Control of grain size in rice by TGW3 phosphorylation of OsIAA10 through potentiation of OsIAA10-OsARF4-mediated auxin signaling
Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is unce...
Saved in:
Published in | Cell reports (Cambridge) Vol. 42; no. 3; p. 112187 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.03.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling.
[Display omitted]
•TGW3 negatively regulates grain size in rice, which mediates brassinosteroid response•TGW3 interacts with and phosphorylates OsIAA10•OsIAA10 phosphorylation potentiates the OsIAA10-OsARF4-mediated auxin signaling•OsTIR1-OsIAA10-OsARF4 defines a genetic pathway for controlling rice grain size
Grain size is a key component of grain quality and crop yield. Ma et al. show that TGW3 interacts with and phosphorylates OsIAA10, which favors OsIAA10’s interaction with OsTIR1 and destabilization but hinders its interaction with OsARF4. The genetically defined OsTIR1-OsIAA10-OsARF4 axis is required for grain size control in rice. |
---|---|
AbstractList | Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling.
[Display omitted]
•TGW3 negatively regulates grain size in rice, which mediates brassinosteroid response•TGW3 interacts with and phosphorylates OsIAA10•OsIAA10 phosphorylation potentiates the OsIAA10-OsARF4-mediated auxin signaling•OsTIR1-OsIAA10-OsARF4 defines a genetic pathway for controlling rice grain size
Grain size is a key component of grain quality and crop yield. Ma et al. show that TGW3 interacts with and phosphorylates OsIAA10, which favors OsIAA10’s interaction with OsTIR1 and destabilization but hinders its interaction with OsARF4. The genetically defined OsTIR1-OsIAA10-OsARF4 axis is required for grain size control in rice. Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling. Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling.Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling. |
ArticleNumber | 112187 |
Author | Feng, Xiao-Hui Song, Xian-Jun Bai, Chen Shen, Shao-Yan Ying, Jie-Zheng Ma, Ming Wang, Wei-Qing |
Author_xml | – sequence: 1 givenname: Ming surname: Ma fullname: Ma, Ming organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 2 givenname: Shao-Yan surname: Shen fullname: Shen, Shao-Yan organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 3 givenname: Chen surname: Bai fullname: Bai, Chen organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 4 givenname: Wei-Qing surname: Wang fullname: Wang, Wei-Qing organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 5 givenname: Xiao-Hui surname: Feng fullname: Feng, Xiao-Hui organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China – sequence: 6 givenname: Jie-Zheng surname: Ying fullname: Ying, Jie-Zheng organization: National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China – sequence: 7 givenname: Xian-Jun surname: Song fullname: Song, Xian-Jun email: songxj@ibcas.ac.cn organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36871218$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUuL2zAUhU2Z0nl0_kEpXnbjVFeSZbuLQgidmcBAoEzpUijytaPgSKkkl6ar_vQq8Uwps2gF4upxzrlwv8vszDqLWfYGyAwIiPfbmcbB435GCWUzAAp19SK7oBSgAMqrs7_O59l1CFuSliAADX-VnTNRV0fPRfZr4Wz0bshdl_deGZsH8xPzVL3RmK8P-cPtV5bvNy6k7Q-DisbZo3oVlvM5kDxuvBv7Tb53EW00z_-LVZh_vuHFDtv0h22uxh-nLr1Vg7H96-xlp4aA14_1Kvty8-lhcVfcr26Xi_l9oXnFY4FclKIjNWtYuW6xqXm6kZbomuiG6ZYyIgB5pYG0otQlaYAroruypkypBtlVtpxyW6e2cu_NTvmDdMrI04PzvVQ-Gj2ghLUqk1VT0QJnXDSKClWVQAURTHc8Zb2bsvbefRsxRLkzIQEZlEU3BkmrmvGmBCBJ-vZROq7TCP40fiKQBB8mgfYuBI-d1CaehhgTjkECkUficisn4vJIXE7Ek5k_Mz_l_8f2cbJhGvh3g14GbdDqhMijjmki5t8BvwHxZ8P5 |
CitedBy_id | crossref_primary_10_1016_j_scienta_2025_113979 crossref_primary_10_1186_s12284_024_00694_z crossref_primary_10_3390_plants13243538 crossref_primary_10_1111_jipb_13749 crossref_primary_10_1016_j_cj_2024_06_011 crossref_primary_10_1007_s12298_024_01445_6 crossref_primary_10_1016_j_cj_2024_06_003 crossref_primary_10_3390_plants13091219 crossref_primary_10_1016_j_ijbiomac_2024_133245 crossref_primary_10_1016_j_devcel_2023_12_013 crossref_primary_10_1016_j_ijbiomac_2024_138746 crossref_primary_10_1016_j_jia_2024_09_035 crossref_primary_10_1016_j_plantsci_2025_112434 crossref_primary_10_1007_s10265_024_01581_w crossref_primary_10_1111_jipb_13786 crossref_primary_10_1016_j_cj_2024_05_002 crossref_primary_10_1038_s41467_024_48786_0 |
Cites_doi | 10.1186/1471-2229-6-3 10.1038/nmeth.2089 10.1105/tpc.010244 10.1371/journal.pgen.1002686 10.1371/journal.ppat.1005847 10.1146/annurev-genet-102108-134148 10.1093/plphys/kiab394 10.1073/pnas.1308974110 10.1016/j.molp.2016.12.013 10.1016/j.pbi.2016.05.008 10.1105/tpc.112.097394 10.1111/tpj.14692 10.1242/dev.02194 10.1016/j.molp.2014.12.006 10.1371/journal.pgen.1006118 10.1146/annurev.arplant.53.100301.135227 10.1038/35104500 10.1111/tpj.12820 10.1105/tpc.18.00836 10.1073/pnas.1219776110 10.1016/0968-0004(91)90071-3 10.15252/embj.2019101515 10.1016/j.molp.2017.12.003 10.1093/plcell/koab194 10.1104/pp.124.4.1728 10.1073/pnas.1205232109 10.7554/eLife.13325 10.1038/nplants.2015.195 10.1105/tpc.19.00499 10.1016/j.molp.2018.03.007 10.1146/annurev.arplant.043008.092057 10.1126/science.1065769 10.1111/pce.12397 10.1146/annurev-arplant-050718-095851 10.1105/tpc.19.00468 10.1016/j.tplants.2011.10.002 10.1016/j.devcel.2017.11.017 10.1016/j.tplants.2021.07.017 10.1146/annurev-genet-120213-092138 10.1007/s11103-007-9213-4 10.1023/A:1015207114117 10.1105/tpc.16.00611 10.1038/cr.2012.151 10.1016/j.molp.2018.03.005 10.1038/s41586-019-1069-7 10.1016/j.molp.2018.03.006 10.1016/j.molp.2021.06.023 10.1093/jxb/ery256 10.1146/annurev.cellbio.23.090506.123214 10.1093/jxb/erx237 10.1038/ncb1970 10.1038/nature10794 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2023.112187 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_1ba50cfc26d143469a26a75126063cf4 36871218 10_1016_j_celrep_2023_112187 S2211124723001985 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c474t-e4656f083935bde9846f00d0c80c93cd23061e47c10d65c50914a0cf5823aa9e3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:32:05 EDT 2025 Fri Jul 11 00:25:30 EDT 2025 Thu Jan 02 22:51:46 EST 2025 Tue Jul 01 02:59:33 EDT 2025 Thu Apr 24 22:57:01 EDT 2025 Sat Nov 04 15:31:33 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | CP: Molecular biology CP: Plants grain size protein phosphorylation auxin signaling pathway |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-e4656f083935bde9846f00d0c80c93cd23061e47c10d65c50914a0cf5823aa9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/1ba50cfc26d143469a26a75126063cf4 |
PMID | 36871218 |
PQID | 2783495110 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ba50cfc26d143469a26a75126063cf4 proquest_miscellaneous_2783495110 pubmed_primary_36871218 crossref_citationtrail_10_1016_j_celrep_2023_112187 crossref_primary_10_1016_j_celrep_2023_112187 elsevier_sciencedirect_doi_10_1016_j_celrep_2023_112187 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-28 |
PublicationDateYYYYMMDD | 2023-03-28 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Zhang, Wang, Huang, Lan, Wang, Yin, Wu, Tang, Qian, Li, Zhang (bib23) 2012; 109 Yang, Shen, He, Tian, Li (bib20) 2016; 12 Ying, Ma, Bai, Huang, Liu, Fan, Song (bib28) 2018; 11 Hu, Lu, Wang, He, Sun, Wang, Liu, Jiang, Sun, Xin (bib7) 2018; 11 Kim, Wang (bib35) 2010; 61 Lv, Yu, Liu, Wen, Yan, Hu, Li, Kong, Li, Tian (bib50) 2020; 39 Colón-Carmona, Chen, Yeh, Abel (bib46) 2000; 124 Hirano, Yoshida, Aya, Kawamura, Hayashi, Hobo, Sato-Izawa, Kitano, Ueguchi-Tanaka, Matsuoka (bib41) 2017; 10 Gray, Kepinski, Rouse, Leyser, Estelle (bib44) 2001; 414 Xu, He, Zhang, Mao, Wang, Li, Hua, Du, Xu, Li (bib48) 2018; 11 Qiao, Sun, Wang, Wu, Li, Li, Wang, Leng, Tian, Lu, Wang (bib18) 2017; 29 Liu, Yu, Zhang, Yin, Li, Niu, Meng, Zhang, Dong, Liu (bib14) 2021; 187 Schruff, Spielman, Tiwari, Adams, Fenby, Scott (bib4) 2006; 133 Che, Tong, Shi, Liu, Fang, Liu, Xiao, Hu, Liu, Wang (bib16) 2015; 2 Kim, Michniewicz, Bergmann, Wang (bib30) 2012; 482 Qi, Lin, Song, Shen, Huang, Shan, Zhu, Jiang, Gao, Lin (bib22) 2012; 22 Zhang, Xu, Guo, Zhu, Huan, Liu, Wang, Luo, Wang, Chong (bib21) 2012; 8 Li, Xu, Li (bib1) 2019; 70 Koh, Lee, Kim, Koh, Lee, An, Choe, Kim (bib12) 2007; 65 Chapman, Estelle (bib36) 2009; 43 Lavy, Prigge, Tao, Shain, Kuo, Kirchsteiger, Estelle (bib42) 2016; 5 Ramos, Zenser, Leyser, Callis (bib45) 2001; 13 Yang, Xie, Jiang, Li, Huang, Li (bib47) 2018; 44 Zuo, Li (bib2) 2014; 48 Xia, Zhou, Liu, Dan, Li, Wu, Chen, Wang, Gao, Zhang, He (bib27) 2018; 11 Jin, Qin, Wang, Pu, Liu, Wen, Ji, Wu, Wei, Ding, Li (bib25) 2016; 12 Gao, Zhang, Zhang, Zhou, Jiang, Huang, Tang, Bao, Cheng, Tang (bib39) 2019; 31 Zhang, Li, Tang, Sun, Zhang, Yu, Yao, Li, Guo, Li (bib6) 2018; 69 Youn, Kim (bib33) 2015; 8 Xiao, Zhang, Liu, Niu, Tong, Chu (bib19) 2020; 102 Woodgett (bib9) 1991; 16 Cao, Chen, Li, Yu, Zheng, Ge, Zheng, Wang, Gu, Gelová (bib49) 2019; 568 Kim, Guan, Sun, Deng, Tang, Shang, Sun, Burlingame, Wang (bib29) 2009; 11 Ye, Li, Guo, Yin (bib32) 2012; 109 Saidi, Hearn, Coates (bib31) 2012; 17 Yoo, Albert, Soltis, Soltis (bib11) 2006; 6 Li, Zhang, Yu (bib15) 2021; 26 Zhu, Liang, Cui, Chen, Yin, Luo, Zhu, Lucas, Wang, Zhang (bib40) 2015; 82 Leyser (bib37) 2002; 53 Li, Nam (bib10) 2002; 295 Gao, Zhang, Wang, Shen, Bai, Song (bib24) 2021; 33 Li, Li (bib26) 2016; 33 Wang, Xue, Batelli, Lee, Hou, Van Oosten, Zhang, Tao, Zhu (bib52) 2013; 110 Roosjen, Paque, Weijers (bib3) 2018; 69 Lyu, Wang, Duan, Liu, Huang, Zeng, Zhang, Dong, Li, Xu (bib17) 2020; 32 Zhang, Wang, Xu, Yu, Shen, Qian, Geisler, Jiang, Qi (bib5) 2015; 38 Qiao, Jiang, Lin, Shang, Wang, Li, Fu, Geisler, Qi, Gao, Qian (bib8) 2021; 14 He, Hong, Zhang, Tan, Li, Kong, Sang, Xie, Wei, Li (bib34) 2020; 32 Mockaitis, Estelle (bib38) 2008; 24 Schneider, Rasband, Eliceiri (bib51) 2012; 9 Hagen, Guilfoyle (bib43) 2002; 49 Tong, Liu, Jin, Du, Yin, Qian, Zhu, Chu (bib13) 2012; 24 Yoo (10.1016/j.celrep.2023.112187_bib11) 2006; 6 Xu (10.1016/j.celrep.2023.112187_bib48) 2018; 11 Hirano (10.1016/j.celrep.2023.112187_bib41) 2017; 10 Li (10.1016/j.celrep.2023.112187_bib15) 2021; 26 Mockaitis (10.1016/j.celrep.2023.112187_bib38) 2008; 24 Che (10.1016/j.celrep.2023.112187_bib16) 2015; 2 Qi (10.1016/j.celrep.2023.112187_bib22) 2012; 22 Li (10.1016/j.celrep.2023.112187_bib26) 2016; 33 Xiao (10.1016/j.celrep.2023.112187_bib19) 2020; 102 Kim (10.1016/j.celrep.2023.112187_bib30) 2012; 482 Liu (10.1016/j.celrep.2023.112187_bib14) 2021; 187 Lavy (10.1016/j.celrep.2023.112187_bib42) 2016; 5 Gao (10.1016/j.celrep.2023.112187_bib39) 2019; 31 Ye (10.1016/j.celrep.2023.112187_bib32) 2012; 109 Qiao (10.1016/j.celrep.2023.112187_bib8) 2021; 14 Li (10.1016/j.celrep.2023.112187_bib1) 2019; 70 Kim (10.1016/j.celrep.2023.112187_bib29) 2009; 11 Colón-Carmona (10.1016/j.celrep.2023.112187_bib46) 2000; 124 Zhu (10.1016/j.celrep.2023.112187_bib40) 2015; 82 Yang (10.1016/j.celrep.2023.112187_bib47) 2018; 44 Qiao (10.1016/j.celrep.2023.112187_bib18) 2017; 29 Woodgett (10.1016/j.celrep.2023.112187_bib9) 1991; 16 Zhang (10.1016/j.celrep.2023.112187_bib6) 2018; 69 Lyu (10.1016/j.celrep.2023.112187_bib17) 2020; 32 Saidi (10.1016/j.celrep.2023.112187_bib31) 2012; 17 Lv (10.1016/j.celrep.2023.112187_bib50) 2020; 39 Youn (10.1016/j.celrep.2023.112187_bib33) 2015; 8 Koh (10.1016/j.celrep.2023.112187_bib12) 2007; 65 Zhang (10.1016/j.celrep.2023.112187_bib21) 2012; 8 Tong (10.1016/j.celrep.2023.112187_bib13) 2012; 24 Ying (10.1016/j.celrep.2023.112187_bib28) 2018; 11 Yang (10.1016/j.celrep.2023.112187_bib20) 2016; 12 Cao (10.1016/j.celrep.2023.112187_bib49) 2019; 568 Schruff (10.1016/j.celrep.2023.112187_bib4) 2006; 133 Wang (10.1016/j.celrep.2023.112187_bib52) 2013; 110 Hagen (10.1016/j.celrep.2023.112187_bib43) 2002; 49 He (10.1016/j.celrep.2023.112187_bib34) 2020; 32 Kim (10.1016/j.celrep.2023.112187_bib35) 2010; 61 Zhang (10.1016/j.celrep.2023.112187_bib23) 2012; 109 Leyser (10.1016/j.celrep.2023.112187_bib37) 2002; 53 Gao (10.1016/j.celrep.2023.112187_bib24) 2021; 33 Zhang (10.1016/j.celrep.2023.112187_bib5) 2015; 38 Chapman (10.1016/j.celrep.2023.112187_bib36) 2009; 43 Xia (10.1016/j.celrep.2023.112187_bib27) 2018; 11 Hu (10.1016/j.celrep.2023.112187_bib7) 2018; 11 Gray (10.1016/j.celrep.2023.112187_bib44) 2001; 414 Schneider (10.1016/j.celrep.2023.112187_bib51) 2012; 9 Ramos (10.1016/j.celrep.2023.112187_bib45) 2001; 13 Roosjen (10.1016/j.celrep.2023.112187_bib3) 2018; 69 Jin (10.1016/j.celrep.2023.112187_bib25) 2016; 12 Zuo (10.1016/j.celrep.2023.112187_bib2) 2014; 48 Li (10.1016/j.celrep.2023.112187_bib10) 2002; 295 |
References_xml | – volume: 12 start-page: e1005847 year: 2016 ident: bib25 article-title: Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development publication-title: PLoS Pathog. – volume: 53 start-page: 377 year: 2002 end-page: 398 ident: bib37 article-title: Molecular genetics of auxin signaling publication-title: Annu. Rev. Plant Biol. – volume: 31 start-page: 1077 year: 2019 end-page: 1093 ident: bib39 article-title: Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling publication-title: Plant Cell – volume: 11 start-page: 523 year: 2018 end-page: 541 ident: bib48 article-title: Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis publication-title: Mol. Plant – volume: 24 start-page: 2562 year: 2012 end-page: 2577 ident: bib13 article-title: acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice publication-title: Plant Cell – volume: 11 start-page: 754 year: 2018 end-page: 756 ident: bib27 article-title: , a novel QTL encoding a GSK3/SHAGGY-like Kinase, epistatically interacts with GS3 to produce extra-long grains publication-title: Mol. Plant – volume: 110 start-page: 11205 year: 2013 end-page: 11210 ident: bib52 article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action publication-title: Proc. Natl. Acad. Sci. USA – volume: 17 start-page: 39 year: 2012 end-page: 46 ident: bib31 article-title: Function and evolution of ‘green’ GSK3/Shaggy-like kinases publication-title: Trends Plant Sci. – volume: 12 start-page: e1006118 year: 2016 ident: bib20 article-title: OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice publication-title: PLoS Genet. – volume: 49 start-page: 373 year: 2002 end-page: 385 ident: bib43 article-title: Auxin-responsive gene expression: genes, promoters and regulatory factors publication-title: Plant Mol. Biol. – volume: 38 start-page: 638 year: 2015 end-page: 654 ident: bib5 article-title: The auxin response factor, OsARF19, controls rice leaf angles through positively regulating publication-title: Plant Cell Environ. – volume: 414 start-page: 271 year: 2001 end-page: 276 ident: bib44 article-title: Auxin regulates SCF publication-title: Nature – volume: 187 start-page: 2563 year: 2021 end-page: 2576 ident: bib14 article-title: Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice publication-title: Plant Physiol. – volume: 5 start-page: e13325 year: 2016 ident: bib42 article-title: Constitutive auxin response in publication-title: Elife – volume: 11 start-page: 1254 year: 2009 end-page: 1260 ident: bib29 article-title: Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors publication-title: Nat. Cell Biol. – volume: 44 start-page: 29 year: 2018 end-page: 41.e4 ident: bib47 article-title: Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability publication-title: Dev. Cell – volume: 6 start-page: 3 year: 2006 end-page: 27 ident: bib11 article-title: Phylogenetic diversification of publication-title: BMC Plant Biol. – volume: 43 start-page: 265 year: 2009 end-page: 285 ident: bib36 article-title: Mechanism of auxin-regulated gene expression in plants publication-title: Annu. Rev. Genet. – volume: 568 start-page: 240 year: 2019 end-page: 243 ident: bib49 article-title: TMK1-mediated auxin signalling regulates differential growth of the apical hook publication-title: Nature – volume: 32 start-page: 2806 year: 2020 end-page: 2822 ident: bib34 article-title: The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4 publication-title: Plant Cell – volume: 65 start-page: 453 year: 2007 end-page: 466 ident: bib12 article-title: T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses publication-title: Plant Mol. Biol. – volume: 33 start-page: 3331 year: 2021 end-page: 3347 ident: bib24 article-title: The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice publication-title: Plant Cell – volume: 82 start-page: 570 year: 2015 end-page: 581 ident: bib40 article-title: Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of carbon starved anther, a MYB domain protein publication-title: Plant J. – volume: 24 start-page: 55 year: 2008 end-page: 80 ident: bib38 article-title: Auxin receptors and plant development: a new signaling paradigm publication-title: Annu. Rev. Cell Dev. Biol. – volume: 109 start-page: 21534 year: 2012 end-page: 21539 ident: bib23 article-title: Rare allele of publication-title: Proc. Natl. Acad. Sci. USA – volume: 102 start-page: 1187 year: 2020 end-page: 1201 ident: bib19 article-title: GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice publication-title: Plant J. – volume: 61 start-page: 681 year: 2010 end-page: 704 ident: bib35 article-title: Brassinosteroid signal transduction from receptor kinases to transcription factors publication-title: Annu. Rev. Plant Biol. – volume: 10 start-page: 590 year: 2017 end-page: 604 ident: bib41 article-title: SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice publication-title: Mol. Plant – volume: 2 start-page: 15195 year: 2015 end-page: 15201 ident: bib16 article-title: Control of grain size and rice yield by GL2-mediated brassinosteroid responses publication-title: Nat. Plants – volume: 14 start-page: 1683 year: 2021 end-page: 1698 ident: bib8 article-title: A novel publication-title: Mol. Plant – volume: 124 start-page: 1728 year: 2000 end-page: 1738 ident: bib46 article-title: Aux/IAA proteins are phosphorylated by phytochrome in vitro publication-title: Plant Physiol. – volume: 33 start-page: 23 year: 2016 end-page: 32 ident: bib26 article-title: Signaling pathways of seed size control in plants publication-title: Curr. Opin. Plant Biol. – volume: 48 start-page: 99 year: 2014 end-page: 118 ident: bib2 article-title: Molecular genetic dissection of quantitative trait loci regulating rice grain size publication-title: Annu. Rev. Genet. – volume: 16 start-page: 177 year: 1991 end-page: 181 ident: bib9 article-title: A common denominator linking glycogen metabolism, nuclear oncogenes and development publication-title: Trends Biochem. Sci. – volume: 482 start-page: 419 year: 2012 end-page: 422 ident: bib30 article-title: Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway publication-title: Nature – volume: 13 start-page: 2349 year: 2001 end-page: 2360 ident: bib45 article-title: Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent publication-title: Plant Cell – volume: 133 start-page: 251 year: 2006 end-page: 261 ident: bib4 article-title: The publication-title: Development – volume: 11 start-page: 736 year: 2018 end-page: 749 ident: bib7 article-title: A novel QTL publication-title: Mol. Plant – volume: 11 start-page: 750 year: 2018 end-page: 753 ident: bib28 article-title: , a major QTL that negatively modulates grain length and weight in rice publication-title: Mol. Plant – volume: 26 start-page: 1286 year: 2021 end-page: 1300 ident: bib15 article-title: GSK3s: nodes of multilayer regulation of plant development and stress responses publication-title: Trends Plant Sci. – volume: 69 start-page: 4723 year: 2018 end-page: 4737 ident: bib6 article-title: Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice publication-title: J. Exp. Bot. – volume: 295 start-page: 1299 year: 2002 end-page: 1301 ident: bib10 article-title: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase publication-title: Science – volume: 39 start-page: e101515 year: 2020 ident: bib50 article-title: Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling publication-title: EMBO J. – volume: 29 start-page: 292 year: 2017 end-page: 309 ident: bib18 article-title: The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture publication-title: Plant Cell – volume: 8 start-page: e1002686 year: 2012 ident: bib21 article-title: Dynamics of brassinosteroid response modulated by negative regulator LIC in Rice publication-title: PLoS Genet. – volume: 70 start-page: 435 year: 2019 end-page: 463 ident: bib1 article-title: Molecular networks of seed size control in plants publication-title: Annu. Rev. Plant Biol. – volume: 22 start-page: 1666 year: 2012 end-page: 1680 ident: bib22 article-title: The novel quantitative trait locus publication-title: Cell Res. – volume: 8 start-page: 552 year: 2015 end-page: 565 ident: bib33 article-title: Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways publication-title: Mol. Plant – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: bib51 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods – volume: 109 start-page: 20142 year: 2012 end-page: 20147 ident: bib32 article-title: MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA – volume: 69 start-page: 179 year: 2018 end-page: 188 ident: bib3 article-title: Auxin response factors: output control in auxin biology publication-title: J. Exp. Bot. – volume: 32 start-page: 1905 year: 2020 end-page: 1918 ident: bib17 article-title: Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice publication-title: Plant Cell – volume: 6 start-page: 3 year: 2006 ident: 10.1016/j.celrep.2023.112187_bib11 article-title: Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-6-3 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/j.celrep.2023.112187_bib51 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 13 start-page: 2349 year: 2001 ident: 10.1016/j.celrep.2023.112187_bib45 article-title: Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent publication-title: Plant Cell doi: 10.1105/tpc.010244 – volume: 8 start-page: e1002686 year: 2012 ident: 10.1016/j.celrep.2023.112187_bib21 article-title: Dynamics of brassinosteroid response modulated by negative regulator LIC in Rice publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002686 – volume: 12 start-page: e1005847 year: 2016 ident: 10.1016/j.celrep.2023.112187_bib25 article-title: Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005847 – volume: 43 start-page: 265 year: 2009 ident: 10.1016/j.celrep.2023.112187_bib36 article-title: Mechanism of auxin-regulated gene expression in plants publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-102108-134148 – volume: 187 start-page: 2563 year: 2021 ident: 10.1016/j.celrep.2023.112187_bib14 article-title: Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice publication-title: Plant Physiol. doi: 10.1093/plphys/kiab394 – volume: 110 start-page: 11205 year: 2013 ident: 10.1016/j.celrep.2023.112187_bib52 article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1308974110 – volume: 10 start-page: 590 year: 2017 ident: 10.1016/j.celrep.2023.112187_bib41 article-title: SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice publication-title: Mol. Plant doi: 10.1016/j.molp.2016.12.013 – volume: 33 start-page: 23 year: 2016 ident: 10.1016/j.celrep.2023.112187_bib26 article-title: Signaling pathways of seed size control in plants publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2016.05.008 – volume: 24 start-page: 2562 year: 2012 ident: 10.1016/j.celrep.2023.112187_bib13 article-title: DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice publication-title: Plant Cell doi: 10.1105/tpc.112.097394 – volume: 102 start-page: 1187 year: 2020 ident: 10.1016/j.celrep.2023.112187_bib19 article-title: GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice publication-title: Plant J. doi: 10.1111/tpj.14692 – volume: 133 start-page: 251 year: 2006 ident: 10.1016/j.celrep.2023.112187_bib4 article-title: The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signaling, cell division, and the size of seeds and other organs publication-title: Development doi: 10.1242/dev.02194 – volume: 8 start-page: 552 year: 2015 ident: 10.1016/j.celrep.2023.112187_bib33 article-title: Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways publication-title: Mol. Plant doi: 10.1016/j.molp.2014.12.006 – volume: 12 start-page: e1006118 year: 2016 ident: 10.1016/j.celrep.2023.112187_bib20 article-title: OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006118 – volume: 53 start-page: 377 year: 2002 ident: 10.1016/j.celrep.2023.112187_bib37 article-title: Molecular genetics of auxin signaling publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.53.100301.135227 – volume: 414 start-page: 271 year: 2001 ident: 10.1016/j.celrep.2023.112187_bib44 article-title: Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins publication-title: Nature doi: 10.1038/35104500 – volume: 82 start-page: 570 year: 2015 ident: 10.1016/j.celrep.2023.112187_bib40 article-title: Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of carbon starved anther, a MYB domain protein publication-title: Plant J. doi: 10.1111/tpj.12820 – volume: 31 start-page: 1077 year: 2019 ident: 10.1016/j.celrep.2023.112187_bib39 article-title: Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling publication-title: Plant Cell doi: 10.1105/tpc.18.00836 – volume: 109 start-page: 21534 year: 2012 ident: 10.1016/j.celrep.2023.112187_bib23 article-title: Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1219776110 – volume: 16 start-page: 177 year: 1991 ident: 10.1016/j.celrep.2023.112187_bib9 article-title: A common denominator linking glycogen metabolism, nuclear oncogenes and development publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(91)90071-3 – volume: 39 start-page: e101515 year: 2020 ident: 10.1016/j.celrep.2023.112187_bib50 article-title: Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling publication-title: EMBO J. doi: 10.15252/embj.2019101515 – volume: 11 start-page: 523 year: 2018 ident: 10.1016/j.celrep.2023.112187_bib48 article-title: Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis publication-title: Mol. Plant doi: 10.1016/j.molp.2017.12.003 – volume: 33 start-page: 3331 year: 2021 ident: 10.1016/j.celrep.2023.112187_bib24 article-title: The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice publication-title: Plant Cell doi: 10.1093/plcell/koab194 – volume: 124 start-page: 1728 year: 2000 ident: 10.1016/j.celrep.2023.112187_bib46 article-title: Aux/IAA proteins are phosphorylated by phytochrome in vitro publication-title: Plant Physiol. doi: 10.1104/pp.124.4.1728 – volume: 109 start-page: 20142 year: 2012 ident: 10.1016/j.celrep.2023.112187_bib32 article-title: MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1205232109 – volume: 5 start-page: e13325 year: 2016 ident: 10.1016/j.celrep.2023.112187_bib42 article-title: Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins publication-title: Elife doi: 10.7554/eLife.13325 – volume: 2 start-page: 15195 year: 2015 ident: 10.1016/j.celrep.2023.112187_bib16 article-title: Control of grain size and rice yield by GL2-mediated brassinosteroid responses publication-title: Nat. Plants doi: 10.1038/nplants.2015.195 – volume: 32 start-page: 2806 year: 2020 ident: 10.1016/j.celrep.2023.112187_bib34 article-title: The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4 publication-title: Plant Cell doi: 10.1105/tpc.19.00499 – volume: 11 start-page: 750 year: 2018 ident: 10.1016/j.celrep.2023.112187_bib28 article-title: TGW3, a major QTL that negatively modulates grain length and weight in rice publication-title: Mol. Plant doi: 10.1016/j.molp.2018.03.007 – volume: 61 start-page: 681 year: 2010 ident: 10.1016/j.celrep.2023.112187_bib35 article-title: Brassinosteroid signal transduction from receptor kinases to transcription factors publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.043008.092057 – volume: 295 start-page: 1299 year: 2002 ident: 10.1016/j.celrep.2023.112187_bib10 article-title: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase publication-title: Science doi: 10.1126/science.1065769 – volume: 38 start-page: 638 year: 2015 ident: 10.1016/j.celrep.2023.112187_bib5 article-title: The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1 publication-title: Plant Cell Environ. doi: 10.1111/pce.12397 – volume: 70 start-page: 435 year: 2019 ident: 10.1016/j.celrep.2023.112187_bib1 article-title: Molecular networks of seed size control in plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-095851 – volume: 32 start-page: 1905 year: 2020 ident: 10.1016/j.celrep.2023.112187_bib17 article-title: Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice publication-title: Plant Cell doi: 10.1105/tpc.19.00468 – volume: 17 start-page: 39 year: 2012 ident: 10.1016/j.celrep.2023.112187_bib31 article-title: Function and evolution of ‘green’ GSK3/Shaggy-like kinases publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.10.002 – volume: 44 start-page: 29 year: 2018 ident: 10.1016/j.celrep.2023.112187_bib47 article-title: Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.11.017 – volume: 26 start-page: 1286 year: 2021 ident: 10.1016/j.celrep.2023.112187_bib15 article-title: GSK3s: nodes of multilayer regulation of plant development and stress responses publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2021.07.017 – volume: 48 start-page: 99 year: 2014 ident: 10.1016/j.celrep.2023.112187_bib2 article-title: Molecular genetic dissection of quantitative trait loci regulating rice grain size publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120213-092138 – volume: 65 start-page: 453 year: 2007 ident: 10.1016/j.celrep.2023.112187_bib12 article-title: T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses publication-title: Plant Mol. Biol. doi: 10.1007/s11103-007-9213-4 – volume: 49 start-page: 373 year: 2002 ident: 10.1016/j.celrep.2023.112187_bib43 article-title: Auxin-responsive gene expression: genes, promoters and regulatory factors publication-title: Plant Mol. Biol. doi: 10.1023/A:1015207114117 – volume: 29 start-page: 292 year: 2017 ident: 10.1016/j.celrep.2023.112187_bib18 article-title: The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture publication-title: Plant Cell doi: 10.1105/tpc.16.00611 – volume: 22 start-page: 1666 year: 2012 ident: 10.1016/j.celrep.2023.112187_bib22 article-title: The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating cyclin-T1;3 publication-title: Cell Res. doi: 10.1038/cr.2012.151 – volume: 11 start-page: 736 year: 2018 ident: 10.1016/j.celrep.2023.112187_bib7 article-title: A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice publication-title: Mol. Plant doi: 10.1016/j.molp.2018.03.005 – volume: 568 start-page: 240 year: 2019 ident: 10.1016/j.celrep.2023.112187_bib49 article-title: TMK1-mediated auxin signalling regulates differential growth of the apical hook publication-title: Nature doi: 10.1038/s41586-019-1069-7 – volume: 11 start-page: 754 year: 2018 ident: 10.1016/j.celrep.2023.112187_bib27 article-title: GL3.3, a novel QTL encoding a GSK3/SHAGGY-like Kinase, epistatically interacts with GS3 to produce extra-long grains publication-title: Mol. Plant doi: 10.1016/j.molp.2018.03.006 – volume: 14 start-page: 1683 year: 2021 ident: 10.1016/j.celrep.2023.112187_bib8 article-title: A novel miR1671-OsARF6-OsAUX3 module regulates grain length and weight in rice publication-title: Mol. Plant doi: 10.1016/j.molp.2021.06.023 – volume: 69 start-page: 4723 year: 2018 ident: 10.1016/j.celrep.2023.112187_bib6 article-title: Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery256 – volume: 24 start-page: 55 year: 2008 ident: 10.1016/j.celrep.2023.112187_bib38 article-title: Auxin receptors and plant development: a new signaling paradigm publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.23.090506.123214 – volume: 69 start-page: 179 year: 2018 ident: 10.1016/j.celrep.2023.112187_bib3 article-title: Auxin response factors: output control in auxin biology publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx237 – volume: 11 start-page: 1254 year: 2009 ident: 10.1016/j.celrep.2023.112187_bib29 article-title: Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors publication-title: Nat. Cell Biol. doi: 10.1038/ncb1970 – volume: 482 start-page: 419 year: 2012 ident: 10.1016/j.celrep.2023.112187_bib30 article-title: Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway publication-title: Nature doi: 10.1038/nature10794 |
SSID | ssj0000601194 |
Score | 2.4782321 |
Snippet | Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however,... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 112187 |
SubjectTerms | auxin signaling pathway CP: Molecular biology CP: Plants Gene Expression Regulation, Plant grain size Indoleacetic Acids - metabolism Oryza - genetics Phosphorylation Plant Proteins - genetics protein phosphorylation Proteolysis Signal Transduction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBalMOjL2I9uS9cODfpqJkuybD1mpVk32AqlpX0TsixnHcUOcQJNn_an906yQzooedmD45DIttCdfd_h774j5NjmTpROqkSWhcYPm2iB30TJlKt9UaVY7_zzlzq7kj9uspuNVl_ICYvywHHhvqSlzZirHVcVhHZI5ixXNocwBchbuDoogULM20im4jMYtczwlTLnyNniMh_q5gK5y_m7uUe5Si6wiCZFRt1GXAry_U_C03PwM4ShySvyssePdBzn_Zrs-OYNeRE7Sq7ekr8nkXpO25pOsfsD7W4fPIU9igfRckUvv10LOvvddrDNV5EJh6PPu-_jccpo37iHztoFEon-_T8578YXE5mEihNAq9Qu78NVpojom-k-uZqcXp6cJX2ThcTJXC4Sj4JpNQAxLbKy8hrwSM1YxVzBnBauwhQl9TJ3KatU5hBfSAsGyQourNVevCO7Tdv4D4QKq7O6UBpra6XPC6s0L5yvLeSEzHk2ImJYYuN6BXJshHFnBqrZHxMNY9AwJhpmRJL1UbOowLFl_Fe03nos6meHH8CrTO9VZptXjUg-2N70UCRCDDjV7ZbLfx5cxcCdiq9fbOPbZWdCTxMAtCksxPvoQ-tJCgWJKxx-8D8m_5Hs4YSQKceLQ7K7mC_9EUCnRfkp3CWPIi4Qyg priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free & Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBelMNhl7HvZuqLBriayJcvSMQ1Lu8FW2FqWm5BlOUspdogTWHrqn973JDusg1HYwV-yZMl6T9Lv2e-DkI-2cLx0QiaiVBp3NtEcz3jJpKu9qlK0d_76TZ5dii_zfH5ApoMtDKpV9nN_nNPDbN2njPveHK-Wy_GPDGQXWJ0KANGAUxQamnOhghHf_GT_nQX9jaQhHiLmT7DAYEEX1Lycv157dFyZcTSnSVG37o8VKjjyv7dQ_QuIhgVp9pQ86ZEkncTGPiMHvnlOHsXYkrsX5HYaldBpW9MFxoGg3fLGUziiGyFa7ujF6U9OV7_aDrb1LurEYe7z7vNkkjLah_Chq3aDKkV_30_Ou8n3mUiC7QngVmq3v0MtC8T2zeIluZx9upieJX24hcSJQmwSj67TaoBkmudl5TUgk5qxijnFnOauQmEl9aJwKatk7hBpCMtcnauMW6s9f0UOm7bxbwjlVue1khqtbIUvlJU6U87XFqRD5jwbET50sXG9L3IMiXFtBqWzKxMJY5AwJhJmRJJ9qVX0xfFA_hOk3j4vetIOCe16YXpWMmlpc3gJl8kKoKOQ2mbSFgCDQLLjrhYjUgy0N_cYEx61fKD6DwOrGBiz-CPGNr7ddiZENwFom0JHvI48tG8klyDCQvG3_13vO_IYr1BRLlNH5HCz3vr3gJw25XEYGnfQgRKb priority: 102 providerName: Elsevier |
Title | Control of grain size in rice by TGW3 phosphorylation of OsIAA10 through potentiation of OsIAA10-OsARF4-mediated auxin signaling |
URI | https://dx.doi.org/10.1016/j.celrep.2023.112187 https://www.ncbi.nlm.nih.gov/pubmed/36871218 https://www.proquest.com/docview/2783495110 https://doaj.org/article/1ba50cfc26d143469a26a75126063cf4 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKEagXxJvlURmJa5ATO459QGhbsbRIpRLqir1ZjuNsi1bJkuxKXU78dGbiZHmIVQ95KLHjxOOJv0lm5iPkjc0cz52QkciVxpWNNMc9njPpSq-KGOOdzz7Lk6n4NEtne2TgbO07sP2vaYd8UtNm8fb6--Y9KPy7375azi8aj9knE44xMbHKbpHbMDdlqKpnPeAP72bMcSaGGLodlQ_IXS7BkkiQCuSP6arL6v_XrLULlXaz0-Q-udfDSjoO4-AB2fPVQ3InEE1uHpGfx8EjndYlnSMpBG2vfngKW8wpRPMNvfj4ldPlZd3C0myCgxyWPm9Px-OY0Z7Phy7rFfoX_Xs-Om_HXyYi6gJRAMRSu77uWpkj0K_mj8l08uHi-CTquRciJzKxijzmUSsBn2me5oXXAFNKxgrmFHOauwItl9iLzMWskKlD2CEsc2WqEm6t9vwJ2a_qyj8jlFudlkpqDLkVPlNW6kQ5X1owFZnzbET40MXG9YnJkR9jYQYPtG8myMigjEyQ0YhE21rLkJjjhvJHKL1tWUyr3R2om7nptdTEuU3hIVwiC8CRQmqbSJsBJgIzj7tSjEg2yN70CCUgD7jU1Q3Nvx6GigEFxr8ytvL1ujUd1Qng3Bg64mkYQ9ubHEbh851nXpADbAW94hL1kuyvmrV_BTBplR92nxdgfTo7Ouy04Bc6Tg3f |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEIKXiesoY2AkXqM6sePEj121roVdJOhE3yzHcUrRlFRNK9E98dM5x0kqhoQm8ZCLbJ_Y8fHlO8m5EPLRJJZnVshAZKnCkwkUxzueMWkLl-Yh2jtfXMrxtfg0i2d7ZNjZwqBaZbv2N2u6X63blH7bm_3lYtH_GoHsArtTAiAacEoaPyAPAQ0kGL9hMjvZfWhBhyOhD4iIBAFSdCZ0Xs_LupuVQ8-VEUd7mhCV6_7Yorwn_zs71b-QqN-RRk_JQQsl6aBp7TOy58rn5FETXHL7gvwaNlrotCroHANB0Hpx6yhc0Y8QzbZ0evaN0-X3qoZjtW2U4rD0VT0ZDEJG2xg-dFmtUafo7_zgqh58GYnAG58AcKVm89PXMkdwX85fkuvR6XQ4Dtp4C4EViVgHDn2nFYDJFI-z3CmAJgVjObMps4rbHKWV0InEhiyXsUWoIQyzRZxG3Bjl-CuyX1ale00oNyouUqnQzFa4JDVSRal1hQHxkFnHeoR3Xaxt64wcY2Lc6E7r7IduGKORMbphTI8EO6pl44zjnvInyL1dWXSl7ROq1Vy3Y0mHmYnhJWwkc8COQioTSZMADgLRjttC9EjS8V7fGZnwqMU91X_ohoqGSYt_Ykzpqk2tfXgTwLYhdMRhM4Z2jeQSZFggf_Pf9b4nj8fTi3N9Prn8fESeYA5qzUXpW7K_Xm3cMcCodfbOT5PfnPMVug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+grain+size+in+rice+by+TGW3+phosphorylation+of+OsIAA10+through+potentiation+of+OsIAA10-OsARF4-mediated+auxin+signaling&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Ma%2C+Ming&rft.au=Shen%2C+Shao-Yan&rft.au=Bai%2C+Chen&rft.au=Wang%2C+Wei-Qing&rft.date=2023-03-28&rft.eissn=2211-1247&rft.volume=42&rft.issue=3&rft.spage=112187&rft_id=info:doi/10.1016%2Fj.celrep.2023.112187&rft_id=info%3Apmid%2F36871218&rft.externalDocID=36871218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |