Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss
Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descripti...
Saved in:
Published in | Hearing research Vol. 360; pp. 55 - 75 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features.
•An overview of computational models from cochlea to auditory-nerve (AN).•IHC-AN model descriptions are made biophysical to reduce model fitting parameters.•The presented auditory model captures key aspects of human OAE, ABR and EFRs.•Simulated impact of sensorineural hearing loss on human population responses. |
---|---|
AbstractList | Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features.Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. •An overview of computational models from cochlea to auditory-nerve (AN).•IHC-AN model descriptions are made biophysical to reduce model fitting parameters.•The presented auditory model captures key aspects of human OAE, ABR and EFRs.•Simulated impact of sensorineural hearing loss on human population responses. Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear mechanics, inner-hair cell (IHC), auditory-nerve (AN) and brainstem signal processing. It is challenging to include detailed physiological descriptions of cellular components into human auditory models because single-cell data stems from invasive animal recordings while human reference data only exists in the form of population responses (e.g., otoacoustic emissions, auditory evoked potentials). To embed physiological models within a comprehensive human auditory periphery framework, it is important to capitalize on the success of basic functional models of hearing and render their descriptions more biophysical where possible. At the same time, comprehensive models should capture a variety of key auditory features, rather than fitting their parameters to a single reference dataset. In this study, we review and improve existing models of the IHC-AN complex by updating their equations and expressing their fitting parameters into biophysical quantities. The quality of the model framework for human auditory processing is evaluated using recorded auditory brainstem response (ABR) and envelope-following response (EFR) reference data from normal and hearing-impaired listeners. We present a model with 12 fitting parameters from the cochlea to the brainstem that can be rendered hearing impaired to simulate how cochlear gain loss and synaptopathy affect human population responses. The model description forms a compromise between capturing well-described single-unit IHC and AN properties and human population response features. |
Author | Verhulst, Sarah Altoè, Alessandro Vasilkov, Viacheslav |
Author_xml | – sequence: 1 givenname: Sarah surname: Verhulst fullname: Verhulst, Sarah email: s.verhulst@ugent.be organization: WAVES, Dept. of Information Technology, Ghent University, Technologiepark 15, 9052 Zwijnaarde, Belgium – sequence: 2 givenname: Alessandro orcidid: 0000-0003-3004-6918 surname: Altoè fullname: Altoè, Alessandro email: Alessandro.altoe@aalto.fi organization: Department of Signal Processing and Acoustics, School of Electrical Engineering, Aalto University, P.O. Box 13000, FI-00076 Aalto, Finland – sequence: 3 givenname: Viacheslav surname: Vasilkov fullname: Vasilkov, Viacheslav email: Viacheslav.vasilkov@uni-oldenburg.de organization: Medizinische Physik, Oldenburg University, Carl-von-Ossietzky strasse 9-11, 26120 Oldenburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29472062$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFu1DAUtFArui38AUI-ciCp7TiJ3QNStWoLUiUucLa89gvrJbGD7ay0f0-ibC8c6Ok9Pc2M3sxcowsfPCD0gZKSEtrcHso96AipZIS2JWUloeIN2lDRiqIWkl6gDamWXdb1FbpO6UAIrSvO3qIrJnnLSMM2KG_DME5ZZxe87vEQLPTO_8Khw3kPeD8N2mM9WZdDPOERohv3EE93-P58KzzEI-D5kTH4BOkzhmP4DRaPIYPPTvcJa2_x8uwi3IeU3qHLbr7D-_O8QT8fH35svxbP35--be-fC8Nbngvgtja7rhESmDbAGxDckMq0pLOzEwuSCEvkrrYNp4II1klpdKep6diuklV1gz6tumMMfyZIWQ0uGeh77SFMSTFCWimYqPkM_XiGTrsBrBqjG3Q8qZekZsDdCjBxdhChU8atseWoXa8oUUst6qDWWtRSi6JMzbXMZP4P-UX_FdqXlQZzSEcHUSXjwBuwLoLJygb3f4G_iFGrtw |
CitedBy_id | crossref_primary_10_1121_10_0010317 crossref_primary_10_1152_jn_00620_2020 crossref_primary_10_1121_10_0025136 crossref_primary_10_1016_j_apacoust_2024_110006 crossref_primary_10_1111_ejn_16049 crossref_primary_10_1177_2331216520988406 crossref_primary_10_7554_eLife_62329 crossref_primary_10_1007_s11571_021_09711_z crossref_primary_10_1016_j_heares_2021_108411 crossref_primary_10_1523_JNEUROSCI_2002_22_2023 crossref_primary_10_1016_j_heares_2021_108258 crossref_primary_10_1016_j_buildenv_2018_10_054 crossref_primary_10_1177_23312165241286742 crossref_primary_10_1044_2021_AJA_21_00133 crossref_primary_10_1016_j_heares_2024_109050 crossref_primary_10_1016_j_heares_2019_05_007 crossref_primary_10_1121_10_0028130 crossref_primary_10_1016_j_neuroscience_2018_12_007 crossref_primary_10_3389_fphys_2021_700655 crossref_primary_10_4103_nah_nah_53_22 crossref_primary_10_1523_JNEUROSCI_0238_24_2024 crossref_primary_10_1016_j_heares_2020_108132 crossref_primary_10_1038_s42003_021_02341_5 crossref_primary_10_1121_10_0004818 crossref_primary_10_1121_10_0002879 crossref_primary_10_1038_s42256_020_00286_8 crossref_primary_10_1103_PhysRevResearch_2_013218 crossref_primary_10_1044_2023_JSLHR_23_00234 crossref_primary_10_1051_aacus_2021043 crossref_primary_10_1044_2021_JSLHR_21_00064 crossref_primary_10_1121_10_0007484 crossref_primary_10_7554_eLife_85108 crossref_primary_10_1051_aacus_2023064 crossref_primary_10_1016_j_heares_2019_07_001 crossref_primary_10_1016_j_heares_2020_108068 crossref_primary_10_1051_aacus_2022011 crossref_primary_10_1016_j_apacoust_2020_107619 crossref_primary_10_1109_TBME_2024_3410686 crossref_primary_10_1038_s42003_023_05040_5 crossref_primary_10_1097_AUD_0000000000001481 crossref_primary_10_1016_j_heares_2019_02_016 crossref_primary_10_1109_TASLP_2024_3378099 crossref_primary_10_1121_10_0028278 crossref_primary_10_1097_AUD_0000000000001009 crossref_primary_10_1051_aacus_2022008 crossref_primary_10_1016_j_heares_2020_108117 crossref_primary_10_1371_journal_pone_0213899 crossref_primary_10_1007_s10162_020_00776_x crossref_primary_10_1016_j_heares_2022_108663 crossref_primary_10_51445_sja_auditio_vol8_2024_103 crossref_primary_10_3389_fnins_2022_893542 crossref_primary_10_1121_1_5132708 crossref_primary_10_1097_AUD_0000000000001498 crossref_primary_10_1177_23312165221118792 crossref_primary_10_1121_10_0034329 crossref_primary_10_1109_TASLPRO_2025_3536183 crossref_primary_10_3389_fnins_2020_588448 crossref_primary_10_1038_s41598_021_81232_5 crossref_primary_10_3390_biomimetics10030167 crossref_primary_10_1016_j_cub_2019_04_067 crossref_primary_10_1016_j_heares_2021_108333 crossref_primary_10_3390_app12105168 crossref_primary_10_1007_s10162_022_00870_2 crossref_primary_10_3389_fpsyg_2021_634943 crossref_primary_10_1007_s00359_022_01560_3 crossref_primary_10_1177_23312165241239541 crossref_primary_10_1121_10_0009238 crossref_primary_10_1016_j_heares_2019_06_001 crossref_primary_10_1016_j_heares_2020_108053 crossref_primary_10_1016_j_heares_2022_108569 crossref_primary_10_1016_j_heares_2023_108900 crossref_primary_10_1038_s42256_021_00394_z crossref_primary_10_1016_j_heares_2018_02_004 crossref_primary_10_1016_j_heares_2018_08_010 crossref_primary_10_1121_10_0028584 crossref_primary_10_1055_s_0042_1756165 crossref_primary_10_1016_j_heares_2020_107979 crossref_primary_10_3389_fnagi_2022_877588 crossref_primary_10_1109_TASLP_2023_3282093 crossref_primary_10_1121_10_0001226 crossref_primary_10_1177_23312165231205719 crossref_primary_10_1371_journal_pcbi_1009889 crossref_primary_10_3902_jnns_28_183 crossref_primary_10_1121_10_0020068 crossref_primary_10_1016_j_heares_2021_108310 crossref_primary_10_1177_2331216519877301 crossref_primary_10_1088_1741_2552_ab970d crossref_primary_10_1097_AUD_0000000000001041 crossref_primary_10_1121_10_0028199 crossref_primary_10_3389_fnins_2022_908330 crossref_primary_10_1121_10_0016807 crossref_primary_10_1088_1361_6501_ac3709 crossref_primary_10_1016_j_heares_2020_108157 crossref_primary_10_1109_TBME_2021_3080123 crossref_primary_10_1088_1361_6501_acfbf0 crossref_primary_10_1121_10_0017627 crossref_primary_10_1073_pnas_1922033117 crossref_primary_10_7759_cureus_66036 crossref_primary_10_1038_s42256_021_00317_y crossref_primary_10_1109_RBME_2024_3508713 crossref_primary_10_1121_10_0017863 |
Cites_doi | 10.1073/pnas.1105867108 10.1121/1.4928305 10.1121/1.401675 10.1016/j.clinph.2014.01.011 10.1016/j.heares.2013.10.004 10.1016/j.heares.2015.01.011 10.1016/0378-5955(91)90137-X 10.1121/1.4896416 10.1016/0378-5955(86)90002-X 10.1038/nn.2578 10.1121/1.4941249 10.1523/JNEUROSCI.0903-14.2014 10.1121/1.3479755 10.1121/1.394173 10.1016/0378-5955(92)90010-K 10.1016/j.neurobiolaging.2016.05.001 10.1152/jn.00164.2013 10.1121/1.400675 10.1121/1.1370357 10.1121/1.4960486 10.1097/00003446-198503000-00008 10.1097/00003446-199710000-00006 10.1371/journal.pone.0162726 10.1038/nn.2293 10.1121/1.400650 10.1121/1.4763989 10.1523/JNEUROSCI.03-10-02043.1983 10.1121/1.4985193 10.1121/1.4807563 10.1121/1.3337233 10.1152/jn.1992.68.4.1087 10.1121/1.1453451 10.1523/JNEUROSCI.5452-06.2007 10.1121/1.3699171 10.1121/1.2924135 10.1121/1.3523287 10.1523/JNEUROSCI.3389-10.2011 10.1523/JNEUROSCI.4460-15.2016 10.3109/14992027.2015.1135352 10.1016/0378-5955(95)00200-6 10.1016/0378-5955(90)90104-W 10.1121/1.4927408 10.1007/s10162-014-0489-1 10.1121/1.1288665 10.1121/1.402757 10.1016/j.heares.2016.10.016 10.1121/1.4837815 10.1121/1.3518768 10.1121/1.2718397 10.1121/1.1784442 10.1113/jphysiol.1983.sp014668 10.1121/1.1336503 10.1152/physrev.00029.2003 10.1121/1.3224762 10.1121/1.1972490 10.1113/jphysiol.2007.145219 10.1098/rspb.1992.0102 10.1121/1.385200 10.1121/1.3290995 10.1121/1.1903521 10.1121/1.1534833 10.1038/2251207a0 10.1007/s10162-015-0539-3 10.1152/physrev.2001.81.3.1305 10.1121/1.409963 10.3109/00206098709078420 10.1016/0378-5955(90)90074-Y 10.1073/pnas.0813213106 10.1121/1.2783125 10.1016/0030-4018(78)90322-X 10.1016/j.heares.2016.05.006 10.1121/1.3531864 10.1016/0378-5955(80)90080-5 10.1523/JNEUROSCI.3915-14.2015 10.1523/JNEUROSCI.4439-09.2010 10.1113/jphysiol.1990.sp017944 10.1016/j.neuron.2011.04.024 10.1121/1.383064 10.1016/0378-5955(85)90008-5 10.1016/0378-5955(86)90038-9 10.1121/1.1564018 10.1016/j.heares.2018.03.029 10.1121/1.1318898 10.1016/j.heares.2013.11.006 10.1016/0378-5955(91)90106-J 10.1121/1.381736 10.1121/1.1755237 10.1121/1.3658470 10.1016/j.heares.2017.07.003 10.1121/1.420088 10.1016/0378-5955(84)90032-7 10.1523/JNEUROSCI.2845-09.2009 10.1016/0378-5955(94)90239-9 10.1121/1.3531930 10.1016/0370-1573(80)90100-3 10.1007/s101620010083 10.1121/1.399052 10.3389/fnsyn.2010.00148 10.1121/1.3397640 10.1121/1.414955 10.3389/fnsys.2014.00026 10.1016/j.neuron.2014.08.003 10.1121/1.2225512 10.1016/0378-5955(83)90022-9 10.1121/1.400653 10.1121/1.3158859 10.1007/s10162-011-0277-0 10.1007/s10827-016-0613-9 10.1113/jphysiol.2004.072868 10.1152/jn.00574.2004 10.1523/JNEUROSCI.2156-11.2011 10.1016/0378-5955(86)90096-1 10.1038/nn1089 10.1121/1.396357 10.1121/1.418265 10.1121/1.393460 10.1121/1.1515777 10.1121/1.381816 10.1121/1.1387155 10.1121/1.420344 10.1007/s10162-010-0217-4 10.1121/1.3238250 10.1073/pnas.1409920111 10.7554/eLife.08177 10.1121/1.387995 10.1121/1.4949540 10.1121/1.2139628 10.1016/0378-5955(96)00040-8 10.1007/BF00193439 10.1152/jn.1969.32.4.613 10.1121/1.424364 10.1007/s10162-006-0037-8 10.1121/1.1993148 10.1016/S0896-6273(01)00243-4 10.1121/1.426269 10.1121/1.1366372 10.1152/jn.1979.42.4.1083 10.1016/S0378-5955(00)00103-9 10.1152/jn.00738.2013 10.1080/010503998420342 10.1121/1.3203310 10.1113/jphysiol.1988.sp017120 10.1073/pnas.1605737113 10.1073/pnas.0705756104 |
ContentType | Journal Article |
Copyright | 2018 The Authors Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 The Authors – notice: Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.heares.2017.12.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1878-5891 |
EndPage | 75 |
ExternalDocumentID | 29472062 10_1016_j_heares_2017_12_018 S0378595517303477 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M --Z .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMQ HVGLF HZ~ IHE J1W KOM M2V M41 MO0 MOBAO N9A NCXOZ O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SNS SPCBC SSN SSZ T5K TEORI TN5 UNMZH WUQ ZGI ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c474t-e4d5cbf689e2ace46e84c03c70fd153de908d09b5d6418082f99cafa1cf2b3933 |
IEDL.DBID | .~1 |
ISSN | 0378-5955 1878-5891 |
IngestDate | Fri Jul 11 03:40:10 EDT 2025 Mon Jul 21 06:06:14 EDT 2025 Tue Jul 01 04:15:41 EDT 2025 Thu Apr 24 23:16:08 EDT 2025 Fri Feb 23 02:14:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-e4d5cbf689e2ace46e84c03c70fd153de908d09b5d6418082f99cafa1cf2b3933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3004-6918 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0378595517303477 |
PMID | 29472062 |
PQID | 2007982854 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2007982854 pubmed_primary_29472062 crossref_citationtrail_10_1016_j_heares_2017_12_018 crossref_primary_10_1016_j_heares_2017_12_018 elsevier_sciencedirect_doi_10_1016_j_heares_2017_12_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 2018-03-00 20180301 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Hearing research |
PublicationTitleAlternate | Hear Res |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dau (bib15) 2003; 113 Liberman (bib64) 1978; 63 Russell, Sellick (bib111) 1983; 338 Möhrle, Ni, Varakina, Bing, Lee, Zimmermann (bib85) 2016; 44 Kiang, Baer, Marr, Demont (bib57) 1969; 46 Jiang, Zheng, Sun, Liu (bib48) 1991; 54 Zhang, Heinz, Bruce, Carney (bib146) 2001; 109 Peterson, Irvine, Heil (bib94) 2014; 34 Strelcyk, Christoforidis, Dau (bib123) 2009; 126 Gorga, Neely, Kopun, Tan (bib35) 2011; 129 Serpanos, O'malley, Gravel (bib118) 1997; 18 Raufer, Verhulst (bib101) 2016; 342 Johnson, Marcotti (bib49) 2008; 586 Zhang, Carney (bib145) 2005; 118 Taberner, Liberman (bib126) 2005; 93 Ewert, Dau (bib28) 2000; 108 Allen, Sondhi (bib2) 1979; 66 Jepsen, Ewert, Dau (bib46) 2008; 124 Zilany, Bruce, Carney (bib150) 2014; 135 Dolphin, Mountain (bib20) 1992; 58 Kuwada, Batra, Maher (bib62) 1986; 21 Meddis, O'Mard, Lopez-Poveda (bib79) 2001; 109 Vannucci, Teich (bib132) 1978; 25 Lopez-Poveda, Eustaquio-Martín (bib68) 2006; 7 Rhode (bib104) 2007; 121 Bharadwaj, Shinn-Cunningham (bib7) 2014; 125 Zweig (bib152) 1991; 89 Verhulst (bib133) 2010 Kros, Crawford (bib59) 1990; 421 Jørgensen, Ewert, Dau (bib51) 2013; 134 Mehraei, Hickox, Bharadwaj, Goldberg, Verhulst, Liberman, Shinn-Cunningham (bib80) 2016; 36 Takanen, Santala, Pulkki (bib127) 2014; 309 Trautwein, Hofstetter, Wang, Salvi, Nostrant (bib129) 1996; 96 Meyer, Frank, Khimich, Hoch, Riedel, Chapochnikov, Yarin, Harke, Hell, Egner, Moser (bib82) 2009; 12 Heinz, Zhang, Bruce, Carney (bib42) 2001; 2 Robles, Ruggero (bib106) 2001; 81 Melcher, Kiang (bib81) 1996; 93 Altoè, Pulkki, Verhulst (bib3) 2014; 136 Liberman, Epstein, Cleveland, Wang, Maison (bib65) 2016; 11 Encina-Llamas, Dau, Epp (bib26) 2007 Verhulst, Bharadwaj, Mehraei, Shera, Shinn-Cunningham (bib136) 2015; 138 Joris, Bergevin, Kalluri, Mc Laughlin, Michelet, van der Heijden, Shera (bib54) 2011; 108 Hudspeth, Lewis (bib43) 1988; 400 Schaette, McAlpine (bib114) 2011; 31 Lewis, Neely (bib63) 2015; 138 Altoè, A., Pulkki, V., Verhulst, S. (submitted). The effects of the activation of the inner-hair-cell basolateral K Shamma, Chadwick, Wilbur, Morrish, Rinzel (bib162) 1986; 80 Shera, Zweig (bib121) 1991; 89 Chapochnikov, Takago, Huang, Pangršič, Khimich, Neef (bib12) 2014; 83 Rosen, Baker (bib108) 1994; 73 Ohn, Rutherford, Jing, Jung, Duque-Afonso, Hoch (bib91) 2016 Elberling, Callø, Don (bib24) 2010; 128 Davis (bib154) 1965; Vol. 30 Zilany, Bruce, Nelson, Carney (bib149) 2009; 126 Meddis (bib76) 1986; 79 Harris, Dallos (bib40) 1979; 42 Shera, Guinan, Oxenham (bib122) 2010; 11 Oertel (bib90) 1983; 3 Pieper, Mauermann, Kollmeier, Ewert (bib97) 2016; 139 Joris, Yin (bib52) 1992; 91 Westerman, Smith (bib139) 1984; 15 Elliott, Ku, Lineton (bib25) 2007; 122 Palmer, Russell (bib92) 1986; 24 Dolphin (bib19) 1996; 179 Zweig (bib151) 1976; vol. 40 Grant, Yi, Glowatzki (bib37) 2010; 30 Puria, Allen (bib100) 1991; 89 Nedzelnitsky (bib87) 1980; 68 Sellick, Russell (bib116) 1980; 2 Shaheen, Valero, Liberman (bib119) 2015; 16 Westerman, Smith (bib140) 1988; 83 Ruggero, Robles, Rich (bib109) 1992; 68 Prosser, Arslan (bib99) 1987; 26 Bourien, Tang, Batrel, Huet, Lenoir, Ladrech (bib11) 2014; 112 Picton (bib95) 2011 Sumner, Lopez-Poveda, O'Mard, Meddis (bib124) 2002; 111 Neely, Kim (bib88) 1983; 9 Puria (bib160) 2003; 113 Pangršič, Lasarow, Reuter, Takago, Schwander, Riedel (bib93) 2010; 13 Jepsen, Dau (bib45) 2011; 129 Ruggero, Rich, Recio, Narayan, Robles (bib110) 1997; 101 Liu, Neely (bib67) 2010; 127 Talmadge, Tubis, Long, Piskorski (bib128) 1998; 104 Liberman, Wang, Liberman (bib158) 2011; 31 Goutman, Glowatzki (bib36) 2007; 104 Shera (bib120) 2001; 109 Bharadwaj, Masud, Mehraei, Verhulst, Shinn-Cunningham (bib9) 2015; 35 Delgutte, Hammond, Cariani (bib18) 1998 Cheatham, Dallos (bib13) 1999; 105 Kapadia, Lutman (bib56) 2000; 146 Heil, Neubauer (bib155) 2010; 2 Greenwood (bib38) 1990; 87 Kujawa, Liberman (bib61) 2009; 29 Zilany, Bruce (bib163) 2006; 120 Joris, Schreiner, Rees (bib53) 2004; 84 Goldberg, Brown (bib32) 1969; 32 Kidd, Weiss (bib58) 1990; 49 Don, Eggermont (bib21) 1978; 63 Furman, Kujawa, Liberman (bib31) 2013; 110 Altoè, Pulkki, Verhulst (bib4) 2017; 141 Rhode, Smith (bib105) 1985; 18 Gorga, Neely, Kopun, Tan (bib34) 2011; 129 Lin, Furman, Kujawa, Liberman (bib66) 2011; 12 Neely, Johnson, Kopun, Dierking, Gorga (bib89) 2009; 126 Relkin, Doucet (bib103) 1991; 55 Picton, Stapells, Campbell (bib96) 1981; 9 Zhong, Henry, Heinz (bib147) 2014; 309 Russell, Cody, Richardson (bib161) 1986; 22 Manley, Fay (bib71) 2007; vol. 30 Plack, Barker, Prendergast (bib98) 2014; 18 Schmiedt (bib115) 2010 Bidelman (bib10) 2015; 323 Frank, Khimich, Neef, Moser (bib29) 2009; 106 Johnson, Beurg, Marcotti, Fettiplace (bib50) 2011; 70 Verhulst, Dau, Shera (bib135) 2012; 132 Verhulst, Jagadeesh, Mauermann, Ernst (bib137) 2016; 20 Meddis, O'Mard (bib78) 1997; 102 Rønne, Dau, Harte, Elberling (bib107) 2012; 131 Valero, Burton, Hauser, Hackett, Ramachandran, Liberman (bib130) 2017; 353 Epp, Verhey, Mauermann (bib27) 2010; 128 Jürgens, Clark, Lecluyse, Meddis (bib55) 2016; 55 Nelson, Carney (bib159) 2004; 116 Mao, Carney (bib72) 2015; 16 Marcotti, Johnson, Kros (bib73) 2004; 560 Moleti, Paternoster, Bertaccini, Sisto, Sanjust (bib86) 2009; 126 Van Hengel, Duifhuis, Van den Raadt (bib131) 1996; 99 Frisina, Smith, Chamberlain (bib30) 1990; 44 Meaud, Grosh (bib75) 2010; 127 Kros, Rusch, Richardson (bib60) 1992; 249 Sachs, Abbas (bib112) 1974; 56 Winter, Palmer (bib141) 1991; 90 Gorga, Worthington, Reiland, Beauchaine, Goldgar (bib33) 1984; 6 channels on auditory nerve responses. Hear. Res Bharadwaj, Verhulst, Shaheen, Liberman, Shinn-Cunningham (bib8) 2014; 8 Meddis (bib77) 2006; 119 Moezzi, Iannella, McDonnell (bib84) 2016; 41 Beutner, Voets, Neher, Moser (bib6) 2001; 29 Dau, Kollmeier, Kohlrausch (bib16) 1997; 102 Jia, Dallos, He (bib47) 2007; 27 Lyon (bib70) 2011; 130 Recio, Rhode (bib102) 2000; 108 Kennedy, Evans, Crawford, Fettiplace (bib157) 2003; 6 de Boer (bib17) 1980; 62 Huet, Batrel, Tang, Desmadryl, Wang, Puel, Bourien (bib44) 2016; 338 Verhulst, Harte, Dau (bib134) 2011; 129 Duifhuis (bib22) 2012 von Békésy (bib138) 1970; 225 Corns, Johnson, Kros, Marcotti (bib14) 2014; 111 Zagaeski, Cody, Russell, Mountain (bib143) 1994; 95 Johnson (bib156) 2015; 4 Miller, Abbas, Robinson (bib83) 2001; 2 Sumner, Lopez-Poveda, O'Mard, Meddis (bib125) 2003; 113 Lynch, Nedzelnitsky, Peake (bib69) 1982; 72 Zweig (bib153) 2016; 139 Saremi, Beutelmann, Dietz, Ashida, Kretzberg, Verhulst (bib113) 2016; 140 Han, Poulsen (bib39) 1998; 27 Zeddies, Siegel (bib144) 2004; 116 Joris (10.1016/j.heares.2017.12.018_bib53) 2004; 84 Ohn (10.1016/j.heares.2017.12.018_bib91) 2016 Marcotti (10.1016/j.heares.2017.12.018_bib73) 2004; 560 Shamma (10.1016/j.heares.2017.12.018_bib162) 1986; 80 Lopez-Poveda (10.1016/j.heares.2017.12.018_bib68) 2006; 7 Pangršič (10.1016/j.heares.2017.12.018_bib93) 2010; 13 10.1016/j.heares.2017.12.018_bib5 Verhulst (10.1016/j.heares.2017.12.018_bib137) 2016; 20 Bidelman (10.1016/j.heares.2017.12.018_bib10) 2015; 323 Beutner (10.1016/j.heares.2017.12.018_bib6) 2001; 29 Meaud (10.1016/j.heares.2017.12.018_bib75) 2010; 127 Cheatham (10.1016/j.heares.2017.12.018_bib13) 1999; 105 Takanen (10.1016/j.heares.2017.12.018_bib127) 2014; 309 Neely (10.1016/j.heares.2017.12.018_bib88) 1983; 9 Verhulst (10.1016/j.heares.2017.12.018_bib133) 2010 Rhode (10.1016/j.heares.2017.12.018_bib104) 2007; 121 Ruggero (10.1016/j.heares.2017.12.018_bib109) 1992; 68 Jürgens (10.1016/j.heares.2017.12.018_bib55) 2016; 55 Verhulst (10.1016/j.heares.2017.12.018_bib135) 2012; 132 Zilany (10.1016/j.heares.2017.12.018_bib163) 2006; 120 Westerman (10.1016/j.heares.2017.12.018_bib140) 1988; 83 Kidd (10.1016/j.heares.2017.12.018_bib58) 1990; 49 Pieper (10.1016/j.heares.2017.12.018_bib97) 2016; 139 Talmadge (10.1016/j.heares.2017.12.018_bib128) 1998; 104 Greenwood (10.1016/j.heares.2017.12.018_bib38) 1990; 87 Don (10.1016/j.heares.2017.12.018_bib21) 1978; 63 Liberman (10.1016/j.heares.2017.12.018_bib65) 2016; 11 Duifhuis (10.1016/j.heares.2017.12.018_bib22) 2012 Sumner (10.1016/j.heares.2017.12.018_bib125) 2003; 113 Meyer (10.1016/j.heares.2017.12.018_bib82) 2009; 12 Joris (10.1016/j.heares.2017.12.018_bib52) 1992; 91 Schmiedt (10.1016/j.heares.2017.12.018_bib115) 2010 Trautwein (10.1016/j.heares.2017.12.018_bib129) 1996; 96 Valero (10.1016/j.heares.2017.12.018_bib130) 2017; 353 Meddis (10.1016/j.heares.2017.12.018_bib76) 1986; 79 Saremi (10.1016/j.heares.2017.12.018_bib113) 2016; 140 Schaette (10.1016/j.heares.2017.12.018_bib114) 2011; 31 Zhang (10.1016/j.heares.2017.12.018_bib146) 2001; 109 Chapochnikov (10.1016/j.heares.2017.12.018_bib12) 2014; 83 Han (10.1016/j.heares.2017.12.018_bib39) 1998; 27 Davis (10.1016/j.heares.2017.12.018_bib154) 1965; Vol. 30 Recio (10.1016/j.heares.2017.12.018_bib102) 2000; 108 Winter (10.1016/j.heares.2017.12.018_bib141) 1991; 90 Liberman (10.1016/j.heares.2017.12.018_bib64) 1978; 63 Altoè (10.1016/j.heares.2017.12.018_bib3) 2014; 136 Dolphin (10.1016/j.heares.2017.12.018_bib19) 1996; 179 Rosen (10.1016/j.heares.2017.12.018_bib108) 1994; 73 Bharadwaj (10.1016/j.heares.2017.12.018_bib7) 2014; 125 Meddis (10.1016/j.heares.2017.12.018_bib77) 2006; 119 Picton (10.1016/j.heares.2017.12.018_bib95) 2011 Shaheen (10.1016/j.heares.2017.12.018_bib119) 2015; 16 Johnson (10.1016/j.heares.2017.12.018_bib50) 2011; 70 Kujawa (10.1016/j.heares.2017.12.018_bib61) 2009; 29 Moezzi (10.1016/j.heares.2017.12.018_bib84) 2016; 41 Gorga (10.1016/j.heares.2017.12.018_bib33) 1984; 6 Relkin (10.1016/j.heares.2017.12.018_bib103) 1991; 55 Meddis (10.1016/j.heares.2017.12.018_bib78) 1997; 102 Bourien (10.1016/j.heares.2017.12.018_bib11) 2014; 112 Zagaeski (10.1016/j.heares.2017.12.018_bib143) 1994; 95 Joris (10.1016/j.heares.2017.12.018_bib54) 2011; 108 Nelson (10.1016/j.heares.2017.12.018_bib159) 2004; 116 Manley (10.1016/j.heares.2017.12.018_bib71) 2007; vol. 30 Lewis (10.1016/j.heares.2017.12.018_bib63) 2015; 138 Heil (10.1016/j.heares.2017.12.018_bib155) 2010; 2 Russell (10.1016/j.heares.2017.12.018_bib111) 1983; 338 Jepsen (10.1016/j.heares.2017.12.018_bib45) 2011; 129 Kennedy (10.1016/j.heares.2017.12.018_bib157) 2003; 6 Melcher (10.1016/j.heares.2017.12.018_bib81) 1996; 93 Palmer (10.1016/j.heares.2017.12.018_bib92) 1986; 24 Lyon (10.1016/j.heares.2017.12.018_bib70) 2011; 130 Jørgensen (10.1016/j.heares.2017.12.018_bib51) 2013; 134 Kapadia (10.1016/j.heares.2017.12.018_bib56) 2000; 146 Rønne (10.1016/j.heares.2017.12.018_bib107) 2012; 131 Delgutte (10.1016/j.heares.2017.12.018_bib18) 1998 Harris (10.1016/j.heares.2017.12.018_bib40) 1979; 42 Prosser (10.1016/j.heares.2017.12.018_bib99) 1987; 26 Allen (10.1016/j.heares.2017.12.018_bib2) 1979; 66 von Békésy (10.1016/j.heares.2017.12.018_bib138) 1970; 225 Zweig (10.1016/j.heares.2017.12.018_bib152) 1991; 89 Shera (10.1016/j.heares.2017.12.018_bib121) 1991; 89 Goutman (10.1016/j.heares.2017.12.018_bib36) 2007; 104 Mehraei (10.1016/j.heares.2017.12.018_bib80) 2016; 36 Zhong (10.1016/j.heares.2017.12.018_bib147) 2014; 309 Shera (10.1016/j.heares.2017.12.018_bib122) 2010; 11 Mao (10.1016/j.heares.2017.12.018_bib72) 2015; 16 Grant (10.1016/j.heares.2017.12.018_bib37) 2010; 30 Serpanos (10.1016/j.heares.2017.12.018_bib118) 1997; 18 Bharadwaj (10.1016/j.heares.2017.12.018_bib8) 2014; 8 Lynch (10.1016/j.heares.2017.12.018_bib69) 1982; 72 Verhulst (10.1016/j.heares.2017.12.018_bib134) 2011; 129 Westerman (10.1016/j.heares.2017.12.018_bib139) 1984; 15 Robles (10.1016/j.heares.2017.12.018_bib106) 2001; 81 Encina-Llamas (10.1016/j.heares.2017.12.018_bib26) 2007 Ruggero (10.1016/j.heares.2017.12.018_bib110) 1997; 101 Kiang (10.1016/j.heares.2017.12.018_bib57) 1969; 46 Corns (10.1016/j.heares.2017.12.018_bib14) 2014; 111 Taberner (10.1016/j.heares.2017.12.018_bib126) 2005; 93 Jepsen (10.1016/j.heares.2017.12.018_bib46) 2008; 124 Frank (10.1016/j.heares.2017.12.018_bib29) 2009; 106 Sellick (10.1016/j.heares.2017.12.018_bib116) 1980; 2 Hudspeth (10.1016/j.heares.2017.12.018_bib43) 1988; 400 Zhang (10.1016/j.heares.2017.12.018_bib145) 2005; 118 Sumner (10.1016/j.heares.2017.12.018_bib124) 2002; 111 Zeddies (10.1016/j.heares.2017.12.018_bib144) 2004; 116 Elliott (10.1016/j.heares.2017.12.018_bib25) 2007; 122 Goldberg (10.1016/j.heares.2017.12.018_bib32) 1969; 32 Neely (10.1016/j.heares.2017.12.018_bib89) 2009; 126 Dolphin (10.1016/j.heares.2017.12.018_bib20) 1992; 58 Miller (10.1016/j.heares.2017.12.018_bib83) 2001; 2 Zilany (10.1016/j.heares.2017.12.018_bib149) 2009; 126 Ewert (10.1016/j.heares.2017.12.018_bib28) 2000; 108 Meddis (10.1016/j.heares.2017.12.018_bib79) 2001; 109 Verhulst (10.1016/j.heares.2017.12.018_bib136) 2015; 138 Rhode (10.1016/j.heares.2017.12.018_bib105) 1985; 18 Picton (10.1016/j.heares.2017.12.018_bib96) 1981; 9 Zilany (10.1016/j.heares.2017.12.018_bib150) 2014; 135 Puria (10.1016/j.heares.2017.12.018_bib160) 2003; 113 Kuwada (10.1016/j.heares.2017.12.018_bib62) 1986; 21 Strelcyk (10.1016/j.heares.2017.12.018_bib123) 2009; 126 Oertel (10.1016/j.heares.2017.12.018_bib90) 1983; 3 Dau (10.1016/j.heares.2017.12.018_bib15) 2003; 113 Jiang (10.1016/j.heares.2017.12.018_bib48) 1991; 54 Johnson (10.1016/j.heares.2017.12.018_bib156) 2015; 4 Altoè (10.1016/j.heares.2017.12.018_bib4) 2017; 141 Raufer (10.1016/j.heares.2017.12.018_bib101) 2016; 342 Puria (10.1016/j.heares.2017.12.018_bib100) 1991; 89 Russell (10.1016/j.heares.2017.12.018_bib161) 1986; 22 Furman (10.1016/j.heares.2017.12.018_bib31) 2013; 110 Kros (10.1016/j.heares.2017.12.018_bib59) 1990; 421 Huet (10.1016/j.heares.2017.12.018_bib44) 2016; 338 Peterson (10.1016/j.heares.2017.12.018_bib94) 2014; 34 Sachs (10.1016/j.heares.2017.12.018_bib112) 1974; 56 Plack (10.1016/j.heares.2017.12.018_bib98) 2014; 18 Liberman (10.1016/j.heares.2017.12.018_bib158) 2011; 31 Vannucci (10.1016/j.heares.2017.12.018_bib132) 1978; 25 Jia (10.1016/j.heares.2017.12.018_bib47) 2007; 27 Bharadwaj (10.1016/j.heares.2017.12.018_bib9) 2015; 35 Zweig (10.1016/j.heares.2017.12.018_bib151) 1976; vol. 40 Lin (10.1016/j.heares.2017.12.018_bib66) 2011; 12 Gorga (10.1016/j.heares.2017.12.018_bib35) 2011; 129 Johnson (10.1016/j.heares.2017.12.018_bib49) 2008; 586 Frisina (10.1016/j.heares.2017.12.018_bib30) 1990; 44 Epp (10.1016/j.heares.2017.12.018_bib27) 2010; 128 Kros (10.1016/j.heares.2017.12.018_bib60) 1992; 249 Moleti (10.1016/j.heares.2017.12.018_bib86) 2009; 126 Zweig (10.1016/j.heares.2017.12.018_bib153) 2016; 139 de Boer (10.1016/j.heares.2017.12.018_bib17) 1980; 62 Heinz (10.1016/j.heares.2017.12.018_bib42) 2001; 2 Möhrle (10.1016/j.heares.2017.12.018_bib85) 2016; 44 Nedzelnitsky (10.1016/j.heares.2017.12.018_bib87) 1980; 68 Liu (10.1016/j.heares.2017.12.018_bib67) 2010; 127 Van Hengel (10.1016/j.heares.2017.12.018_bib131) 1996; 99 Gorga (10.1016/j.heares.2017.12.018_bib34) 2011; 129 Dau (10.1016/j.heares.2017.12.018_bib16) 1997; 102 Elberling (10.1016/j.heares.2017.12.018_bib24) 2010; 128 Shera (10.1016/j.heares.2017.12.018_bib120) 2001; 109 |
References_xml | – volume: 63 start-page: 1084 year: 1978 end-page: 1092 ident: bib21 article-title: Analysis of the click-evoked brainstem potentials in man using high-pass noise masking publication-title: J. Acoust. Soc. Am. – volume: 22 start-page: 199 year: 1986 end-page: 216 ident: bib161 article-title: The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro publication-title: Hear. Res. – volume: 68 start-page: 1676 year: 1980 end-page: 1689 ident: bib87 article-title: Sound pressures in the basal turn of the cat cochlea publication-title: J. Acoust. Soc. Am. – reference: Altoè, A., Pulkki, V., Verhulst, S. (submitted). The effects of the activation of the inner-hair-cell basolateral K – volume: 44 start-page: 99 year: 1990 end-page: 122 ident: bib30 article-title: Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement publication-title: Hear. Res. – volume: 99 start-page: 3566 year: 1996 end-page: 3571 ident: bib131 article-title: Spatial periodicity in the cochlea: the result of interaction of spontaneous emissions? publication-title: J. Acoust. Soc. Am. – volume: 46 year: 1969 ident: bib57 article-title: Discharge rates of single auditory nerve fibers as functions of tone level publication-title: J. Acoust. Soc. Am. – volume: 126 start-page: 2425 year: 2009 end-page: 2436 ident: bib86 article-title: Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models publication-title: J. Acoust. Soc. Am. – volume: 586 start-page: 1029 year: 2008 end-page: 1042 ident: bib49 article-title: Biophysical properties of CaV1. 3 calcium channels in gerbil inner hair cells publication-title: J. Physiol. – volume: 66 start-page: 123 year: 1979 end-page: 132 ident: bib2 article-title: Cochlear macromechanics: time domain solutions publication-title: J. Acoust. Soc. Am. – volume: 119 start-page: 406 year: 2006 end-page: 417 ident: bib77 article-title: Auditory-nerve first-spike latency and auditory absolute threshold: a computer model publication-title: J. Acoust. Soc. Am. – volume: 12 start-page: 444 year: 2009 end-page: 453 ident: bib82 article-title: Tuning of synapse number, structure and function in the cochlea publication-title: Nat. Neurosci. – volume: 129 start-page: 817 year: 2011 end-page: 827 ident: bib35 article-title: Distortion-product otoacoustic emission suppression tuning curves in humans publication-title: J. Acoust. Soc. Am. – volume: 130 start-page: 3893 year: 2011 end-page: 3904 ident: bib70 article-title: Cascades of two-pole–two-zero asymmetric resonators are good models of peripheral auditory function publication-title: J. Acoust. Soc. Am. – volume: 49 start-page: 181 year: 1990 end-page: 207 ident: bib58 article-title: Mechanisms that degrade timing information in the cochlea publication-title: Hear. Res. – volume: 84 start-page: 541 year: 2004 end-page: 577 ident: bib53 article-title: Neural processing of amplitude-modulated sounds publication-title: Physiol. Rev. – volume: 93 start-page: 52 year: 1996 end-page: 71 ident: bib81 article-title: Generators of the brainstem auditory evoked potential in cat. III: identified cell populations publication-title: Hear. Res. – volume: 249 start-page: 185 year: 1992 end-page: 193 ident: bib60 article-title: Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea publication-title: Proceed. Roy. Soc. Lon. B Biol. Sci. – year: 2012 ident: bib22 article-title: Cochlear Mechanics: Introduction to a Time Domain Analysis of the Nonlinear Cochlea – volume: 128 start-page: 215 year: 2010 end-page: 223 ident: bib24 article-title: Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation publication-title: J. Acoust. Soc. Am. – volume: 55 start-page: 346 year: 2016 end-page: 357 ident: bib55 article-title: Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing publication-title: Int. J. Audiol. – volume: 127 start-page: 2420 year: 2010 end-page: 2432 ident: bib67 article-title: Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells publication-title: J. Acoust. Soc. Am. – volume: 91 start-page: 215 year: 1992 end-page: 232 ident: bib52 article-title: Responses to amplitude-modulated tones in the auditory nerve of the cat publication-title: J. Acoust. Soc. Am. – volume: 2 start-page: 439 year: 1980 end-page: 445 ident: bib116 article-title: The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea publication-title: Hear. Res. – volume: 31 start-page: 801 year: 2011 end-page: 808 ident: bib158 article-title: Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses publication-title: J. Neurosci. – volume: 109 start-page: 2852 year: 2001 end-page: 2861 ident: bib79 article-title: A computational algorithm for computing nonlinear auditory frequency selectivity publication-title: J. Acoust. Soc. Am. – volume: 113 start-page: 2773 year: 2003 end-page: 2789 ident: bib160 article-title: Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions publication-title: J. Acoust. Soc. Am. – volume: 400 start-page: 275 year: 1988 end-page: 297 ident: bib43 article-title: A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana publication-title: J. Physiol. – volume: 129 start-page: 262 year: 2011 end-page: 281 ident: bib45 article-title: Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss publication-title: J. Acoust. Soc. Am. – volume: 132 start-page: 3842 year: 2012 end-page: 3848 ident: bib135 article-title: Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission publication-title: J. Acoust. Soc. Am. – volume: 309 start-page: 55 year: 2014 end-page: 62 ident: bib147 article-title: Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas publication-title: Hear. Res. – volume: 111 start-page: 2178 year: 2002 end-page: 2188 ident: bib124 article-title: A revised model of the inner-hair cell and auditory-nerve complex publication-title: J. Acoust. Soc. Am. – reference: channels on auditory nerve responses. Hear. Res – volume: 560 start-page: 691 year: 2004 end-page: 708 ident: bib73 article-title: A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells publication-title: J. Physiol. – volume: 104 start-page: 1517 year: 1998 end-page: 1543 ident: bib128 article-title: Modeling otoacoustic emission and hearing threshold fine structures publication-title: J. Acoust. Soc. Am. – volume: 12 start-page: 605 year: 2011 end-page: 616 ident: bib66 article-title: Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift publication-title: J. Assoc. Res. Otolaryngol. – volume: 73 start-page: 231 year: 1994 end-page: 243 ident: bib108 article-title: Characterising auditory filter nonlinearity publication-title: Hear. Res. – volume: vol. 30 year: 2007 ident: bib71 publication-title: Active Processes and Otoacoustic Emissions in Hearing – volume: 179 start-page: 113 year: 1996 end-page: 121 ident: bib19 article-title: Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components publication-title: J. Comp. Physiol. A – volume: 128 start-page: 1870 year: 2010 end-page: 1883 ident: bib27 article-title: Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics a publication-title: J. Acoust. Soc. Am. – volume: 35 start-page: 2161 year: 2015 end-page: 2172 ident: bib9 article-title: Individual differences reveal correlates of hidden hearing deficits publication-title: J. Neurosci. – volume: 124 start-page: 422 year: 2008 end-page: 438 ident: bib46 article-title: A computational model of human auditory signal processing and perception publication-title: J. Acoust. Soc. Am. – volume: 90 start-page: 1958 year: 1991 end-page: 1967 ident: bib141 article-title: Intensity coding in low-frequency auditory-nerve fibers of the guinea pig publication-title: J. Acoust. Soc. Am. – volume: 138 start-page: 977 year: 2015 end-page: 993 ident: bib63 article-title: Non-invasive estimation of middle-ear input impedance and efficiency a publication-title: J. Acoust. Soc. Am. – volume: 79 start-page: 702 year: 1986 end-page: 711 ident: bib76 article-title: Simulation of mechanical to neural transduction in the auditory receptor publication-title: J. Acoust. Soc. Am. – volume: 16 start-page: 727 year: 2015 end-page: 745 ident: bib119 article-title: Towards a diagnosis of cochlear neuropathy with envelope following responses publication-title: J. Assoc. Res. Otolaryngol. – volume: 11 start-page: 343 year: 2010 end-page: 365 ident: bib122 article-title: Otoacoustic estimation of cochlear tuning: validation in the chinchilla publication-title: J. Assoc. Res. Otolaryngol. – volume: 93 start-page: 557 year: 2005 end-page: 569 ident: bib126 article-title: Response properties of single auditory nerve fibers in the mouse publication-title: J. Neurophysiol. – volume: 44 start-page: 173 year: 2016 end-page: 184 ident: bib85 article-title: Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain publication-title: Neurobiol. Aging – start-page: 595 year: 1998 end-page: 603 ident: bib18 article-title: Neural coding of the temporal envelope of speech: relation to modulation transfer functions publication-title: Psychophysical and Physiological Advances in Hearing – volume: 9 start-page: 1 year: 1981 end-page: 41 ident: bib96 article-title: Auditory evoked potentials from the human cochlea and brainstem publication-title: J. Otolaryngol. – volume: 27 start-page: 105 year: 1998 end-page: 112 ident: bib39 article-title: Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz publication-title: Scand. Audiol. – volume: 80 start-page: 133 year: 1986 end-page: 145 ident: bib162 article-title: A biophysical model of cochlear processing: intensity dependence of pure tone responses publication-title: J. Acoust. Soc. Am. – volume: 140 start-page: 1618 year: 2016 end-page: 1634 ident: bib113 article-title: A comparative study of seven human cochlear filter models publication-title: J. Acoust. Soc. Am. – volume: 15 start-page: 249 year: 1984 end-page: 260 ident: bib139 article-title: Rapid and short-term adaptation in auditory nerve responses publication-title: Hear. Res. – volume: 102 start-page: 1811 year: 1997 end-page: 1820 ident: bib78 article-title: A unitary model of pitch perception publication-title: J. Acoust. Soc. Am. – start-page: 213 year: 2011 end-page: 245 ident: bib95 article-title: Human auditory evoked potentials. Chapter 8: Auditory brainstem responses: peaks along the way – volume: 18 start-page: 409 year: 1997 end-page: 419 ident: bib118 article-title: The relationship between loudness intensity functions and the click-ABR wave V latency publication-title: Ear Hear. – volume: 146 start-page: 101 year: 2000 end-page: 120 ident: bib56 article-title: Nonlinear temporal interactions in click-evoked otoacoustic emissions. II. Experimental data publication-title: Hear. Res. – volume: 55 start-page: 215 year: 1991 end-page: 222 ident: bib103 article-title: Recovery from prior stimulation. I: relationship to spontaneous firing rates of primary auditory neurons publication-title: Hear. Res. – volume: 30 start-page: 4210 year: 2010 end-page: 4220 ident: bib37 article-title: Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse publication-title: J. Neurosci. – volume: 113 start-page: 893 year: 2003 end-page: 901 ident: bib125 article-title: Adaptation in a revised inner-hair cell model publication-title: J. Acoust. Soc. Am. – volume: 102 start-page: 2892 year: 1997 end-page: 2905 ident: bib16 article-title: Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers publication-title: J. Acoust. Soc. Am. – volume: 63 start-page: 442 year: 1978 end-page: 455 ident: bib64 article-title: Auditory-nerve response from cats raised in a low-noise chamber publication-title: J. Acoust. Soc. Am. – volume: 87 start-page: 2592 year: 1990 end-page: 2605 ident: bib38 article-title: A cochlear frequency-position function for several species—29 years later publication-title: J. Acoust. Soc. Am. – volume: Vol. 30 start-page: 181 year: 1965 end-page: 190 ident: bib154 article-title: A model for transducer action in the cochlea publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 111 start-page: 14918 year: 2014 end-page: 14923 ident: bib14 article-title: Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells publication-title: Proceed. Natl Acad. Sci. U. S. A. – volume: 6 start-page: 105 year: 1984 end-page: 112 ident: bib33 article-title: Some comparisons between auditory brain stem response thresholds, latencies, and the pure-tone audiogram publication-title: Ear Hear. – volume: 342 start-page: 150 year: 2016 end-page: 160 ident: bib101 article-title: Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning publication-title: Hear. Res. – volume: 29 start-page: 681 year: 2001 end-page: 690 ident: bib6 article-title: Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse publication-title: Neuron – volume: 2 start-page: 91 year: 2001 end-page: 96 ident: bib42 article-title: Auditory nerve model for predicting performance limits of normal and impaired listeners publication-title: Acoust Res. Lett. Online – volume: 108 start-page: 2281 year: 2000 end-page: 2298 ident: bib102 article-title: Basilar membrane responses to broadband stimuli publication-title: J. Acoust. Soc. Am. – volume: 32 start-page: 613 year: 1969 end-page: 636 ident: bib32 article-title: Response of binaural neurons of dog publication-title: J. Neurophysiol. – volume: 42 start-page: 1083 year: 1979 end-page: 1107 ident: bib40 article-title: Forward masking of auditory nerve fiber responses publication-title: J. Neurophysiol. – volume: 112 start-page: 1025 year: 2014 end-page: 1039 ident: bib11 article-title: Contribution of auditory nerve fibers to compound action potential of the auditory nerve publication-title: J. Neurophysiol. – volume: 122 start-page: 2759 year: 2007 end-page: 2771 ident: bib25 article-title: A state space model for cochlear mechanics publication-title: J. Acoust. Soc. Am. – volume: 83 start-page: 1389 year: 2014 end-page: 1403 ident: bib12 article-title: Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis publication-title: Neuron – year: 2016 ident: bib91 article-title: Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes publication-title: Proc Natl Acad. Sci. – volume: 129 start-page: 1452 year: 2011 end-page: 1463 ident: bib134 article-title: Temporal suppression of the click-evoked otoacoustic emission level-curve publication-title: J. Acoust. Soc. Am. – volume: 62 start-page: 87 year: 1980 end-page: 174 ident: bib17 article-title: Auditory physics. Physical principles in hearing theory. I publication-title: Phys. Rep. – volume: 141 year: 2017 ident: bib4 article-title: Model-based estimation of the frequency-tuning of the inner hair cell stereocilia from neural tuning curves publication-title: J. Acoust. Soc. Am. – volume: 26 start-page: 179 year: 1987 end-page: 187 ident: bib99 article-title: Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss publication-title: Audiology – volume: 338 start-page: 179 year: 1983 end-page: 206 ident: bib111 article-title: Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells publication-title: J. Physiol. – volume: 27 start-page: 1006 year: 2007 end-page: 1014 ident: bib47 article-title: Mechanoelectric transduction of adult inner hair cells publication-title: J. Neurosci. – volume: 125 start-page: 1878 year: 2014 end-page: 1888 ident: bib7 article-title: Rapid acquisition of auditory subcortical steady state responses using multichannel recordings publication-title: Clin. Neurophysiol. – volume: 6 start-page: 832 year: 2003 end-page: 836 ident: bib157 article-title: Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells publication-title: Nat. Neurosci. – volume: 106 start-page: 4483 year: 2009 end-page: 4488 ident: bib29 article-title: Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells publication-title: Proc Natl Acad. Sci. – volume: 68 start-page: 1087 year: 1992 end-page: 1099 ident: bib109 article-title: Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression publication-title: J. Neurophysiol. – volume: 41 start-page: 193 year: 2016 end-page: 206 ident: bib84 article-title: Ion channel noise can explain firing correlation in auditory nerves publication-title: J. Comput. Neurosci. – volume: 72 start-page: 108 year: 1982 end-page: 130 ident: bib69 article-title: Input impedance of the cochlea in cat publication-title: J. Acoust. Soc. Am. – volume: 129 start-page: 801 year: 2011 end-page: 816 ident: bib34 article-title: Growth of suppression in humans based on distortion-product otoacoustic emission measurements publication-title: J. Acoust. Soc. Am. – volume: 21 start-page: 179 year: 1986 end-page: 192 ident: bib62 article-title: Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones publication-title: Hear. Res. – volume: 89 start-page: 1229 year: 1991 end-page: 1254 ident: bib152 article-title: Finding the impedance of the organ of Corti publication-title: J. Acoust. Soc. Am. – volume: 121 start-page: 2792 year: 2007 end-page: 2804 ident: bib104 article-title: Basilar membrane mechanics in the 6–9 kHz region of sensitive chinchilla cochleae publication-title: J. Acoust. Soc. Am. – volume: 89 start-page: 1276 year: 1991 end-page: 1289 ident: bib121 article-title: A symmetry suppresses the cochlear catastrophe publication-title: J. Acoust. Soc. Am. – volume: 54 start-page: 67 year: 1991 end-page: 74 ident: bib48 article-title: Brainstem auditory evoked responses from birth to adulthood: normative data of latency and interval publication-title: Hear. Res. – volume: 421 start-page: 263 year: 1990 end-page: 291 ident: bib59 article-title: Potassium currents in inner hair cells isolated from the guinea-pig cochlea publication-title: J. Physiol. – volume: 7 start-page: 218 year: 2006 end-page: 235 ident: bib68 article-title: A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression publication-title: J. Assoc. Res. Otolaryngol. – volume: 3 start-page: 2043 year: 1983 end-page: 2053 ident: bib90 article-title: Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus publication-title: J. Neurosci. – volume: 109 start-page: 648 year: 2001 end-page: 670 ident: bib146 article-title: A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression publication-title: J. Acoust. Soc. Am. – volume: 136 start-page: EL302 year: 2014 end-page: EL308 ident: bib3 article-title: Transmission line cochlear models: improved accuracy and efficiency publication-title: J. Acoust. Soc. Am. – volume: 139 start-page: 2561 year: 2016 end-page: 2578 ident: bib153 article-title: Nonlinear cochlear mechanics publication-title: J. Acoust. Soc. Am. – volume: 2 year: 2010 ident: bib155 article-title: Summing across different active zones can explain the quasi-linear Ca2+-dependencies of exocytosis by receptor cells publication-title: Front. Synaptic neurosci. – volume: 134 start-page: 436 year: 2013 end-page: 446 ident: bib51 article-title: A multi-resolution envelope-power based model for speech intelligibility publication-title: J. Acoust. Soc. Am. – volume: 31 start-page: 13452 year: 2011 end-page: 13457 ident: bib114 article-title: Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model publication-title: J. Neurosci. – volume: 127 start-page: 1411 year: 2010 end-page: 1421 ident: bib75 article-title: The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics publication-title: J. Acoust. Soc. Am. – volume: 353 start-page: 213 year: 2017 end-page: 223 ident: bib130 article-title: Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta) publication-title: Hear. Res. – volume: 116 start-page: 2173 year: 2004 end-page: 2186 ident: bib159 article-title: A phenomenological model of peripheral and central neural responses to amplitude-modulated tones publication-title: J. Acoust. Soc. Am. – volume: 110 start-page: 577 year: 2013 end-page: 586 ident: bib31 article-title: Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates publication-title: J. Neurophysiol. – volume: 16 start-page: 121 year: 2015 end-page: 133 ident: bib72 article-title: Tone-in-noise detection using envelope cues: comparison of signal-processing-based and physiological models publication-title: J. Assoc. Res. Otolaryngol. – volume: 131 start-page: 3903 year: 2012 end-page: 3913 ident: bib107 article-title: Modeling auditory evoked brainstem responses to transient stimuli publication-title: J. Acoust. Soc. Am. – volume: 70 start-page: 1143 year: 2011 end-page: 1154 ident: bib50 article-title: Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant publication-title: Neuron – volume: 138 start-page: 1637 year: 2015 end-page: 1659 ident: bib136 article-title: Functional modeling of the human auditory brainstem response to broadband stimulation a publication-title: J. Acoust. Soc. Am. – volume: 338 start-page: 32 year: 2016 end-page: 39 ident: bib44 article-title: Sound coding in the auditory nerve of gerbils publication-title: Hear. Res. – volume: 109 start-page: 2023 year: 2001 end-page: 2034 ident: bib120 article-title: Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion publication-title: J. Acoust. Soc. Am. – volume: 108 start-page: 17516 year: 2011 end-page: 17520 ident: bib54 article-title: Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans publication-title: Proc Natl Acad. Sci. – start-page: 9 year: 2010 end-page: 38 ident: bib115 article-title: The physiology of cochlear presbycusis publication-title: The Aging Auditory System – volume: 118 start-page: 1540 year: 2005 end-page: 1553 ident: bib145 article-title: Analysis of models for the synapse between the inner hair cell and the auditory nerve publication-title: J. Acoust. Soc. Am. – volume: 18 start-page: 159 year: 1985 end-page: 168 ident: bib105 article-title: Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers publication-title: Hear. Res. – volume: 83 start-page: 2266 year: 1988 end-page: 2276 ident: bib140 article-title: A diffusion model of the transient response of the cochlear inner hair cell synapse publication-title: J. Acoust. Soc. Am. – volume: 126 start-page: 2390 year: 2009 end-page: 2412 ident: bib149 article-title: A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics publication-title: J. Acoust. Soc. Am. – volume: 81 start-page: 1305 year: 2001 end-page: 1352 ident: bib106 article-title: Mechanics of the mammalian cochlea publication-title: Physiol. Rev. – volume: 113 start-page: 936 year: 2003 end-page: 950 ident: bib15 article-title: The importance of cochlear processing for the formation of auditory brainstem and frequency following responses publication-title: J. Acoust. Soc. Am. – volume: 96 start-page: 71 year: 1996 end-page: 82 ident: bib129 article-title: Selective inner hair cell loss does not alter distortion product otoacoustic emissions publication-title: Hear. Res. – volume: 9 start-page: 123 year: 1983 end-page: 130 ident: bib88 article-title: An active cochlear model showing sharp tuning and high sensitivity publication-title: Hear. Res. – volume: 20 year: 2016 ident: bib137 article-title: Individual differences in auditory brainstem response wave characteristics: relations to different aspects of peripheral hearing loss publication-title: Trends Hear. – volume: 58 start-page: 70 year: 1992 end-page: 78 ident: bib20 article-title: The envelope following response: scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals publication-title: Hear. Res. – volume: 56 start-page: 1835 year: 1974 end-page: 1847 ident: bib112 article-title: Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli publication-title: J. Acoust. Soc. Am. – volume: 126 start-page: 1878 year: 2009 end-page: 1888 ident: bib123 article-title: Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity publication-title: J. Acoust. Soc. Am. – volume: 116 start-page: 426 year: 2004 end-page: 441 ident: bib144 article-title: A biophysical model of an inner hair cell publication-title: J. Acoust. Soc. Am. – volume: 89 start-page: 287 year: 1991 end-page: 309 ident: bib100 article-title: A parametric study of cochlear input impedance publication-title: J. Acoust. Soc. Am. – volume: 105 start-page: 799 year: 1999 end-page: 810 ident: bib13 article-title: Response phase: a view from the inner hair cell publication-title: J. Acoust. Soc. Am. – volume: 25 start-page: 267 year: 1978 end-page: 272 ident: bib132 article-title: Effects of rate variation on the counting statistics of dead-time-modified Poisson processes publication-title: Optic Commun. – volume: 2 start-page: 216 year: 2001 end-page: 232 ident: bib83 article-title: Response properties of the refractory auditory nerve fiber publication-title: J. Assoc. Res. Otolaryngol. – volume: vol. 40 start-page: 619 year: 1976 end-page: 633 ident: bib151 article-title: Basilar membrane motion publication-title: Cold Spring Harbor Symposia on Quantitative Biology – volume: 323 start-page: 68 year: 2015 end-page: 80 ident: bib10 article-title: Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR publication-title: Hear. Res. – volume: 11 year: 2016 ident: bib65 article-title: Toward a differential diagnosis of hidden hearing loss in humans publication-title: PLoS One – volume: 24 start-page: 1 year: 1986 end-page: 15 ident: bib92 article-title: Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells publication-title: Hear. Res. – volume: 95 start-page: 3430 year: 1994 end-page: 3434 ident: bib143 article-title: Transfer characteristic of the inner hair cell synapse: steady-state analysis publication-title: J. Acoust. Soc. Am. – volume: 18 year: 2014 ident: bib98 article-title: Perceptual consequences of “hidden” hearing loss publication-title: Trends Hear. – volume: 4 start-page: e08177 year: 2015 ident: bib156 article-title: Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding publication-title: Elife – volume: 13 start-page: 869 year: 2010 end-page: 876 ident: bib93 article-title: Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells publication-title: Nat. Neurosci. – volume: 120 start-page: 1446 year: 2006 end-page: 1466 ident: bib163 article-title: Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery publication-title: J. Acoust. Soc. Am. – volume: 36 start-page: 3755 year: 2016 end-page: 3764 ident: bib80 article-title: Auditory brainstem response latency in noise as a marker of cochlear synaptopathy publication-title: J. Neurosci. – volume: 135 start-page: 283 year: 2014 end-page: 286 ident: bib150 article-title: Updated parameters and expanded simulation options for a model of the auditory periphery publication-title: J. Acoust. Soc. Am. – year: 2007 ident: bib26 article-title: Estimates of peripheral compression using envelope following responses publication-title: J. Assoc. Res. Otolaryngol. – volume: 104 start-page: 16341 year: 2007 end-page: 16346 ident: bib36 article-title: Time course and calcium dependence of transmitter release at a single ribbon synapse publication-title: Proc Natl Acad. Sci. – year: 2010 ident: bib133 article-title: Characterizing and Modeling Dynamic Processes in the Cochlea Using Otoacoustic Emissions – volume: 225 start-page: 1207 year: 1970 end-page: 1209 ident: bib138 article-title: Travelling waves as frequency analysers in the cochlea publication-title: Nature – volume: 108 start-page: 1181 year: 2000 end-page: 1196 ident: bib28 article-title: Characterizing frequency selectivity for envelope fluctuations publication-title: J. Acoust. Soc. Am. – volume: 34 start-page: 15097 year: 2014 end-page: 15109 ident: bib94 article-title: A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers publication-title: J. Neurosci. – volume: 309 start-page: 147 year: 2014 end-page: 163 ident: bib127 article-title: Visualization of functional count-comparison-based binaural auditory model output publication-title: Hear. Res. – volume: 139 start-page: 2896 year: 2016 end-page: 2910 ident: bib97 article-title: Physiological motivated transmission-lines as front end for loudness models publication-title: J. Acoust. Soc. Am. – volume: 29 start-page: 14077 year: 2009 end-page: 14085 ident: bib61 article-title: Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss publication-title: J. Neurosci. – volume: 101 start-page: 2151 year: 1997 end-page: 2163 ident: bib110 article-title: Basilar-membrane responses to tones at the base of the chinchilla cochlea publication-title: J. Acoust. Soc. Am. – volume: 8 year: 2014 ident: bib8 article-title: Cochlear neuropathy and the coding of supra-threshold sound publication-title: Front. Syst. Neurosci. – volume: 126 start-page: 728 year: 2009 end-page: 738 ident: bib89 article-title: Distortion-product otoacoustic emission input/output characteristics in normal-hearing and hearing-impaired human ears publication-title: J. Acoust. Soc. Am. – volume: 108 start-page: 17516 issue: 42 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib54 article-title: Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans publication-title: Proc Natl Acad. Sci. doi: 10.1073/pnas.1105867108 – volume: 138 start-page: 1637 issue: 3 year: 2015 ident: 10.1016/j.heares.2017.12.018_bib136 article-title: Functional modeling of the human auditory brainstem response to broadband stimulation a publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4928305 – volume: 90 start-page: 1958 issue: 4 year: 1991 ident: 10.1016/j.heares.2017.12.018_bib141 article-title: Intensity coding in low-frequency auditory-nerve fibers of the guinea pig publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.401675 – volume: 125 start-page: 1878 issue: 9 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib7 article-title: Rapid acquisition of auditory subcortical steady state responses using multichannel recordings publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2014.01.011 – volume: 309 start-page: 147 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib127 article-title: Visualization of functional count-comparison-based binaural auditory model output publication-title: Hear. Res. doi: 10.1016/j.heares.2013.10.004 – volume: 323 start-page: 68 year: 2015 ident: 10.1016/j.heares.2017.12.018_bib10 article-title: Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR publication-title: Hear. Res. doi: 10.1016/j.heares.2015.01.011 – volume: 54 start-page: 67 issue: 1 year: 1991 ident: 10.1016/j.heares.2017.12.018_bib48 article-title: Brainstem auditory evoked responses from birth to adulthood: normative data of latency and interval publication-title: Hear. Res. doi: 10.1016/0378-5955(91)90137-X – volume: 136 start-page: EL302 issue: 4 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib3 article-title: Transmission line cochlear models: improved accuracy and efficiency publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4896416 – volume: 24 start-page: 1 issue: 1 year: 1986 ident: 10.1016/j.heares.2017.12.018_bib92 article-title: Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells publication-title: Hear. Res. doi: 10.1016/0378-5955(86)90002-X – volume: 13 start-page: 869 issue: 7 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib93 article-title: Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells publication-title: Nat. Neurosci. doi: 10.1038/nn.2578 – volume: vol. 40 start-page: 619 year: 1976 ident: 10.1016/j.heares.2017.12.018_bib151 article-title: Basilar membrane motion – volume: 139 start-page: 2561 issue: 5 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib153 article-title: Nonlinear cochlear mechanics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4941249 – volume: 34 start-page: 15097 issue: 45 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib94 article-title: A model of synaptic vesicle-pool depletion and replenishment can account for the interspike interval distributions and nonrenewal properties of spontaneous spike trains of auditory-nerve fibers publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0903-14.2014 – volume: 128 start-page: 1870 issue: 4 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib27 article-title: Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics a publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3479755 – volume: 80 start-page: 133 issue: 1 year: 1986 ident: 10.1016/j.heares.2017.12.018_bib162 article-title: A biophysical model of cochlear processing: intensity dependence of pure tone responses publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.394173 – volume: 58 start-page: 70 issue: 1 year: 1992 ident: 10.1016/j.heares.2017.12.018_bib20 article-title: The envelope following response: scalp potentials elicited in the Mongolian gerbil using sinusoidally AM acoustic signals publication-title: Hear. Res. doi: 10.1016/0378-5955(92)90010-K – volume: 44 start-page: 173 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib85 article-title: Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2016.05.001 – volume: 110 start-page: 577 issue: 3 year: 2013 ident: 10.1016/j.heares.2017.12.018_bib31 article-title: Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates publication-title: J. Neurophysiol. doi: 10.1152/jn.00164.2013 – volume: 89 start-page: 287 issue: 1 year: 1991 ident: 10.1016/j.heares.2017.12.018_bib100 article-title: A parametric study of cochlear input impedance publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400675 – volume: 109 start-page: 2852 issue: 6 year: 2001 ident: 10.1016/j.heares.2017.12.018_bib79 article-title: A computational algorithm for computing nonlinear auditory frequency selectivity publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1370357 – volume: 140 start-page: 1618 issue: 3 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib113 article-title: A comparative study of seven human cochlear filter models publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4960486 – start-page: 595 year: 1998 ident: 10.1016/j.heares.2017.12.018_bib18 article-title: Neural coding of the temporal envelope of speech: relation to modulation transfer functions – volume: 6 start-page: 105 issue: 2 year: 1984 ident: 10.1016/j.heares.2017.12.018_bib33 article-title: Some comparisons between auditory brain stem response thresholds, latencies, and the pure-tone audiogram publication-title: Ear Hear. doi: 10.1097/00003446-198503000-00008 – volume: 18 start-page: 409 issue: 5 year: 1997 ident: 10.1016/j.heares.2017.12.018_bib118 article-title: The relationship between loudness intensity functions and the click-ABR wave V latency publication-title: Ear Hear. doi: 10.1097/00003446-199710000-00006 – volume: 11 issue: 9 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib65 article-title: Toward a differential diagnosis of hidden hearing loss in humans publication-title: PLoS One doi: 10.1371/journal.pone.0162726 – volume: 12 start-page: 444 issue: 4 year: 2009 ident: 10.1016/j.heares.2017.12.018_bib82 article-title: Tuning of synapse number, structure and function in the cochlea publication-title: Nat. Neurosci. doi: 10.1038/nn.2293 – volume: 18 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib98 article-title: Perceptual consequences of “hidden” hearing loss publication-title: Trends Hear. – start-page: 9 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib115 article-title: The physiology of cochlear presbycusis – volume: 89 start-page: 1276 issue: 3 year: 1991 ident: 10.1016/j.heares.2017.12.018_bib121 article-title: A symmetry suppresses the cochlear catastrophe publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400650 – volume: 132 start-page: 3842 issue: 6 year: 2012 ident: 10.1016/j.heares.2017.12.018_bib135 article-title: Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4763989 – volume: 3 start-page: 2043 issue: 10 year: 1983 ident: 10.1016/j.heares.2017.12.018_bib90 article-title: Synaptic responses and electrical properties of cells in brain slices of the mouse anteroventral cochlear nucleus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.03-10-02043.1983 – volume: 141 year: 2017 ident: 10.1016/j.heares.2017.12.018_bib4 article-title: Model-based estimation of the frequency-tuning of the inner hair cell stereocilia from neural tuning curves publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4985193 – volume: 134 start-page: 436 issue: 1 year: 2013 ident: 10.1016/j.heares.2017.12.018_bib51 article-title: A multi-resolution envelope-power based model for speech intelligibility publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4807563 – volume: 127 start-page: 2420 issue: 4 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib67 article-title: Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3337233 – volume: 68 start-page: 1087 issue: 4 year: 1992 ident: 10.1016/j.heares.2017.12.018_bib109 article-title: Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression publication-title: J. Neurophysiol. doi: 10.1152/jn.1992.68.4.1087 – volume: 111 start-page: 2178 issue: 5 year: 2002 ident: 10.1016/j.heares.2017.12.018_bib124 article-title: A revised model of the inner-hair cell and auditory-nerve complex publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1453451 – volume: 27 start-page: 1006 issue: 5 year: 2007 ident: 10.1016/j.heares.2017.12.018_bib47 article-title: Mechanoelectric transduction of adult inner hair cells publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5452-06.2007 – volume: 131 start-page: 3903 issue: 5 year: 2012 ident: 10.1016/j.heares.2017.12.018_bib107 article-title: Modeling auditory evoked brainstem responses to transient stimuli publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3699171 – volume: 124 start-page: 422 issue: 1 year: 2008 ident: 10.1016/j.heares.2017.12.018_bib46 article-title: A computational model of human auditory signal processing and perception publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2924135 – volume: 129 start-page: 801 issue: 2 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib34 article-title: Growth of suppression in humans based on distortion-product otoacoustic emission measurements publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3523287 – volume: 31 start-page: 801 issue: 3 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib158 article-title: Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3389-10.2011 – volume: 36 start-page: 3755 issue: 13 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib80 article-title: Auditory brainstem response latency in noise as a marker of cochlear synaptopathy publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4460-15.2016 – volume: 55 start-page: 346 issue: 6 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib55 article-title: Exploration of a physiologically-inspired hearing-aid algorithm using a computer model mimicking impaired hearing publication-title: Int. J. Audiol. doi: 10.3109/14992027.2015.1135352 – volume: 93 start-page: 52 issue: 1–2 year: 1996 ident: 10.1016/j.heares.2017.12.018_bib81 article-title: Generators of the brainstem auditory evoked potential in cat. III: identified cell populations publication-title: Hear. Res. doi: 10.1016/0378-5955(95)00200-6 – volume: 49 start-page: 181 issue: 1 year: 1990 ident: 10.1016/j.heares.2017.12.018_bib58 article-title: Mechanisms that degrade timing information in the cochlea publication-title: Hear. Res. doi: 10.1016/0378-5955(90)90104-W – volume: 138 start-page: 977 issue: 2 year: 2015 ident: 10.1016/j.heares.2017.12.018_bib63 article-title: Non-invasive estimation of middle-ear input impedance and efficiency a publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4927408 – volume: 16 start-page: 121 issue: 1 year: 2015 ident: 10.1016/j.heares.2017.12.018_bib72 article-title: Tone-in-noise detection using envelope cues: comparison of signal-processing-based and physiological models publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-014-0489-1 – volume: Vol. 30 start-page: 181 year: 1965 ident: 10.1016/j.heares.2017.12.018_bib154 article-title: A model for transducer action in the cochlea – volume: 108 start-page: 1181 issue: 3 year: 2000 ident: 10.1016/j.heares.2017.12.018_bib28 article-title: Characterizing frequency selectivity for envelope fluctuations publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1288665 – volume: 91 start-page: 215 issue: 1 year: 1992 ident: 10.1016/j.heares.2017.12.018_bib52 article-title: Responses to amplitude-modulated tones in the auditory nerve of the cat publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.402757 – volume: 342 start-page: 150 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib101 article-title: Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning publication-title: Hear. Res. doi: 10.1016/j.heares.2016.10.016 – volume: 135 start-page: 283 issue: 1 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib150 article-title: Updated parameters and expanded simulation options for a model of the auditory periphery publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4837815 – volume: 129 start-page: 262 issue: 1 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib45 article-title: Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3518768 – volume: 121 start-page: 2792 issue: 5 year: 2007 ident: 10.1016/j.heares.2017.12.018_bib104 article-title: Basilar membrane mechanics in the 6–9 kHz region of sensitive chinchilla cochleae publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2718397 – volume: 116 start-page: 2173 issue: 4 year: 2004 ident: 10.1016/j.heares.2017.12.018_bib159 article-title: A phenomenological model of peripheral and central neural responses to amplitude-modulated tones publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1784442 – volume: 338 start-page: 179 issue: 1 year: 1983 ident: 10.1016/j.heares.2017.12.018_bib111 article-title: Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells publication-title: J. Physiol. doi: 10.1113/jphysiol.1983.sp014668 – volume: 109 start-page: 648 issue: 2 year: 2001 ident: 10.1016/j.heares.2017.12.018_bib146 article-title: A phenomenological model for the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and suppression publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1336503 – volume: 84 start-page: 541 issue: 2 year: 2004 ident: 10.1016/j.heares.2017.12.018_bib53 article-title: Neural processing of amplitude-modulated sounds publication-title: Physiol. Rev. doi: 10.1152/physrev.00029.2003 – volume: 126 start-page: 2425 issue: 5 year: 2009 ident: 10.1016/j.heares.2017.12.018_bib86 article-title: Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3224762 – volume: 46 issue: 1A year: 1969 ident: 10.1016/j.heares.2017.12.018_bib57 article-title: Discharge rates of single auditory nerve fibers as functions of tone level publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1972490 – volume: 586 start-page: 1029 issue: 4 year: 2008 ident: 10.1016/j.heares.2017.12.018_bib49 article-title: Biophysical properties of CaV1. 3 calcium channels in gerbil inner hair cells publication-title: J. Physiol. doi: 10.1113/jphysiol.2007.145219 – volume: 249 start-page: 185 issue: 1325 year: 1992 ident: 10.1016/j.heares.2017.12.018_bib60 article-title: Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea publication-title: Proceed. Roy. Soc. Lon. B Biol. Sci. doi: 10.1098/rspb.1992.0102 – volume: 68 start-page: 1676 issue: 6 year: 1980 ident: 10.1016/j.heares.2017.12.018_bib87 article-title: Sound pressures in the basal turn of the cat cochlea publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.385200 – volume: 127 start-page: 1411 issue: 3 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib75 article-title: The effect of tectorial membrane and basilar membrane longitudinal coupling in cochlear mechanics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3290995 – volume: 56 start-page: 1835 issue: 6 year: 1974 ident: 10.1016/j.heares.2017.12.018_bib112 article-title: Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1903521 – volume: 113 start-page: 936 issue: 2 year: 2003 ident: 10.1016/j.heares.2017.12.018_bib15 article-title: The importance of cochlear processing for the formation of auditory brainstem and frequency following responses publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1534833 – volume: 225 start-page: 1207 issue: 5239 year: 1970 ident: 10.1016/j.heares.2017.12.018_bib138 article-title: Travelling waves as frequency analysers in the cochlea publication-title: Nature doi: 10.1038/2251207a0 – volume: 16 start-page: 727 issue: 6 year: 2015 ident: 10.1016/j.heares.2017.12.018_bib119 article-title: Towards a diagnosis of cochlear neuropathy with envelope following responses publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-015-0539-3 – volume: 81 start-page: 1305 issue: 3 year: 2001 ident: 10.1016/j.heares.2017.12.018_bib106 article-title: Mechanics of the mammalian cochlea publication-title: Physiol. Rev. doi: 10.1152/physrev.2001.81.3.1305 – volume: 95 start-page: 3430 issue: 6 year: 1994 ident: 10.1016/j.heares.2017.12.018_bib143 article-title: Transfer characteristic of the inner hair cell synapse: steady-state analysis publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.409963 – volume: 26 start-page: 179 issue: 3 year: 1987 ident: 10.1016/j.heares.2017.12.018_bib99 article-title: Prediction of auditory brainstem wave V latency as a diagnostic tool of sensorineural hearing loss publication-title: Audiology doi: 10.3109/00206098709078420 – volume: 44 start-page: 99 issue: 2 year: 1990 ident: 10.1016/j.heares.2017.12.018_bib30 article-title: Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement publication-title: Hear. Res. doi: 10.1016/0378-5955(90)90074-Y – volume: 106 start-page: 4483 issue: 11 year: 2009 ident: 10.1016/j.heares.2017.12.018_bib29 article-title: Mechanisms contributing to synaptic Ca2+ signals and their heterogeneity in hair cells publication-title: Proc Natl Acad. Sci. doi: 10.1073/pnas.0813213106 – start-page: 213 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib95 – volume: 122 start-page: 2759 issue: 5 year: 2007 ident: 10.1016/j.heares.2017.12.018_bib25 article-title: A state space model for cochlear mechanics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2783125 – volume: 25 start-page: 267 issue: 2 year: 1978 ident: 10.1016/j.heares.2017.12.018_bib132 article-title: Effects of rate variation on the counting statistics of dead-time-modified Poisson processes publication-title: Optic Commun. doi: 10.1016/0030-4018(78)90322-X – volume: 338 start-page: 32 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib44 article-title: Sound coding in the auditory nerve of gerbils publication-title: Hear. Res. doi: 10.1016/j.heares.2016.05.006 – volume: 129 start-page: 817 issue: 2 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib35 article-title: Distortion-product otoacoustic emission suppression tuning curves in humans publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3531864 – volume: 2 start-page: 439 issue: 3 year: 1980 ident: 10.1016/j.heares.2017.12.018_bib116 article-title: The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea publication-title: Hear. Res. doi: 10.1016/0378-5955(80)90080-5 – volume: 35 start-page: 2161 issue: 5 year: 2015 ident: 10.1016/j.heares.2017.12.018_bib9 article-title: Individual differences reveal correlates of hidden hearing deficits publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3915-14.2015 – volume: 30 start-page: 4210 issue: 12 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib37 article-title: Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4439-09.2010 – volume: 421 start-page: 263 issue: 1 year: 1990 ident: 10.1016/j.heares.2017.12.018_bib59 article-title: Potassium currents in inner hair cells isolated from the guinea-pig cochlea publication-title: J. Physiol. doi: 10.1113/jphysiol.1990.sp017944 – volume: 70 start-page: 1143 issue: 6 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib50 article-title: Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant publication-title: Neuron doi: 10.1016/j.neuron.2011.04.024 – volume: 66 start-page: 123 issue: 1 year: 1979 ident: 10.1016/j.heares.2017.12.018_bib2 article-title: Cochlear macromechanics: time domain solutions publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.383064 – volume: 18 start-page: 159 issue: 2 year: 1985 ident: 10.1016/j.heares.2017.12.018_bib105 article-title: Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers publication-title: Hear. Res. doi: 10.1016/0378-5955(85)90008-5 – volume: 21 start-page: 179 issue: 2 year: 1986 ident: 10.1016/j.heares.2017.12.018_bib62 article-title: Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones publication-title: Hear. Res. doi: 10.1016/0378-5955(86)90038-9 – volume: 9 start-page: 1 year: 1981 ident: 10.1016/j.heares.2017.12.018_bib96 article-title: Auditory evoked potentials from the human cochlea and brainstem publication-title: J. Otolaryngol. – volume: 113 start-page: 2773 issue: 5 year: 2003 ident: 10.1016/j.heares.2017.12.018_bib160 article-title: Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1564018 – ident: 10.1016/j.heares.2017.12.018_bib5 doi: 10.1016/j.heares.2018.03.029 – volume: 108 start-page: 2281 issue: 5 year: 2000 ident: 10.1016/j.heares.2017.12.018_bib102 article-title: Basilar membrane responses to broadband stimuli publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1318898 – volume: 309 start-page: 55 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib147 article-title: Sensorineural hearing loss amplifies neural coding of envelope information in the central auditory system of chinchillas publication-title: Hear. Res. doi: 10.1016/j.heares.2013.11.006 – volume: 55 start-page: 215 issue: 2 year: 1991 ident: 10.1016/j.heares.2017.12.018_bib103 article-title: Recovery from prior stimulation. I: relationship to spontaneous firing rates of primary auditory neurons publication-title: Hear. Res. doi: 10.1016/0378-5955(91)90106-J – volume: 63 start-page: 442 issue: 2 year: 1978 ident: 10.1016/j.heares.2017.12.018_bib64 article-title: Auditory-nerve response from cats raised in a low-noise chamber publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.381736 – volume: 116 start-page: 426 issue: 1 year: 2004 ident: 10.1016/j.heares.2017.12.018_bib144 article-title: A biophysical model of an inner hair cell publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1755237 – volume: 130 start-page: 3893 issue: 6 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib70 article-title: Cascades of two-pole–two-zero asymmetric resonators are good models of peripheral auditory function publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3658470 – volume: 353 start-page: 213 year: 2017 ident: 10.1016/j.heares.2017.12.018_bib130 article-title: Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta) publication-title: Hear. Res. doi: 10.1016/j.heares.2017.07.003 – year: 2012 ident: 10.1016/j.heares.2017.12.018_bib22 – volume: 102 start-page: 1811 issue: 3 year: 1997 ident: 10.1016/j.heares.2017.12.018_bib78 article-title: A unitary model of pitch perception publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.420088 – volume: 15 start-page: 249 issue: 3 year: 1984 ident: 10.1016/j.heares.2017.12.018_bib139 article-title: Rapid and short-term adaptation in auditory nerve responses publication-title: Hear. Res. doi: 10.1016/0378-5955(84)90032-7 – volume: 29 start-page: 14077 issue: 45 year: 2009 ident: 10.1016/j.heares.2017.12.018_bib61 article-title: Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2845-09.2009 – volume: 73 start-page: 231 issue: 2 year: 1994 ident: 10.1016/j.heares.2017.12.018_bib108 article-title: Characterising auditory filter nonlinearity publication-title: Hear. Res. doi: 10.1016/0378-5955(94)90239-9 – volume: 129 start-page: 1452 issue: 3 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib134 article-title: Temporal suppression of the click-evoked otoacoustic emission level-curve publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3531930 – volume: 62 start-page: 87 issue: 2 year: 1980 ident: 10.1016/j.heares.2017.12.018_bib17 article-title: Auditory physics. Physical principles in hearing theory. I publication-title: Phys. Rep. doi: 10.1016/0370-1573(80)90100-3 – volume: 2 start-page: 216 issue: 3 year: 2001 ident: 10.1016/j.heares.2017.12.018_bib83 article-title: Response properties of the refractory auditory nerve fiber publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s101620010083 – volume: 87 start-page: 2592 issue: 6 year: 1990 ident: 10.1016/j.heares.2017.12.018_bib38 article-title: A cochlear frequency-position function for several species—29 years later publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.399052 – volume: 2 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib155 article-title: Summing across different active zones can explain the quasi-linear Ca2+-dependencies of exocytosis by receptor cells publication-title: Front. Synaptic neurosci. doi: 10.3389/fnsyn.2010.00148 – volume: 128 start-page: 215 issue: 1 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib24 article-title: Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3397640 – volume: 99 start-page: 3566 issue: 6 year: 1996 ident: 10.1016/j.heares.2017.12.018_bib131 article-title: Spatial periodicity in the cochlea: the result of interaction of spontaneous emissions? publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.414955 – volume: 8 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib8 article-title: Cochlear neuropathy and the coding of supra-threshold sound publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00026 – volume: vol. 30 year: 2007 ident: 10.1016/j.heares.2017.12.018_bib71 – volume: 83 start-page: 1389 issue: 6 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib12 article-title: Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis publication-title: Neuron doi: 10.1016/j.neuron.2014.08.003 – year: 2010 ident: 10.1016/j.heares.2017.12.018_bib133 – volume: 120 start-page: 1446 issue: 3 year: 2006 ident: 10.1016/j.heares.2017.12.018_bib163 article-title: Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2225512 – volume: 9 start-page: 123 issue: 2 year: 1983 ident: 10.1016/j.heares.2017.12.018_bib88 article-title: An active cochlear model showing sharp tuning and high sensitivity publication-title: Hear. Res. doi: 10.1016/0378-5955(83)90022-9 – volume: 89 start-page: 1229 issue: 3 year: 1991 ident: 10.1016/j.heares.2017.12.018_bib152 article-title: Finding the impedance of the organ of Corti publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.400653 – volume: 126 start-page: 728 issue: 2 year: 2009 ident: 10.1016/j.heares.2017.12.018_bib89 article-title: Distortion-product otoacoustic emission input/output characteristics in normal-hearing and hearing-impaired human ears publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3158859 – volume: 12 start-page: 605 issue: 5 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib66 article-title: Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-011-0277-0 – volume: 41 start-page: 193 issue: 2 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib84 article-title: Ion channel noise can explain firing correlation in auditory nerves publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-016-0613-9 – volume: 560 start-page: 691 issue: 3 year: 2004 ident: 10.1016/j.heares.2017.12.018_bib73 article-title: A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells publication-title: J. Physiol. doi: 10.1113/jphysiol.2004.072868 – volume: 93 start-page: 557 issue: 1 year: 2005 ident: 10.1016/j.heares.2017.12.018_bib126 article-title: Response properties of single auditory nerve fibers in the mouse publication-title: J. Neurophysiol. doi: 10.1152/jn.00574.2004 – volume: 31 start-page: 13452 issue: 38 year: 2011 ident: 10.1016/j.heares.2017.12.018_bib114 article-title: Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2156-11.2011 – volume: 22 start-page: 199 issue: 1–3 year: 1986 ident: 10.1016/j.heares.2017.12.018_bib161 article-title: The responses of inner and outer hair cells in the basal turn of the guinea-pig cochlea and in the mouse cochlea grown in vitro publication-title: Hear. Res. doi: 10.1016/0378-5955(86)90096-1 – volume: 6 start-page: 832 issue: 8 year: 2003 ident: 10.1016/j.heares.2017.12.018_bib157 article-title: Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells publication-title: Nat. Neurosci. doi: 10.1038/nn1089 – volume: 83 start-page: 2266 issue: 6 year: 1988 ident: 10.1016/j.heares.2017.12.018_bib140 article-title: A diffusion model of the transient response of the cochlear inner hair cell synapse publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.396357 – volume: 101 start-page: 2151 issue: 4 year: 1997 ident: 10.1016/j.heares.2017.12.018_bib110 article-title: Basilar-membrane responses to tones at the base of the chinchilla cochlea publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.418265 – volume: 79 start-page: 702 issue: 3 year: 1986 ident: 10.1016/j.heares.2017.12.018_bib76 article-title: Simulation of mechanical to neural transduction in the auditory receptor publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.393460 – volume: 113 start-page: 893 issue: 2 year: 2003 ident: 10.1016/j.heares.2017.12.018_bib125 article-title: Adaptation in a revised inner-hair cell model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1515777 – volume: 63 start-page: 1084 issue: 4 year: 1978 ident: 10.1016/j.heares.2017.12.018_bib21 article-title: Analysis of the click-evoked brainstem potentials in man using high-pass noise masking publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.381816 – volume: 2 start-page: 91 issue: 3 year: 2001 ident: 10.1016/j.heares.2017.12.018_bib42 article-title: Auditory nerve model for predicting performance limits of normal and impaired listeners publication-title: Acoust Res. Lett. Online doi: 10.1121/1.1387155 – volume: 102 start-page: 2892 issue: 5 year: 1997 ident: 10.1016/j.heares.2017.12.018_bib16 article-title: Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.420344 – volume: 11 start-page: 343 issue: 3 year: 2010 ident: 10.1016/j.heares.2017.12.018_bib122 article-title: Otoacoustic estimation of cochlear tuning: validation in the chinchilla publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-010-0217-4 – volume: 126 start-page: 2390 issue: 5 year: 2009 ident: 10.1016/j.heares.2017.12.018_bib149 article-title: A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3238250 – volume: 111 start-page: 14918 issue: 41 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib14 article-title: Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells publication-title: Proceed. Natl Acad. Sci. U. S. A. doi: 10.1073/pnas.1409920111 – volume: 4 start-page: e08177 year: 2015 ident: 10.1016/j.heares.2017.12.018_bib156 article-title: Membrane properties specialize mammalian inner hair cells for frequency or intensity encoding publication-title: Elife doi: 10.7554/eLife.08177 – volume: 72 start-page: 108 issue: 1 year: 1982 ident: 10.1016/j.heares.2017.12.018_bib69 article-title: Input impedance of the cochlea in cat publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.387995 – volume: 139 start-page: 2896 issue: 5 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib97 article-title: Physiological motivated transmission-lines as front end for loudness models publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4949540 – volume: 119 start-page: 406 issue: 1 year: 2006 ident: 10.1016/j.heares.2017.12.018_bib77 article-title: Auditory-nerve first-spike latency and auditory absolute threshold: a computer model publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.2139628 – volume: 96 start-page: 71 issue: 1 year: 1996 ident: 10.1016/j.heares.2017.12.018_bib129 article-title: Selective inner hair cell loss does not alter distortion product otoacoustic emissions publication-title: Hear. Res. doi: 10.1016/0378-5955(96)00040-8 – volume: 179 start-page: 113 issue: 1 year: 1996 ident: 10.1016/j.heares.2017.12.018_bib19 article-title: Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components publication-title: J. Comp. Physiol. A doi: 10.1007/BF00193439 – volume: 20 year: 2016 ident: 10.1016/j.heares.2017.12.018_bib137 article-title: Individual differences in auditory brainstem response wave characteristics: relations to different aspects of peripheral hearing loss publication-title: Trends Hear. – volume: 32 start-page: 613 year: 1969 ident: 10.1016/j.heares.2017.12.018_bib32 article-title: Response of binaural neurons of dog publication-title: J. Neurophysiol. doi: 10.1152/jn.1969.32.4.613 – volume: 104 start-page: 1517 issue: 3 year: 1998 ident: 10.1016/j.heares.2017.12.018_bib128 article-title: Modeling otoacoustic emission and hearing threshold fine structures publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.424364 – volume: 7 start-page: 218 issue: 3 year: 2006 ident: 10.1016/j.heares.2017.12.018_bib68 article-title: A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression publication-title: J. Assoc. Res. Otolaryngol. doi: 10.1007/s10162-006-0037-8 – volume: 118 start-page: 1540 issue: 3 year: 2005 ident: 10.1016/j.heares.2017.12.018_bib145 article-title: Analysis of models for the synapse between the inner hair cell and the auditory nerve publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1993148 – volume: 29 start-page: 681 issue: 3 year: 2001 ident: 10.1016/j.heares.2017.12.018_bib6 article-title: Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse publication-title: Neuron doi: 10.1016/S0896-6273(01)00243-4 – volume: 105 start-page: 799 issue: 2 year: 1999 ident: 10.1016/j.heares.2017.12.018_bib13 article-title: Response phase: a view from the inner hair cell publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.426269 – year: 2007 ident: 10.1016/j.heares.2017.12.018_bib26 article-title: Estimates of peripheral compression using envelope following responses publication-title: J. Assoc. Res. Otolaryngol. – volume: 109 start-page: 2023 issue: 5 year: 2001 ident: 10.1016/j.heares.2017.12.018_bib120 article-title: Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1366372 – volume: 42 start-page: 1083 issue: 4 year: 1979 ident: 10.1016/j.heares.2017.12.018_bib40 article-title: Forward masking of auditory nerve fiber responses publication-title: J. Neurophysiol. doi: 10.1152/jn.1979.42.4.1083 – volume: 146 start-page: 101 issue: 1 year: 2000 ident: 10.1016/j.heares.2017.12.018_bib56 article-title: Nonlinear temporal interactions in click-evoked otoacoustic emissions. II. Experimental data publication-title: Hear. Res. doi: 10.1016/S0378-5955(00)00103-9 – volume: 112 start-page: 1025 issue: 5 year: 2014 ident: 10.1016/j.heares.2017.12.018_bib11 article-title: Contribution of auditory nerve fibers to compound action potential of the auditory nerve publication-title: J. Neurophysiol. doi: 10.1152/jn.00738.2013 – volume: 27 start-page: 105 issue: 2 year: 1998 ident: 10.1016/j.heares.2017.12.018_bib39 article-title: Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz publication-title: Scand. Audiol. doi: 10.1080/010503998420342 – volume: 126 start-page: 1878 issue: 4 year: 2009 ident: 10.1016/j.heares.2017.12.018_bib123 article-title: Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3203310 – volume: 400 start-page: 275 issue: 1 year: 1988 ident: 10.1016/j.heares.2017.12.018_bib43 article-title: A model for electrical resonance and frequency tuning in saccular hair cells of the bull-frog, Rana catesbeiana publication-title: J. Physiol. doi: 10.1113/jphysiol.1988.sp017120 – year: 2016 ident: 10.1016/j.heares.2017.12.018_bib91 article-title: Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes publication-title: Proc Natl Acad. Sci. doi: 10.1073/pnas.1605737113 – volume: 104 start-page: 16341 issue: 41 year: 2007 ident: 10.1016/j.heares.2017.12.018_bib36 article-title: Time course and calcium dependence of transmitter release at a single ribbon synapse publication-title: Proc Natl Acad. Sci. doi: 10.1073/pnas.0705756104 |
SSID | ssj0015342 |
Score | 2.5490239 |
SecondaryResourceType | review_article |
Snippet | Models of the human auditory periphery range from very basic functional descriptions of auditory filtering to detailed computational models of cochlear... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 55 |
Title | Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss |
URI | https://dx.doi.org/10.1016/j.heares.2017.12.018 https://www.ncbi.nlm.nih.gov/pubmed/29472062 https://www.proquest.com/docview/2007982854 |
Volume | 360 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA-iUHopVfuxrUoKpadONzPJTBJviyirRS-t4C1k8gFWO7Nsx8Je_NvNSzILQovgcUKSSfJekpfk934Poc-yNtoY2haWClYwaVghGx8E4p2gWta8jQSm5xfN_JKdXdVXG-ho9IUBWGVe-9OaHlfrnDLNozldXF9PfxDKgZyrLoOSUsbBo5wxDlr-7X4N8wgTmqWXhHBagtyj-1zEeMWg0UDaXfJ4KQihP_69Pf3P_Izb0Mlr9Crbj3iWmriNNly3g3ZnXTg7_17hLzgiOuNV-Q56cZ4fznfRkKI35Js_HOPfhE0L9x4HCxDHSH1Yg4dGv1xhYD8GuoHVIZ7ltKIDaCReJkit-_MVu7_9jbN40Q8AOApajHVnMfQVKr4NvXuDLk-Ofx7NixxwoTCMs6FwzNam9Y2QrtLGscYJZgg1nHgbBtI6SYQlsq1tw0oRjAcvpdFel8ZXLZWUvkWbXd-59wj7hjhuNfVcaKBIE420gkjgA2RQ6wTRcZyVyWzkEBTjVo2ws18qSUeBdFRZqSCdCSrWpRaJjeOJ_HwUoXqkVSpsGE-U_DRKXIUJB68ounP9HWQiXALvH5ugd0kV1m2pJOMVaaoPz_7vR_QyfImEcttDm8Pyzu0Hs2doD6JeH6Ct2en3-cUDlJUDqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDbS9lDbpY_tUofRUs7YlW1JvS2jYNNm9NIHchKwHJE3tZesU9t9XI8sLhZZAr7IkW5qxZqT59A3AB1kZbQxtMksFy5g0LJO1DwLxTlAtK95EAtPlql5csK-X1eUeHI13YRBWmdb-YU2Pq3UqmaXZnK2vrmbfcsqRnKsqgpJSxvk92Ed2qmoC-_OT08VqF0yoKBuCCWHDhA3GG3QR5hXzRiNvd8HjuSBm__i7hfqXBxot0fFjeJRcSDIfvvIJ7Ln2AA7nbdg-_9iSjySCOuNp-QHcX6bY-SH0QwKHdPhHYgqcYLdI50lwAklM1kc0XtLoNluCBMjIOLD9TOapLGsRHUk2A6rW_fxE3K_uu7Nk3fWIOQqKTHRrCY4VO74Jo3sKF8dfzo8WWcq5kBnGWZ85ZivT-FpIV2rjWO0EMzk1PPc2TKR1Mhc2l01la1aI4D94KY32ujC-bKik9BlM2q51L4D4Onfcauq50MiSJmppRS6REpBhr1Og4zwrkwjJMS_GjRqRZ9dqkI5C6aiiVEE6U8h2rdYDIccd9fkoQvWHYqlgM-5o-X6UuAr_HAZSdOu6W6yUc4nUf2wKzwdV2H1LKRkv87p8-d_vfQcPFufLM3V2sjp9BQ_DEzGA3l7DpN_cujfBC-qbt0nLfwNveAZa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+modeling+of+the+human+auditory+periphery%3A+Auditory-nerve+responses%2C+evoked+potentials+and+hearing+loss&rft.jtitle=Hearing+research&rft.au=Verhulst%2C+Sarah&rft.au=Alto%C3%A8%2C+Alessandro&rft.au=Vasilkov%2C+Viacheslav&rft.date=2018-03-01&rft.issn=1878-5891&rft.eissn=1878-5891&rft.volume=360&rft.spage=55&rft_id=info:doi/10.1016%2Fj.heares.2017.12.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-5955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-5955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-5955&client=summon |