ERP components in Go/Nogo tasks and their relation to inhibition
In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli (“Nogo-N2”), which possibly reflects an inhibition process. However, the Nogo-N2 appears to be very small after auditory stimuli, which is evidence against the inhibition hypothesis. In the present study we tested...
Saved in:
Published in | Acta psychologica Vol. 101; no. 2; pp. 267 - 291 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.1999
Martinus Nijhoff |
Subjects | |
Online Access | Get full text |
ISSN | 0001-6918 1873-6297 |
DOI | 10.1016/S0001-6918(99)00008-6 |
Cover
Loading…
Abstract | In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli (“Nogo-N2”), which possibly reflects an inhibition process. However, the Nogo-N2 appears to be very small after auditory stimuli, which is evidence against the inhibition hypothesis. In the present study we tested this hypothesis by evaluating performance differences between subjects. Assuming that for Ss with a high false alarm rate the inhibition process is weakened and/or delayed, they should reveal a smaller and/or later Nogo-N2 than Ss with a low false alarm rate. This prediction was confirmed, which supports the inhibition hypothesis. However, the Nogo-N2 was again much smaller and had a different topography after auditory than after visual stimuli despite similar performance in both modalities. This modality asymmetry was explained by assuming that the inhibitory mechanism reflected in the Nogo-N2 is located at a pre-motor rather than at the motor level. In the second part of the study we compared the Nogo-N2 with a similar phenomenon, the error negativity (
N
e), which occurs in trials with commission errors (false alarms). Earlier work suggests that the
N
e is a correlate of error detection or inhibition. This raises the possibility that the
N
e is a delayed Nogo-N2, i.e., the
N
e may reflect a late and hence unsuccessful attempt to inhibit the response after a nontarget. However, the
N
e amplitude showed no difference between performance groups and stimulus modalities, as found for the Nogo-N2. Moreover,
N
e and Nogo-N2 had different scalp topographies. This suggests that different mechanisms and generators underlie the
N
e and the Nogo-N2. |
---|---|
AbstractList | In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli ("Nogo-N2"), which possibly reflects an inhibition process. However, the Nogo-N2 appears to be very small after auditory stimuli, which is evidence against the inhibition hypothesis. In the present study we tested this hypothesis by evaluating performance differences between subjects. Assuming that for Ss with a high false alarm rate the inhibition process is weakened and/or delayed, they should reveal a smaller and/or later Nogo-N2 than Ss with a low false alarm rate. This prediction was confirmed, which supports the inhibition hypothesis. However, the Nogo-N2 was again much smaller and had a different topography after auditory than after visual stimuli despite similar performance in both modalities. This modality asymmetry was explained by assuming that the inhibitory mechanism reflected in the Nogo-N2 is located at a pre-motor rather than at the motor level. In the second part of the study we compared the Nogo-N2 with a similar phenomenon, the error negativity (Ne), which occurs in trials with commission errors (false alarms). Earlier work suggests that the Ne is a correlate of error detection or inhibition. This raises the possibility that the Ne is a delayed Nogo-N2, i.e., the Ne may reflect a late and hence unsuccessful attempt to inhibit the response after a nontarget. However, the Ne amplitude showed no difference between performance groups and stimulus modalities, as found for the Nogo-N2. Moreover, Ne and Nogo-N2 had different scalp topographies. This suggests that different mechanisms and generators underlie the Ne and the Nogo-N2. In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli (“Nogo-N2”), which possibly reflects an inhibition process. However, the Nogo-N2 appears to be very small after auditory stimuli, which is evidence against the inhibition hypothesis. In the present study we tested this hypothesis by evaluating performance differences between subjects. Assuming that for Ss with a high false alarm rate the inhibition process is weakened and/or delayed, they should reveal a smaller and/or later Nogo-N2 than Ss with a low false alarm rate. This prediction was confirmed, which supports the inhibition hypothesis. However, the Nogo-N2 was again much smaller and had a different topography after auditory than after visual stimuli despite similar performance in both modalities. This modality asymmetry was explained by assuming that the inhibitory mechanism reflected in the Nogo-N2 is located at a pre-motor rather than at the motor level. In the second part of the study we compared the Nogo-N2 with a similar phenomenon, the error negativity ( N e), which occurs in trials with commission errors (false alarms). Earlier work suggests that the N e is a correlate of error detection or inhibition. This raises the possibility that the N e is a delayed Nogo-N2, i.e., the N e may reflect a late and hence unsuccessful attempt to inhibit the response after a nontarget. However, the N e amplitude showed no difference between performance groups and stimulus modalities, as found for the Nogo-N2. Moreover, N e and Nogo-N2 had different scalp topographies. This suggests that different mechanisms and generators underlie the N e and the Nogo-N2. In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli ("Nogo-N2"), which possibly reflects an inhibition process. However, the Nogo-N2 appears to be very small after auditory stimuli, which is evidence against the inhibition hypothesis. In the present study we tested this hypothesis by evaluating performance differences between subjects. Assuming that for Ss with a high false alarm rate the inhibition process is weakened and/or delayed, they should reveal a smaller and/or later Nogo-N2 than Ss with a low false alarm rate. This prediction was confirmed, which supports the inhibition hypothesis. However, the Nogo-N2 was again much smaller and had a different topography after auditory than after visual stimuli despite similar performance in both modalities. This modality asymmetry was explained by assuming that the inhibitory mechanism reflected in the Nogo-N2 is located at a pre-motor rather than at the motor level. In the second part of the study we compared the Nogo-N2 with a similar phenomenon, the error negativity (Ne), which occurs in trials with commission errors (false alarms). Earlier work suggests that the Ne is a correlate of error detection or inhibition. This raises the possibility that the Ne is a delayed Nogo-N2, i.e., the Ne may reflect a late and hence unsuccessful attempt to inhibit the response after a nontarget. However, the Ne amplitude showed no difference between performance groups and stimulus modalities, as found for the Nogo-N2. Moreover, Ne and Nogo-N2 had different scalp topographies. This suggests that different mechanisms and generators underlie the Ne and the Nogo-N2.In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli ("Nogo-N2"), which possibly reflects an inhibition process. However, the Nogo-N2 appears to be very small after auditory stimuli, which is evidence against the inhibition hypothesis. In the present study we tested this hypothesis by evaluating performance differences between subjects. Assuming that for Ss with a high false alarm rate the inhibition process is weakened and/or delayed, they should reveal a smaller and/or later Nogo-N2 than Ss with a low false alarm rate. This prediction was confirmed, which supports the inhibition hypothesis. However, the Nogo-N2 was again much smaller and had a different topography after auditory than after visual stimuli despite similar performance in both modalities. This modality asymmetry was explained by assuming that the inhibitory mechanism reflected in the Nogo-N2 is located at a pre-motor rather than at the motor level. In the second part of the study we compared the Nogo-N2 with a similar phenomenon, the error negativity (Ne), which occurs in trials with commission errors (false alarms). Earlier work suggests that the Ne is a correlate of error detection or inhibition. This raises the possibility that the Ne is a delayed Nogo-N2, i.e., the Ne may reflect a late and hence unsuccessful attempt to inhibit the response after a nontarget. However, the Ne amplitude showed no difference between performance groups and stimulus modalities, as found for the Nogo-N2. Moreover, Ne and Nogo-N2 had different scalp topographies. This suggests that different mechanisms and generators underlie the Ne and the Nogo-N2. |
Author | Falkenstein, M Hoormann, J Hohnsbein, J |
Author_xml | – sequence: 1 givenname: M surname: Falkenstein fullname: Falkenstein, M email: falkenstein@arb-phys.uni-dortmund.de – sequence: 2 givenname: J surname: Hoormann fullname: Hoormann, J – sequence: 3 givenname: J surname: Hohnsbein fullname: Hohnsbein, J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10344188$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1LHDEYhUNRdLX-BGVAKHoxNV-TSfCiivhRkLbUeh2yybsanU3WJCv03ze7qy14UXMTDjznhJyzhdZCDIDQLsGfCSbi6AZjTFqhiDxQ6rAKLFvxAY2I7FkrqOrX0Ogvsom2cn6okhNFNtAmwYxzIuUInZz__NHYOJ3V9FBy40NzGY--xbvYFJMfc2OCa8o9-NQkGEzxMTQlVuzej_1CfUTrEzNk2Hm5t9Htxfmvs6v2-vvl17PT69bynpcWOluPA0vHimNslVOOK2dop3pweNI7zrmcUGexk0ZZbhUXrKPGGsuFxGwbfVrlzlJ8mkMueuqzhWEwAeI8a6F6ySiR74KMCop5t0jcfwM-xHkK9ROaCMl6xRimldp7oebjKTg9S35q0m_9WmEFjleATTHnBBNtfVkWVZLxQwX1YjC9HEwv1tBK6eVgWlR398b974H_-76sfFA7f_aQdLYeggXnE9iiXfTvJPwB9K-rHg |
CitedBy_id | crossref_primary_10_1016_j_nicl_2014_05_011 crossref_primary_10_1016_j_neuroimage_2014_04_028 crossref_primary_10_1111_cdev_12072 crossref_primary_10_1016_j_clinph_2010_05_027 crossref_primary_10_1016_j_neuroscience_2014_04_014 crossref_primary_10_1162_089892906775249997 crossref_primary_10_1177_1367006915572400 crossref_primary_10_1016_j_brainresbull_2008_07_008 crossref_primary_10_1016_j_ijpsycho_2009_02_002 crossref_primary_10_1016_S0001_6918_99_00005_0 crossref_primary_10_1016_j_bandc_2013_04_013 crossref_primary_10_1016_j_neubiorev_2017_01_007 crossref_primary_10_1016_j_ynirp_2023_100161 crossref_primary_10_3389_fpsyg_2022_1035837 crossref_primary_10_1016_j_appet_2018_05_135 crossref_primary_10_1016_j_neuropsychologia_2005_06_005 crossref_primary_10_1016_j_clinph_2009_02_167 crossref_primary_10_1038_s41598_018_35879_2 crossref_primary_10_1111_psyp_12558 crossref_primary_10_1038_srep31178 crossref_primary_10_1038_s41598_018_35123_x crossref_primary_10_1016_j_actpsy_2019_102952 crossref_primary_10_3389_fnhum_2023_1006744 crossref_primary_10_1111_j_1469_8986_2007_00609_x crossref_primary_10_1016_j_ijpsycho_2011_07_019 crossref_primary_10_1111_j_1460_9568_2009_06621_x crossref_primary_10_1016_S0006_3223_01_01290_2 crossref_primary_10_1111_psyp_12563 crossref_primary_10_1509_jmr_13_0564 crossref_primary_10_1097_00001756_200508010_00016 crossref_primary_10_12677_AP_2018_812216 crossref_primary_10_1016_j_neuropsychologia_2008_04_017 crossref_primary_10_1016_j_clinph_2013_11_031 crossref_primary_10_3758_BF03195329 crossref_primary_10_1097_WNR_0000000000001157 crossref_primary_10_1016_j_bbr_2021_113539 crossref_primary_10_1016_j_physbeh_2019_03_022 crossref_primary_10_1016_j_biopsycho_2008_04_006 crossref_primary_10_1016_j_ijpsycho_2014_05_013 crossref_primary_10_1038_srep13701 crossref_primary_10_1016_j_ijpsycho_2017_03_002 crossref_primary_10_1016_j_neulet_2014_07_059 crossref_primary_10_1016_j_ijpsycho_2019_08_007 crossref_primary_10_1111_j_1530_0277_2009_01038_x crossref_primary_10_1111_dmcn_13395 crossref_primary_10_1002_ejsp_776 crossref_primary_10_1016_S0006_3223_03_00703_0 crossref_primary_10_1016_j_lmot_2005_06_001 crossref_primary_10_1162_jocn_a_00038 crossref_primary_10_1016_S0010_9452_08_70274_0 crossref_primary_10_1016_j_neulet_2006_08_085 crossref_primary_10_1162_jocn_a_02219 crossref_primary_10_1016_j_biopsycho_2014_02_004 crossref_primary_10_3758_BF03195330 crossref_primary_10_1111_jcpp_12282 crossref_primary_10_1111_psyp_13843 crossref_primary_10_1016_j_brainres_2007_10_096 crossref_primary_10_1162_jocn_2008_20088 crossref_primary_10_1016_j_biopsycho_2016_04_007 crossref_primary_10_1016_j_brainres_2014_07_009 crossref_primary_10_3389_fpsyt_2019_00368 crossref_primary_10_1177_0004867411432073 crossref_primary_10_1016_j_neuropsychologia_2021_107949 crossref_primary_10_1111_j_1469_8986_2009_00872_x crossref_primary_10_1002_hbm_23230 crossref_primary_10_1002_ab_21792 crossref_primary_10_1016_j_dcn_2011_09_008 crossref_primary_10_1016_j_jobe_2025_111886 crossref_primary_10_1016_j_neuropsychologia_2009_01_034 crossref_primary_10_3390_brainsci13081158 crossref_primary_10_1016_j_neuroimage_2017_11_008 crossref_primary_10_1016_j_jfludis_2016_02_001 crossref_primary_10_1080_17470919_2017_1403374 crossref_primary_10_1111_desc_12158 crossref_primary_10_1016_j_biopsycho_2018_08_014 crossref_primary_10_1016_j_cogbrainres_2004_08_011 crossref_primary_10_1002_hbm_20194 crossref_primary_10_1016_j_appet_2024_107514 crossref_primary_10_3389_fpsyg_2016_00007 crossref_primary_10_1007_s11065_021_09519_y crossref_primary_10_1111_j_1530_0277_2009_01130_x crossref_primary_10_1016_j_appet_2021_105908 crossref_primary_10_1016_j_biopsycho_2008_05_005 crossref_primary_10_1016_j_brainres_2011_07_004 crossref_primary_10_1038_srep20437 crossref_primary_10_1038_s42003_022_03232_z crossref_primary_10_1111_adb_12700 crossref_primary_10_1016_j_neuroimage_2019_04_010 crossref_primary_10_1016_j_ijpsycho_2015_01_012 crossref_primary_10_1016_j_neulet_2015_03_055 crossref_primary_10_3389_fnins_2022_894798 crossref_primary_10_1177_1550059420958967 crossref_primary_10_1016_j_biopsycho_2016_03_008 crossref_primary_10_1111_ejn_12889 crossref_primary_10_3724_SP_J_1041_2010_00334 crossref_primary_10_3390_brainsci10100667 crossref_primary_10_1016_j_neulet_2009_03_072 crossref_primary_10_1111_j_1469_8986_2007_00568_x crossref_primary_10_1162_jocn_a_00479 crossref_primary_10_1016_j_bandc_2020_105598 crossref_primary_10_1016_j_biopsycho_2021_108245 crossref_primary_10_1016_j_neuropsychologia_2011_03_038 crossref_primary_10_1027_0269_8803_19_1_24 crossref_primary_10_1016_j_cortex_2022_07_004 crossref_primary_10_1016_j_bandc_2013_10_007 crossref_primary_10_1016_j_neuropsychologia_2013_06_023 crossref_primary_10_1016_j_clinph_2023_06_014 crossref_primary_10_1016_j_brainres_2006_03_010 crossref_primary_10_1016_j_bbr_2015_03_042 crossref_primary_10_1016_j_biopsycho_2016_03_013 crossref_primary_10_3390_s23198266 crossref_primary_10_1016_j_jpsychires_2007_07_016 crossref_primary_10_1016_j_neuroimage_2019_04_035 crossref_primary_10_3758_CABN_10_3_349 crossref_primary_10_1007_s00213_012_2664_6 crossref_primary_10_1016_j_neulet_2010_10_046 crossref_primary_10_1093_cercor_bhac227 crossref_primary_10_1016_j_bbr_2017_06_030 crossref_primary_10_1111_j_1460_9568_2004_03683_x crossref_primary_10_1016_S0001_6918_02_00018_5 crossref_primary_10_3390_ijerph192316264 crossref_primary_10_1016_j_neuroimage_2023_120098 crossref_primary_10_1177_0269881117719262 crossref_primary_10_1111_psyp_13815 crossref_primary_10_1017_S0033291719003866 crossref_primary_10_1111_psyp_12960 crossref_primary_10_1007_s00421_005_0049_9 crossref_primary_10_1111_jsr_13398 crossref_primary_10_1162_jocn_a_00451 crossref_primary_10_1515_bmte_2001_46_s2_239 crossref_primary_10_1177_1073858406298184 crossref_primary_10_1007_s00406_009_0089_y crossref_primary_10_3934_Neuroscience_2014_2_145 crossref_primary_10_1111_1469_8986_00105 crossref_primary_10_3389_fnhum_2018_00293 crossref_primary_10_1016_j_brainres_2006_04_055 crossref_primary_10_1038_s41598_021_86999_1 crossref_primary_10_1109_JSAS_2024_3506476 crossref_primary_10_1016_j_bandc_2019_02_004 crossref_primary_10_3390_sym13122323 crossref_primary_10_1016_j_clinph_2007_04_019 crossref_primary_10_1016_j_biopsycho_2021_108019 crossref_primary_10_1016_j_neuropharm_2013_02_023 crossref_primary_10_1016_j_brainres_2017_03_025 crossref_primary_10_1016_j_biopsych_2011_05_029 crossref_primary_10_1017_S1461145708009334 crossref_primary_10_1016_j_psychsport_2017_02_001 crossref_primary_10_1111_psyp_12904 crossref_primary_10_1007_s11571_020_09628_z crossref_primary_10_1111_j_1601_5215_2010_00444_x crossref_primary_10_1007_s10484_009_9074_5 crossref_primary_10_3390_e26030220 crossref_primary_10_1016_S0001_6918_99_00003_7 crossref_primary_10_1016_j_psychres_2008_03_005 crossref_primary_10_1038_s41598_019_49503_4 crossref_primary_10_1134_S0362119719050141 crossref_primary_10_1016_j_neulet_2018_01_037 crossref_primary_10_1016_j_biopsycho_2011_10_009 crossref_primary_10_1016_j_neuroscience_2011_05_009 crossref_primary_10_1111_desc_12330 crossref_primary_10_1016_S0531_5131_01_00677_X crossref_primary_10_1186_1471_2202_7_37 crossref_primary_10_1097_JGP_0b013e3181d695f2 crossref_primary_10_1007_s00702_012_0813_z crossref_primary_10_1111_j_1369_1600_2008_00124_x crossref_primary_10_3390_ijerph16224550 crossref_primary_10_1007_s11682_015_9418_0 crossref_primary_10_1016_j_clinph_2018_06_029 crossref_primary_10_1016_j_neuroimage_2014_03_016 crossref_primary_10_1080_20445911_2023_2245601 crossref_primary_10_1016_j_biopsycho_2011_10_015 crossref_primary_10_1016_j_jpsychires_2006_11_008 crossref_primary_10_1038_s41598_017_08807_z crossref_primary_10_1007_s00406_023_01709_4 crossref_primary_10_1016_j_dcn_2014_08_009 crossref_primary_10_1016_j_ijpsycho_2005_09_006 crossref_primary_10_1016_j_appet_2014_08_005 crossref_primary_10_1027_0269_8803_19_1_11 crossref_primary_10_3233_JAD_220580 crossref_primary_10_3389_fpsyg_2017_00093 crossref_primary_10_1371_journal_pone_0067136 crossref_primary_10_1007_s00221_004_2195_4 crossref_primary_10_1002_hbm_20355 crossref_primary_10_3390_biology11071029 crossref_primary_10_2466_PMS_105_7_1275_1288 crossref_primary_10_1016_j_clinph_2005_02_019 crossref_primary_10_1016_j_actpsy_2017_04_002 crossref_primary_10_1038_s42003_022_03091_8 crossref_primary_10_3389_fnhum_2019_00078 crossref_primary_10_1016_j_clinph_2013_06_025 crossref_primary_10_1016_j_neulet_2011_07_039 crossref_primary_10_1017_S095457941200051X crossref_primary_10_3389_fnbeh_2018_00323 crossref_primary_10_1007_s10545_005_0110_1 crossref_primary_10_3390_ijerph18179104 crossref_primary_10_1017_S003329171200270X crossref_primary_10_1016_j_neuropsychologia_2013_12_017 crossref_primary_10_3917_rfla_172_0033 crossref_primary_10_1007_s00213_017_4707_5 crossref_primary_10_1016_j_biopsycho_2023_108515 crossref_primary_10_1080_1612197X_2013_792590 crossref_primary_10_1016_j_brainresrev_2010_03_004 crossref_primary_10_1016_S0301_0511_01_00080_1 crossref_primary_10_1371_journal_pone_0034482 crossref_primary_10_1016_j_brainres_2018_10_017 crossref_primary_10_1016_j_neuroimage_2021_118162 crossref_primary_10_1097_WNR_0000000000000757 crossref_primary_10_3233_JAD_150586 crossref_primary_10_1111_ejn_15658 crossref_primary_10_1111_nyas_14861 crossref_primary_10_1016_j_clinph_2004_12_015 crossref_primary_10_1177_155005940703800211 crossref_primary_10_3389_fnhum_2022_884251 crossref_primary_10_1007_s10802_016_0228_7 crossref_primary_10_1016_j_bbr_2019_112243 crossref_primary_10_1038_srep26289 crossref_primary_10_3758_s13415_024_01253_1 crossref_primary_10_1016_j_cogbrainres_2005_06_006 crossref_primary_10_1007_s11682_018_9972_3 crossref_primary_10_1162_jocn_2009_21258 crossref_primary_10_1016_j_neures_2012_12_005 crossref_primary_10_1038_s41598_019_43762_x crossref_primary_10_1177_0269881105058362 crossref_primary_10_3390_healthcare12111116 crossref_primary_10_1016_j_biopsycho_2012_10_014 crossref_primary_10_1016_j_neuropsychologia_2005_10_013 crossref_primary_10_1027_0269_8803_a000098 crossref_primary_10_1016_j_bandc_2024_106179 crossref_primary_10_1016_j_clinph_2007_11_041 crossref_primary_10_1016_j_clinph_2007_11_042 crossref_primary_10_1007_s10484_020_09481_0 crossref_primary_10_1080_87565641_2010_549982 crossref_primary_10_1016_j_biopsycho_2004_08_004 crossref_primary_10_1016_j_ijpsycho_2014_08_001 crossref_primary_10_1016_j_jad_2021_11_066 crossref_primary_10_1016_j_psychres_2003_05_001 crossref_primary_10_1186_s13063_022_06420_8 crossref_primary_10_1016_j_brainres_2018_01_005 crossref_primary_10_1017_S0033291714003195 crossref_primary_10_1371_journal_pone_0095653 crossref_primary_10_1152_jn_00969_2015 crossref_primary_10_1016_j_neuroimage_2014_01_023 crossref_primary_10_1371_journal_pone_0136446 crossref_primary_10_1016_j_appet_2022_105994 crossref_primary_10_1016_j_nicl_2019_102068 crossref_primary_10_1016_j_ijpsycho_2022_10_001 crossref_primary_10_1016_j_ijpsycho_2004_05_011 crossref_primary_10_1002_dev_21809 crossref_primary_10_1016_j_neuropsychologia_2008_10_018 crossref_primary_10_1027_0269_8803_23_4_208 crossref_primary_10_3390_brainsci14030199 crossref_primary_10_1016_j_biopsycho_2018_04_003 crossref_primary_10_1016_j_ijpsycho_2018_01_015 crossref_primary_10_7717_peerj_6523 crossref_primary_10_1007_s12576_014_0320_0 crossref_primary_10_3390_brainsci12081086 crossref_primary_10_1007_s00429_015_1148_y crossref_primary_10_1111_mbe_12348 crossref_primary_10_1016_j_clinph_2013_08_018 crossref_primary_10_1080_10874200802502144 crossref_primary_10_1016_j_biopsych_2007_09_018 crossref_primary_10_1016_j_ijpsycho_2021_02_015 crossref_primary_10_1162_089892903321593144 crossref_primary_10_1523_JNEUROSCI_2064_10_2010 crossref_primary_10_1016_j_bandc_2013_09_010 crossref_primary_10_1002_hbm_22819 crossref_primary_10_1016_j_brainres_2007_02_044 crossref_primary_10_1016_j_pscychresns_2011_03_002 crossref_primary_10_1111_adb_12274 crossref_primary_10_1016_j_cortex_2019_08_002 crossref_primary_10_1007_s11427_014_4739_6 crossref_primary_10_1007_s00204_013_1109_2 crossref_primary_10_1371_journal_pone_0261172 crossref_primary_10_1111_j_1530_0277_2010_01323_x crossref_primary_10_1519_JSC_0b013e318231ab12 crossref_primary_10_3390_brainsci14010101 crossref_primary_10_1007_s10608_020_10164_7 crossref_primary_10_1044_2014_JSLHR_L_13_0234 crossref_primary_10_1007_s00221_006_0557_9 crossref_primary_10_1016_j_clinph_2010_10_045 crossref_primary_10_1371_journal_pone_0203096 crossref_primary_10_3389_fpsyt_2014_00041 crossref_primary_10_1097_WNR_0000000000000935 crossref_primary_10_1016_S0925_4927_03_00004_0 crossref_primary_10_15460_jlar_2023_1_1_1108 crossref_primary_10_1016_j_clinph_2019_01_015 crossref_primary_10_1016_j_bandc_2015_09_006 crossref_primary_10_1177_155005941004100304 crossref_primary_10_1177_1550059416645977 crossref_primary_10_1038_s42003_022_03864_1 crossref_primary_10_1186_1753_4631_5_5 crossref_primary_10_3389_fpsyt_2020_577491 crossref_primary_10_1016_j_pain_2006_10_018 crossref_primary_10_1016_j_actpsy_2022_103773 crossref_primary_10_1016_j_clinph_2011_05_010 crossref_primary_10_1016_j_jml_2012_05_001 crossref_primary_10_1016_j_dcn_2016_05_005 crossref_primary_10_1016_j_clinph_2011_05_012 crossref_primary_10_1016_j_clinph_2019_01_025 crossref_primary_10_1038_srep16282 crossref_primary_10_1038_srep37556 crossref_primary_10_2466_pms_105_4_1275_1288 crossref_primary_10_1016_j_clinph_2013_10_048 crossref_primary_10_1007_s11571_018_9511_3 crossref_primary_10_1016_j_bandc_2016_04_003 crossref_primary_10_1037_0022_3514_90_2_272 crossref_primary_10_1016_j_sleep_2022_09_007 crossref_primary_10_1046_j_1469_8986_2003_00128_x crossref_primary_10_1007_s40474_014_0035_1 crossref_primary_10_1016_j_neuroimage_2011_01_035 crossref_primary_10_1016_j_biopsycho_2009_03_007 crossref_primary_10_1097_WNR_0b013e328335640f crossref_primary_10_1109_JTEHM_2024_3435553 crossref_primary_10_7600_jspfsm_67_107 crossref_primary_10_1007_s00429_015_1137_1 crossref_primary_10_1016_j_bbr_2024_115253 crossref_primary_10_1016_j_brainres_2005_11_081 crossref_primary_10_1016_j_dcn_2023_101207 crossref_primary_10_1016_j_addbeh_2013_10_035 crossref_primary_10_1371_journal_pone_0102672 crossref_primary_10_3389_fpsyg_2016_00562 crossref_primary_10_1002_ejp_588 crossref_primary_10_1007_s00702_007_0779_4 crossref_primary_10_1016_j_ijpsycho_2012_08_007 crossref_primary_10_1016_S0301_0511_99_00031_9 crossref_primary_10_1016_j_ijpsycho_2012_08_005 crossref_primary_10_1016_j_ijpsycho_2012_08_001 crossref_primary_10_1017_S109285292200075X crossref_primary_10_3389_fcomm_2021_597701 crossref_primary_10_1016_j_neuroimage_2022_119371 crossref_primary_10_3758_s13428_024_02567_1 crossref_primary_10_1002_da_20195 crossref_primary_10_1016_j_ijpsycho_2021_04_003 crossref_primary_10_1162_jocn_2008_20103 crossref_primary_10_1016_j_concog_2021_103131 crossref_primary_10_1162_jocn_2009_21008 crossref_primary_10_1016_j_bandc_2007_05_005 crossref_primary_10_1038_s41598_023_45807_8 crossref_primary_10_1027_0269_8803_a000243 crossref_primary_10_1017_S0954579407070228 crossref_primary_10_1016_j_ijpsycho_2016_11_015 crossref_primary_10_1016_j_neuroimage_2011_04_060 crossref_primary_10_3390_sym9080145 crossref_primary_10_1371_journal_pone_0094169 crossref_primary_10_1007_s10484_018_9393_5 crossref_primary_10_1016_j_nicl_2017_02_014 crossref_primary_10_1016_S0925_4927_01_00117_2 crossref_primary_10_3758_s13415_017_0533_9 crossref_primary_10_1016_j_jshs_2019_05_005 crossref_primary_10_1080_10874208_2011_595298 crossref_primary_10_1016_j_ijpsycho_2023_112248 crossref_primary_10_1371_journal_pone_0126800 crossref_primary_10_1016_j_ijpsycho_2006_07_001 crossref_primary_10_1034_j_1600_0404_2003_02060_x crossref_primary_10_1016_j_neuroimage_2011_03_039 crossref_primary_10_1016_j_bandc_2013_06_009 crossref_primary_10_1016_j_neuropsychologia_2016_11_023 crossref_primary_10_3389_fpsyg_2016_00511 crossref_primary_10_1007_s00221_006_0444_4 crossref_primary_10_1111_psyp_13573 crossref_primary_10_1016_j_bandc_2009_09_007 crossref_primary_10_1111_psyp_13330 crossref_primary_10_1016_j_biopsycho_2017_09_009 crossref_primary_10_1371_journal_pone_0084351 crossref_primary_10_1016_j_neuroimage_2011_03_049 crossref_primary_10_1016_j_bandc_2013_06_001 crossref_primary_10_3945_ajcn_115_109108 crossref_primary_10_1097_WNP_0b013e31824e1025 crossref_primary_10_1007_s12264_013_1372_5 crossref_primary_10_1007_s00702_008_0042_7 crossref_primary_10_1016_j_biopsycho_2015_05_001 crossref_primary_10_1002_mds_22709 crossref_primary_10_1134_S0362119713010088 crossref_primary_10_1002_hbm_26336 crossref_primary_10_3389_fpsyg_2015_01869 crossref_primary_10_1016_S0926_6410_03_00203_9 crossref_primary_10_1093_cercor_bht066 crossref_primary_10_1111_psyp_12255 crossref_primary_10_1016_j_biopsycho_2020_107862 crossref_primary_10_1162_jocn_2008_20144 crossref_primary_10_1016_j_neuropsychologia_2010_04_022 crossref_primary_10_1089_neu_2018_6122 crossref_primary_10_1038_s41598_022_21890_1 crossref_primary_10_1016_j_biopsycho_2015_11_003 crossref_primary_10_1016_j_cogbrainres_2005_09_009 crossref_primary_10_1016_j_neuroimage_2010_04_022 crossref_primary_10_1016_j_bandc_2020_105629 crossref_primary_10_1002_brb3_1155 crossref_primary_10_1109_TNSRE_2023_3241649 crossref_primary_10_1016_j_appet_2023_106478 crossref_primary_10_1007_s11065_014_9275_4 crossref_primary_10_1016_j_ijpsycho_2013_04_021 crossref_primary_10_1016_j_neulet_2008_02_023 crossref_primary_10_1111_ejn_15198 crossref_primary_10_1152_ajpregu_00087_2019 crossref_primary_10_3758_BF03194564 crossref_primary_10_1098_rstb_2018_0574 crossref_primary_10_2478_psicolj_2018_0010 crossref_primary_10_1016_j_clinph_2006_11_009 crossref_primary_10_1097_WNR_0b013e32831ac9b1 crossref_primary_10_1016_j_euroneuro_2020_03_013 crossref_primary_10_1371_journal_pone_0101837 crossref_primary_10_1007_s11427_009_0106_4 crossref_primary_10_2147_NDT_S452795 crossref_primary_10_1016_j_paid_2019_109553 crossref_primary_10_1016_j_bandc_2012_02_013 crossref_primary_10_14814_phy2_14003 crossref_primary_10_1523_JNEUROSCI_1278_08_2008 crossref_primary_10_1371_journal_pone_0018898 crossref_primary_10_1016_j_neuropsychologia_2018_02_014 crossref_primary_10_1016_j_clinph_2006_11_003 crossref_primary_10_1111_1469_8986_00075 crossref_primary_10_1016_j_neuroimage_2009_08_045 crossref_primary_10_1016_j_jadr_2021_100083 crossref_primary_10_1111_psyp_12447 crossref_primary_10_1080_87565641_2019_1630628 crossref_primary_10_1016_j_bpsc_2019_05_015 crossref_primary_10_1007_s12402_014_0146_x crossref_primary_10_1371_journal_pone_0142361 crossref_primary_10_1162_jocn_a_00177 crossref_primary_10_1016_j_neulet_2005_12_041 crossref_primary_10_1111_j_1469_8986_2009_00864_x crossref_primary_10_3390_brainsci13050783 crossref_primary_10_1002_hbm_26418 crossref_primary_10_3389_fnhum_2014_01076 crossref_primary_10_1111_jabr_12107 crossref_primary_10_1186_1744_9081_1_22 crossref_primary_10_1016_j_neuroscience_2020_09_042 crossref_primary_10_1371_journal_pone_0027107 crossref_primary_10_1111_psyp_13300 crossref_primary_10_1016_j_addbeh_2018_11_013 crossref_primary_10_1016_j_ijpsycho_2013_03_009 crossref_primary_10_1016_j_neuropsychologia_2020_107387 crossref_primary_10_1016_j_biopsych_2009_09_029 crossref_primary_10_1177_0333102412459573 crossref_primary_10_1080_13803390500212896 crossref_primary_10_1016_j_appet_2024_107402 crossref_primary_10_1162_jocn_a_00150 crossref_primary_10_1016_j_neulet_2010_09_075 crossref_primary_10_1016_j_neulet_2014_01_030 crossref_primary_10_1111_j_1460_9568_2005_04368_x crossref_primary_10_1038_s41366_018_0142_x crossref_primary_10_1016_j_pnpbp_2021_110340 crossref_primary_10_1016_j_cortex_2012_09_013 crossref_primary_10_3390_brainsci12111530 crossref_primary_10_1016_j_clinph_2014_12_012 crossref_primary_10_1016_j_ijpsycho_2005_03_009 crossref_primary_10_3389_fnhum_2022_767789 crossref_primary_10_1186_s40101_019_0196_z crossref_primary_10_1371_journal_pone_0165697 crossref_primary_10_1007_s10802_018_0424_8 crossref_primary_10_1016_j_brainres_2008_11_073 crossref_primary_10_1016_j_ijpsycho_2005_03_008 crossref_primary_10_1016_j_physbeh_2024_114641 crossref_primary_10_1016_S1388_2457_01_00730_1 crossref_primary_10_1016_j_neuropsychologia_2007_12_008 crossref_primary_10_1177_1550059417745935 crossref_primary_10_1177_0883073808322339 crossref_primary_10_1016_j_ijpsycho_2009_09_002 crossref_primary_10_1371_journal_pone_0069826 crossref_primary_10_1002_dev_20391 crossref_primary_10_1523_JNEUROSCI_5140_13_2014 crossref_primary_10_1007_s00702_007_0819_0 crossref_primary_10_1162_jocn_2010_21437 crossref_primary_10_1002_hbm_23344 crossref_primary_10_1016_j_neuroimage_2010_02_002 crossref_primary_10_1016_j_neuroimage_2013_03_011 crossref_primary_10_1016_S0165_1781_03_00188_4 crossref_primary_10_1007_s00426_008_0194_y crossref_primary_10_1162_jocn_2010_21431 crossref_primary_10_1177_15500594211063311 crossref_primary_10_1016_j_clinph_2014_12_034 crossref_primary_10_1080_87565641_2020_1730376 crossref_primary_10_1300_J184v11n02_03 crossref_primary_10_1007_s00702_005_0276_6 crossref_primary_10_1371_journal_pone_0259653 crossref_primary_10_4236_ojpsych_2012_224051 crossref_primary_10_1111_j_1469_8986_2009_00873_x crossref_primary_10_1177_0269881113492899 crossref_primary_10_1111_psyp_12826 crossref_primary_10_3758_s13415_021_00879_9 crossref_primary_10_1016_j_neuropsychologia_2015_06_018 crossref_primary_10_1016_j_neuropsychologia_2016_01_037 crossref_primary_10_1111_psyp_12823 crossref_primary_10_1515_revneuro_2014_0078 crossref_primary_10_1016_j_clinph_2006_05_002 crossref_primary_10_1515_RNS_2011_055 crossref_primary_10_1016_j_clinph_2020_01_024 crossref_primary_10_1016_j_biopsycho_2017_05_012 crossref_primary_10_1016_j_biopsycho_2022_108407 crossref_primary_10_1027__0269_8803_16_3_167 crossref_primary_10_1016_j_neuroimage_2016_10_015 crossref_primary_10_1016_j_neuroimage_2015_04_021 crossref_primary_10_1097_MAO_0000000000003033 crossref_primary_10_1016_j_schres_2011_06_020 crossref_primary_10_1080_02699931_2024_2349281 crossref_primary_10_3389_fpsyt_2022_940415 crossref_primary_10_1016_j_clinph_2003_12_027 crossref_primary_10_1162_jocn_a_01690 crossref_primary_10_1016_S1388_2457_01_00601_0 crossref_primary_10_1080_87565640903526553 crossref_primary_10_1016_j_yhbeh_2008_10_008 crossref_primary_10_1016_j_psyneuen_2017_12_016 crossref_primary_10_1016_j_ijpsycho_2007_04_001 crossref_primary_10_1016_j_ijpsycho_2013_10_011 crossref_primary_10_1016_j_neulet_2010_05_002 crossref_primary_10_1111_psyp_12604 crossref_primary_10_1016_j_clinph_2006_05_027 crossref_primary_10_1016_j_bandc_2011_06_008 crossref_primary_10_1016_j_bandc_2024_106220 crossref_primary_10_1016_j_biopsycho_2007_11_005 crossref_primary_10_1038_s41598_022_12156_x crossref_primary_10_3390_brainsci12091231 crossref_primary_10_1371_journal_pone_0120522 crossref_primary_10_1016_j_bandl_2014_07_010 crossref_primary_10_1016_j_neuropsychologia_2025_109081 crossref_primary_10_1186_s41235_021_00342_w crossref_primary_10_1017_S0033291716001008 crossref_primary_10_1016_j_bandc_2024_106225 crossref_primary_10_1016_j_ijpsycho_2009_08_010 crossref_primary_10_1016_j_neulet_2008_03_005 crossref_primary_10_1007_s00106_019_00762_7 crossref_primary_10_1016_j_biopsycho_2006_05_005 crossref_primary_10_1080_17470919_2013_833549 crossref_primary_10_1007_s10548_017_0545_3 crossref_primary_10_1016_j_cortex_2012_06_007 crossref_primary_10_1186_1471_2202_10_150 crossref_primary_10_1016_j_biopsycho_2021_108138 crossref_primary_10_1111_j_1469_7610_2005_01592_x crossref_primary_10_1016_j_clinph_2006_03_032 crossref_primary_10_1080_17470919_2018_1463926 crossref_primary_10_1016_j_janxdis_2009_07_018 crossref_primary_10_3390_nu14235011 crossref_primary_10_1016_j_ijpsycho_2019_11_011 crossref_primary_10_1016_j_jocn_2019_11_044 crossref_primary_10_1556_Pszicho_32_2012_1_3 crossref_primary_10_1016_j_ijpsycho_2004_07_005 crossref_primary_10_1080_10874208_2011_570696 crossref_primary_10_1371_journal_pone_0267896 crossref_primary_10_3390_brainsci13050702 crossref_primary_10_1027_0269_8803_21_1_1 crossref_primary_10_3389_fpsyt_2022_900724 crossref_primary_10_1016_j_ijpsycho_2013_11_004 crossref_primary_10_1080_87565640903526512 crossref_primary_10_1016_j_ijpsycho_2008_11_007 crossref_primary_10_1016_j_biopsych_2007_12_016 crossref_primary_10_2466_pms_102_1_197_213 crossref_primary_10_1017_S1355617704106061 crossref_primary_10_1016_j_neuroimage_2015_11_044 crossref_primary_10_1007_s00429_019_01884_y crossref_primary_10_1016_j_physbeh_2015_04_008 crossref_primary_10_1016_S0301_0511_03_00100_5 crossref_primary_10_1002_hbm_24835 crossref_primary_10_1038_s41598_017_10832_x crossref_primary_10_1177_1087054717707297 crossref_primary_10_1080_23273798_2016_1221510 crossref_primary_10_1016_j_neuropsychologia_2009_07_013 crossref_primary_10_3390_brainsci11050641 crossref_primary_10_1371_journal_pone_0285086 crossref_primary_10_1007_s12311_020_01165_z crossref_primary_10_1016_j_clinph_2006_10_023 crossref_primary_10_1038_s42003_024_07235_w crossref_primary_10_1152_jn_90994_2008 crossref_primary_10_1016_j_paid_2017_04_005 crossref_primary_10_1177_15500594241304492 crossref_primary_10_1002_hbm_23974 crossref_primary_10_1038_s41598_024_57602_0 crossref_primary_10_1016_j_bbr_2011_10_018 crossref_primary_10_1016_j_neuroimage_2017_08_032 crossref_primary_10_1016_j_biopsycho_2014_08_004 crossref_primary_10_1016_j_ijpsycho_2008_12_008 crossref_primary_10_1007_s00421_011_1973_5 crossref_primary_10_1016_j_bandc_2011_12_011 crossref_primary_10_1093_cercor_bhad141 crossref_primary_10_3758_s13415_015_0354_7 crossref_primary_10_3758_s13415_015_0378_z crossref_primary_10_1016_j_tins_2017_05_003 crossref_primary_10_1016_j_biopsycho_2023_108643 crossref_primary_10_1016_j_cortex_2012_12_009 crossref_primary_10_1016_j_appet_2021_105142 crossref_primary_10_3389_fpsyt_2016_00161 crossref_primary_10_1162_jocn_2006_18_3_430 crossref_primary_10_1177_1550059415598063 crossref_primary_10_1016_j_neuropsychologia_2004_08_010 crossref_primary_10_3389_fpsyt_2022_920789 crossref_primary_10_1093_alcalc_agt168 crossref_primary_10_1016_j_cognition_2020_104247 crossref_primary_10_1016_j_brainres_2011_04_029 crossref_primary_10_3758_s13415_012_0105_y crossref_primary_10_3389_fnagi_2017_00160 crossref_primary_10_1016_j_ijpsycho_2019_04_007 crossref_primary_10_1016_j_neulet_2007_04_013 crossref_primary_10_1080_02699931_2013_837815 crossref_primary_10_1038_s41598_023_32389_8 crossref_primary_10_1016_S1388_2457_01_00691_5 crossref_primary_10_3389_fnhum_2020_601370 crossref_primary_10_1590_0102_3772e3527 crossref_primary_10_1016_j_jpsychires_2005_02_002 crossref_primary_10_1371_journal_pone_0025729 crossref_primary_10_3389_fnbeh_2021_765290 crossref_primary_10_1037_0894_4105_17_2_272 crossref_primary_10_1016_S0028_3932_03_00121_0 crossref_primary_10_1016_j_ntt_2023_107175 crossref_primary_10_3389_fnhum_2021_710905 crossref_primary_10_1016_j_neuropsychologia_2021_108141 crossref_primary_10_1016_j_neuroimage_2008_03_012 crossref_primary_10_1080_10803548_2020_1840733 crossref_primary_10_3389_fpsyg_2020_00580 crossref_primary_10_1007_s40473_016_0061_x crossref_primary_10_1016_j_bandc_2015_04_004 crossref_primary_10_1016_j_neulet_2016_01_044 crossref_primary_10_1155_2016_5718580 crossref_primary_10_3758_s13415_019_00752_w crossref_primary_10_1016_j_biopsycho_2005_08_006 crossref_primary_10_1016_j_dcn_2011_12_002 crossref_primary_10_3389_fnagi_2022_821043 crossref_primary_10_1371_journal_pone_0217383 crossref_primary_10_3389_fneur_2022_1009087 crossref_primary_10_1097_WNR_0b013e3280c1e330 crossref_primary_10_1016_j_biopsycho_2017_02_007 crossref_primary_10_1111_j_1469_8986_2009_00790_x crossref_primary_10_1080_13506280444000823 crossref_primary_10_1016_j_lfs_2005_06_048 crossref_primary_10_1162_jocn_a_00830 crossref_primary_10_1111_j_1469_7610_2006_01681_x crossref_primary_10_1016_j_dcn_2018_04_008 crossref_primary_10_1016_j_dcn_2019_100677 crossref_primary_10_1111_j_1469_8986_2006_00484_x crossref_primary_10_1016_j_ijpsycho_2005_07_013 crossref_primary_10_1016_S0301_0511_03_00105_4 crossref_primary_10_1016_j_ergon_2020_102981 crossref_primary_10_1111_adb_12170 crossref_primary_10_1016_j_clinph_2017_06_036 crossref_primary_10_1111_j_1469_8986_2008_00678_x crossref_primary_10_1016_j_clinph_2003_11_036 crossref_primary_10_1016_j_ijpsycho_2011_03_014 crossref_primary_10_1017_S0954579408000448 crossref_primary_10_1016_j_biopsycho_2024_108742 crossref_primary_10_1016_j_bandc_2019_05_012 crossref_primary_10_1016_j_neubiorev_2015_02_014 crossref_primary_10_1016_j_neuropsychologia_2011_09_038 crossref_primary_10_1016_j_clinph_2010_03_049 crossref_primary_10_1016_j_ijpsycho_2013_06_005 crossref_primary_10_1017_S1366728917000037 crossref_primary_10_1016_j_neuroimage_2007_10_041 crossref_primary_10_1007_s00221_021_06213_6 crossref_primary_10_1016_j_neuropsychologia_2009_09_023 crossref_primary_10_1027_0269_8803_a000195 crossref_primary_10_1152_japplphysiol_00348_2017 crossref_primary_10_1038_srep28371 crossref_primary_10_1007_s00213_011_2479_x crossref_primary_10_1016_j_ijpsycho_2015_12_001 crossref_primary_10_1016_j_pscychresns_2014_09_008 crossref_primary_10_1016_j_neulet_2007_03_017 crossref_primary_10_1002_hbm_20722 crossref_primary_10_1016_j_physbeh_2021_113591 crossref_primary_10_1016_j_cortex_2014_10_019 crossref_primary_10_1111_j_1469_8986_2007_00602_x crossref_primary_10_1080_02699931_2015_1089842 crossref_primary_10_1371_journal_pone_0218451 crossref_primary_10_1016_j_neuroimage_2015_03_040 crossref_primary_10_1016_j_biopsycho_2016_09_006 crossref_primary_10_1038_srep43528 crossref_primary_10_1093_texcom_tgac050 crossref_primary_10_7717_peerj_5548 crossref_primary_10_1016_j_clinph_2012_06_019 crossref_primary_10_1016_j_neuroscience_2009_12_022 crossref_primary_10_7600_jspfsm_61_169 crossref_primary_10_1016_j_neulet_2004_07_036 crossref_primary_10_1016_j_neuropsychologia_2018_06_008 crossref_primary_10_1017_S0033291709990766 crossref_primary_10_1111_psyp_13065 crossref_primary_10_3389_fnhum_2017_00373 crossref_primary_10_1016_j_ijpsycho_2016_07_002 crossref_primary_10_1016_j_alcohol_2014_01_009 crossref_primary_10_1016_j_clinph_2007_03_021 crossref_primary_10_3389_fnins_2018_00780 crossref_primary_10_1111_j_1369_1600_2012_00467_x crossref_primary_10_1016_j_neuropsychologia_2011_08_024 crossref_primary_10_1016_j_clinph_2015_05_026 crossref_primary_10_1155_2015_419812 crossref_primary_10_1016_j_nicl_2020_102307 crossref_primary_10_1111_psyp_14328 crossref_primary_10_1371_journal_pone_0080087 crossref_primary_10_1002_da_22212 crossref_primary_10_1037_0894_4105_18_4_719 crossref_primary_10_1016_j_nlm_2021_107450 crossref_primary_10_1002_hbm_20933 crossref_primary_10_1016_j_jecp_2024_106067 crossref_primary_10_1017_S0033291715002822 crossref_primary_10_1027_0269_8803_a000163 crossref_primary_10_1016_j_clinph_2006_09_027 crossref_primary_10_1111_j_1530_0277_2011_01450_x crossref_primary_10_1016_S1388_2457_02_00363_2 crossref_primary_10_1016_j_neuroimage_2008_04_248 crossref_primary_10_1016_j_jneumeth_2014_10_016 crossref_primary_10_1109_JBHI_2014_2370646 crossref_primary_10_1016_j_neuroimage_2010_02_028 crossref_primary_10_1016_j_neubiorev_2020_07_030 crossref_primary_10_1016_S1053_8119_03_00275_1 crossref_primary_10_1097_WNR_0000000000000805 crossref_primary_10_1016_j_clinph_2012_07_021 crossref_primary_10_1111_psyp_14578 crossref_primary_10_1016_j_clinph_2010_03_009 crossref_primary_10_1038_srep37683 crossref_primary_10_1016_j_neubiorev_2016_08_003 crossref_primary_10_1016_j_bandc_2012_04_004 crossref_primary_10_1016_j_neuropsychologia_2018_08_027 crossref_primary_10_1016_j_neuropsychologia_2018_08_020 crossref_primary_10_1016_j_pscychresns_2012_01_001 crossref_primary_10_1016_j_ijpsycho_2012_12_001 crossref_primary_10_1007_s00221_018_5443_8 crossref_primary_10_1016_j_clinph_2017_07_416 crossref_primary_10_1016_j_applanim_2024_106339 crossref_primary_10_1016_j_tine_2016_01_001 crossref_primary_10_1177_0253717620927870 crossref_primary_10_1016_j_bandc_2006_03_011 crossref_primary_10_1177_1550059419895146 crossref_primary_10_1016_j_ijpsycho_2020_01_008 crossref_primary_10_1111_j_1469_8986_2011_01177_x crossref_primary_10_1016_j_jad_2020_10_074 crossref_primary_10_1016_j_neuroscience_2008_06_061 crossref_primary_10_3389_fpsyg_2021_727040 crossref_primary_10_1007_s00221_018_05466_y crossref_primary_10_1038_s41467_019_11358_8 crossref_primary_10_1016_j_clinph_2016_11_006 crossref_primary_10_1002_dev_21945 crossref_primary_10_1111_psyp_13026 crossref_primary_10_3389_fneur_2022_793212 crossref_primary_10_1162_jocn_2008_21154 crossref_primary_10_1046_j_1469_8986_2003_00127_x crossref_primary_10_1016_j_neuroimage_2015_02_060 crossref_primary_10_1016_j_biopsycho_2019_02_003 crossref_primary_10_2147_CIA_S255363 crossref_primary_10_1016_j_jecp_2012_06_005 crossref_primary_10_3233_JPD_212776 crossref_primary_10_1016_j_ijpsycho_2024_112410 crossref_primary_10_1016_j_neuroimage_2010_01_010 crossref_primary_10_1016_j_ijpsycho_2005_05_003 crossref_primary_10_1098_rsos_171369 crossref_primary_10_1109_JBHI_2023_3324085 crossref_primary_10_1016_j_clinph_2004_04_008 crossref_primary_10_1037_0021_843X_115_3_443 crossref_primary_10_3724_SP_J_1042_2019_01875 crossref_primary_10_1038_s41598_024_72074_y crossref_primary_10_1002_hbm_26433 crossref_primary_10_1016_j_clinph_2010_06_033 crossref_primary_10_1016_j_neuroimage_2010_01_022 crossref_primary_10_1111_psyp_13687 crossref_primary_10_1016_j_clinph_2007_01_017 crossref_primary_10_3758_s13415_022_01042_8 crossref_primary_10_1016_S0926_6410_03_00204_0 crossref_primary_10_1016_j_cognition_2013_11_005 crossref_primary_10_1027_0269_8803_19_4_275 crossref_primary_10_1016_j_neuropsychologia_2011_05_014 crossref_primary_10_1371_journal_pone_0017482 crossref_primary_10_1089_cap_2006_0081 crossref_primary_10_1093_scan_nsab041 crossref_primary_10_1016_j_ijpsycho_2008_01_010 crossref_primary_10_1371_journal_pone_0159833 crossref_primary_10_1038_srep43929 crossref_primary_10_1016_j_neubiorev_2014_06_008 crossref_primary_10_1111_j_1360_0443_2012_03908_x crossref_primary_10_1016_j_ijpsycho_2011_05_007 crossref_primary_10_1016_j_ijpsycho_2011_05_004 crossref_primary_10_3758_s13415_016_0477_5 crossref_primary_10_1016_j_brainres_2016_05_048 crossref_primary_10_1097_WNR_0b013e32832f81d6 crossref_primary_10_1016_j_neubiorev_2019_06_011 crossref_primary_10_1002_dev_21742 crossref_primary_10_1016_j_neuroimage_2017_03_015 crossref_primary_10_1371_journal_pone_0165029 crossref_primary_10_1027_0269_8803_20_3_186 crossref_primary_10_1097_WNR_0000000000000821 crossref_primary_10_1007_s00221_016_4555_2 crossref_primary_10_1007_s00221_004_1985_z crossref_primary_10_1016_j_ijpsycho_2021_10_008 crossref_primary_10_1007_s00221_008_1333_9 crossref_primary_10_12677_AP_2019_92027 crossref_primary_10_2147_CIA_S281627 crossref_primary_10_1016_j_neulet_2010_09_002 crossref_primary_10_1111_j_1467_7687_2007_00639_x crossref_primary_10_1371_journal_pone_0040215 crossref_primary_10_1371_journal_pone_0226236 crossref_primary_10_1027__0269_8803_14_4_218 crossref_primary_10_1080_87565641_2017_1355917 |
Cites_doi | 10.1016/0301-0511(88)90018-X 10.1111/j.1467-9280.1993.tb00586.x 10.1080/001401398186793 10.1111/j.1469-8986.1996.tb00425.x 10.1016/0006-8993(89)91222-5 10.1016/0013-4694(70)90167-7 10.1016/0168-5597(85)90015-2 10.1016/0301-0511(88)90005-1 10.1016/0013-4694(91)90062-9 10.1016/0921-884X(96)95617-9 10.1007/BF00412364 10.1037/0033-295X.83.2.157 10.1016/0013-4694(91)90061-8 10.1037/0096-1523.14.4.682 10.1016/0301-0511(93)90009-W 10.1016/0301-0511(93)90017-3 10.1016/0028-3932(71)90067-4 10.3758/BF03209421 10.1038/381520a0 10.1016/0013-4694(80)90216-3 10.1016/0168-5597(94)90006-X 10.1007/BF00340499 10.3758/BF03203267 10.1111/j.1469-8986.1996.tb02107.x 10.1016/0013-4694(94)00182-K 10.1111/j.1469-8986.1982.tb02509.x 10.1214/aoms/1177706545 10.1016/B978-0-7236-0443-3.50028-3 10.1016/0013-4694(92)90054-L 10.1016/0013-4694(85)91017-X 10.1016/0301-0511(86)90087-6 10.1016/0006-8993(90)90382-L |
ContentType | Journal Article |
Copyright | 1999 Elsevier Science B.V. |
Copyright_xml | – notice: 1999 Elsevier Science B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ICWRT K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC 7TA 8FD JG9 7X8 |
DOI | 10.1016/S0001-6918(99)00008-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Periodicals Index Online Segment 28 Periodicals Index Online Primary Sources Access—Foundation Edition (Plan E) - West Primary Sources Access (Plan D) - International Primary Sources Access & Build (Plan A) - MEA Primary Sources Access—Foundation Edition (Plan E) - Midwest Primary Sources Access—Foundation Edition (Plan E) - Northeast Primary Sources Access (Plan D) - Southeast Primary Sources Access (Plan D) - North Central Primary Sources Access—Foundation Edition (Plan E) - Southeast Primary Sources Access (Plan D) - South Central Primary Sources Access & Build (Plan A) - UK / I Primary Sources Access (Plan D) - Canada Primary Sources Access (Plan D) - EMEALA Primary Sources Access—Foundation Edition (Plan E) - North Central Primary Sources Access—Foundation Edition (Plan E) - South Central Primary Sources Access & Build (Plan A) - International Primary Sources Access—Foundation Edition (Plan E) - International Primary Sources Access (Plan D) - West Periodicals Index Online Segments 1-50 Primary Sources Access (Plan D) - APAC Primary Sources Access (Plan D) - Midwest Primary Sources Access (Plan D) - MEA Primary Sources Access—Foundation Edition (Plan E) - Canada Primary Sources Access—Foundation Edition (Plan E) - UK / I Primary Sources Access—Foundation Edition (Plan E) - EMEALA Primary Sources Access & Build (Plan A) - APAC Primary Sources Access & Build (Plan A) - Canada Primary Sources Access & Build (Plan A) - West Primary Sources Access & Build (Plan A) - EMEALA Primary Sources Access (Plan D) - Northeast Primary Sources Access & Build (Plan A) - Midwest Primary Sources Access & Build (Plan A) - North Central Primary Sources Access & Build (Plan A) - Northeast Primary Sources Access & Build (Plan A) - South Central Primary Sources Access & Build (Plan A) - Southeast Primary Sources Access (Plan D) - UK / I Primary Sources Access—Foundation Edition (Plan E) - APAC Primary Sources Access—Foundation Edition (Plan E) - MEA Materials Business File Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Periodicals Index Online Segments 1-50 Periodicals Index Online Periodicals Index Online Segment 28 Materials Research Database Technology Research Database Materials Business File MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Psychology |
EISSN | 1873-6297 |
EndPage | 291 |
ExternalDocumentID | 10344188 10_1016_S0001_6918_99_00008_6 S0001691899000086 |
Genre | Journal Article Comparative Study |
GroupedDBID | --- --K --M --Z -DZ -~X .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23M 4.4 41~ 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JO AABNK AACTN AADFP AADPK AAEDT AAEDW AAFWJ AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABIVO ABLJU ABMAC ABOYX ABXDB ABYKQ ACDAQ ACGFS ACHQT ACKIV ACNCT ACPRK ACRLP ACXNI ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AFFNX AFKWA AFMIJ AFPKN AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMW HVGLF HZ~ H~9 IHE J1W KOM LPU M3V M41 MO0 MOBAO MVM N9A NHB O-L O9- OAUVE OHT OK1 OKEIE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPCBC SPS SSB SSN SSY SSZ T5K TN5 UAP UQL W2D WH7 WUQ XPP ZKB ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN EFKBS ICWRT K30 PAAUG PAWHS PAWZZ PAXOH PBHAV PBQSW PBYQZ PCIWU PCMID PCZJX PDGRG PDWWI PETMR PFVGT PGXDX PIHIL PISVA PJCTQ PJTMS PLCHJ PMHAD PNQDJ POUND PPLAD PQAPC PQCAN PQCMW PQEME PQHKH PQMID PQNCT PQNET PQSCT PQSET PSVJG PVMQY PZGFC 7TA 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c474t-e5ccccdec2b9400c9d9d49da2597ed0f7d4448f2dc0d8a9c4c946352acac46803 |
IEDL.DBID | .~1 |
ISSN | 0001-6918 |
IngestDate | Fri Sep 05 08:19:36 EDT 2025 Fri Sep 05 14:17:15 EDT 2025 Fri Jul 25 05:35:29 EDT 2025 Wed Feb 19 01:19:37 EST 2025 Thu Apr 24 23:10:22 EDT 2025 Tue Jul 01 01:16:51 EDT 2025 Fri Feb 23 02:21:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Response inhibition Event-related brain potentials Error negativity Nogo-N2 2530 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-e5ccccdec2b9400c9d9d49da2597ed0f7d4448f2dc0d8a9c4c946352acac46803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 10344188 |
PQID | 1683793302 |
PQPubID | 1817102 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_69783218 proquest_miscellaneous_32620450 proquest_journals_1683793302 pubmed_primary_10344188 crossref_citationtrail_10_1016_S0001_6918_99_00008_6 crossref_primary_10_1016_S0001_6918_99_00008_6 elsevier_sciencedirect_doi_10_1016_S0001_6918_99_00008_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1999-04-01 |
PublicationDateYYYYMMDD | 1999-04-01 |
PublicationDate_xml | – month: 04 year: 1999 text: 1999-04-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: The Hague |
PublicationTitle | Acta psychologica |
PublicationTitleAlternate | Acta Psychol (Amst) |
PublicationYear | 1999 |
Publisher | Elsevier B.V Martinus Nijhoff |
Publisher_xml | – name: Elsevier B.V – name: Martinus Nijhoff |
References | Gamba, H., & Sasaki, K. (1990). Potential related to nogo-reaction in go/nogo hand movement with discrimination between tone stimuli of different frequencies in the monkey. Shibasaki, H., Barrett, G., Halliday, E., & Halliday, A. M. (1980). Components of the movement-related cortical potential and their scalp topography. 447–455 (pp. 81–87). Bristol: Wright Donchin, E. (1984). Cognitive psychophysiology: event-related potentials and the study of cognition. Scheffers, M. K., Coles, M. G. H., Bernstein, P., Gehring, W. J., & Donchin, E. (1996). Event-related brain potentials and error-related processing: an analysis of incorrect responses to Go and No-Go stimuli. distribution in multivariate analysis. Karlin, L., Martz, M. J., & Mordkoff, A. M. (1969). Motor performance and sensory-evoked potentials. Dixon, W. J. (1990). (pp. 192–195). Tilburg: Tilburg University Press (pp. 579–581). Washington, DC: US Government Printing Office 44–55 622–633 51–58 1–17 438–446 Kok, A. (1986). Effects of degradation of visual stimuli on components of the event-related potentials (ERP) in Go/Nogo reaction tasks. Geisser, S., & Greenhouse, S. W. (1958). An extension of Box's results on the use of the , Schwarzenau, P., Falkenstein, M., Hoormann, J., & Hohnsbein, J. (in press). A new method for the estimation of the onset of the lateralized readiness potential (LRP). Behavioral research methods. 213–226 117–138 Eriksen, B. A., Eriksen C. W. (1974). Effects of noise letters upon the identification of target letters in visual search. Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1997). Fehlerbezogene Komponenten im ereigniskorrelierten Potential (EKP). 19–27 Sasaki, K., & Gemba, H. (1986). Electrical activity in the prefrontal cortex specific to no-go reaction of conditioned hand movement with colour discrimination in the monkey. 183–207 165–178 203–208 340–344 472–480 Posner, M. I., Nissen, M. J., & Klein, R. (1976). Visual dominance: An information-processing account of its origins and significance. Roberts, L. E., Rau, H., Lutzenberger, W., & Birbaumer, N. (1994). Mapping P300 waves onto inhibition: Go/Nogo discrimination. Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. 143–149 Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1990). Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In C. H. M. Brunia, A. W. K. Gaillard & A. Kok Jodo, E., & Kayama, Y. (1992). Relation of a negative ERP component to response inhibition in a Go/Nogo task. 520–522 Hohnsbein, J., Falkenstein, M., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. I. Simple and choice reaction tasks. Hohnsbein, J., Falkenstein, M., & Hoormann, J. (1998). Performance differences in reaction tasks are reflected in event-related brain potentials (ERPs). Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. M. (1988). Use of partial stimulus information in response processing. 100–107 Kok, A. (1998). Overlap between P300 and movement-related potentials. Verleger, R., Gasser, T., & Möcks, J. (1982). Correction of EOG artifacts in event-related potentials of the EEG: Aspects of reliability and validity. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. 36–43 123–138 Schröger, E. (1993). Event-related potentials to auditory stimuli following transient shifts of spatial attention in a Go/Nogo task. Ruchkin, D. S., & Glaser, E. M. (1978). Some simple digital filters for examination of CNV and P300 waveforms on a single trial basis In D. A. Otto 21–38 Brunia, C. H. M. (1998). Movement and stimulus preceding negativity. 282–294 Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. McCarthy, G., & Wood, C. C. (1985). Scalp distributions of event-related potentials: An ambiguity associated with analysis of variance models. 97–113 603–606 42–54 Eimer, M. (1993). Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Kornhuber, H. H., & Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Berkeley, CA: University of California Press (Vol. 1). Hillsdale, NJ: Lawrence Erlbaum Associates 385–390 Oldfield, R. L. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. 423–434 Kopp, B., Rist, F., & Mattler, U. (1996a). N200 in the flanker task as a neurobehavioral tool for investigating executive control. 157–170 477–482 Sasaki, K., Gemba, H., & Tsujimoto, T. (1989). Suppression of visually initiated hand movement by stimulation of the prefrontal cortex in the monkey. Falkenstein, M., Koshlykova, N. A., Kiroj, V. N., Hoormann, J., & Hohnsbein, J. (1995). Later ERP components in visual and auditory Go/Nogo tasks. 682–692 Hillyard, S. A., Courchesne, E., Krausz, H. T., & Picton, T. W. (1976). Scalp topography of the P3 wave in different auditory decision tasks. In W. C. McCallum, J. R. Knott Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996b). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. 885–891 307–313 10.1016/S0001-6918(99)00008-6_BIB21 10.1016/S0001-6918(99)00008-6_BIB22 10.1016/S0001-6918(99)00008-6_BIB23 10.1016/S0001-6918(99)00008-6_BIB24 10.1016/S0001-6918(99)00008-6_BIB20 10.1016/S0001-6918(99)00008-6_BIB18 10.1016/S0001-6918(99)00008-6_BIB19 10.1016/S0001-6918(99)00008-6_BIB14 10.1016/S0001-6918(99)00008-6_BIB36 10.1016/S0001-6918(99)00008-6_BIB15 10.1016/S0001-6918(99)00008-6_BIB37 10.1016/S0001-6918(99)00008-6_BIB16 10.1016/S0001-6918(99)00008-6_BIB17 10.1016/S0001-6918(99)00008-6_BIB10 10.1016/S0001-6918(99)00008-6_BIB32 10.1016/S0001-6918(99)00008-6_BIB11 10.1016/S0001-6918(99)00008-6_BIB33 10.1016/S0001-6918(99)00008-6_BIB12 10.1016/S0001-6918(99)00008-6_BIB34 10.1016/S0001-6918(99)00008-6_BIB13 10.1016/S0001-6918(99)00008-6_BIB35 10.1016/S0001-6918(99)00008-6_BIB30 10.1016/S0001-6918(99)00008-6_BIB31 10.1016/S0001-6918(99)00008-6_BIB9 10.1016/S0001-6918(99)00008-6_BIB6 10.1016/S0001-6918(99)00008-6_BIB5 10.1016/S0001-6918(99)00008-6_BIB8 10.1016/S0001-6918(99)00008-6_BIB7 10.1016/S0001-6918(99)00008-6_BIB2 10.1016/S0001-6918(99)00008-6_BIB29 10.1016/S0001-6918(99)00008-6_BIB1 10.1016/S0001-6918(99)00008-6_BIB4 10.1016/S0001-6918(99)00008-6_BIB3 10.1016/S0001-6918(99)00008-6_BIB25 10.1016/S0001-6918(99)00008-6_BIB26 10.1016/S0001-6918(99)00008-6_BIB27 10.1016/S0001-6918(99)00008-6_BIB28 |
References_xml | – reference: Eimer, M. (1993). Effects of attention and stimulus probability on ERPs in a Go/Nogo task. – reference: (pp. 192–195). Tilburg: Tilburg University Press – reference: , 447–455 – reference: distribution in multivariate analysis. – reference: Kornhuber, H. H., & Deecke, L. (1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. – reference: Kok, A. (1998). Overlap between P300 and movement-related potentials. – reference: , 19–27 – reference: Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1990). Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In C. H. M. Brunia, A. W. K. Gaillard & A. Kok, – reference: Brunia, C. H. M. (1998). Movement and stimulus preceding negativity. – reference: , 520–522 – reference: Ruchkin, D. S., & Glaser, E. M. (1978). Some simple digital filters for examination of CNV and P300 waveforms on a single trial basis In D. A. Otto, – reference: Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. M. (1988). Use of partial stimulus information in response processing. – reference: , 183–207 – reference: Hohnsbein, J., Falkenstein, M., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. I. Simple and choice reaction tasks. – reference: Kok, A. (1986). Effects of degradation of visual stimuli on components of the event-related potentials (ERP) in Go/Nogo reaction tasks. – reference: Sasaki, K., & Gemba, H. (1986). Electrical activity in the prefrontal cortex specific to no-go reaction of conditioned hand movement with colour discrimination in the monkey. – reference: , 36–43 – reference: , 682–692 – reference: Roberts, L. E., Rau, H., Lutzenberger, W., & Birbaumer, N. (1994). Mapping P300 waves onto inhibition: Go/Nogo discrimination. – reference: , 472–480 – reference: Donchin, E. (1984). Cognitive psychophysiology: event-related potentials and the study of cognition. – reference: Kopp, B., Rist, F., & Mattler, U. (1996a). N200 in the flanker task as a neurobehavioral tool for investigating executive control. – reference: Hohnsbein, J., Falkenstein, M., & Hoormann, J. (1998). Performance differences in reaction tasks are reflected in event-related brain potentials (ERPs). – reference: , 51–58 – reference: Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. – reference: , 385–390 – reference: Gamba, H., & Sasaki, K. (1990). Potential related to nogo-reaction in go/nogo hand movement with discrimination between tone stimuli of different frequencies in the monkey. – reference: Shibasaki, H., Barrett, G., Halliday, E., & Halliday, A. M. (1980). Components of the movement-related cortical potential and their scalp topography. – reference: (Vol. 1). Hillsdale, NJ: Lawrence Erlbaum Associates – reference: McCarthy, G., & Wood, C. C. (1985). Scalp distributions of event-related potentials: An ambiguity associated with analysis of variance models. – reference: Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. – reference: 622–633 – reference: , 44–55 – reference: , 100–107 – reference: Verleger, R., Gasser, T., & Möcks, J. (1982). Correction of EOG artifacts in event-related potentials of the EEG: Aspects of reliability and validity. – reference: (pp. 579–581). Washington, DC: US Government Printing Office – reference: Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1997). Fehlerbezogene Komponenten im ereigniskorrelierten Potential (EKP). – reference: , 603–606 – reference: , 143–149 – reference: , 438–446 – reference: , – reference: , 213–226 – reference: , 21–38 – reference: , 117–138 – reference: 165–178 – reference: Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. – reference: Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996b). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. – reference: Falkenstein, M., Koshlykova, N. A., Kiroj, V. N., Hoormann, J., & Hohnsbein, J. (1995). Later ERP components in visual and auditory Go/Nogo tasks. – reference: Schwarzenau, P., Falkenstein, M., Hoormann, J., & Hohnsbein, J. (in press). A new method for the estimation of the onset of the lateralized readiness potential (LRP). Behavioral research methods. – reference: , 307–313 – reference: , 423–434 – reference: Dixon, W. J. (1990). – reference: Hillyard, S. A., Courchesne, E., Krausz, H. T., & Picton, T. W. (1976). Scalp topography of the P3 wave in different auditory decision tasks. In W. C. McCallum, J. R. Knott, – reference: Jodo, E., & Kayama, Y. (1992). Relation of a negative ERP component to response inhibition in a Go/Nogo task. – reference: , 477–482 – reference: , 282–294 – reference: Scheffers, M. K., Coles, M. G. H., Bernstein, P., Gehring, W. J., & Donchin, E. (1996). Event-related brain potentials and error-related processing: an analysis of incorrect responses to Go and No-Go stimuli. – reference: (pp. 81–87). Bristol: Wright – reference: , 157–170 – reference: , 885–891 – reference: . Berkeley, CA: University of California Press – reference: , 340–344 – reference: , 42–54 – reference: Karlin, L., Martz, M. J., & Mordkoff, A. M. (1969). Motor performance and sensory-evoked potentials. – reference: 123–138 – reference: Sasaki, K., Gemba, H., & Tsujimoto, T. (1989). Suppression of visually initiated hand movement by stimulation of the prefrontal cortex in the monkey. – reference: Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. – reference: Oldfield, R. L. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. – reference: Eriksen, B. A., Eriksen C. W. (1974). Effects of noise letters upon the identification of target letters in visual search. – reference: Geisser, S., & Greenhouse, S. W. (1958). An extension of Box's results on the use of the – reference: , 97–113 – reference: Schröger, E. (1993). Event-related potentials to auditory stimuli following transient shifts of spatial attention in a Go/Nogo task. – reference: , 203–208 – reference: , 1–17 – reference: Posner, M. I., Nissen, M. J., & Klein, R. (1976). Visual dominance: An information-processing account of its origins and significance. – ident: 10.1016/S0001-6918(99)00008-6_BIB1 doi: 10.1016/0301-0511(88)90018-X – ident: 10.1016/S0001-6918(99)00008-6_BIB11 doi: 10.1111/j.1467-9280.1993.tb00586.x – ident: 10.1016/S0001-6918(99)00008-6_BIB16 doi: 10.1080/001401398186793 – ident: 10.1016/S0001-6918(99)00008-6_BIB20 doi: 10.1111/j.1469-8986.1996.tb00425.x – ident: 10.1016/S0001-6918(99)00008-6_BIB30 doi: 10.1016/0006-8993(89)91222-5 – ident: 10.1016/S0001-6918(99)00008-6_BIB18 doi: 10.1016/0013-4694(70)90167-7 – ident: 10.1016/S0001-6918(99)00008-6_BIB23 doi: 10.1016/0168-5597(85)90015-2 – ident: 10.1016/S0001-6918(99)00008-6_BIB19 doi: 10.1016/0301-0511(88)90005-1 – ident: 10.1016/S0001-6918(99)00008-6_BIB8 doi: 10.1016/0013-4694(91)90062-9 – ident: 10.1016/S0001-6918(99)00008-6_BIB7 – ident: 10.1016/S0001-6918(99)00008-6_BIB21 doi: 10.1016/0921-884X(96)95617-9 – ident: 10.1016/S0001-6918(99)00008-6_BIB28 – ident: 10.1016/S0001-6918(99)00008-6_BIB22 doi: 10.1007/BF00412364 – ident: 10.1016/S0001-6918(99)00008-6_BIB26 doi: 10.1037/0033-295X.83.2.157 – ident: 10.1016/S0001-6918(99)00008-6_BIB3 – ident: 10.1016/S0001-6918(99)00008-6_BIB15 doi: 10.1016/0013-4694(91)90061-8 – ident: 10.1016/S0001-6918(99)00008-6_BIB2 doi: 10.1037/0096-1523.14.4.682 – ident: 10.1016/S0001-6918(99)00008-6_BIB5 doi: 10.1016/0301-0511(93)90009-W – ident: 10.1016/S0001-6918(99)00008-6_BIB32 doi: 10.1016/0301-0511(93)90017-3 – ident: 10.1016/S0001-6918(99)00008-6_BIB24 doi: 10.1016/0028-3932(71)90067-4 – ident: 10.1016/S0001-6918(99)00008-6_BIB33 doi: 10.3758/BF03209421 – ident: 10.1016/S0001-6918(99)00008-6_BIB35 doi: 10.1038/381520a0 – ident: 10.1016/S0001-6918(99)00008-6_BIB34 doi: 10.1016/0013-4694(80)90216-3 – ident: 10.1016/S0001-6918(99)00008-6_BIB27 doi: 10.1016/0168-5597(94)90006-X – ident: 10.1016/S0001-6918(99)00008-6_BIB29 doi: 10.1007/BF00340499 – ident: 10.1016/S0001-6918(99)00008-6_BIB6 doi: 10.3758/BF03203267 – ident: 10.1016/S0001-6918(99)00008-6_BIB31 doi: 10.1111/j.1469-8986.1996.tb02107.x – ident: 10.1016/S0001-6918(99)00008-6_BIB9 doi: 10.1016/0013-4694(94)00182-K – ident: 10.1016/S0001-6918(99)00008-6_BIB36 doi: 10.1111/j.1469-8986.1982.tb02509.x – ident: 10.1016/S0001-6918(99)00008-6_BIB12 doi: 10.1214/aoms/1177706545 – ident: 10.1016/S0001-6918(99)00008-6_BIB14 doi: 10.1016/B978-0-7236-0443-3.50028-3 – ident: 10.1016/S0001-6918(99)00008-6_BIB17 doi: 10.1016/0013-4694(92)90054-L – ident: 10.1016/S0001-6918(99)00008-6_BIB25 doi: 10.1016/0013-4694(85)91017-X – ident: 10.1016/S0001-6918(99)00008-6_BIB4 – ident: 10.1016/S0001-6918(99)00008-6_BIB10 – ident: 10.1016/S0001-6918(99)00008-6_BIB37 doi: 10.1016/0301-0511(86)90087-6 – ident: 10.1016/S0001-6918(99)00008-6_BIB13 doi: 10.1016/0006-8993(90)90382-L |
SSID | ssj0004191 |
Score | 2.1725075 |
Snippet | In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli (“Nogo-N2”), which possibly reflects an inhibition process. However, the... In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli ("Nogo-N2"), which possibly reflects an inhibition process. However, the... In visual Go/Nogo tasks the ERP usually shows a frontal negativity after Nogo stimuli ('Nogo-N2'), which possibly reflects an inhibition process. However, the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 267 |
SubjectTerms | Adolescent Adult Electroencephalography Error negativity Event-related brain potentials Evoked Potentials Female Frontal Lobe - physiology Humans Inhibition (Psychology) Male Movement - physiology Nogo-N2 Response inhibition |
Title | ERP components in Go/Nogo tasks and their relation to inhibition |
URI | https://dx.doi.org/10.1016/S0001-6918(99)00008-6 https://www.ncbi.nlm.nih.gov/pubmed/10344188 https://www.proquest.com/docview/1683793302 https://www.proquest.com/docview/32620450 https://www.proquest.com/docview/69783218 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH5C7MIFDRiso4APO4yDaX64TnwDVe26waoKgcTNcmyHVZsSRNMDF_52np2kHYeq0nKJ5NiW_WI_f8_-_B7AV2FRLaKRRnWiOWVCWaoMjym3fa7CQFvhT0x_Tfj4nv186D9swaC9C-NolY3ur3W619ZNSq-RZu9pNnN3fJ0nkRANBg98nNttxhLnP__idUXzYGEbNS-kLvfqFk9dg0_8JsS5r4TydevTOvzp16HRR9htACS5qtu4B1u22IedpR57OYDL4e2UOKp4WTiWBJkV5HvZm5SPJanU_M-cqMIQf0BAnhsqHKlKzPZ7lnkC1ye4Hw3vBmPaBEqgGjtcUdvX-Biro8zFOdfCCMOEUWjaJNYEeWIYWmF5ZHRgUiU004Ih0IiUVprxNIgPYbvANn0GEvMkjxMEjcKi0WzzjOWhRRQeRlqJmGcdYK14pG68iLtgFn_lii6GUpVOqlII6aUqeQculsWeajcamwqkrezlu_EgUdVvKtpt_5VsJuRchhwtcbd5E3XgbPkZp5I7H1GFLRdzGdfO-YP1ObjbKENQ1IGjegz805kYgWWafvn_dh_DTu0TwtGCurBdPS_sCSKeKjv1Q_oUPlwNbm-m7v3jejx5A18t-cY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH9icBgXxIBt5dMHDnAwzYfrxDcQatcNqBACiZvl2A6rNiVVmx522d_Os5O041AhLUfHtpyX5-ffs39-D-BUWDSL6KRRnWhOmVCWKsNjym2PqzDQVvgT07sRHz6xH8-95zW4bu_COFplY_trm-6tdVPSbaTZnYzH7o6viyQSosPggQ__ABusFydOtS_-LnkeLGzT5oXUVV9e46m78IVnQpz7XihftUCtAqB-IRpsw1aDIMlVPchPsGaLHdhcGLI_u3DZf7gnjiteFo4mQcYF-VZ2R-VLSSo1-zUjqjDEnxCQacOFI1WJ1X6OM8_g2oOnQf_xekibTAlUs4RV1PY0PsbqKHOJzrUwwjBhFPo2iTVBnhiGblgeGR2YVAnNtGCINCKllWY8DeLPsF7gmL4CiXmSoxBFKCx6zTbPWB5ahOFhpJWIedYB1opH6iaMuMtm8Vsu-WIoVemkKoWQXqqSd-Bi0WxSx9F4r0Hayl6-UQiJtv69poftv5LNjJzJkKMr7nZvog6cLF7jXHIHJKqw5Xwm4zo6f7C6Bnc7ZYiKOvCl1oF_PiZGZJmm-_8_7hP4OHy8u5W330c3B7BZB4hwHKFDWK-mc3uE8KfKjr16vwJZq_nH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ERP+components+in+Go%2FNogo+tasks+and+their+relation+to+inhibition&rft.jtitle=Acta+psychologica&rft.au=Falkenstein%2C+M&rft.au=Hoormann%2C+J&rft.au=Hohnsbein%2C+J&rft.date=1999-04-01&rft.issn=0001-6918&rft.volume=101&rft.issue=2-3&rft.spage=267&rft.epage=291&rft_id=info:doi/10.1016%2FS0001-6918%2899%2900008-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0001_6918_99_00008_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-6918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-6918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-6918&client=summon |