract/
https://recercat.cat/handle/2072/367034
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKERIvExu3joGMxMNgSpXEdi6PEwImpPHSTap4iWzHEQhI0Zo8jF_Cz-UcX9IUrdJAaqM2F8vK-Xwu9udzCHlVF00hhJCRZkxFPG_KqBQyjbgwjMeN0sqmYzj_lJ1d8o9LsZxMfo9YS32n5vrXjftK_keqcA7kirtk_0GyQ6NwAn6DfOEIEobjrWS8sHRon10KSeNgd6wWwK3GJzVSLlyuTWmNoS_Ih1PlP6SWmLhVYYWIsHNqIMF4ZzWMe3BCh4WdkTgHhuKp4xEEWoF_bDTH8PlLb1V9MJM4o7Pq1zIwKt1q_cn5HD4DIUiuHJZk-_1rf90PIF58k9gVv9HI0cjCvEVSIAfE7RcNutinQnaWyKnfGCtHpjEb62eWpSMgQrwU36z6R8UqzVzKDtrON1YurOz_ZfwGSqINhtKs8g1UvoE75G6alwLJoh-Wyc50zj5p1Gg7VujBlr8z1ete745lrE9z8YDs-WCEnjpk7ZOJaQ_IPVee9PqA7HtJrumxz07--iFZbIOOboOObkBHHeioBR0F0FEPOmpBR0ege0Qu37-7eHsW-cockeY57yIjm4Kn0mCV5xpXsgsmC1XoRqWJVE3OMOtg0pQ5A_9Xx41OTV7UZVboRGaJSthjMm1XrXlKqFJwX6yk0E3Ma6XLGidsSiZ4A7G8LmbkOLy_6qdLwFLtkNWMvMH3W4GrYK607CpMnT78wW8a52mFKQsZn5GjIIXKD-l1Bf5vBgFTnMDll8NlULi4iiZbA0MD78nBqU1iuOeJk97QMTCeHOJvcXj7Tj8j9zej44hMu6vePAc_t1MvLOT-AKTerW4
link.rule.ids 230,315,786,790,891,27955,27956
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+transcriptomic+divergence+across+human+and+macaque+brain+development&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Zhu%2C+Ying&rft.au=Sousa%2C+Andr%C3%A9+M.+M.&rft.au=Gao%2C+Tianliuyun&rft.au=Skarica%2C+Mario&rft.date=2018-12-14&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=362&rft.issue=6420&rft_id=info:doi/10.1126%2Fscience.aat8077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aat8077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon