Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss

Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descripti...

Full description

Saved in:
Bibliographic Details
Published inHearing research Vol. 360; pp. 55 - 75
Main Authors Verhulst, Sarah, Altoè, Alessandro, Vasilkov, Viacheslav
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2018
Online AccessGet full text

Cover

Loading…
Abstract Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. •An overview of computational models from cochlea to auditory-nerve (AN).•IHC-AN model descriptions are made biophysical to reduce model fitting parameters.•The presented auditory model captures key aspects of human OAE, ABR and EFRs.•Simulated impact of sensorineural hearing loss on human population responses.
AbstractList Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features.Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features.
Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. •An overview of computational models from cochlea to auditory-nerve (AN).•IHC-AN model descriptions are made biophysical to reduce model fitting parameters.•The presented auditory model captures key aspects of human OAE, ABR and EFRs.•Simulated impact of sensorineural hearing loss on human population responses.
Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features.
Author Verhulst, Sarah
Altoè, Alessandro
Vasilkov, Viacheslav
Author_xml – sequence: 1
  givenname: Sarah
  surname: Verhulst
  fullname: Verhulst, Sarah
  email: s.verhulst@ugent.be
  organization: WAVES, Dept. of Information Technology, Ghent University, Technologiepark 15, 9052 Zwijnaarde, Belgium
– sequence: 2
  givenname: Alessandro
  orcidid: 0000-0003-3004-6918
  surname: Altoè
  fullname: Altoè, Alessandro
  email: Alessandro.altoe@aalto.fi
  organization: Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 13000, FI-00076 Aalto, Finland
– sequence: 3
  givenname: Viacheslav
  surname: Vasilkov
  fullname: Vasilkov, Viacheslav
  email: Viacheslav.vasilkov@uni-oldenburg.de
  organization: Medizinische Physik, Oldenburg University, Carl-von-Ossietzky strasse 9-11, 26120 Oldenburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29472062$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFu1DAUtFArui38AUI-ciCp7TiJ3QNStWoLUiUucLa89gvrJbGD7ay0f0-ibC8c6Ok9Pc2M3sxcowsfPCD0gZKSEtrcHso96AipZIS2JWUloeIN2lDRiqIWkl6gDamWXdb1FbpO6UAIrSvO3qIrJnnLSMM2KG_DME5ZZxe87vEQLPTO_8Khw3kPeD8N2mM9WZdDPOERohv3EE93-P58KzzEI-D5kTH4BOkzhmP4DRaPIYPPTvcJa2_x8uwi3IeU3qHLbr7D-_O8QT8fH35svxbP35--be-fC8Nbngvgtja7rhESmDbAGxDckMq0pLOzEwuSCEvkrrYNp4II1klpdKep6diuklV1gz6tumMMfyZIWQ0uGeh77SFMSTFCWimYqPkM_XiGTrsBrBqjG3Q8qZekZsDdCjBxdhChU8atseWoXa8oUUst6qDWWtRSi6JMzbXMZP4P-UX_FdqXlQZzSEcHUSXjwBuwLoLJygb3f4G_iFGrtw
CitedBy_id crossref_primary_10_1121_10_0010317
crossref_primary_10_1152_jn_00620_2020
crossref_primary_10_1121_10_0025136
crossref_primary_10_1016_j_apacoust_2024_110006
crossref_primary_10_1111_ejn_16049
crossref_primary_10_1177_2331216520988406
crossref_primary_10_7554_eLife_62329
crossref_primary_10_1007_s11571_021_09711_z
crossref_primary_10_1016_j_heares_2021_108411
crossref_primary_10_1523_JNEUROSCI_2002_22_2023
crossref_primary_10_1016_j_heares_2021_108258
crossref_primary_10_1016_j_buildenv_2018_10_054
crossref_primary_10_1177_23312165241286742
crossref_primary_10_1044_2021_AJA_21_00133
crossref_primary_10_1016_j_heares_2024_109050
crossref_primary_10_1016_j_heares_2019_05_007
crossref_primary_10_1121_10_0028130
crossref_primary_10_1016_j_neuroscience_2018_12_007
crossref_primary_10_3389_fphys_2021_700655
crossref_primary_10_4103_nah_nah_53_22
crossref_primary_10_1523_JNEUROSCI_0238_24_2024
crossref_primary_10_1016_j_heares_2020_108132
crossref_primary_10_1038_s42003_021_02341_5
crossref_primary_10_1121_10_0004818
crossref_primary_10_1121_10_0002879
crossref_primary_10_1038_s42256_020_00286_8
crossref_primary_10_1103_PhysRevResearch_2_013218
crossref_primary_10_1044_2023_JSLHR_23_00234
crossref_primary_10_1051_aacus_2021043
crossref_primary_10_1044_2021_JSLHR_21_00064
crossref_primary_10_1121_10_0007484
crossref_primary_10_7554_eLife_85108
crossref_primary_10_1051_aacus_2023064
crossref_primary_10_1016_j_heares_2019_07_001
crossref_primary_10_1016_j_heares_2020_108068
crossref_primary_10_1051_aacus_2022011
crossref_primary_10_1016_j_apacoust_2020_107619
crossref_primary_10_1109_TBME_2024_3410686
crossref_primary_10_1038_s42003_023_05040_5
crossref_primary_10_1097_AUD_0000000000001481
crossref_primary_10_1016_j_heares_2019_02_016
crossref_primary_10_1109_TASLP_2024_3378099
crossref_primary_10_1121_10_0028278
crossref_primary_10_1097_AUD_0000000000001009
crossref_primary_10_1051_aacus_2022008
crossref_primary_10_1016_j_heares_2020_108117
crossref_primary_10_1371_journal_pone_0213899
crossref_primary_10_1007_s10162_020_00776_x
crossref_primary_10_1016_j_heares_2022_108663
crossref_primary_10_51445_sja_auditio_vol8_2024_103
crossref_primary_10_3389_fnins_2022_893542
crossref_primary_10_1121_1_5132708
crossref_primary_10_1097_AUD_0000000000001498
crossref_primary_10_1177_23312165221118792
crossref_primary_10_1121_10_0034329
crossref_primary_10_1109_TASLPRO_2025_3536183
crossref_primary_10_3389_fnins_2020_588448
crossref_primary_10_1038_s41598_021_81232_5
crossref_primary_10_3390_biomimetics10030167
crossref_primary_10_1016_j_cub_2019_04_067
crossref_primary_10_1016_j_heares_2021_108333
crossref_primary_10_3390_app12105168
crossref_primary_10_1007_s10162_022_00870_2
crossref_primary_10_3389_fpsyg_2021_634943
crossref_primary_10_1007_s00359_022_01560_3
crossref_primary_10_1177_23312165241239541
crossref_primary_10_1121_10_0009238
crossref_primary_10_1016_j_heares_2019_06_001
crossref_primary_10_1016_j_heares_2020_108053
crossref_primary_10_1016_j_heares_2022_108569
crossref_primary_10_1016_j_heares_2023_108900
crossref_primary_10_1038_s42256_021_00394_z
crossref_primary_10_1016_j_heares_2018_02_004
crossref_primary_10_1016_j_heares_2018_08_010
crossref_primary_10_1121_10_0028584
crossref_primary_10_1055_s_0042_1756165
crossref_primary_10_1016_j_heares_2020_107979
crossref_primary_10_3389_fnagi_2022_877588
crossref_primary_10_1109_TASLP_2023_3282093
crossref_primary_10_1121_10_0001226
crossref_primary_10_1177_23312165231205719
crossref_primary_10_1371_journal_pcbi_1009889
crossref_primary_10_3902_jnns_28_183
crossref_primary_10_1121_10_0020068
crossref_primary_10_1016_j_heares_2021_108310
crossref_primary_10_1177_2331216519877301
crossref_primary_10_1088_1741_2552_ab970d
crossref_primary_10_1097_AUD_0000000000001041
crossref_primary_10_1121_10_0028199
crossref_primary_10_3389_fnins_2022_908330
crossref_primary_10_1121_10_0016807
crossref_primary_10_1088_1361_6501_ac3709
crossref_primary_10_1016_j_heares_2020_108157
crossref_primary_10_1109_TBME_2021_3080123
crossref_primary_10_1088_1361_6501_acfbf0
crossref_primary_10_1121_10_0017627
crossref_primary_10_1073_pnas_1922033117
crossref_primary_10_7759_cureus_66036
crossref_primary_10_1038_s42256_021_00317_y
crossref_primary_10_1109_RBME_2024_3508713
crossref_primary_10_1121_10_0017863
Cites_doi 10.1073/pnas.1105867108
10.1121/1.4928305
10.1121/1.401675
10.1016/j.clinph.2014.01.011
10.1016/j.heares.2013.10.004
10.1016/j.heares.2015.01.011
10.1016/0378-5955(91)90137-X
10.1121/1.4896416
10.1016/0378-5955(86)90002-X
10.1038/nn.2578
10.1121/1.4941249
10.1523/JNEUROSCI.0903-14.2014
10.1121/1.3479755
10.1121/1.394173
10.1016/0378-5955(92)90010-K
10.1016/j.neurobiolaging.2016.05.001
10.1152/jn.00164.2013
10.1121/1.400675
10.1121/1.1370357
10.1121/1.4960486
10.1097/00003446-198503000-00008
10.1097/00003446-199710000-00006
10.1371/journal.pone.0162726
10.1038/nn.2293
10.1121/1.400650
10.1121/1.4763989
10.1523/JNEUROSCI.03-10-02043.1983
10.1121/1.4985193
10.1121/1.4807563
10.1121/1.3337233
10.1152/jn.1992.68.4.1087
10.1121/1.1453451
10.1523/JNEUROSCI.5452-06.2007
10.1121/1.3699171
10.1121/1.2924135
10.1121/1.3523287
10.1523/JNEUROSCI.3389-10.2011
10.1523/JNEUROSCI.4460-15.2016
10.3109/14992027.2015.1135352
10.1016/0378-5955(95)00200-6
10.1016/0378-5955(90)90104-W
10.1121/1.4927408
10.1007/s10162-014-0489-1
10.1121/1.1288665
10.1121/1.402757
10.1016/j.heares.2016.10.016
10.1121/1.4837815
10.1121/1.3518768
10.1121/1.2718397
10.1121/1.1784442
10.1113/jphysiol.1983.sp014668
10.1121/1.1336503
10.1152/physrev.00029.2003
10.1121/1.3224762
10.1121/1.1972490
10.1113/jphysiol.2007.145219
10.1098/rspb.1992.0102
10.1121/1.385200
10.1121/1.3290995
10.1121/1.1903521
10.1121/1.1534833
10.1038/2251207a0
10.1007/s10162-015-0539-3
10.1152/physrev.2001.81.3.1305
10.1121/1.409963
10.3109/00206098709078420
10.1016/0378-5955(90)90074-Y
10.1073/pnas.0813213106
10.1121/1.2783125
10.1016/0030-4018(78)90322-X
10.1016/j.heares.2016.05.006
10.1121/1.3531864
10.1016/0378-5955(80)90080-5
10.1523/JNEUROSCI.3915-14.2015
10.1523/JNEUROSCI.4439-09.2010
10.1113/jphysiol.1990.sp017944
10.1016/j.neuron.2011.04.024
10.1121/1.383064
10.1016/0378-5955(85)90008-5
10.1016/0378-5955(86)90038-9
10.1121/1.1564018
10.1016/j.heares.2018.03.029
10.1121/1.1318898
10.1016/j.heares.2013.11.006
10.1016/0378-5955(91)90106-J
10.1121/1.381736
10.1121/1.1755237
10.1121/1.3658470
10.1016/j.heares.2017.07.003
10.1121/1.420088
10.1016/0378-5955(84)90032-7
10.1523/JNEUROSCI.2845-09.2009
10.1016/0378-5955(94)90239-9
10.1121/1.3531930
10.1016/0370-1573(80)90100-3
10.1007/s101620010083
10.1121/1.399052
10.3389/fnsyn.2010.00148
10.1121/1.3397640
10.1121/1.414955
10.3389/fnsys.2014.00026
10.1016/j.neuron.2014.08.003
10.1121/1.2225512
10.1016/0378-5955(83)90022-9
10.1121/1.400653
10.1121/1.3158859
10.1007/s10162-011-0277-0
10.1007/s10827-016-0613-9
10.1113/jphysiol.2004.072868
10.1152/jn.00574.2004
10.1523/JNEUROSCI.2156-11.2011
10.1016/0378-5955(86)90096-1
10.1038/nn1089
10.1121/1.396357
10.1121/1.418265
10.1121/1.393460
10.1121/1.1515777
10.1121/1.381816
10.1121/1.1387155
10.1121/1.420344
10.1007/s10162-010-0217-4
10.1121/1.3238250
10.1073/pnas.1409920111
10.7554/eLife.08177
10.1121/1.387995
10.1121/1.4949540
10.1121/1.2139628
10.1016/0378-5955(96)00040-8
10.1007/BF00193439
10.1152/jn.1969.32.4.613
10.1121/1.424364
10.1007/s10162-006-0037-8
10.1121/1.1993148
10.1016/S0896-6273(01)00243-4
10.1121/1.426269
10.1121/1.1366372
10.1152/jn.1979.42.4.1083
10.1016/S0378-5955(00)00103-9
10.1152/jn.00738.2013
10.1080/010503998420342
10.1121/1.3203310
10.1113/jphysiol.1988.sp017120
10.1073/pnas.1605737113
10.1073/pnas.0705756104
ContentType Journal Article
Copyright 2018 The Authors
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 The Authors
– notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.heares.2017.12.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1878-5891
EndPage 75
ExternalDocumentID 29472062
10_1016_j_heares_2017_12_018
S0378595517303477
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
--Z
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
NCXOZ
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
TEORI
TN5
UNMZH
WUQ
ZGI
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c474t-e4d5cbf689e2ace46e84c03c70fd153de908d09b5d6418082f99cafa1cf2b3933
IEDL.DBID .~1
ISSN 0378-5955
1878-5891
IngestDate Fri Jul 11 03:40:10 EDT 2025
Mon Jul 21 06:06:14 EDT 2025
Tue Jul 01 04:15:41 EDT 2025
Thu Apr 24 23:16:08 EDT 2025
Fri Feb 23 02:14:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-e4d5cbf689e2ace46e84c03c70fd153de908d09b5d6418082f99cafa1cf2b3933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3004-6918
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378595517303477
PMID 29472062
PQID 2007982854
PQPubID 23479
PageCount 21
ParticipantIDs proquest_miscellaneous_2007982854
pubmed_primary_29472062
crossref_citationtrail_10_1016_j_heares_2017_12_018
crossref_primary_10_1016_j_heares_2017_12_018
elsevier_sciencedirect_doi_10_1016_j_heares_2017_12_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
20180301
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Hearing research
PublicationTitleAlternate Hear Res
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dau (bib15) 2003; 113
Liberman (bib64) 1978; 63
Russell, Sellick (bib111) 1983; 338
Möhrle, Ni, Varakina, Bing, Lee, Zimmermann (bib85) 2016; 44
Kiang, Baer, Marr, Demont (bib57) 1969; 46
Jiang, Zheng, Sun, Liu (bib48) 1991; 54
Zhang, Heinz, Bruce, Carney (bib146) 2001; 109
Peterson, Irvine, Heil (bib94) 2014; 34
Strelcyk, Christoforidis, Dau (bib123) 2009; 126
Gorga, Neely, Kopun, Tan (bib35) 2011; 129
Serpanos, O'malley, Gravel (bib118) 1997; 18
Raufer, Verhulst (bib101) 2016; 342
Johnson, Marcotti (bib49) 2008; 586
Zhang, Carney (bib145) 2005; 118
Taberner, Liberman (bib126) 2005; 93
Ewert, Dau (bib28) 2000; 108
Allen, Sondhi (bib2) 1979; 66
Jepsen, Ewert, Dau (bib46) 2008; 124
Zilany, Bruce, Carney (bib150) 2014; 135
Dolphin, Mountain (bib20) 1992; 58
Kuwada, Batra, Maher (bib62) 1986; 21
Meddis, O'Mard, Lopez-Poveda (bib79) 2001; 109
Vannucci, Teich (bib132) 1978; 25
Lopez-Poveda, Eustaquio-Martín (bib68) 2006; 7
Rhode (bib104) 2007; 121
Bharadwaj, Shinn-Cunningham (bib7) 2014; 125
Zweig (bib152) 1991; 89
Verhulst (bib133) 2010
Kros, Crawford (bib59) 1990; 421
Jørgensen, Ewert, Dau (bib51) 2013; 134
Mehraei, Hickox, Bharadwaj, Goldberg, Verhulst, Liberman, Shinn-Cunningham (bib80) 2016; 36
Takanen, Santala, Pulkki (bib127) 2014; 309
Trautwein, Hofstetter, Wang, Salvi, Nostrant (bib129) 1996; 96
Meyer, Frank, Khimich, Hoch, Riedel, Chapochnikov, Yarin, Harke, Hell, Egner, Moser (bib82) 2009; 12
Heinz, Zhang, Bruce, Carney (bib42) 2001; 2
Robles, Ruggero (bib106) 2001; 81
Melcher, Kiang (bib81) 1996; 93
Altoè, Pulkki, Verhulst (bib3) 2014; 136
Liberman, Epstein, Cleveland, Wang, Maison (bib65) 2016; 11
Encina-Llamas, Dau, Epp (bib26) 2007
Verhulst, Bharadwaj, Mehraei, Shera, Shinn-Cunningham (bib136) 2015; 138
Joris, Bergevin, Kalluri, Mc Laughlin, Michelet, van der Heijden, Shera (bib54) 2011; 108
Hudspeth, Lewis (bib43) 1988; 400
Schaette, McAlpine (bib114) 2011; 31
Lewis, Neely (bib63) 2015; 138
Altoè, A., Pulkki, V., Verhulst, S. (submitted). The effects of the activation of the inner-hair-cell basolateral K
Shamma, Chadwick, Wilbur, Morrish, Rinzel (bib162) 1986; 80
Shera, Zweig (bib121) 1991; 89
Chapochnikov, Takago, Huang, Pangršič, Khimich, Neef (bib12) 2014; 83
Rosen, Baker (bib108) 1994; 73
Ohn, Rutherford, Jing, Jung, Duque-Afonso, Hoch (bib91) 2016
Elberling, Callø, Don (bib24) 2010; 128
Davis (bib154) 1965; Vol. 30
Zilany, Bruce, Nelson, Carney (bib149) 2009; 126
Meddis (bib76) 1986; 79
Harris, Dallos (bib40) 1979; 42
Shera, Guinan, Oxenham (bib122) 2010; 11
Oertel (bib90) 1983; 3
Pieper, Mauermann, Kollmeier, Ewert (bib97) 2016; 139
Joris, Yin (bib52) 1992; 91
Westerman, Smith (bib139) 1984; 15
Elliott, Ku, Lineton (bib25) 2007; 122
Palmer, Russell (bib92) 1986; 24
Dolphin (bib19) 1996; 179
Zweig (bib151) 1976; vol. 40
Grant, Yi, Glowatzki (bib37) 2010; 30
Puria, Allen (bib100) 1991; 89
Nedzelnitsky (bib87) 1980; 68
Sellick, Russell (bib116) 1980; 2
Shaheen, Valero, Liberman (bib119) 2015; 16
Westerman, Smith (bib140) 1988; 83
Ruggero, Robles, Rich (bib109) 1992; 68
Prosser, Arslan (bib99) 1987; 26
Bourien, Tang, Batrel, Huet, Lenoir, Ladrech (bib11) 2014; 112
Picton (bib95) 2011
Sumner, Lopez-Poveda, O'Mard, Meddis (bib124) 2002; 111
Neely, Kim (bib88) 1983; 9
Puria (bib160) 2003; 113
Pangršič, Lasarow, Reuter, Takago, Schwander, Riedel (bib93) 2010; 13
Jepsen, Dau (bib45) 2011; 129
Ruggero, Rich, Recio, Narayan, Robles (bib110) 1997; 101
Liu, Neely (bib67) 2010; 127
Talmadge, Tubis, Long, Piskorski (bib128) 1998; 104
Liberman, Wang, Liberman (bib158) 2011; 31
Goutman, Glowatzki (bib36) 2007; 104
Shera (bib120) 2001; 109
Bharadwaj, Masud, Mehraei, Verhulst, Shinn-Cunningham (bib9) 2015; 35
Delgutte, Hammond, Cariani (bib18) 1998
Cheatham, Dallos (bib13) 1999; 105
Kapadia, Lutman (bib56) 2000; 146
Heil, Neubauer (bib155) 2010; 2
Greenwood (bib38) 1990; 87
Kujawa, Liberman (bib61) 2009; 29
Zilany, Bruce (bib163) 2006; 120
Joris, Schreiner, Rees (bib53) 2004; 84
Goldberg, Brown (bib32) 1969; 32
Kidd, Weiss (bib58) 1990; 49
Don, Eggermont (bib21) 1978; 63
Furman, Kujawa, Liberman (bib31) 2013; 110
Altoè, Pulkki, Verhulst (bib4) 2017; 141
Rhode, Smith (bib105) 1985; 18
Gorga, Neely, Kopun, Tan (bib34) 2011; 129
Lin, Furman, Kujawa, Liberman (bib66) 2011; 12
Neely, Johnson, Kopun, Dierking, Gorga (bib89) 2009; 126
Relkin, Doucet (bib103) 1991; 55
Picton, Stapells, Campbell (bib96) 1981; 9
Zhong, Henry, Heinz (bib147) 2014; 309
Russell, Cody, Richardson (bib161) 1986; 22
Manley, Fay (bib71) 2007; vol. 30
Plack, Barker, Prendergast (bib98) 2014; 18
Schmiedt (bib115) 2010
Bidelman (bib10) 2015; 323
Frank, Khimich, Neef, Moser (bib29) 2009; 106
Johnson, Beurg, Marcotti, Fettiplace (bib50) 2011; 70
Verhulst, Dau, Shera (bib135) 2012; 132
Verhulst, Jagadeesh, Mauermann, Ernst (bib137) 2016; 20
Meddis, O'Mard (bib78) 1997; 102
Rønne, Dau, Harte, Elberling (bib107) 2012; 131
Valero, Burton, Hauser, Hackett, Ramachandran, Liberman (bib130) 2017; 353
Epp, Verhey, Mauermann (bib27) 2010; 128
Jürgens, Clark, Lecluyse, Meddis (bib55) 2016; 55
Nelson, Carney (bib159) 2004; 116
Mao, Carney (bib72) 2015; 16
Marcotti, Johnson, Kros (bib73) 2004; 560
Moleti, Paternoster, Bertaccini, Sisto, Sanjust (bib86) 2009; 126
Van Hengel, Duifhuis, Van den Raadt (bib131) 1996; 99
Frisina, Smith, Chamberlain (bib30) 1990; 44
Meaud, Grosh (bib75) 2010; 127
Kros, Rusch, Richardson (bib60) 1992; 249
Sachs, Abbas (bib112) 1974; 56
Winter, Palmer (bib141) 1991; 90
Gorga, Worthington, Reiland, Beauchaine, Goldgar (bib33) 1984; 6
channels on auditory nerve responses. Hear. Res
Bharadwaj, Verhulst, Shaheen, Liberman, Shinn-Cunningham (bib8) 2014; 8
Meddis (bib77) 2006; 119
Moezzi, Iannella, McDonnell (bib84) 2016; 41
Beutner, Voets, Neher, Moser (bib6) 2001; 29
Dau, Kollmeier, Kohlrausch (bib16) 1997; 102
Jia, Dallos, He (bib47) 2007; 27
Lyon (bib70) 2011; 130
Recio, Rhode (bib102) 2000; 108
Kennedy, Evans, Crawford, Fettiplace (bib157) 2003; 6
de Boer (bib17) 1980; 62
Huet, Batrel, Tang, Desmadryl, Wang, Puel, Bourien (bib44) 2016; 338
Verhulst, Harte, Dau (bib134) 2011; 129
Duifhuis (bib22) 2012
von Békésy (bib138) 1970; 225
Corns, Johnson, Kros, Marcotti (bib14) 2014; 111
Zagaeski, Cody, Russell, Mountain (bib143) 1994; 95
Johnson (bib156) 2015; 4
Miller, Abbas, Robinson (bib83) 2001; 2
Sumner, Lopez-Poveda, O'Mard, Meddis (bib125) 2003; 113
Lynch, Nedzelnitsky, Peake (bib69) 1982; 72
Zweig (bib153) 2016; 139
Saremi, Beutelmann, Dietz, Ashida, Kretzberg, Verhulst (bib113) 2016; 140
Han, Poulsen (bib39) 1998; 27
Zeddies, Siegel (bib144) 2004; 116
Joris (10.1016/j.heares.2017.12.018_bib53) 2004; 84
Ohn (10.1016/j.heares.2017.12.018_bib91) 2016
Marcotti (10.1016/j.heares.2017.12.018_bib73) 2004; 560
Shamma (10.1016/j.heares.2017.12.018_bib162) 1986; 80
Lopez-Poveda (10.1016/j.heares.2017.12.018_bib68) 2006; 7
Pangršič (10.1016/j.heares.2017.12.018_bib93) 2010; 13
10.1016/j.heares.2017.12.018_bib5
Verhulst (10.1016/j.heares.2017.12.018_bib137) 2016; 20
Bidelman (10.1016/j.heares.2017.12.018_bib10) 2015; 323
Beutner (10.1016/j.heares.2017.12.018_bib6) 2001; 29
Meaud (10.1016/j.heares.2017.12.018_bib75) 2010; 127
Cheatham (10.1016/j.heares.2017.12.018_bib13) 1999; 105
Takanen (10.1016/j.heares.2017.12.018_bib127) 2014; 309
Neely (10.1016/j.heares.2017.12.018_bib88) 1983; 9
Verhulst (10.1016/j.heares.2017.12.018_bib133) 2010
Rhode (10.1016/j.heares.2017.12.018_bib104) 2007; 121
Ruggero (10.1016/j.heares.2017.12.018_bib109) 1992; 68
Jürgens (10.1016/j.heares.2017.12.018_bib55) 2016; 55
Verhulst (10.1016/j.heares.2017.12.018_bib135) 2012; 132
Zilany (10.1016/j.heares.2017.12.018_bib163) 2006; 120
Westerman (10.1016/j.heares.2017.12.018_bib140) 1988; 83
Kidd (10.1016/j.heares.2017.12.018_bib58) 1990; 49
Pieper (10.1016/j.heares.2017.12.018_bib97) 2016; 139
Talmadge (10.1016/j.heares.2017.12.018_bib128) 1998; 104
Greenwood (10.1016/j.heares.2017.12.018_bib38) 1990; 87
Don (10.1016/j.heares.2017.12.018_bib21) 1978; 63
Liberman (10.1016/j.heares.2017.12.018_bib65) 2016; 11
Duifhuis (10.1016/j.heares.2017.12.018_bib22) 2012
Sumner (10.1016/j.heares.2017.12.018_bib125) 2003; 113
Meyer (10.1016/j.heares.2017.12.018_bib82) 2009; 12
Joris (10.1016/j.heares.2017.12.018_bib52) 1992; 91
Schmiedt (10.1016/j.heares.2017.12.018_bib115) 2010
Trautwein (10.1016/j.heares.2017.12.018_bib129) 1996; 96
Valero (10.1016/j.heares.2017.12.018_bib130) 2017; 353
Meddis (10.1016/j.heares.2017.12.018_bib76) 1986; 79
Saremi (10.1016/j.heares.2017.12.018_bib113) 2016; 140
Schaette (10.1016/j.heares.2017.12.018_bib114) 2011; 31
Zhang (10.1016/j.heares.2017.12.018_bib146) 2001; 109
Chapochnikov (10.1016/j.heares.2017.12.018_bib12) 2014; 83
Han (10.1016/j.heares.2017.12.018_bib39) 1998; 27
Davis (10.1016/j.heares.2017.12.018_bib154) 1965; Vol. 30
Recio (10.1016/j.heares.2017.12.018_bib102) 2000; 108
Winter (10.1016/j.heares.2017.12.018_bib141) 1991; 90
Liberman (10.1016/j.heares.2017.12.018_bib64) 1978; 63
Altoè (10.1016/j.heares.2017.12.018_bib3) 2014; 136
Dolphin (10.1016/j.heares.2017.12.018_bib19) 1996; 179
Rosen (10.1016/j.heares.2017.12.018_bib108) 1994; 73
Bharadwaj (10.1016/j.heares.2017.12.018_bib7) 2014; 125
Meddis (10.1016/j.heares.2017.12.018_bib77) 2006; 119
Picton (10.1016/j.heares.2017.12.018_bib95) 2011
Shaheen (10.1016/j.heares.2017.12.018_bib119) 2015; 16
Johnson (10.1016/j.heares.2017.12.018_bib50) 2011; 70
Kujawa (10.1016/j.heares.2017.12.018_bib61) 2009; 29
Moezzi (10.1016/j.heares.2017.12.018_bib84) 2016; 41
Gorga (10.1016/j.heares.2017.12.018_bib33) 1984; 6
Relkin (10.1016/j.heares.2017.12.018_bib103) 1991; 55
Meddis (10.1016/j.heares.2017.12.018_bib78) 1997; 102
Bourien (10.1016/j.heares.2017.12.018_bib11) 2014; 112
Zagaeski (10.1016/j.heares.2017.12.018_bib143) 1994; 95
Joris (10.1016/j.heares.2017.12.018_bib54) 2011; 108
Nelson (10.1016/j.heares.2017.12.018_bib159) 2004; 116
Manley (10.1016/j.heares.2017.12.018_bib71) 2007; vol. 30
Lewis (10.1016/j.heares.2017.12.018_bib63) 2015; 138
Heil (10.1016/j.heares.2017.12.018_bib155) 2010; 2
Russell (10.1016/j.heares.2017.12.018_bib111) 1983; 338
Jepsen (10.1016/j.heares.2017.12.018_bib45) 2011; 129
Kennedy (10.1016/j.heares.2017.12.018_bib157) 2003; 6
Melcher (10.1016/j.heares.2017.12.018_bib81) 1996; 93
Palmer (10.1016/j.heares.2017.12.018_bib92) 1986; 24
Lyon (10.1016/j.heares.2017.12.018_bib70) 2011; 130
Jørgensen (10.1016/j.heares.2017.12.018_bib51) 2013; 134
Kapadia (10.1016/j.heares.2017.12.018_bib56) 2000; 146
Rønne (10.1016/j.heares.2017.12.018_bib107) 2012; 131
Delgutte (10.1016/j.heares.2017.12.018_bib18) 1998
Harris (10.1016/j.heares.2017.12.018_bib40) 1979; 42
Prosser (10.1016/j.heares.2017.12.018_bib99) 1987; 26
Allen (10.1016/j.heares.2017.12.018_bib2) 1979; 66
von Békésy (10.1016/j.heares.2017.12.018_bib138) 1970; 225
Zweig (10.1016/j.heares.2017.12.018_bib152) 1991; 89
Shera (10.1016/j.heares.2017.12.018_bib121) 1991; 89
Goutman (10.1016/j.heares.2017.12.018_bib36) 2007; 104
Mehraei (10.1016/j.heares.2017.12.018_bib80) 2016; 36
Zhong (10.1016/j.heares.2017.12.018_bib147) 2014; 309
Shera (10.1016/j.heares.2017.12.018_bib122) 2010; 11
Mao (10.1016/j.heares.2017.12.018_bib72) 2015; 16
Grant (10.1016/j.heares.2017.12.018_bib37) 2010; 30
Serpanos (10.1016/j.heares.2017.12.018_bib118) 1997; 18
Bharadwaj (10.1016/j.heares.2017.12.018_bib8) 2014; 8
Lynch (10.1016/j.heares.2017.12.018_bib69) 1982; 72
Verhulst (10.1016/j.heares.2017.12.018_bib134) 2011; 129
Westerman (10.1016/j.heares.2017.12.018_bib139) 1984; 15
Robles (10.1016/j.heares.2017.12.018_bib106) 2001; 81
Encina-Llamas (10.1016/j.heares.2017.12.018_bib26) 2007
Ruggero (10.1016/j.heares.2017.12.018_bib110) 1997; 101
Kiang (10.1016/j.heares.2017.12.018_bib57) 1969; 46
Corns (10.1016/j.heares.2017.12.018_bib14) 2014; 111
Taberner (10.1016/j.heares.2017.12.018_bib126) 2005; 93
Jepsen (10.1016/j.heares.2017.12.018_bib46) 2008; 124
Frank (10.1016/j.heares.2017.12.018_bib29) 2009; 106
Sellick (10.1016/j.heares.2017.12.018_bib116) 1980; 2
Hudspeth (10.1016/j.heares.2017.12.018_bib43) 1988; 400
Zhang (10.1016/j.heares.2017.12.018_bib145) 2005; 118
Sumner (10.1016/j.heares.2017.12.018_bib124) 2002; 111
Zeddies (10.1016/j.heares.2017.12.018_bib144) 2004; 116
Elliott (10.1016/j.heares.2017.12.018_bib25) 2007; 122
Goldberg (10.1016/j.heares.2017.12.018_bib32) 1969; 32
Neely (10.1016/j.heares.2017.12.018_bib89) 2009; 126
Dolphin (10.1016/j.heares.2017.12.018_bib20) 1992; 58
Miller (10.1016/j.heares.2017.12.018_bib83) 2001; 2
Zilany (10.1016/j.heares.2017.12.018_bib149) 2009; 126
Ewert (10.1016/j.heares.2017.12.018_bib28) 2000; 108
Meddis (10.1016/j.heares.2017.12.018_bib79) 2001; 109
Verhulst (10.1016/j.heares.2017.12.018_bib136) 2015; 138
Rhode (10.1016/j.heares.2017.12.018_bib105) 1985; 18
Picton (10.1016/j.heares.2017.12.018_bib96) 1981; 9
Zilany (10.1016/j.heares.2017.12.018_bib150) 2014; 135
Puria (10.1016/j.heares.2017.12.018_bib160) 2003; 113
Kuwada (10.1016/j.heares.2017.12.018_bib62) 1986; 21
Strelcyk (10.1016/j.heares.2017.12.018_bib123) 2009; 126
Oertel (10.1016/j.heares.2017.12.018_bib90) 1983; 3
Dau (10.1016/j.heares.2017.12.018_bib15) 2003; 113
Jiang (10.1016/j.heares.2017.12.018_bib48) 1991; 54
Johnson (10.1016/j.heares.2017.12.018_bib156) 2015; 4
Altoè (10.1016/j.heares.2017.12.018_bib4) 2017; 141
Raufer (10.1016/j.heares.2017.12.018_bib101) 2016; 342
Puria (10.1016/j.heares.2017.12.018_bib100) 1991; 89
Russell (10.1016/j.heares.2017.12.018_bib161) 1986; 22
Furman (10.1016/j.heares.2017.12.018_bib31) 2013; 110
Kros (10.1016/j.heares.2017.12.018_bib59) 1990; 421
Huet (10.1016/j.heares.2017.12.018_bib44) 2016; 338
Peterson (10.1016/j.heares.2017.12.018_bib94) 2014; 34
Sachs (10.1016/j.heares.2017.12.018_bib112) 1974; 56
Plack (10.1016/j.heares.2017.12.018_bib98) 2014; 18
Liberman (10.1016/j.heares.2017.12.018_bib158) 2011; 31
Vannucci (10.1016/j.heares.2017.12.018_bib132) 1978; 25
Jia (10.1016/j.heares.2017.12.018_bib47) 2007; 27
Bharadwaj (10.1016/j.heares.2017.12.018_bib9) 2015; 35
Zweig (10.1016/j.heares.2017.12.018_bib151) 1976; vol. 40
Lin (10.1016/j.heares.2017.12.018_bib66) 2011; 12
Gorga (10.1016/j.heares.2017.12.018_bib35) 2011; 129
Johnson (10.1016/j.heares.2017.12.018_bib49) 2008; 586
Frisina (10.1016/j.heares.2017.12.018_bib30) 1990; 44
Epp (10.1016/j.heares.2017.12.018_bib27) 2010; 128
Kros (10.1016/j.heares.2017.12.018_bib60) 1992; 249
Moleti (10.1016/j.heares.2017.12.018_bib86) 2009; 126
Zweig (10.1016/j.heares.2017.12.018_bib153) 2016; 139
de Boer (10.1016/j.heares.2017.12.018_bib17) 1980; 62
Heinz (10.1016/j.heares.2017.12.018_bib42) 2001; 2
Möhrle (10.1016/j.heares.2017.12.018_bib85) 2016; 44
Nedzelnitsky (10.1016/j.heares.2017.12.018_bib87) 1980; 68
Liu (10.1016/j.heares.2017.12.018_bib67) 2010; 127
Van Hengel (10.1016/j.heares.2017.12.018_bib131) 1996; 99
Gorga (10.1016/j.heares.2017.12.018_bib34) 2011; 129
Dau (10.1016/j.heares.2017.12.018_bib16) 1997; 102
Elberling (10.1016/j.heares.2017.12.018_bib24) 2010; 128
Shera (10.1016/j.heares.2017.12.018_bib120) 2001; 109
References_xml – volume: 63
  start-page: 1084
  year: 1978
  end-page: 1092
  ident: bib21
  article-title: Analysis of the click-evoked brainstem potentials in man using high-pass noise masking
  publication-title: J. Acoust. Soc. Am.
– volume: 22
  start-page: 199
  year: 1986
  end-page: 216
  ident: bib161
  article-title: The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro
  publication-title: Hear. Res.
– volume: 68
  start-page: 1676
  year: 1980
  end-page: 1689
  ident: bib87
  article-title: Sound pressures in the basal turn of the cat cochlea
  publication-title: J. Acoust. Soc. Am.
– reference: Altoè, A., Pulkki, V., Verhulst, S. (submitted). The effects of the activation of the inner-hair-cell basolateral K
– volume: 44
  start-page: 99
  year: 1990
  end-page: 122
  ident: bib30
  article-title: Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement
  publication-title: Hear. Res.
– volume: 99
  start-page: 3566
  year: 1996
  end-page: 3571
  ident: bib131
  article-title: Spatial periodicity in the cochlea: the result of interaction of spontaneous emissions?
  publication-title: J. Acoust. Soc. Am.
– volume: 46
  year: 1969
  ident: bib57
  article-title: Discharge rates of single auditory nerve fibers as functions of tone level
  publication-title: J. Acoust. Soc. Am.
– volume: 126
  start-page: 2425
  year: 2009
  end-page: 2436
  ident: bib86
  article-title: Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models
  publication-title: J. Acoust. Soc. Am.
– volume: 586
  start-page: 1029
  year: 2008
  end-page: 1042
  ident: bib49
  article-title: Biophysical properties of CaV1. 3 calcium channels in gerbil inner hair cells
  publication-title: J. Physiol.
– volume: 66
  start-page: 123
  year: 1979
  end-page: 132
  ident: bib2
  article-title: Cochlear macromechanics: time domain solutions
  publication-title: J. Acoust. Soc. Am.
– volume: 119
  start-page: 406
  year: 2006
  end-page: 417
  ident: bib77
  article-title: Auditory-nerve first-spike latency and auditory absolute threshold: a computer model
  publication-title: J. Acoust. Soc. Am.
– volume: 12
  start-page: 444
  year: 2009
  end-page: 453
  ident: bib82
  article-title: Tuning of synapse number, structure and function in the cochlea
  publication-title: Nat. Neurosci.
– volume: 129
  start-page: 817
  year: 2011
  end-page: 827
  ident: bib35
  article-title: Distortion-product otoacoustic emission suppression tuning curves in humans
  publication-title: J. Acoust. Soc. Am.
– volume: 130
  start-page: 3893
  year: 2011
  end-page: 3904
  ident: bib70
  article-title: Cascades of two-pole–two-zero asymmetric resonators are good models of peripheral auditory function
  publication-title: J. Acoust. Soc. Am.
– volume: 49
  start-page: 181
  year: 1990
  end-page: 207
  ident: bib58
  article-title: Mechanisms that degrade timing information in the cochlea
  publication-title: Hear. Res.
– volume: 84
  start-page: 541
  year: 2004
  end-page: 577
  ident: bib53
  article-title: Neural processing of amplitude-modulated sounds
  publication-title: Physiol. Rev.
– volume: 93
  start-page: 52
  year: 1996
  end-page: 71
  ident: bib81
  article-title: Generators of the brainstem auditory evoked potential in cat. III: identified cell populations
  publication-title: Hear. Res.
– volume: 249
  start-page: 185
  year: 1992
  end-page: 193
  ident: bib60
  article-title: Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea
  publication-title: Proceed. Roy. Soc. Lon. B Biol. Sci.
– year: 2012
  ident: bib22
  article-title: Cochlear Mechanics: Introduction to a Time Domain Analysis of the Nonlinear Cochlea
– volume: 128
  start-page: 215
  year: 2010
  end-page: 223
  ident: bib24
  article-title: Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation
  publication-title: J. Acoust. Soc. Am.
– volume: 55
  start-page: 346
  year: 2016
  end-page: 357
  ident: bib55
  article-title: Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing
  publication-title: Int. J. Audiol.
– volume: 127
  start-page: 2420
  year: 2010
  end-page: 2432
  ident: bib67
  article-title: Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells
  publication-title: J. Acoust. Soc. Am.
– volume: 91
  start-page: 215
  year: 1992
  end-page: 232
  ident: bib52
  article-title: Responses to amplitude-modulated tones in the auditory nerve of the cat
  publication-title: J. Acoust. Soc. Am.
– volume: 2
  start-page: 439
  year: 1980
  end-page: 445
  ident: bib116
  article-title: The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea
  publication-title: Hear. Res.
– volume: 31
  start-page: 801
  year: 2011
  end-page: 808
  ident: bib158
  article-title: Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses
  publication-title: J. Neurosci.
– volume: 109
  start-page: 2852
  year: 2001
  end-page: 2861
  ident: bib79
  article-title: A computational algorithm for computing nonlinear auditory frequency selectivity
  publication-title: J. Acoust. Soc. Am.
– volume: 113
  start-page: 2773
  year: 2003
  end-page: 2789
  ident: bib160
  article-title: Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions
  publication-title: J. Acoust. Soc. Am.
– volume: 400
  start-page: 275
  year: 1988
  end-page: 297
  ident: bib43
  article-title: A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana
  publication-title: J. Physiol.
– volume: 129
  start-page: 262
  year: 2011
  end-page: 281
  ident: bib45
  article-title: Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss
  publication-title: J. Acoust. Soc. Am.
– volume: 132
  start-page: 3842
  year: 2012
  end-page: 3848
  ident: bib135
  article-title: Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission
  publication-title: J. Acoust. Soc. Am.
– volume: 309
  start-page: 55
  year: 2014
  end-page: 62
  ident: bib147
  article-title: Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas
  publication-title: Hear. Res.
– volume: 111
  start-page: 2178
  year: 2002
  end-page: 2188
  ident: bib124
  article-title: A revised model of the inner-hair cell and auditory-nerve complex
  publication-title: J. Acoust. Soc. Am.
– reference: channels on auditory nerve responses. Hear. Res
– volume: 560
  start-page: 691
  year: 2004
  end-page: 708
  ident: bib73
  article-title: A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells
  publication-title: J. Physiol.
– volume: 104
  start-page: 1517
  year: 1998
  end-page: 1543
  ident: bib128
  article-title: Modeling otoacoustic emission and hearing threshold fine structures
  publication-title: J. Acoust. Soc. Am.
– volume: 12
  start-page: 605
  year: 2011
  end-page: 616
  ident: bib66
  article-title: Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 73
  start-page: 231
  year: 1994
  end-page: 243
  ident: bib108
  article-title: Characterising auditory filter nonlinearity
  publication-title: Hear. Res.
– volume: vol. 30
  year: 2007
  ident: bib71
  publication-title: Active Processes and Otoacoustic Emissions in Hearing
– volume: 179
  start-page: 113
  year: 1996
  end-page: 121
  ident: bib19
  article-title: Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components
  publication-title: J. Comp. Physiol. A
– volume: 128
  start-page: 1870
  year: 2010
  end-page: 1883
  ident: bib27
  article-title: Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics a
  publication-title: J. Acoust. Soc. Am.
– volume: 35
  start-page: 2161
  year: 2015
  end-page: 2172
  ident: bib9
  article-title: Individual differences reveal correlates of hidden hearing deficits
  publication-title: J. Neurosci.
– volume: 124
  start-page: 422
  year: 2008
  end-page: 438
  ident: bib46
  article-title: A computational model of human auditory signal processing and perception
  publication-title: J. Acoust. Soc. Am.
– volume: 90
  start-page: 1958
  year: 1991
  end-page: 1967
  ident: bib141
  article-title: Intensity coding in low-frequency auditory-nerve fibers of the guinea pig
  publication-title: J. Acoust. Soc. Am.
– volume: 138
  start-page: 977
  year: 2015
  end-page: 993
  ident: bib63
  article-title: Non-invasive estimation of middle-ear input impedance and efficiency a
  publication-title: J. Acoust. Soc. Am.
– volume: 79
  start-page: 702
  year: 1986
  end-page: 711
  ident: bib76
  article-title: Simulation of mechanical to neural transduction in the auditory receptor
  publication-title: J. Acoust. Soc. Am.
– volume: 16
  start-page: 727
  year: 2015
  end-page: 745
  ident: bib119
  article-title: Towards a diagnosis of cochlear neuropathy with envelope following responses
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 11
  start-page: 343
  year: 2010
  end-page: 365
  ident: bib122
  article-title: Otoacoustic estimation of cochlear tuning: validation in the chinchilla
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 93
  start-page: 557
  year: 2005
  end-page: 569
  ident: bib126
  article-title: Response properties of single auditory nerve fibers in the mouse
  publication-title: J. Neurophysiol.
– volume: 44
  start-page: 173
  year: 2016
  end-page: 184
  ident: bib85
  article-title: Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain
  publication-title: Neurobiol. Aging
– start-page: 595
  year: 1998
  end-page: 603
  ident: bib18
  article-title: Neural coding of the temporal envelope of speech: relation to modulation transfer functions
  publication-title: Psychophysical and Physiological Advances in Hearing
– volume: 9
  start-page: 1
  year: 1981
  end-page: 41
  ident: bib96
  article-title: Auditory evoked potentials from the human cochlea and brainstem
  publication-title: J. Otolaryngol.
– volume: 27
  start-page: 105
  year: 1998
  end-page: 112
  ident: bib39
  article-title: Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz
  publication-title: Scand. Audiol.
– volume: 80
  start-page: 133
  year: 1986
  end-page: 145
  ident: bib162
  article-title: A biophysical model of cochlear processing: intensity dependence of pure tone responses
  publication-title: J. Acoust. Soc. Am.
– volume: 140
  start-page: 1618
  year: 2016
  end-page: 1634
  ident: bib113
  article-title: A comparative study of seven human cochlear filter models
  publication-title: J. Acoust. Soc. Am.
– volume: 15
  start-page: 249
  year: 1984
  end-page: 260
  ident: bib139
  article-title: Rapid and short-term adaptation in auditory nerve responses
  publication-title: Hear. Res.
– volume: 102
  start-page: 1811
  year: 1997
  end-page: 1820
  ident: bib78
  article-title: A unitary model of pitch perception
  publication-title: J. Acoust. Soc. Am.
– start-page: 213
  year: 2011
  end-page: 245
  ident: bib95
  article-title: Human auditory evoked potentials. Chapter 8: Auditory brainstem responses: peaks along the way
– volume: 18
  start-page: 409
  year: 1997
  end-page: 419
  ident: bib118
  article-title: The relationship between loudness intensity functions and the click-ABR wave V latency
  publication-title: Ear Hear.
– volume: 146
  start-page: 101
  year: 2000
  end-page: 120
  ident: bib56
  article-title: Nonlinear temporal interactions in click-evoked otoacoustic emissions. II. Experimental data
  publication-title: Hear. Res.
– volume: 55
  start-page: 215
  year: 1991
  end-page: 222
  ident: bib103
  article-title: Recovery from prior stimulation. I: relationship to spontaneous firing rates of primary auditory neurons
  publication-title: Hear. Res.
– volume: 30
  start-page: 4210
  year: 2010
  end-page: 4220
  ident: bib37
  article-title: Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse
  publication-title: J. Neurosci.
– volume: 113
  start-page: 893
  year: 2003
  end-page: 901
  ident: bib125
  article-title: Adaptation in a revised inner-hair cell model
  publication-title: J. Acoust. Soc. Am.
– volume: 102
  start-page: 2892
  year: 1997
  end-page: 2905
  ident: bib16
  article-title: Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers
  publication-title: J. Acoust. Soc. Am.
– volume: 63
  start-page: 442
  year: 1978
  end-page: 455
  ident: bib64
  article-title: Auditory-nerve response from cats raised in a low-noise chamber
  publication-title: J. Acoust. Soc. Am.
– volume: 87
  start-page: 2592
  year: 1990
  end-page: 2605
  ident: bib38
  article-title: A cochlear frequency-position function for several species—29 years later
  publication-title: J. Acoust. Soc. Am.
– volume: Vol. 30
  start-page: 181
  year: 1965
  end-page: 190
  ident: bib154
  article-title: A model for transducer action in the cochlea
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 111
  start-page: 14918
  year: 2014
  end-page: 14923
  ident: bib14
  article-title: Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells
  publication-title: Proceed. Natl Acad. Sci. U. S. A.
– volume: 6
  start-page: 105
  year: 1984
  end-page: 112
  ident: bib33
  article-title: Some comparisons between auditory brain stem response thresholds, latencies, and the pure-tone audiogram
  publication-title: Ear Hear.
– volume: 342
  start-page: 150
  year: 2016
  end-page: 160
  ident: bib101
  article-title: Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning
  publication-title: Hear. Res.
– volume: 29
  start-page: 681
  year: 2001
  end-page: 690
  ident: bib6
  article-title: Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse
  publication-title: Neuron
– volume: 2
  start-page: 91
  year: 2001
  end-page: 96
  ident: bib42
  article-title: Auditory nerve model for predicting performance limits of normal and impaired listeners
  publication-title: Acoust Res. Lett. Online
– volume: 108
  start-page: 2281
  year: 2000
  end-page: 2298
  ident: bib102
  article-title: Basilar membrane responses to broadband stimuli
  publication-title: J. Acoust. Soc. Am.
– volume: 32
  start-page: 613
  year: 1969
  end-page: 636
  ident: bib32
  article-title: Response of binaural neurons of dog
  publication-title: J. Neurophysiol.
– volume: 42
  start-page: 1083
  year: 1979
  end-page: 1107
  ident: bib40
  article-title: Forward masking of auditory nerve fiber responses
  publication-title: J. Neurophysiol.
– volume: 112
  start-page: 1025
  year: 2014
  end-page: 1039
  ident: bib11
  article-title: Contribution of auditory nerve fibers to compound action potential of the auditory nerve
  publication-title: J. Neurophysiol.
– volume: 122
  start-page: 2759
  year: 2007
  end-page: 2771
  ident: bib25
  article-title: A state space model for cochlear mechanics
  publication-title: J. Acoust. Soc. Am.
– volume: 83
  start-page: 1389
  year: 2014
  end-page: 1403
  ident: bib12
  article-title: Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis
  publication-title: Neuron
– year: 2016
  ident: bib91
  article-title: Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes
  publication-title: Proc Natl Acad. Sci.
– volume: 129
  start-page: 1452
  year: 2011
  end-page: 1463
  ident: bib134
  article-title: Temporal suppression of the click-evoked otoacoustic emission level-curve
  publication-title: J. Acoust. Soc. Am.
– volume: 62
  start-page: 87
  year: 1980
  end-page: 174
  ident: bib17
  article-title: Auditory physics. Physical principles in hearing theory. I
  publication-title: Phys. Rep.
– volume: 141
  year: 2017
  ident: bib4
  article-title: Model-based estimation of the frequency-tuning of the inner hair cell stereocilia from neural tuning curves
  publication-title: J. Acoust. Soc. Am.
– volume: 26
  start-page: 179
  year: 1987
  end-page: 187
  ident: bib99
  article-title: Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss
  publication-title: Audiology
– volume: 338
  start-page: 179
  year: 1983
  end-page: 206
  ident: bib111
  article-title: Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells
  publication-title: J. Physiol.
– volume: 27
  start-page: 1006
  year: 2007
  end-page: 1014
  ident: bib47
  article-title: Mechanoelectric transduction of adult inner hair cells
  publication-title: J. Neurosci.
– volume: 125
  start-page: 1878
  year: 2014
  end-page: 1888
  ident: bib7
  article-title: Rapid acquisition of auditory subcortical steady state responses using multichannel recordings
  publication-title: Clin. Neurophysiol.
– volume: 6
  start-page: 832
  year: 2003
  end-page: 836
  ident: bib157
  article-title: Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells
  publication-title: Nat. Neurosci.
– volume: 106
  start-page: 4483
  year: 2009
  end-page: 4488
  ident: bib29
  article-title: Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells
  publication-title: Proc Natl Acad. Sci.
– volume: 68
  start-page: 1087
  year: 1992
  end-page: 1099
  ident: bib109
  article-title: Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression
  publication-title: J. Neurophysiol.
– volume: 41
  start-page: 193
  year: 2016
  end-page: 206
  ident: bib84
  article-title: Ion channel noise can explain firing correlation in auditory nerves
  publication-title: J. Comput. Neurosci.
– volume: 72
  start-page: 108
  year: 1982
  end-page: 130
  ident: bib69
  article-title: Input impedance of the cochlea in cat
  publication-title: J. Acoust. Soc. Am.
– volume: 129
  start-page: 801
  year: 2011
  end-page: 816
  ident: bib34
  article-title: Growth of suppression in humans based on distortion-product otoacoustic emission measurements
  publication-title: J. Acoust. Soc. Am.
– volume: 21
  start-page: 179
  year: 1986
  end-page: 192
  ident: bib62
  article-title: Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones
  publication-title: Hear. Res.
– volume: 89
  start-page: 1229
  year: 1991
  end-page: 1254
  ident: bib152
  article-title: Finding the impedance of the organ of Corti
  publication-title: J. Acoust. Soc. Am.
– volume: 121
  start-page: 2792
  year: 2007
  end-page: 2804
  ident: bib104
  article-title: Basilar membrane mechanics in the 6–9 kHz region of sensitive chinchilla cochleae
  publication-title: J. Acoust. Soc. Am.
– volume: 89
  start-page: 1276
  year: 1991
  end-page: 1289
  ident: bib121
  article-title: A symmetry suppresses the cochlear catastrophe
  publication-title: J. Acoust. Soc. Am.
– volume: 54
  start-page: 67
  year: 1991
  end-page: 74
  ident: bib48
  article-title: Brainstem auditory evoked responses from birth to adulthood: normative data of latency and interval
  publication-title: Hear. Res.
– volume: 421
  start-page: 263
  year: 1990
  end-page: 291
  ident: bib59
  article-title: Potassium currents in inner hair cells isolated from the guinea-pig cochlea
  publication-title: J. Physiol.
– volume: 7
  start-page: 218
  year: 2006
  end-page: 235
  ident: bib68
  article-title: A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 3
  start-page: 2043
  year: 1983
  end-page: 2053
  ident: bib90
  article-title: Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus
  publication-title: J. Neurosci.
– volume: 109
  start-page: 648
  year: 2001
  end-page: 670
  ident: bib146
  article-title: A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression
  publication-title: J. Acoust. Soc. Am.
– volume: 136
  start-page: EL302
  year: 2014
  end-page: EL308
  ident: bib3
  article-title: Transmission line cochlear models: improved accuracy and efficiency
  publication-title: J. Acoust. Soc. Am.
– volume: 139
  start-page: 2561
  year: 2016
  end-page: 2578
  ident: bib153
  article-title: Nonlinear cochlear mechanics
  publication-title: J. Acoust. Soc. Am.
– volume: 2
  year: 2010
  ident: bib155
  article-title: Summing across different active zones can explain the quasi-linear Ca2+-dependencies of exocytosis by receptor cells
  publication-title: Front. Synaptic neurosci.
– volume: 134
  start-page: 436
  year: 2013
  end-page: 446
  ident: bib51
  article-title: A multi-resolution envelope-power based model for speech intelligibility
  publication-title: J. Acoust. Soc. Am.
– volume: 31
  start-page: 13452
  year: 2011
  end-page: 13457
  ident: bib114
  article-title: Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model
  publication-title: J. Neurosci.
– volume: 127
  start-page: 1411
  year: 2010
  end-page: 1421
  ident: bib75
  article-title: The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics
  publication-title: J. Acoust. Soc. Am.
– volume: 353
  start-page: 213
  year: 2017
  end-page: 223
  ident: bib130
  article-title: Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta)
  publication-title: Hear. Res.
– volume: 116
  start-page: 2173
  year: 2004
  end-page: 2186
  ident: bib159
  article-title: A phenomenological model of peripheral and central neural responses to amplitude-modulated tones
  publication-title: J. Acoust. Soc. Am.
– volume: 110
  start-page: 577
  year: 2013
  end-page: 586
  ident: bib31
  article-title: Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates
  publication-title: J. Neurophysiol.
– volume: 16
  start-page: 121
  year: 2015
  end-page: 133
  ident: bib72
  article-title: Tone-in-noise detection using envelope cues: comparison of signal-processing-based and physiological models
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 131
  start-page: 3903
  year: 2012
  end-page: 3913
  ident: bib107
  article-title: Modeling auditory evoked brainstem responses to transient stimuli
  publication-title: J. Acoust. Soc. Am.
– volume: 70
  start-page: 1143
  year: 2011
  end-page: 1154
  ident: bib50
  article-title: Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant
  publication-title: Neuron
– volume: 138
  start-page: 1637
  year: 2015
  end-page: 1659
  ident: bib136
  article-title: Functional modeling of the human auditory brainstem response to broadband stimulation a
  publication-title: J. Acoust. Soc. Am.
– volume: 338
  start-page: 32
  year: 2016
  end-page: 39
  ident: bib44
  article-title: Sound coding in the auditory nerve of gerbils
  publication-title: Hear. Res.
– volume: 109
  start-page: 2023
  year: 2001
  end-page: 2034
  ident: bib120
  article-title: Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion
  publication-title: J. Acoust. Soc. Am.
– volume: 108
  start-page: 17516
  year: 2011
  end-page: 17520
  ident: bib54
  article-title: Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans
  publication-title: Proc Natl Acad. Sci.
– start-page: 9
  year: 2010
  end-page: 38
  ident: bib115
  article-title: The physiology of cochlear presbycusis
  publication-title: The Aging Auditory System
– volume: 118
  start-page: 1540
  year: 2005
  end-page: 1553
  ident: bib145
  article-title: Analysis of models for the synapse between the inner hair cell and the auditory nerve
  publication-title: J. Acoust. Soc. Am.
– volume: 18
  start-page: 159
  year: 1985
  end-page: 168
  ident: bib105
  article-title: Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers
  publication-title: Hear. Res.
– volume: 83
  start-page: 2266
  year: 1988
  end-page: 2276
  ident: bib140
  article-title: A diffusion model of the transient response of the cochlear inner hair cell synapse
  publication-title: J. Acoust. Soc. Am.
– volume: 126
  start-page: 2390
  year: 2009
  end-page: 2412
  ident: bib149
  article-title: A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics
  publication-title: J. Acoust. Soc. Am.
– volume: 81
  start-page: 1305
  year: 2001
  end-page: 1352
  ident: bib106
  article-title: Mechanics of the mammalian cochlea
  publication-title: Physiol. Rev.
– volume: 113
  start-page: 936
  year: 2003
  end-page: 950
  ident: bib15
  article-title: The importance of cochlear processing for the formation of auditory brainstem and frequency following responses
  publication-title: J. Acoust. Soc. Am.
– volume: 96
  start-page: 71
  year: 1996
  end-page: 82
  ident: bib129
  article-title: Selective inner hair cell loss does not alter distortion product otoacoustic emissions
  publication-title: Hear. Res.
– volume: 9
  start-page: 123
  year: 1983
  end-page: 130
  ident: bib88
  article-title: An active cochlear model showing sharp tuning and high sensitivity
  publication-title: Hear. Res.
– volume: 20
  year: 2016
  ident: bib137
  article-title: Individual differences in auditory brainstem response wave characteristics: relations to different aspects of peripheral hearing loss
  publication-title: Trends Hear.
– volume: 58
  start-page: 70
  year: 1992
  end-page: 78
  ident: bib20
  article-title: The envelope following response: scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals
  publication-title: Hear. Res.
– volume: 56
  start-page: 1835
  year: 1974
  end-page: 1847
  ident: bib112
  article-title: Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli
  publication-title: J. Acoust. Soc. Am.
– volume: 126
  start-page: 1878
  year: 2009
  end-page: 1888
  ident: bib123
  article-title: Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity
  publication-title: J. Acoust. Soc. Am.
– volume: 116
  start-page: 426
  year: 2004
  end-page: 441
  ident: bib144
  article-title: A biophysical model of an inner hair cell
  publication-title: J. Acoust. Soc. Am.
– volume: 89
  start-page: 287
  year: 1991
  end-page: 309
  ident: bib100
  article-title: A parametric study of cochlear input impedance
  publication-title: J. Acoust. Soc. Am.
– volume: 105
  start-page: 799
  year: 1999
  end-page: 810
  ident: bib13
  article-title: Response phase: a view from the inner hair cell
  publication-title: J. Acoust. Soc. Am.
– volume: 25
  start-page: 267
  year: 1978
  end-page: 272
  ident: bib132
  article-title: Effects of rate variation on the counting statistics of dead-time-modified Poisson processes
  publication-title: Optic Commun.
– volume: 2
  start-page: 216
  year: 2001
  end-page: 232
  ident: bib83
  article-title: Response properties of the refractory auditory nerve fiber
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: vol. 40
  start-page: 619
  year: 1976
  end-page: 633
  ident: bib151
  article-title: Basilar membrane motion
  publication-title: Cold Spring Harbor Symposia on Quantitative Biology
– volume: 323
  start-page: 68
  year: 2015
  end-page: 80
  ident: bib10
  article-title: Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR
  publication-title: Hear. Res.
– volume: 11
  year: 2016
  ident: bib65
  article-title: Toward a differential diagnosis of hidden hearing loss in humans
  publication-title: PLoS One
– volume: 24
  start-page: 1
  year: 1986
  end-page: 15
  ident: bib92
  article-title: Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells
  publication-title: Hear. Res.
– volume: 95
  start-page: 3430
  year: 1994
  end-page: 3434
  ident: bib143
  article-title: Transfer characteristic of the inner hair cell synapse: steady-state analysis
  publication-title: J. Acoust. Soc. Am.
– volume: 18
  year: 2014
  ident: bib98
  article-title: Perceptual consequences of “hidden” hearing loss
  publication-title: Trends Hear.
– volume: 4
  start-page: e08177
  year: 2015
  ident: bib156
  article-title: Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding
  publication-title: Elife
– volume: 13
  start-page: 869
  year: 2010
  end-page: 876
  ident: bib93
  article-title: Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells
  publication-title: Nat. Neurosci.
– volume: 120
  start-page: 1446
  year: 2006
  end-page: 1466
  ident: bib163
  article-title: Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery
  publication-title: J. Acoust. Soc. Am.
– volume: 36
  start-page: 3755
  year: 2016
  end-page: 3764
  ident: bib80
  article-title: Auditory brainstem response latency in noise as a marker of cochlear synaptopathy
  publication-title: J. Neurosci.
– volume: 135
  start-page: 283
  year: 2014
  end-page: 286
  ident: bib150
  article-title: Updated parameters and expanded simulation options for a model of the auditory periphery
  publication-title: J. Acoust. Soc. Am.
– year: 2007
  ident: bib26
  article-title: Estimates of peripheral compression using envelope following responses
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 104
  start-page: 16341
  year: 2007
  end-page: 16346
  ident: bib36
  article-title: Time course and calcium dependence of transmitter release at a single ribbon synapse
  publication-title: Proc Natl Acad. Sci.
– year: 2010
  ident: bib133
  article-title: Characterizing and Modeling Dynamic Processes in the Cochlea Using Otoacoustic Emissions
– volume: 225
  start-page: 1207
  year: 1970
  end-page: 1209
  ident: bib138
  article-title: Travelling waves as frequency analysers in the cochlea
  publication-title: Nature
– volume: 108
  start-page: 1181
  year: 2000
  end-page: 1196
  ident: bib28
  article-title: Characterizing frequency selectivity for envelope fluctuations
  publication-title: J. Acoust. Soc. Am.
– volume: 34
  start-page: 15097
  year: 2014
  end-page: 15109
  ident: bib94
  article-title: A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers
  publication-title: J. Neurosci.
– volume: 309
  start-page: 147
  year: 2014
  end-page: 163
  ident: bib127
  article-title: Visualization of functional count-comparison-based binaural auditory model output
  publication-title: Hear. Res.
– volume: 139
  start-page: 2896
  year: 2016
  end-page: 2910
  ident: bib97
  article-title: Physiological motivated transmission-lines as front end for loudness models
  publication-title: J. Acoust. Soc. Am.
– volume: 29
  start-page: 14077
  year: 2009
  end-page: 14085
  ident: bib61
  article-title: Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss
  publication-title: J. Neurosci.
– volume: 101
  start-page: 2151
  year: 1997
  end-page: 2163
  ident: bib110
  article-title: Basilar-membrane responses to tones at the base of the chinchilla cochlea
  publication-title: J. Acoust. Soc. Am.
– volume: 8
  year: 2014
  ident: bib8
  article-title: Cochlear neuropathy and the coding of supra-threshold sound
  publication-title: Front. Syst. Neurosci.
– volume: 126
  start-page: 728
  year: 2009
  end-page: 738
  ident: bib89
  article-title: Distortion-product otoacoustic emission input/output characteristics in normal-hearing and hearing-impaired human ears
  publication-title: J. Acoust. Soc. Am.
– volume: 108
  start-page: 17516
  issue: 42
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib54
  article-title: Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans
  publication-title: Proc Natl Acad. Sci.
  doi: 10.1073/pnas.1105867108
– volume: 138
  start-page: 1637
  issue: 3
  year: 2015
  ident: 10.1016/j.heares.2017.12.018_bib136
  article-title: Functional modeling of the human auditory brainstem response to broadband stimulation a
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4928305
– volume: 90
  start-page: 1958
  issue: 4
  year: 1991
  ident: 10.1016/j.heares.2017.12.018_bib141
  article-title: Intensity coding in low-frequency auditory-nerve fibers of the guinea pig
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.401675
– volume: 125
  start-page: 1878
  issue: 9
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib7
  article-title: Rapid acquisition of auditory subcortical steady state responses using multichannel recordings
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2014.01.011
– volume: 309
  start-page: 147
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib127
  article-title: Visualization of functional count-comparison-based binaural auditory model output
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2013.10.004
– volume: 323
  start-page: 68
  year: 2015
  ident: 10.1016/j.heares.2017.12.018_bib10
  article-title: Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2015.01.011
– volume: 54
  start-page: 67
  issue: 1
  year: 1991
  ident: 10.1016/j.heares.2017.12.018_bib48
  article-title: Brainstem auditory evoked responses from birth to adulthood: normative data of latency and interval
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(91)90137-X
– volume: 136
  start-page: EL302
  issue: 4
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib3
  article-title: Transmission line cochlear models: improved accuracy and efficiency
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4896416
– volume: 24
  start-page: 1
  issue: 1
  year: 1986
  ident: 10.1016/j.heares.2017.12.018_bib92
  article-title: Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(86)90002-X
– volume: 13
  start-page: 869
  issue: 7
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib93
  article-title: Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2578
– volume: vol. 40
  start-page: 619
  year: 1976
  ident: 10.1016/j.heares.2017.12.018_bib151
  article-title: Basilar membrane motion
– volume: 139
  start-page: 2561
  issue: 5
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib153
  article-title: Nonlinear cochlear mechanics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4941249
– volume: 34
  start-page: 15097
  issue: 45
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib94
  article-title: A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0903-14.2014
– volume: 128
  start-page: 1870
  issue: 4
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib27
  article-title: Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics a
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3479755
– volume: 80
  start-page: 133
  issue: 1
  year: 1986
  ident: 10.1016/j.heares.2017.12.018_bib162
  article-title: A biophysical model of cochlear processing: intensity dependence of pure tone responses
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.394173
– volume: 58
  start-page: 70
  issue: 1
  year: 1992
  ident: 10.1016/j.heares.2017.12.018_bib20
  article-title: The envelope following response: scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(92)90010-K
– volume: 44
  start-page: 173
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib85
  article-title: Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2016.05.001
– volume: 110
  start-page: 577
  issue: 3
  year: 2013
  ident: 10.1016/j.heares.2017.12.018_bib31
  article-title: Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00164.2013
– volume: 89
  start-page: 287
  issue: 1
  year: 1991
  ident: 10.1016/j.heares.2017.12.018_bib100
  article-title: A parametric study of cochlear input impedance
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400675
– volume: 109
  start-page: 2852
  issue: 6
  year: 2001
  ident: 10.1016/j.heares.2017.12.018_bib79
  article-title: A computational algorithm for computing nonlinear auditory frequency selectivity
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1370357
– volume: 140
  start-page: 1618
  issue: 3
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib113
  article-title: A comparative study of seven human cochlear filter models
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4960486
– start-page: 595
  year: 1998
  ident: 10.1016/j.heares.2017.12.018_bib18
  article-title: Neural coding of the temporal envelope of speech: relation to modulation transfer functions
– volume: 6
  start-page: 105
  issue: 2
  year: 1984
  ident: 10.1016/j.heares.2017.12.018_bib33
  article-title: Some comparisons between auditory brain stem response thresholds, latencies, and the pure-tone audiogram
  publication-title: Ear Hear.
  doi: 10.1097/00003446-198503000-00008
– volume: 18
  start-page: 409
  issue: 5
  year: 1997
  ident: 10.1016/j.heares.2017.12.018_bib118
  article-title: The relationship between loudness intensity functions and the click-ABR wave V latency
  publication-title: Ear Hear.
  doi: 10.1097/00003446-199710000-00006
– volume: 11
  issue: 9
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib65
  article-title: Toward a differential diagnosis of hidden hearing loss in humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0162726
– volume: 12
  start-page: 444
  issue: 4
  year: 2009
  ident: 10.1016/j.heares.2017.12.018_bib82
  article-title: Tuning of synapse number, structure and function in the cochlea
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2293
– volume: 18
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib98
  article-title: Perceptual consequences of “hidden” hearing loss
  publication-title: Trends Hear.
– start-page: 9
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib115
  article-title: The physiology of cochlear presbycusis
– volume: 89
  start-page: 1276
  issue: 3
  year: 1991
  ident: 10.1016/j.heares.2017.12.018_bib121
  article-title: A symmetry suppresses the cochlear catastrophe
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400650
– volume: 132
  start-page: 3842
  issue: 6
  year: 2012
  ident: 10.1016/j.heares.2017.12.018_bib135
  article-title: Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4763989
– volume: 3
  start-page: 2043
  issue: 10
  year: 1983
  ident: 10.1016/j.heares.2017.12.018_bib90
  article-title: Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.03-10-02043.1983
– volume: 141
  year: 2017
  ident: 10.1016/j.heares.2017.12.018_bib4
  article-title: Model-based estimation of the frequency-tuning of the inner hair cell stereocilia from neural tuning curves
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4985193
– volume: 134
  start-page: 436
  issue: 1
  year: 2013
  ident: 10.1016/j.heares.2017.12.018_bib51
  article-title: A multi-resolution envelope-power based model for speech intelligibility
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4807563
– volume: 127
  start-page: 2420
  issue: 4
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib67
  article-title: Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3337233
– volume: 68
  start-page: 1087
  issue: 4
  year: 1992
  ident: 10.1016/j.heares.2017.12.018_bib109
  article-title: Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1992.68.4.1087
– volume: 111
  start-page: 2178
  issue: 5
  year: 2002
  ident: 10.1016/j.heares.2017.12.018_bib124
  article-title: A revised model of the inner-hair cell and auditory-nerve complex
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1453451
– volume: 27
  start-page: 1006
  issue: 5
  year: 2007
  ident: 10.1016/j.heares.2017.12.018_bib47
  article-title: Mechanoelectric transduction of adult inner hair cells
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5452-06.2007
– volume: 131
  start-page: 3903
  issue: 5
  year: 2012
  ident: 10.1016/j.heares.2017.12.018_bib107
  article-title: Modeling auditory evoked brainstem responses to transient stimuli
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3699171
– volume: 124
  start-page: 422
  issue: 1
  year: 2008
  ident: 10.1016/j.heares.2017.12.018_bib46
  article-title: A computational model of human auditory signal processing and perception
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2924135
– volume: 129
  start-page: 801
  issue: 2
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib34
  article-title: Growth of suppression in humans based on distortion-product otoacoustic emission measurements
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3523287
– volume: 31
  start-page: 801
  issue: 3
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib158
  article-title: Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3389-10.2011
– volume: 36
  start-page: 3755
  issue: 13
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib80
  article-title: Auditory brainstem response latency in noise as a marker of cochlear synaptopathy
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4460-15.2016
– volume: 55
  start-page: 346
  issue: 6
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib55
  article-title: Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing
  publication-title: Int. J. Audiol.
  doi: 10.3109/14992027.2015.1135352
– volume: 93
  start-page: 52
  issue: 1–2
  year: 1996
  ident: 10.1016/j.heares.2017.12.018_bib81
  article-title: Generators of the brainstem auditory evoked potential in cat. III: identified cell populations
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(95)00200-6
– volume: 49
  start-page: 181
  issue: 1
  year: 1990
  ident: 10.1016/j.heares.2017.12.018_bib58
  article-title: Mechanisms that degrade timing information in the cochlea
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(90)90104-W
– volume: 138
  start-page: 977
  issue: 2
  year: 2015
  ident: 10.1016/j.heares.2017.12.018_bib63
  article-title: Non-invasive estimation of middle-ear input impedance and efficiency a
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4927408
– volume: 16
  start-page: 121
  issue: 1
  year: 2015
  ident: 10.1016/j.heares.2017.12.018_bib72
  article-title: Tone-in-noise detection using envelope cues: comparison of signal-processing-based and physiological models
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-014-0489-1
– volume: Vol. 30
  start-page: 181
  year: 1965
  ident: 10.1016/j.heares.2017.12.018_bib154
  article-title: A model for transducer action in the cochlea
– volume: 108
  start-page: 1181
  issue: 3
  year: 2000
  ident: 10.1016/j.heares.2017.12.018_bib28
  article-title: Characterizing frequency selectivity for envelope fluctuations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1288665
– volume: 91
  start-page: 215
  issue: 1
  year: 1992
  ident: 10.1016/j.heares.2017.12.018_bib52
  article-title: Responses to amplitude-modulated tones in the auditory nerve of the cat
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.402757
– volume: 342
  start-page: 150
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib101
  article-title: Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2016.10.016
– volume: 135
  start-page: 283
  issue: 1
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib150
  article-title: Updated parameters and expanded simulation options for a model of the auditory periphery
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4837815
– volume: 129
  start-page: 262
  issue: 1
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib45
  article-title: Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3518768
– volume: 121
  start-page: 2792
  issue: 5
  year: 2007
  ident: 10.1016/j.heares.2017.12.018_bib104
  article-title: Basilar membrane mechanics in the 6–9 kHz region of sensitive chinchilla cochleae
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2718397
– volume: 116
  start-page: 2173
  issue: 4
  year: 2004
  ident: 10.1016/j.heares.2017.12.018_bib159
  article-title: A phenomenological model of peripheral and central neural responses to amplitude-modulated tones
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1784442
– volume: 338
  start-page: 179
  issue: 1
  year: 1983
  ident: 10.1016/j.heares.2017.12.018_bib111
  article-title: Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1983.sp014668
– volume: 109
  start-page: 648
  issue: 2
  year: 2001
  ident: 10.1016/j.heares.2017.12.018_bib146
  article-title: A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1336503
– volume: 84
  start-page: 541
  issue: 2
  year: 2004
  ident: 10.1016/j.heares.2017.12.018_bib53
  article-title: Neural processing of amplitude-modulated sounds
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00029.2003
– volume: 126
  start-page: 2425
  issue: 5
  year: 2009
  ident: 10.1016/j.heares.2017.12.018_bib86
  article-title: Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3224762
– volume: 46
  issue: 1A
  year: 1969
  ident: 10.1016/j.heares.2017.12.018_bib57
  article-title: Discharge rates of single auditory nerve fibers as functions of tone level
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1972490
– volume: 586
  start-page: 1029
  issue: 4
  year: 2008
  ident: 10.1016/j.heares.2017.12.018_bib49
  article-title: Biophysical properties of CaV1. 3 calcium channels in gerbil inner hair cells
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.145219
– volume: 249
  start-page: 185
  issue: 1325
  year: 1992
  ident: 10.1016/j.heares.2017.12.018_bib60
  article-title: Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea
  publication-title: Proceed. Roy. Soc. Lon. B Biol. Sci.
  doi: 10.1098/rspb.1992.0102
– volume: 68
  start-page: 1676
  issue: 6
  year: 1980
  ident: 10.1016/j.heares.2017.12.018_bib87
  article-title: Sound pressures in the basal turn of the cat cochlea
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.385200
– volume: 127
  start-page: 1411
  issue: 3
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib75
  article-title: The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3290995
– volume: 56
  start-page: 1835
  issue: 6
  year: 1974
  ident: 10.1016/j.heares.2017.12.018_bib112
  article-title: Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1903521
– volume: 113
  start-page: 936
  issue: 2
  year: 2003
  ident: 10.1016/j.heares.2017.12.018_bib15
  article-title: The importance of cochlear processing for the formation of auditory brainstem and frequency following responses
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1534833
– volume: 225
  start-page: 1207
  issue: 5239
  year: 1970
  ident: 10.1016/j.heares.2017.12.018_bib138
  article-title: Travelling waves as frequency analysers in the cochlea
  publication-title: Nature
  doi: 10.1038/2251207a0
– volume: 16
  start-page: 727
  issue: 6
  year: 2015
  ident: 10.1016/j.heares.2017.12.018_bib119
  article-title: Towards a diagnosis of cochlear neuropathy with envelope following responses
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-015-0539-3
– volume: 81
  start-page: 1305
  issue: 3
  year: 2001
  ident: 10.1016/j.heares.2017.12.018_bib106
  article-title: Mechanics of the mammalian cochlea
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.2001.81.3.1305
– volume: 95
  start-page: 3430
  issue: 6
  year: 1994
  ident: 10.1016/j.heares.2017.12.018_bib143
  article-title: Transfer characteristic of the inner hair cell synapse: steady-state analysis
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.409963
– volume: 26
  start-page: 179
  issue: 3
  year: 1987
  ident: 10.1016/j.heares.2017.12.018_bib99
  article-title: Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss
  publication-title: Audiology
  doi: 10.3109/00206098709078420
– volume: 44
  start-page: 99
  issue: 2
  year: 1990
  ident: 10.1016/j.heares.2017.12.018_bib30
  article-title: Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(90)90074-Y
– volume: 106
  start-page: 4483
  issue: 11
  year: 2009
  ident: 10.1016/j.heares.2017.12.018_bib29
  article-title: Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells
  publication-title: Proc Natl Acad. Sci.
  doi: 10.1073/pnas.0813213106
– start-page: 213
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib95
– volume: 122
  start-page: 2759
  issue: 5
  year: 2007
  ident: 10.1016/j.heares.2017.12.018_bib25
  article-title: A state space model for cochlear mechanics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2783125
– volume: 25
  start-page: 267
  issue: 2
  year: 1978
  ident: 10.1016/j.heares.2017.12.018_bib132
  article-title: Effects of rate variation on the counting statistics of dead-time-modified Poisson processes
  publication-title: Optic Commun.
  doi: 10.1016/0030-4018(78)90322-X
– volume: 338
  start-page: 32
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib44
  article-title: Sound coding in the auditory nerve of gerbils
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2016.05.006
– volume: 129
  start-page: 817
  issue: 2
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib35
  article-title: Distortion-product otoacoustic emission suppression tuning curves in humans
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3531864
– volume: 2
  start-page: 439
  issue: 3
  year: 1980
  ident: 10.1016/j.heares.2017.12.018_bib116
  article-title: The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(80)90080-5
– volume: 35
  start-page: 2161
  issue: 5
  year: 2015
  ident: 10.1016/j.heares.2017.12.018_bib9
  article-title: Individual differences reveal correlates of hidden hearing deficits
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3915-14.2015
– volume: 30
  start-page: 4210
  issue: 12
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib37
  article-title: Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4439-09.2010
– volume: 421
  start-page: 263
  issue: 1
  year: 1990
  ident: 10.1016/j.heares.2017.12.018_bib59
  article-title: Potassium currents in inner hair cells isolated from the guinea-pig cochlea
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1990.sp017944
– volume: 70
  start-page: 1143
  issue: 6
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib50
  article-title: Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.04.024
– volume: 66
  start-page: 123
  issue: 1
  year: 1979
  ident: 10.1016/j.heares.2017.12.018_bib2
  article-title: Cochlear macromechanics: time domain solutions
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.383064
– volume: 18
  start-page: 159
  issue: 2
  year: 1985
  ident: 10.1016/j.heares.2017.12.018_bib105
  article-title: Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(85)90008-5
– volume: 21
  start-page: 179
  issue: 2
  year: 1986
  ident: 10.1016/j.heares.2017.12.018_bib62
  article-title: Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(86)90038-9
– volume: 9
  start-page: 1
  year: 1981
  ident: 10.1016/j.heares.2017.12.018_bib96
  article-title: Auditory evoked potentials from the human cochlea and brainstem
  publication-title: J. Otolaryngol.
– volume: 113
  start-page: 2773
  issue: 5
  year: 2003
  ident: 10.1016/j.heares.2017.12.018_bib160
  article-title: Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1564018
– ident: 10.1016/j.heares.2017.12.018_bib5
  doi: 10.1016/j.heares.2018.03.029
– volume: 108
  start-page: 2281
  issue: 5
  year: 2000
  ident: 10.1016/j.heares.2017.12.018_bib102
  article-title: Basilar membrane responses to broadband stimuli
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1318898
– volume: 309
  start-page: 55
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib147
  article-title: Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2013.11.006
– volume: 55
  start-page: 215
  issue: 2
  year: 1991
  ident: 10.1016/j.heares.2017.12.018_bib103
  article-title: Recovery from prior stimulation. I: relationship to spontaneous firing rates of primary auditory neurons
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(91)90106-J
– volume: 63
  start-page: 442
  issue: 2
  year: 1978
  ident: 10.1016/j.heares.2017.12.018_bib64
  article-title: Auditory-nerve response from cats raised in a low-noise chamber
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.381736
– volume: 116
  start-page: 426
  issue: 1
  year: 2004
  ident: 10.1016/j.heares.2017.12.018_bib144
  article-title: A biophysical model of an inner hair cell
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1755237
– volume: 130
  start-page: 3893
  issue: 6
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib70
  article-title: Cascades of two-pole–two-zero asymmetric resonators are good models of peripheral auditory function
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3658470
– volume: 353
  start-page: 213
  year: 2017
  ident: 10.1016/j.heares.2017.12.018_bib130
  article-title: Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta)
  publication-title: Hear. Res.
  doi: 10.1016/j.heares.2017.07.003
– year: 2012
  ident: 10.1016/j.heares.2017.12.018_bib22
– volume: 102
  start-page: 1811
  issue: 3
  year: 1997
  ident: 10.1016/j.heares.2017.12.018_bib78
  article-title: A unitary model of pitch perception
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.420088
– volume: 15
  start-page: 249
  issue: 3
  year: 1984
  ident: 10.1016/j.heares.2017.12.018_bib139
  article-title: Rapid and short-term adaptation in auditory nerve responses
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(84)90032-7
– volume: 29
  start-page: 14077
  issue: 45
  year: 2009
  ident: 10.1016/j.heares.2017.12.018_bib61
  article-title: Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2845-09.2009
– volume: 73
  start-page: 231
  issue: 2
  year: 1994
  ident: 10.1016/j.heares.2017.12.018_bib108
  article-title: Characterising auditory filter nonlinearity
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(94)90239-9
– volume: 129
  start-page: 1452
  issue: 3
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib134
  article-title: Temporal suppression of the click-evoked otoacoustic emission level-curve
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3531930
– volume: 62
  start-page: 87
  issue: 2
  year: 1980
  ident: 10.1016/j.heares.2017.12.018_bib17
  article-title: Auditory physics. Physical principles in hearing theory. I
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(80)90100-3
– volume: 2
  start-page: 216
  issue: 3
  year: 2001
  ident: 10.1016/j.heares.2017.12.018_bib83
  article-title: Response properties of the refractory auditory nerve fiber
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s101620010083
– volume: 87
  start-page: 2592
  issue: 6
  year: 1990
  ident: 10.1016/j.heares.2017.12.018_bib38
  article-title: A cochlear frequency-position function for several species—29 years later
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.399052
– volume: 2
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib155
  article-title: Summing across different active zones can explain the quasi-linear Ca2+-dependencies of exocytosis by receptor cells
  publication-title: Front. Synaptic neurosci.
  doi: 10.3389/fnsyn.2010.00148
– volume: 128
  start-page: 215
  issue: 1
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib24
  article-title: Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3397640
– volume: 99
  start-page: 3566
  issue: 6
  year: 1996
  ident: 10.1016/j.heares.2017.12.018_bib131
  article-title: Spatial periodicity in the cochlea: the result of interaction of spontaneous emissions?
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.414955
– volume: 8
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib8
  article-title: Cochlear neuropathy and the coding of supra-threshold sound
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2014.00026
– volume: vol. 30
  year: 2007
  ident: 10.1016/j.heares.2017.12.018_bib71
– volume: 83
  start-page: 1389
  issue: 6
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib12
  article-title: Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.08.003
– year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib133
– volume: 120
  start-page: 1446
  issue: 3
  year: 2006
  ident: 10.1016/j.heares.2017.12.018_bib163
  article-title: Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2225512
– volume: 9
  start-page: 123
  issue: 2
  year: 1983
  ident: 10.1016/j.heares.2017.12.018_bib88
  article-title: An active cochlear model showing sharp tuning and high sensitivity
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(83)90022-9
– volume: 89
  start-page: 1229
  issue: 3
  year: 1991
  ident: 10.1016/j.heares.2017.12.018_bib152
  article-title: Finding the impedance of the organ of Corti
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.400653
– volume: 126
  start-page: 728
  issue: 2
  year: 2009
  ident: 10.1016/j.heares.2017.12.018_bib89
  article-title: Distortion-product otoacoustic emission input/output characteristics in normal-hearing and hearing-impaired human ears
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3158859
– volume: 12
  start-page: 605
  issue: 5
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib66
  article-title: Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-011-0277-0
– volume: 41
  start-page: 193
  issue: 2
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib84
  article-title: Ion channel noise can explain firing correlation in auditory nerves
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-016-0613-9
– volume: 560
  start-page: 691
  issue: 3
  year: 2004
  ident: 10.1016/j.heares.2017.12.018_bib73
  article-title: A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2004.072868
– volume: 93
  start-page: 557
  issue: 1
  year: 2005
  ident: 10.1016/j.heares.2017.12.018_bib126
  article-title: Response properties of single auditory nerve fibers in the mouse
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00574.2004
– volume: 31
  start-page: 13452
  issue: 38
  year: 2011
  ident: 10.1016/j.heares.2017.12.018_bib114
  article-title: Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2156-11.2011
– volume: 22
  start-page: 199
  issue: 1–3
  year: 1986
  ident: 10.1016/j.heares.2017.12.018_bib161
  article-title: The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(86)90096-1
– volume: 6
  start-page: 832
  issue: 8
  year: 2003
  ident: 10.1016/j.heares.2017.12.018_bib157
  article-title: Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1089
– volume: 83
  start-page: 2266
  issue: 6
  year: 1988
  ident: 10.1016/j.heares.2017.12.018_bib140
  article-title: A diffusion model of the transient response of the cochlear inner hair cell synapse
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.396357
– volume: 101
  start-page: 2151
  issue: 4
  year: 1997
  ident: 10.1016/j.heares.2017.12.018_bib110
  article-title: Basilar-membrane responses to tones at the base of the chinchilla cochlea
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.418265
– volume: 79
  start-page: 702
  issue: 3
  year: 1986
  ident: 10.1016/j.heares.2017.12.018_bib76
  article-title: Simulation of mechanical to neural transduction in the auditory receptor
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.393460
– volume: 113
  start-page: 893
  issue: 2
  year: 2003
  ident: 10.1016/j.heares.2017.12.018_bib125
  article-title: Adaptation in a revised inner-hair cell model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1515777
– volume: 63
  start-page: 1084
  issue: 4
  year: 1978
  ident: 10.1016/j.heares.2017.12.018_bib21
  article-title: Analysis of the click-evoked brainstem potentials in man using high-pass noise masking
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.381816
– volume: 2
  start-page: 91
  issue: 3
  year: 2001
  ident: 10.1016/j.heares.2017.12.018_bib42
  article-title: Auditory nerve model for predicting performance limits of normal and impaired listeners
  publication-title: Acoust Res. Lett. Online
  doi: 10.1121/1.1387155
– volume: 102
  start-page: 2892
  issue: 5
  year: 1997
  ident: 10.1016/j.heares.2017.12.018_bib16
  article-title: Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.420344
– volume: 11
  start-page: 343
  issue: 3
  year: 2010
  ident: 10.1016/j.heares.2017.12.018_bib122
  article-title: Otoacoustic estimation of cochlear tuning: validation in the chinchilla
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-010-0217-4
– volume: 126
  start-page: 2390
  issue: 5
  year: 2009
  ident: 10.1016/j.heares.2017.12.018_bib149
  article-title: A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3238250
– volume: 111
  start-page: 14918
  issue: 41
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib14
  article-title: Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells
  publication-title: Proceed. Natl Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1409920111
– volume: 4
  start-page: e08177
  year: 2015
  ident: 10.1016/j.heares.2017.12.018_bib156
  article-title: Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding
  publication-title: Elife
  doi: 10.7554/eLife.08177
– volume: 72
  start-page: 108
  issue: 1
  year: 1982
  ident: 10.1016/j.heares.2017.12.018_bib69
  article-title: Input impedance of the cochlea in cat
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.387995
– volume: 139
  start-page: 2896
  issue: 5
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib97
  article-title: Physiological motivated transmission-lines as front end for loudness models
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4949540
– volume: 119
  start-page: 406
  issue: 1
  year: 2006
  ident: 10.1016/j.heares.2017.12.018_bib77
  article-title: Auditory-nerve first-spike latency and auditory absolute threshold: a computer model
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2139628
– volume: 96
  start-page: 71
  issue: 1
  year: 1996
  ident: 10.1016/j.heares.2017.12.018_bib129
  article-title: Selective inner hair cell loss does not alter distortion product otoacoustic emissions
  publication-title: Hear. Res.
  doi: 10.1016/0378-5955(96)00040-8
– volume: 179
  start-page: 113
  issue: 1
  year: 1996
  ident: 10.1016/j.heares.2017.12.018_bib19
  article-title: Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components
  publication-title: J. Comp. Physiol. A
  doi: 10.1007/BF00193439
– volume: 20
  year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib137
  article-title: Individual differences in auditory brainstem response wave characteristics: relations to different aspects of peripheral hearing loss
  publication-title: Trends Hear.
– volume: 32
  start-page: 613
  year: 1969
  ident: 10.1016/j.heares.2017.12.018_bib32
  article-title: Response of binaural neurons of dog
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1969.32.4.613
– volume: 104
  start-page: 1517
  issue: 3
  year: 1998
  ident: 10.1016/j.heares.2017.12.018_bib128
  article-title: Modeling otoacoustic emission and hearing threshold fine structures
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.424364
– volume: 7
  start-page: 218
  issue: 3
  year: 2006
  ident: 10.1016/j.heares.2017.12.018_bib68
  article-title: A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression
  publication-title: J. Assoc. Res. Otolaryngol.
  doi: 10.1007/s10162-006-0037-8
– volume: 118
  start-page: 1540
  issue: 3
  year: 2005
  ident: 10.1016/j.heares.2017.12.018_bib145
  article-title: Analysis of models for the synapse between the inner hair cell and the auditory nerve
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1993148
– volume: 29
  start-page: 681
  issue: 3
  year: 2001
  ident: 10.1016/j.heares.2017.12.018_bib6
  article-title: Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse
  publication-title: Neuron
  doi: 10.1016/S0896-6273(01)00243-4
– volume: 105
  start-page: 799
  issue: 2
  year: 1999
  ident: 10.1016/j.heares.2017.12.018_bib13
  article-title: Response phase: a view from the inner hair cell
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.426269
– year: 2007
  ident: 10.1016/j.heares.2017.12.018_bib26
  article-title: Estimates of peripheral compression using envelope following responses
  publication-title: J. Assoc. Res. Otolaryngol.
– volume: 109
  start-page: 2023
  issue: 5
  year: 2001
  ident: 10.1016/j.heares.2017.12.018_bib120
  article-title: Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1366372
– volume: 42
  start-page: 1083
  issue: 4
  year: 1979
  ident: 10.1016/j.heares.2017.12.018_bib40
  article-title: Forward masking of auditory nerve fiber responses
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1979.42.4.1083
– volume: 146
  start-page: 101
  issue: 1
  year: 2000
  ident: 10.1016/j.heares.2017.12.018_bib56
  article-title: Nonlinear temporal interactions in click-evoked otoacoustic emissions. II. Experimental data
  publication-title: Hear. Res.
  doi: 10.1016/S0378-5955(00)00103-9
– volume: 112
  start-page: 1025
  issue: 5
  year: 2014
  ident: 10.1016/j.heares.2017.12.018_bib11
  article-title: Contribution of auditory nerve fibers to compound action potential of the auditory nerve
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00738.2013
– volume: 27
  start-page: 105
  issue: 2
  year: 1998
  ident: 10.1016/j.heares.2017.12.018_bib39
  article-title: Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz
  publication-title: Scand. Audiol.
  doi: 10.1080/010503998420342
– volume: 126
  start-page: 1878
  issue: 4
  year: 2009
  ident: 10.1016/j.heares.2017.12.018_bib123
  article-title: Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3203310
– volume: 400
  start-page: 275
  issue: 1
  year: 1988
  ident: 10.1016/j.heares.2017.12.018_bib43
  article-title: A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1988.sp017120
– year: 2016
  ident: 10.1016/j.heares.2017.12.018_bib91
  article-title: Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes
  publication-title: Proc Natl Acad. Sci.
  doi: 10.1073/pnas.1605737113
– volume: 104
  start-page: 16341
  issue: 41
  year: 2007
  ident: 10.1016/j.heares.2017.12.018_bib36
  article-title: Time course and calcium dependence of transmitter release at a single ribbon synapse
  publication-title: Proc Natl Acad. Sci.
  doi: 10.1073/pnas.0705756104
SSID ssj0015342
Score 2.5490239
SecondaryResourceType review_article
Snippet Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
Title Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss
URI https://dx.doi.org/10.1016/j.heares.2017.12.018
https://www.ncbi.nlm.nih.gov/pubmed/29472062
https://www.proquest.com/docview/2007982854
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA-iUHopVfuxrUoKpadONzPJTBJviyirRS-t4C1k8gFWO7Nsx8Je_NvNSzILQovgcUKSSfJekpfk934Poc-yNtoY2haWClYwaVghGx8E4p2gWta8jQSm5xfN_JKdXdVXG-ho9IUBWGVe-9OaHlfrnDLNozldXF9PfxDKgZyrLoOSUsbBo5wxDlr-7X4N8wgTmqWXhHBagtyj-1zEeMWg0UDaXfJ4KQihP_69Pf3P_Izb0Mlr9Crbj3iWmriNNly3g3ZnXTg7_17hLzgiOuNV-Q56cZ4fznfRkKI35Js_HOPfhE0L9x4HCxDHSH1Yg4dGv1xhYD8GuoHVIZ7ltKIDaCReJkit-_MVu7_9jbN40Q8AOApajHVnMfQVKr4NvXuDLk-Ofx7NixxwoTCMs6FwzNam9Y2QrtLGscYJZgg1nHgbBtI6SYQlsq1tw0oRjAcvpdFel8ZXLZWUvkWbXd-59wj7hjhuNfVcaKBIE420gkjgA2RQ6wTRcZyVyWzkEBTjVo2ws18qSUeBdFRZqSCdCSrWpRaJjeOJ_HwUoXqkVSpsGE-U_DRKXIUJB68ounP9HWQiXALvH5ugd0kV1m2pJOMVaaoPz_7vR_QyfImEcttDm8Pyzu0Hs2doD6JeH6Ct2en3-cUDlJUDqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbS9lDbpY_tUofRUs7YlW1JvS2jYNNm9NIHchKwHJE3tZesU9t9XI8sLhZZAr7IkW5qxZqT59A3AB1kZbQxtMksFy5g0LJO1DwLxTlAtK95EAtPlql5csK-X1eUeHI13YRBWmdb-YU2Pq3UqmaXZnK2vrmbfcsqRnKsqgpJSxvk92Ed2qmoC-_OT08VqF0yoKBuCCWHDhA3GG3QR5hXzRiNvd8HjuSBm__i7hfqXBxot0fFjeJRcSDIfvvIJ7Ln2AA7nbdg-_9iSjySCOuNp-QHcX6bY-SH0QwKHdPhHYgqcYLdI50lwAklM1kc0XtLoNluCBMjIOLD9TOapLGsRHUk2A6rW_fxE3K_uu7Nk3fWIOQqKTHRrCY4VO74Jo3sKF8dfzo8WWcq5kBnGWZ85ZivT-FpIV2rjWO0EMzk1PPc2TKR1Mhc2l01la1aI4D94KY32ujC-bKik9BlM2q51L4D4Onfcauq50MiSJmppRS6REpBhr1Og4zwrkwjJMS_GjRqRZ9dqkI5C6aiiVEE6U8h2rdYDIccd9fkoQvWHYqlgM-5o-X6UuAr_HAZSdOu6W6yUc4nUf2wKzwdV2H1LKRkv87p8-d_vfQcPFufLM3V2sjp9BQ_DEzGA3l7DpN_cujfBC-qbt0nLfwNveAZa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+modeling+of+the+human+auditory+periphery%3A+Auditory-nerve+responses%2C+evoked+potentials+and+hearing+loss&rft.jtitle=Hearing+research&rft.au=Verhulst%2C+Sarah&rft.au=Alto%C3%A8%2C+Alessandro&rft.au=Vasilkov%2C+Viacheslav&rft.date=2018-03-01&rft.issn=1878-5891&rft.eissn=1878-5891&rft.volume=360&rft.spage=55&rft_id=info:doi/10.1016%2Fj.heares.2017.12.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5955&client=summon