Control of grain size in rice by TGW3 phosphorylation of OsIAA10 through potentiation of OsIAA10-OsARF4-mediated auxin signaling

Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is unce...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 42; no. 3; p. 112187
Main Authors Ma, Ming, Shen, Shao-Yan, Bai, Chen, Wang, Wei-Qing, Feng, Xiao-Hui, Ying, Jie-Zheng, Song, Xian-Jun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.03.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling. [Display omitted] •TGW3 negatively regulates grain size in rice, which mediates brassinosteroid response•TGW3 interacts with and phosphorylates OsIAA10•OsIAA10 phosphorylation potentiates the OsIAA10-OsARF4-mediated auxin signaling•OsTIR1-OsIAA10-OsARF4 defines a genetic pathway for controlling rice grain size Grain size is a key component of grain quality and crop yield. Ma et al. show that TGW3 interacts with and phosphorylates OsIAA10, which favors OsIAA10’s interaction with OsTIR1 and destabilization but hinders its interaction with OsARF4. The genetically defined OsTIR1-OsIAA10-OsARF4 axis is required for grain size control in rice.
AbstractList Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling. [Display omitted] •TGW3 negatively regulates grain size in rice, which mediates brassinosteroid response•TGW3 interacts with and phosphorylates OsIAA10•OsIAA10 phosphorylation potentiates the OsIAA10-OsARF4-mediated auxin signaling•OsTIR1-OsIAA10-OsARF4 defines a genetic pathway for controlling rice grain size Grain size is a key component of grain quality and crop yield. Ma et al. show that TGW3 interacts with and phosphorylates OsIAA10, which favors OsIAA10’s interaction with OsTIR1 and destabilization but hinders its interaction with OsARF4. The genetically defined OsTIR1-OsIAA10-OsARF4 axis is required for grain size control in rice.
Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling.
Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling.Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however, to date, few genetically defined pathways have been reported, and whether phosphorylation could boost degradation of Aux/IAA proteins is uncertain. Here, we show that TGW3 (also called OsGSK5) interacts with and phosphorylates OsIAA10. Phosphorylation of OsIAA10 facilitates its interaction with OsTIR1 and subsequent destabilization, but this modification hinders its interaction with OsARF4. Our genetic and molecular evidence identifies an OsTIR1-OsIAA10-OsARF4 axis as key for grain size control. In addition, physiological and molecular studies suggest that TGW3 mediates the brassinosteroid response, the effect of which can be relayed through the regulatory axis. Collectively, these findings define a auxin signaling pathway to regulate grain size, in which phosphorylation of OsIAA10 enhances its proteolysis and potentiates OsIAA10-OsARF4-mediated auxin signaling.
ArticleNumber 112187
Author Feng, Xiao-Hui
Song, Xian-Jun
Bai, Chen
Shen, Shao-Yan
Ying, Jie-Zheng
Ma, Ming
Wang, Wei-Qing
Author_xml – sequence: 1
  givenname: Ming
  surname: Ma
  fullname: Ma, Ming
  organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 2
  givenname: Shao-Yan
  surname: Shen
  fullname: Shen, Shao-Yan
  organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 3
  givenname: Chen
  surname: Bai
  fullname: Bai, Chen
  organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 4
  givenname: Wei-Qing
  surname: Wang
  fullname: Wang, Wei-Qing
  organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 5
  givenname: Xiao-Hui
  surname: Feng
  fullname: Feng, Xiao-Hui
  organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
– sequence: 6
  givenname: Jie-Zheng
  surname: Ying
  fullname: Ying, Jie-Zheng
  organization: National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
– sequence: 7
  givenname: Xian-Jun
  surname: Song
  fullname: Song, Xian-Jun
  email: songxj@ibcas.ac.cn
  organization: Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36871218$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuL2zAUhU2Z0nl0_kEpXnbjVFeSZbuLQgidmcBAoEzpUijytaPgSKkkl6ar_vQq8Uwps2gF4upxzrlwv8vszDqLWfYGyAwIiPfbmcbB435GCWUzAAp19SK7oBSgAMqrs7_O59l1CFuSliAADX-VnTNRV0fPRfZr4Wz0bshdl_deGZsH8xPzVL3RmK8P-cPtV5bvNy6k7Q-DisbZo3oVlvM5kDxuvBv7Tb53EW00z_-LVZh_vuHFDtv0h22uxh-nLr1Vg7H96-xlp4aA14_1Kvty8-lhcVfcr26Xi_l9oXnFY4FclKIjNWtYuW6xqXm6kZbomuiG6ZYyIgB5pYG0otQlaYAroruypkypBtlVtpxyW6e2cu_NTvmDdMrI04PzvVQ-Gj2ghLUqk1VT0QJnXDSKClWVQAURTHc8Zb2bsvbefRsxRLkzIQEZlEU3BkmrmvGmBCBJ-vZROq7TCP40fiKQBB8mgfYuBI-d1CaehhgTjkECkUficisn4vJIXE7Ek5k_Mz_l_8f2cbJhGvh3g14GbdDqhMijjmki5t8BvwHxZ8P5
CitedBy_id crossref_primary_10_1016_j_scienta_2025_113979
crossref_primary_10_1186_s12284_024_00694_z
crossref_primary_10_3390_plants13243538
crossref_primary_10_1111_jipb_13749
crossref_primary_10_1016_j_cj_2024_06_011
crossref_primary_10_1007_s12298_024_01445_6
crossref_primary_10_1016_j_cj_2024_06_003
crossref_primary_10_3390_plants13091219
crossref_primary_10_1016_j_ijbiomac_2024_133245
crossref_primary_10_1016_j_devcel_2023_12_013
crossref_primary_10_1016_j_ijbiomac_2024_138746
crossref_primary_10_1016_j_jia_2024_09_035
crossref_primary_10_1016_j_plantsci_2025_112434
crossref_primary_10_1007_s10265_024_01581_w
crossref_primary_10_1111_jipb_13786
crossref_primary_10_1016_j_cj_2024_05_002
crossref_primary_10_1038_s41467_024_48786_0
Cites_doi 10.1186/1471-2229-6-3
10.1038/nmeth.2089
10.1105/tpc.010244
10.1371/journal.pgen.1002686
10.1371/journal.ppat.1005847
10.1146/annurev-genet-102108-134148
10.1093/plphys/kiab394
10.1073/pnas.1308974110
10.1016/j.molp.2016.12.013
10.1016/j.pbi.2016.05.008
10.1105/tpc.112.097394
10.1111/tpj.14692
10.1242/dev.02194
10.1016/j.molp.2014.12.006
10.1371/journal.pgen.1006118
10.1146/annurev.arplant.53.100301.135227
10.1038/35104500
10.1111/tpj.12820
10.1105/tpc.18.00836
10.1073/pnas.1219776110
10.1016/0968-0004(91)90071-3
10.15252/embj.2019101515
10.1016/j.molp.2017.12.003
10.1093/plcell/koab194
10.1104/pp.124.4.1728
10.1073/pnas.1205232109
10.7554/eLife.13325
10.1038/nplants.2015.195
10.1105/tpc.19.00499
10.1016/j.molp.2018.03.007
10.1146/annurev.arplant.043008.092057
10.1126/science.1065769
10.1111/pce.12397
10.1146/annurev-arplant-050718-095851
10.1105/tpc.19.00468
10.1016/j.tplants.2011.10.002
10.1016/j.devcel.2017.11.017
10.1016/j.tplants.2021.07.017
10.1146/annurev-genet-120213-092138
10.1007/s11103-007-9213-4
10.1023/A:1015207114117
10.1105/tpc.16.00611
10.1038/cr.2012.151
10.1016/j.molp.2018.03.005
10.1038/s41586-019-1069-7
10.1016/j.molp.2018.03.006
10.1016/j.molp.2021.06.023
10.1093/jxb/ery256
10.1146/annurev.cellbio.23.090506.123214
10.1093/jxb/erx237
10.1038/ncb1970
10.1038/nature10794
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Author(s)
– notice: Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2023.112187
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID oai_doaj_org_article_1ba50cfc26d143469a26a75126063cf4
36871218
10_1016_j_celrep_2023_112187
S2211124723001985
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-e4656f083935bde9846f00d0c80c93cd23061e47c10d65c50914a0cf5823aa9e3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Wed Aug 27 01:32:05 EDT 2025
Fri Jul 11 00:25:30 EDT 2025
Thu Jan 02 22:51:46 EST 2025
Tue Jul 01 02:59:33 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Sat Nov 04 15:31:33 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords CP: Molecular biology
CP: Plants
grain size
protein phosphorylation
auxin signaling pathway
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-e4656f083935bde9846f00d0c80c93cd23061e47c10d65c50914a0cf5823aa9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/1ba50cfc26d143469a26a75126063cf4
PMID 36871218
PQID 2783495110
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1ba50cfc26d143469a26a75126063cf4
proquest_miscellaneous_2783495110
pubmed_primary_36871218
crossref_citationtrail_10_1016_j_celrep_2023_112187
crossref_primary_10_1016_j_celrep_2023_112187
elsevier_sciencedirect_doi_10_1016_j_celrep_2023_112187
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-28
PublicationDateYYYYMMDD 2023-03-28
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2023
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Zhang, Wang, Huang, Lan, Wang, Yin, Wu, Tang, Qian, Li, Zhang (bib23) 2012; 109
Yang, Shen, He, Tian, Li (bib20) 2016; 12
Ying, Ma, Bai, Huang, Liu, Fan, Song (bib28) 2018; 11
Hu, Lu, Wang, He, Sun, Wang, Liu, Jiang, Sun, Xin (bib7) 2018; 11
Kim, Wang (bib35) 2010; 61
Lv, Yu, Liu, Wen, Yan, Hu, Li, Kong, Li, Tian (bib50) 2020; 39
Colón-Carmona, Chen, Yeh, Abel (bib46) 2000; 124
Hirano, Yoshida, Aya, Kawamura, Hayashi, Hobo, Sato-Izawa, Kitano, Ueguchi-Tanaka, Matsuoka (bib41) 2017; 10
Gray, Kepinski, Rouse, Leyser, Estelle (bib44) 2001; 414
Xu, He, Zhang, Mao, Wang, Li, Hua, Du, Xu, Li (bib48) 2018; 11
Qiao, Sun, Wang, Wu, Li, Li, Wang, Leng, Tian, Lu, Wang (bib18) 2017; 29
Liu, Yu, Zhang, Yin, Li, Niu, Meng, Zhang, Dong, Liu (bib14) 2021; 187
Schruff, Spielman, Tiwari, Adams, Fenby, Scott (bib4) 2006; 133
Che, Tong, Shi, Liu, Fang, Liu, Xiao, Hu, Liu, Wang (bib16) 2015; 2
Kim, Michniewicz, Bergmann, Wang (bib30) 2012; 482
Qi, Lin, Song, Shen, Huang, Shan, Zhu, Jiang, Gao, Lin (bib22) 2012; 22
Zhang, Xu, Guo, Zhu, Huan, Liu, Wang, Luo, Wang, Chong (bib21) 2012; 8
Li, Xu, Li (bib1) 2019; 70
Koh, Lee, Kim, Koh, Lee, An, Choe, Kim (bib12) 2007; 65
Chapman, Estelle (bib36) 2009; 43
Lavy, Prigge, Tao, Shain, Kuo, Kirchsteiger, Estelle (bib42) 2016; 5
Ramos, Zenser, Leyser, Callis (bib45) 2001; 13
Yang, Xie, Jiang, Li, Huang, Li (bib47) 2018; 44
Zuo, Li (bib2) 2014; 48
Xia, Zhou, Liu, Dan, Li, Wu, Chen, Wang, Gao, Zhang, He (bib27) 2018; 11
Jin, Qin, Wang, Pu, Liu, Wen, Ji, Wu, Wei, Ding, Li (bib25) 2016; 12
Gao, Zhang, Zhang, Zhou, Jiang, Huang, Tang, Bao, Cheng, Tang (bib39) 2019; 31
Zhang, Li, Tang, Sun, Zhang, Yu, Yao, Li, Guo, Li (bib6) 2018; 69
Youn, Kim (bib33) 2015; 8
Xiao, Zhang, Liu, Niu, Tong, Chu (bib19) 2020; 102
Woodgett (bib9) 1991; 16
Cao, Chen, Li, Yu, Zheng, Ge, Zheng, Wang, Gu, Gelová (bib49) 2019; 568
Kim, Guan, Sun, Deng, Tang, Shang, Sun, Burlingame, Wang (bib29) 2009; 11
Ye, Li, Guo, Yin (bib32) 2012; 109
Saidi, Hearn, Coates (bib31) 2012; 17
Yoo, Albert, Soltis, Soltis (bib11) 2006; 6
Li, Zhang, Yu (bib15) 2021; 26
Zhu, Liang, Cui, Chen, Yin, Luo, Zhu, Lucas, Wang, Zhang (bib40) 2015; 82
Leyser (bib37) 2002; 53
Li, Nam (bib10) 2002; 295
Gao, Zhang, Wang, Shen, Bai, Song (bib24) 2021; 33
Li, Li (bib26) 2016; 33
Wang, Xue, Batelli, Lee, Hou, Van Oosten, Zhang, Tao, Zhu (bib52) 2013; 110
Roosjen, Paque, Weijers (bib3) 2018; 69
Lyu, Wang, Duan, Liu, Huang, Zeng, Zhang, Dong, Li, Xu (bib17) 2020; 32
Zhang, Wang, Xu, Yu, Shen, Qian, Geisler, Jiang, Qi (bib5) 2015; 38
Qiao, Jiang, Lin, Shang, Wang, Li, Fu, Geisler, Qi, Gao, Qian (bib8) 2021; 14
He, Hong, Zhang, Tan, Li, Kong, Sang, Xie, Wei, Li (bib34) 2020; 32
Mockaitis, Estelle (bib38) 2008; 24
Schneider, Rasband, Eliceiri (bib51) 2012; 9
Hagen, Guilfoyle (bib43) 2002; 49
Tong, Liu, Jin, Du, Yin, Qian, Zhu, Chu (bib13) 2012; 24
Yoo (10.1016/j.celrep.2023.112187_bib11) 2006; 6
Xu (10.1016/j.celrep.2023.112187_bib48) 2018; 11
Hirano (10.1016/j.celrep.2023.112187_bib41) 2017; 10
Li (10.1016/j.celrep.2023.112187_bib15) 2021; 26
Mockaitis (10.1016/j.celrep.2023.112187_bib38) 2008; 24
Che (10.1016/j.celrep.2023.112187_bib16) 2015; 2
Qi (10.1016/j.celrep.2023.112187_bib22) 2012; 22
Li (10.1016/j.celrep.2023.112187_bib26) 2016; 33
Xiao (10.1016/j.celrep.2023.112187_bib19) 2020; 102
Kim (10.1016/j.celrep.2023.112187_bib30) 2012; 482
Liu (10.1016/j.celrep.2023.112187_bib14) 2021; 187
Lavy (10.1016/j.celrep.2023.112187_bib42) 2016; 5
Gao (10.1016/j.celrep.2023.112187_bib39) 2019; 31
Ye (10.1016/j.celrep.2023.112187_bib32) 2012; 109
Qiao (10.1016/j.celrep.2023.112187_bib8) 2021; 14
Li (10.1016/j.celrep.2023.112187_bib1) 2019; 70
Kim (10.1016/j.celrep.2023.112187_bib29) 2009; 11
Colón-Carmona (10.1016/j.celrep.2023.112187_bib46) 2000; 124
Zhu (10.1016/j.celrep.2023.112187_bib40) 2015; 82
Yang (10.1016/j.celrep.2023.112187_bib47) 2018; 44
Qiao (10.1016/j.celrep.2023.112187_bib18) 2017; 29
Woodgett (10.1016/j.celrep.2023.112187_bib9) 1991; 16
Zhang (10.1016/j.celrep.2023.112187_bib6) 2018; 69
Lyu (10.1016/j.celrep.2023.112187_bib17) 2020; 32
Saidi (10.1016/j.celrep.2023.112187_bib31) 2012; 17
Lv (10.1016/j.celrep.2023.112187_bib50) 2020; 39
Youn (10.1016/j.celrep.2023.112187_bib33) 2015; 8
Koh (10.1016/j.celrep.2023.112187_bib12) 2007; 65
Zhang (10.1016/j.celrep.2023.112187_bib21) 2012; 8
Tong (10.1016/j.celrep.2023.112187_bib13) 2012; 24
Ying (10.1016/j.celrep.2023.112187_bib28) 2018; 11
Yang (10.1016/j.celrep.2023.112187_bib20) 2016; 12
Cao (10.1016/j.celrep.2023.112187_bib49) 2019; 568
Schruff (10.1016/j.celrep.2023.112187_bib4) 2006; 133
Wang (10.1016/j.celrep.2023.112187_bib52) 2013; 110
Hagen (10.1016/j.celrep.2023.112187_bib43) 2002; 49
He (10.1016/j.celrep.2023.112187_bib34) 2020; 32
Kim (10.1016/j.celrep.2023.112187_bib35) 2010; 61
Zhang (10.1016/j.celrep.2023.112187_bib23) 2012; 109
Leyser (10.1016/j.celrep.2023.112187_bib37) 2002; 53
Gao (10.1016/j.celrep.2023.112187_bib24) 2021; 33
Zhang (10.1016/j.celrep.2023.112187_bib5) 2015; 38
Chapman (10.1016/j.celrep.2023.112187_bib36) 2009; 43
Xia (10.1016/j.celrep.2023.112187_bib27) 2018; 11
Hu (10.1016/j.celrep.2023.112187_bib7) 2018; 11
Gray (10.1016/j.celrep.2023.112187_bib44) 2001; 414
Schneider (10.1016/j.celrep.2023.112187_bib51) 2012; 9
Ramos (10.1016/j.celrep.2023.112187_bib45) 2001; 13
Roosjen (10.1016/j.celrep.2023.112187_bib3) 2018; 69
Jin (10.1016/j.celrep.2023.112187_bib25) 2016; 12
Zuo (10.1016/j.celrep.2023.112187_bib2) 2014; 48
Li (10.1016/j.celrep.2023.112187_bib10) 2002; 295
References_xml – volume: 12
  start-page: e1005847
  year: 2016
  ident: bib25
  article-title: Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development
  publication-title: PLoS Pathog.
– volume: 53
  start-page: 377
  year: 2002
  end-page: 398
  ident: bib37
  article-title: Molecular genetics of auxin signaling
  publication-title: Annu. Rev. Plant Biol.
– volume: 31
  start-page: 1077
  year: 2019
  end-page: 1093
  ident: bib39
  article-title: Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling
  publication-title: Plant Cell
– volume: 11
  start-page: 523
  year: 2018
  end-page: 541
  ident: bib48
  article-title: Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis
  publication-title: Mol. Plant
– volume: 24
  start-page: 2562
  year: 2012
  end-page: 2577
  ident: bib13
  article-title: acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice
  publication-title: Plant Cell
– volume: 11
  start-page: 754
  year: 2018
  end-page: 756
  ident: bib27
  article-title: , a novel QTL encoding a GSK3/SHAGGY-like Kinase, epistatically interacts with GS3 to produce extra-long grains
  publication-title: Mol. Plant
– volume: 110
  start-page: 11205
  year: 2013
  end-page: 11210
  ident: bib52
  article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 17
  start-page: 39
  year: 2012
  end-page: 46
  ident: bib31
  article-title: Function and evolution of ‘green’ GSK3/Shaggy-like kinases
  publication-title: Trends Plant Sci.
– volume: 12
  start-page: e1006118
  year: 2016
  ident: bib20
  article-title: OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice
  publication-title: PLoS Genet.
– volume: 49
  start-page: 373
  year: 2002
  end-page: 385
  ident: bib43
  article-title: Auxin-responsive gene expression: genes, promoters and regulatory factors
  publication-title: Plant Mol. Biol.
– volume: 38
  start-page: 638
  year: 2015
  end-page: 654
  ident: bib5
  article-title: The auxin response factor, OsARF19, controls rice leaf angles through positively regulating
  publication-title: Plant Cell Environ.
– volume: 414
  start-page: 271
  year: 2001
  end-page: 276
  ident: bib44
  article-title: Auxin regulates SCF
  publication-title: Nature
– volume: 187
  start-page: 2563
  year: 2021
  end-page: 2576
  ident: bib14
  article-title: Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice
  publication-title: Plant Physiol.
– volume: 5
  start-page: e13325
  year: 2016
  ident: bib42
  article-title: Constitutive auxin response in
  publication-title: Elife
– volume: 11
  start-page: 1254
  year: 2009
  end-page: 1260
  ident: bib29
  article-title: Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors
  publication-title: Nat. Cell Biol.
– volume: 44
  start-page: 29
  year: 2018
  end-page: 41.e4
  ident: bib47
  article-title: Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability
  publication-title: Dev. Cell
– volume: 6
  start-page: 3
  year: 2006
  end-page: 27
  ident: bib11
  article-title: Phylogenetic diversification of
  publication-title: BMC Plant Biol.
– volume: 43
  start-page: 265
  year: 2009
  end-page: 285
  ident: bib36
  article-title: Mechanism of auxin-regulated gene expression in plants
  publication-title: Annu. Rev. Genet.
– volume: 568
  start-page: 240
  year: 2019
  end-page: 243
  ident: bib49
  article-title: TMK1-mediated auxin signalling regulates differential growth of the apical hook
  publication-title: Nature
– volume: 32
  start-page: 2806
  year: 2020
  end-page: 2822
  ident: bib34
  article-title: The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4
  publication-title: Plant Cell
– volume: 65
  start-page: 453
  year: 2007
  end-page: 466
  ident: bib12
  article-title: T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses
  publication-title: Plant Mol. Biol.
– volume: 33
  start-page: 3331
  year: 2021
  end-page: 3347
  ident: bib24
  article-title: The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice
  publication-title: Plant Cell
– volume: 82
  start-page: 570
  year: 2015
  end-page: 581
  ident: bib40
  article-title: Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of carbon starved anther, a MYB domain protein
  publication-title: Plant J.
– volume: 24
  start-page: 55
  year: 2008
  end-page: 80
  ident: bib38
  article-title: Auxin receptors and plant development: a new signaling paradigm
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 109
  start-page: 21534
  year: 2012
  end-page: 21539
  ident: bib23
  article-title: Rare allele of
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 102
  start-page: 1187
  year: 2020
  end-page: 1201
  ident: bib19
  article-title: GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice
  publication-title: Plant J.
– volume: 61
  start-page: 681
  year: 2010
  end-page: 704
  ident: bib35
  article-title: Brassinosteroid signal transduction from receptor kinases to transcription factors
  publication-title: Annu. Rev. Plant Biol.
– volume: 10
  start-page: 590
  year: 2017
  end-page: 604
  ident: bib41
  article-title: SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice
  publication-title: Mol. Plant
– volume: 2
  start-page: 15195
  year: 2015
  end-page: 15201
  ident: bib16
  article-title: Control of grain size and rice yield by GL2-mediated brassinosteroid responses
  publication-title: Nat. Plants
– volume: 14
  start-page: 1683
  year: 2021
  end-page: 1698
  ident: bib8
  article-title: A novel
  publication-title: Mol. Plant
– volume: 124
  start-page: 1728
  year: 2000
  end-page: 1738
  ident: bib46
  article-title: Aux/IAA proteins are phosphorylated by phytochrome in vitro
  publication-title: Plant Physiol.
– volume: 33
  start-page: 23
  year: 2016
  end-page: 32
  ident: bib26
  article-title: Signaling pathways of seed size control in plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 48
  start-page: 99
  year: 2014
  end-page: 118
  ident: bib2
  article-title: Molecular genetic dissection of quantitative trait loci regulating rice grain size
  publication-title: Annu. Rev. Genet.
– volume: 16
  start-page: 177
  year: 1991
  end-page: 181
  ident: bib9
  article-title: A common denominator linking glycogen metabolism, nuclear oncogenes and development
  publication-title: Trends Biochem. Sci.
– volume: 482
  start-page: 419
  year: 2012
  end-page: 422
  ident: bib30
  article-title: Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway
  publication-title: Nature
– volume: 13
  start-page: 2349
  year: 2001
  end-page: 2360
  ident: bib45
  article-title: Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent
  publication-title: Plant Cell
– volume: 133
  start-page: 251
  year: 2006
  end-page: 261
  ident: bib4
  article-title: The
  publication-title: Development
– volume: 11
  start-page: 736
  year: 2018
  end-page: 749
  ident: bib7
  article-title: A novel QTL
  publication-title: Mol. Plant
– volume: 11
  start-page: 750
  year: 2018
  end-page: 753
  ident: bib28
  article-title: , a major QTL that negatively modulates grain length and weight in rice
  publication-title: Mol. Plant
– volume: 26
  start-page: 1286
  year: 2021
  end-page: 1300
  ident: bib15
  article-title: GSK3s: nodes of multilayer regulation of plant development and stress responses
  publication-title: Trends Plant Sci.
– volume: 69
  start-page: 4723
  year: 2018
  end-page: 4737
  ident: bib6
  article-title: Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice
  publication-title: J. Exp. Bot.
– volume: 295
  start-page: 1299
  year: 2002
  end-page: 1301
  ident: bib10
  article-title: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase
  publication-title: Science
– volume: 39
  start-page: e101515
  year: 2020
  ident: bib50
  article-title: Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling
  publication-title: EMBO J.
– volume: 29
  start-page: 292
  year: 2017
  end-page: 309
  ident: bib18
  article-title: The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture
  publication-title: Plant Cell
– volume: 8
  start-page: e1002686
  year: 2012
  ident: bib21
  article-title: Dynamics of brassinosteroid response modulated by negative regulator LIC in Rice
  publication-title: PLoS Genet.
– volume: 70
  start-page: 435
  year: 2019
  end-page: 463
  ident: bib1
  article-title: Molecular networks of seed size control in plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 22
  start-page: 1666
  year: 2012
  end-page: 1680
  ident: bib22
  article-title: The novel quantitative trait locus
  publication-title: Cell Res.
– volume: 8
  start-page: 552
  year: 2015
  end-page: 565
  ident: bib33
  article-title: Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways
  publication-title: Mol. Plant
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: bib51
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
– volume: 109
  start-page: 20142
  year: 2012
  end-page: 20147
  ident: bib32
  article-title: MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 69
  start-page: 179
  year: 2018
  end-page: 188
  ident: bib3
  article-title: Auxin response factors: output control in auxin biology
  publication-title: J. Exp. Bot.
– volume: 32
  start-page: 1905
  year: 2020
  end-page: 1918
  ident: bib17
  article-title: Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice
  publication-title: Plant Cell
– volume: 6
  start-page: 3
  year: 2006
  ident: 10.1016/j.celrep.2023.112187_bib11
  article-title: Phylogenetic diversification of glycogen synthase kinase 3/SHAGGY-like kinase genes in plants
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-6-3
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/j.celrep.2023.112187_bib51
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 13
  start-page: 2349
  year: 2001
  ident: 10.1016/j.celrep.2023.112187_bib45
  article-title: Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domain II and is proteasome dependent
  publication-title: Plant Cell
  doi: 10.1105/tpc.010244
– volume: 8
  start-page: e1002686
  year: 2012
  ident: 10.1016/j.celrep.2023.112187_bib21
  article-title: Dynamics of brassinosteroid response modulated by negative regulator LIC in Rice
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002686
– volume: 12
  start-page: e1005847
  year: 2016
  ident: 10.1016/j.celrep.2023.112187_bib25
  article-title: Rice dwarf virus P2 protein hijacks auxin signaling by directly targeting the rice OsIAA10 protein, enhancing viral infection and disease development
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005847
– volume: 43
  start-page: 265
  year: 2009
  ident: 10.1016/j.celrep.2023.112187_bib36
  article-title: Mechanism of auxin-regulated gene expression in plants
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-102108-134148
– volume: 187
  start-page: 2563
  year: 2021
  ident: 10.1016/j.celrep.2023.112187_bib14
  article-title: Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab394
– volume: 110
  start-page: 11205
  year: 2013
  ident: 10.1016/j.celrep.2023.112187_bib52
  article-title: Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1308974110
– volume: 10
  start-page: 590
  year: 2017
  ident: 10.1016/j.celrep.2023.112187_bib41
  article-title: SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2016.12.013
– volume: 33
  start-page: 23
  year: 2016
  ident: 10.1016/j.celrep.2023.112187_bib26
  article-title: Signaling pathways of seed size control in plants
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2016.05.008
– volume: 24
  start-page: 2562
  year: 2012
  ident: 10.1016/j.celrep.2023.112187_bib13
  article-title: DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.097394
– volume: 102
  start-page: 1187
  year: 2020
  ident: 10.1016/j.celrep.2023.112187_bib19
  article-title: GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice
  publication-title: Plant J.
  doi: 10.1111/tpj.14692
– volume: 133
  start-page: 251
  year: 2006
  ident: 10.1016/j.celrep.2023.112187_bib4
  article-title: The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signaling, cell division, and the size of seeds and other organs
  publication-title: Development
  doi: 10.1242/dev.02194
– volume: 8
  start-page: 552
  year: 2015
  ident: 10.1016/j.celrep.2023.112187_bib33
  article-title: Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2014.12.006
– volume: 12
  start-page: e1006118
  year: 2016
  ident: 10.1016/j.celrep.2023.112187_bib20
  article-title: OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006118
– volume: 53
  start-page: 377
  year: 2002
  ident: 10.1016/j.celrep.2023.112187_bib37
  article-title: Molecular genetics of auxin signaling
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.53.100301.135227
– volume: 414
  start-page: 271
  year: 2001
  ident: 10.1016/j.celrep.2023.112187_bib44
  article-title: Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins
  publication-title: Nature
  doi: 10.1038/35104500
– volume: 82
  start-page: 570
  year: 2015
  ident: 10.1016/j.celrep.2023.112187_bib40
  article-title: Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of carbon starved anther, a MYB domain protein
  publication-title: Plant J.
  doi: 10.1111/tpj.12820
– volume: 31
  start-page: 1077
  year: 2019
  ident: 10.1016/j.celrep.2023.112187_bib39
  article-title: Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling
  publication-title: Plant Cell
  doi: 10.1105/tpc.18.00836
– volume: 109
  start-page: 21534
  year: 2012
  ident: 10.1016/j.celrep.2023.112187_bib23
  article-title: Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1219776110
– volume: 16
  start-page: 177
  year: 1991
  ident: 10.1016/j.celrep.2023.112187_bib9
  article-title: A common denominator linking glycogen metabolism, nuclear oncogenes and development
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(91)90071-3
– volume: 39
  start-page: e101515
  year: 2020
  ident: 10.1016/j.celrep.2023.112187_bib50
  article-title: Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling
  publication-title: EMBO J.
  doi: 10.15252/embj.2019101515
– volume: 11
  start-page: 523
  year: 2018
  ident: 10.1016/j.celrep.2023.112187_bib48
  article-title: Photoactivated CRY1 and phyB interact directly with AUX/IAA proteins to inhibit auxin signaling in Arabidopsis
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2017.12.003
– volume: 33
  start-page: 3331
  year: 2021
  ident: 10.1016/j.celrep.2023.112187_bib24
  article-title: The ubiquitin-interacting motif-type ubiquitin receptor HDR3 interacts with and stabilizes the histone acetyltransferase GW6a to control the grain size in rice
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab194
– volume: 124
  start-page: 1728
  year: 2000
  ident: 10.1016/j.celrep.2023.112187_bib46
  article-title: Aux/IAA proteins are phosphorylated by phytochrome in vitro
  publication-title: Plant Physiol.
  doi: 10.1104/pp.124.4.1728
– volume: 109
  start-page: 20142
  year: 2012
  ident: 10.1016/j.celrep.2023.112187_bib32
  article-title: MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1205232109
– volume: 5
  start-page: e13325
  year: 2016
  ident: 10.1016/j.celrep.2023.112187_bib42
  article-title: Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins
  publication-title: Elife
  doi: 10.7554/eLife.13325
– volume: 2
  start-page: 15195
  year: 2015
  ident: 10.1016/j.celrep.2023.112187_bib16
  article-title: Control of grain size and rice yield by GL2-mediated brassinosteroid responses
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.195
– volume: 32
  start-page: 2806
  year: 2020
  ident: 10.1016/j.celrep.2023.112187_bib34
  article-title: The OsGSK2 kinase integrates brassinosteroid and jasmonic acid signaling by interacting with OsJAZ4
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00499
– volume: 11
  start-page: 750
  year: 2018
  ident: 10.1016/j.celrep.2023.112187_bib28
  article-title: TGW3, a major QTL that negatively modulates grain length and weight in rice
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.03.007
– volume: 61
  start-page: 681
  year: 2010
  ident: 10.1016/j.celrep.2023.112187_bib35
  article-title: Brassinosteroid signal transduction from receptor kinases to transcription factors
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.043008.092057
– volume: 295
  start-page: 1299
  year: 2002
  ident: 10.1016/j.celrep.2023.112187_bib10
  article-title: Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase
  publication-title: Science
  doi: 10.1126/science.1065769
– volume: 38
  start-page: 638
  year: 2015
  ident: 10.1016/j.celrep.2023.112187_bib5
  article-title: The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12397
– volume: 70
  start-page: 435
  year: 2019
  ident: 10.1016/j.celrep.2023.112187_bib1
  article-title: Molecular networks of seed size control in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-095851
– volume: 32
  start-page: 1905
  year: 2020
  ident: 10.1016/j.celrep.2023.112187_bib17
  article-title: Control of grain size and weight by the GSK2-LARGE1/OML4 pathway in rice
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00468
– volume: 17
  start-page: 39
  year: 2012
  ident: 10.1016/j.celrep.2023.112187_bib31
  article-title: Function and evolution of ‘green’ GSK3/Shaggy-like kinases
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2011.10.002
– volume: 44
  start-page: 29
  year: 2018
  ident: 10.1016/j.celrep.2023.112187_bib47
  article-title: Phytochrome A negatively regulates the shade avoidance response by increasing auxin/indole acidic acid protein stability
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.11.017
– volume: 26
  start-page: 1286
  year: 2021
  ident: 10.1016/j.celrep.2023.112187_bib15
  article-title: GSK3s: nodes of multilayer regulation of plant development and stress responses
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2021.07.017
– volume: 48
  start-page: 99
  year: 2014
  ident: 10.1016/j.celrep.2023.112187_bib2
  article-title: Molecular genetic dissection of quantitative trait loci regulating rice grain size
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120213-092138
– volume: 65
  start-page: 453
  year: 2007
  ident: 10.1016/j.celrep.2023.112187_bib12
  article-title: T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-007-9213-4
– volume: 49
  start-page: 373
  year: 2002
  ident: 10.1016/j.celrep.2023.112187_bib43
  article-title: Auxin-responsive gene expression: genes, promoters and regulatory factors
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1015207114117
– volume: 29
  start-page: 292
  year: 2017
  ident: 10.1016/j.celrep.2023.112187_bib18
  article-title: The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00611
– volume: 22
  start-page: 1666
  year: 2012
  ident: 10.1016/j.celrep.2023.112187_bib22
  article-title: The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating cyclin-T1;3
  publication-title: Cell Res.
  doi: 10.1038/cr.2012.151
– volume: 11
  start-page: 736
  year: 2018
  ident: 10.1016/j.celrep.2023.112187_bib7
  article-title: A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.03.005
– volume: 568
  start-page: 240
  year: 2019
  ident: 10.1016/j.celrep.2023.112187_bib49
  article-title: TMK1-mediated auxin signalling regulates differential growth of the apical hook
  publication-title: Nature
  doi: 10.1038/s41586-019-1069-7
– volume: 11
  start-page: 754
  year: 2018
  ident: 10.1016/j.celrep.2023.112187_bib27
  article-title: GL3.3, a novel QTL encoding a GSK3/SHAGGY-like Kinase, epistatically interacts with GS3 to produce extra-long grains
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.03.006
– volume: 14
  start-page: 1683
  year: 2021
  ident: 10.1016/j.celrep.2023.112187_bib8
  article-title: A novel miR1671-OsARF6-OsAUX3 module regulates grain length and weight in rice
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2021.06.023
– volume: 69
  start-page: 4723
  year: 2018
  ident: 10.1016/j.celrep.2023.112187_bib6
  article-title: Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery256
– volume: 24
  start-page: 55
  year: 2008
  ident: 10.1016/j.celrep.2023.112187_bib38
  article-title: Auxin receptors and plant development: a new signaling paradigm
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.23.090506.123214
– volume: 69
  start-page: 179
  year: 2018
  ident: 10.1016/j.celrep.2023.112187_bib3
  article-title: Auxin response factors: output control in auxin biology
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erx237
– volume: 11
  start-page: 1254
  year: 2009
  ident: 10.1016/j.celrep.2023.112187_bib29
  article-title: Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1970
– volume: 482
  start-page: 419
  year: 2012
  ident: 10.1016/j.celrep.2023.112187_bib30
  article-title: Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway
  publication-title: Nature
  doi: 10.1038/nature10794
SSID ssj0000601194
Score 2.4782321
Snippet Grain size is a key component of grain yield and quality in crops. Several core players of auxin signaling have been revealed to modulate grain size; however,...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112187
SubjectTerms auxin signaling pathway
CP: Molecular biology
CP: Plants
Gene Expression Regulation, Plant
grain size
Indoleacetic Acids - metabolism
Oryza - genetics
Phosphorylation
Plant Proteins - genetics
protein phosphorylation
Proteolysis
Signal Transduction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBalMOjL2I9uS9cODfpqJkuybD1mpVk32AqlpX0TsixnHcUOcQJNn_an906yQzooedmD45DIttCdfd_h774j5NjmTpROqkSWhcYPm2iB30TJlKt9UaVY7_zzlzq7kj9uspuNVl_ICYvywHHhvqSlzZirHVcVhHZI5ixXNocwBchbuDoogULM20im4jMYtczwlTLnyNniMh_q5gK5y_m7uUe5Si6wiCZFRt1GXAry_U_C03PwM4ShySvyssePdBzn_Zrs-OYNeRE7Sq7ekr8nkXpO25pOsfsD7W4fPIU9igfRckUvv10LOvvddrDNV5EJh6PPu-_jccpo37iHztoFEon-_T8578YXE5mEihNAq9Qu78NVpojom-k-uZqcXp6cJX2ThcTJXC4Sj4JpNQAxLbKy8hrwSM1YxVzBnBauwhQl9TJ3KatU5hBfSAsGyQourNVevCO7Tdv4D4QKq7O6UBpra6XPC6s0L5yvLeSEzHk2ImJYYuN6BXJshHFnBqrZHxMNY9AwJhpmRJL1UbOowLFl_Fe03nos6meHH8CrTO9VZptXjUg-2N70UCRCDDjV7ZbLfx5cxcCdiq9fbOPbZWdCTxMAtCksxPvoQ-tJCgWJKxx-8D8m_5Hs4YSQKceLQ7K7mC_9EUCnRfkp3CWPIi4Qyg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect Free & Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBelMNhl7HvZuqLBriayJcvSMQ1Lu8FW2FqWm5BlOUspdogTWHrqn973JDusg1HYwV-yZMl6T9Lv2e-DkI-2cLx0QiaiVBp3NtEcz3jJpKu9qlK0d_76TZ5dii_zfH5ApoMtDKpV9nN_nNPDbN2njPveHK-Wy_GPDGQXWJ0KANGAUxQamnOhghHf_GT_nQX9jaQhHiLmT7DAYEEX1Lycv157dFyZcTSnSVG37o8VKjjyv7dQ_QuIhgVp9pQ86ZEkncTGPiMHvnlOHsXYkrsX5HYaldBpW9MFxoGg3fLGUziiGyFa7ujF6U9OV7_aDrb1LurEYe7z7vNkkjLah_Chq3aDKkV_30_Ou8n3mUiC7QngVmq3v0MtC8T2zeIluZx9upieJX24hcSJQmwSj67TaoBkmudl5TUgk5qxijnFnOauQmEl9aJwKatk7hBpCMtcnauMW6s9f0UOm7bxbwjlVue1khqtbIUvlJU6U87XFqRD5jwbET50sXG9L3IMiXFtBqWzKxMJY5AwJhJmRJJ9qVX0xfFA_hOk3j4vetIOCe16YXpWMmlpc3gJl8kKoKOQ2mbSFgCDQLLjrhYjUgy0N_cYEx61fKD6DwOrGBiz-CPGNr7ddiZENwFom0JHvI48tG8klyDCQvG3_13vO_IYr1BRLlNH5HCz3vr3gJw25XEYGnfQgRKb
  priority: 102
  providerName: Elsevier
Title Control of grain size in rice by TGW3 phosphorylation of OsIAA10 through potentiation of OsIAA10-OsARF4-mediated auxin signaling
URI https://dx.doi.org/10.1016/j.celrep.2023.112187
https://www.ncbi.nlm.nih.gov/pubmed/36871218
https://www.proquest.com/docview/2783495110
https://doaj.org/article/1ba50cfc26d143469a26a75126063cf4
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZKEagXxJvlURmJa5ATO459QGhbsbRIpRLqir1ZjuNsi1bJkuxKXU78dGbiZHmIVQ95KLHjxOOJv0lm5iPkjc0cz52QkciVxpWNNMc9njPpSq-KGOOdzz7Lk6n4NEtne2TgbO07sP2vaYd8UtNm8fb6--Y9KPy7375azi8aj9knE44xMbHKbpHbMDdlqKpnPeAP72bMcSaGGLodlQ_IXS7BkkiQCuSP6arL6v_XrLULlXaz0-Q-udfDSjoO4-AB2fPVQ3InEE1uHpGfx8EjndYlnSMpBG2vfngKW8wpRPMNvfj4ldPlZd3C0myCgxyWPm9Px-OY0Z7Phy7rFfoX_Xs-Om_HXyYi6gJRAMRSu77uWpkj0K_mj8l08uHi-CTquRciJzKxijzmUSsBn2me5oXXAFNKxgrmFHOauwItl9iLzMWskKlD2CEsc2WqEm6t9vwJ2a_qyj8jlFudlkpqDLkVPlNW6kQ5X1owFZnzbET40MXG9YnJkR9jYQYPtG8myMigjEyQ0YhE21rLkJjjhvJHKL1tWUyr3R2om7nptdTEuU3hIVwiC8CRQmqbSJsBJgIzj7tSjEg2yN70CCUgD7jU1Q3Nvx6GigEFxr8ytvL1ujUd1Qng3Bg64mkYQ9ubHEbh851nXpADbAW94hL1kuyvmrV_BTBplR92nxdgfTo7Ouy04Bc6Tg3f
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGEIKXiesoY2AkXqM6sePEj121roVdJOhE3yzHcUrRlFRNK9E98dM5x0kqhoQm8ZCLbJ_Y8fHlO8m5EPLRJJZnVshAZKnCkwkUxzueMWkLl-Yh2jtfXMrxtfg0i2d7ZNjZwqBaZbv2N2u6X63blH7bm_3lYtH_GoHsArtTAiAacEoaPyAPAQ0kGL9hMjvZfWhBhyOhD4iIBAFSdCZ0Xs_LupuVQ8-VEUd7mhCV6_7Yorwn_zs71b-QqN-RRk_JQQsl6aBp7TOy58rn5FETXHL7gvwaNlrotCroHANB0Hpx6yhc0Y8QzbZ0evaN0-X3qoZjtW2U4rD0VT0ZDEJG2xg-dFmtUafo7_zgqh58GYnAG58AcKVm89PXMkdwX85fkuvR6XQ4Dtp4C4EViVgHDn2nFYDJFI-z3CmAJgVjObMps4rbHKWV0InEhiyXsUWoIQyzRZxG3Bjl-CuyX1ale00oNyouUqnQzFa4JDVSRal1hQHxkFnHeoR3Xaxt64wcY2Lc6E7r7IduGKORMbphTI8EO6pl44zjnvInyL1dWXSl7ROq1Vy3Y0mHmYnhJWwkc8COQioTSZMADgLRjttC9EjS8V7fGZnwqMU91X_ohoqGSYt_Ykzpqk2tfXgTwLYhdMRhM4Z2jeQSZFggf_Pf9b4nj8fTi3N9Prn8fESeYA5qzUXpW7K_Xm3cMcCodfbOT5PfnPMVug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+grain+size+in+rice+by+TGW3+phosphorylation+of+OsIAA10+through+potentiation+of+OsIAA10-OsARF4-mediated+auxin+signaling&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Ma%2C+Ming&rft.au=Shen%2C+Shao-Yan&rft.au=Bai%2C+Chen&rft.au=Wang%2C+Wei-Qing&rft.date=2023-03-28&rft.eissn=2211-1247&rft.volume=42&rft.issue=3&rft.spage=112187&rft_id=info:doi/10.1016%2Fj.celrep.2023.112187&rft_id=info%3Apmid%2F36871218&rft.externalDocID=36871218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon