X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods
ZnO doped with different concentrations of Al2O3 (2, 4, 6, 8 and 10wt%) is prepared by conventional solid-state reaction method. X-ray diffraction results revealed that the samples were crystalline with a hexagonal wurtzite phase. As the concentration of alumina (Al2O3) increases in ZnO, the X-ray d...
Saved in:
Published in | Journal of Asian Ceramic Societies Vol. 5; no. 2; pp. 94 - 103 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2017
Taylor & Francis Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ZnO doped with different concentrations of Al2O3 (2, 4, 6, 8 and 10wt%) is prepared by conventional solid-state reaction method. X-ray diffraction results revealed that the samples were crystalline with a hexagonal wurtzite phase. As the concentration of alumina (Al2O3) increases in ZnO, the X-ray diffraction peaks shifts towards higher angle. This shifting in peak position and decrease in intensity reflect that Al is successfully replaced Zn in ZnO matrix. X-ray peak broadening analysis was used to evaluate the crystallite size and lattice strain by the Williamson–Hall (W–H) method and size-strain plot (SSP) method. The physical parameters such as strain, stress, and energy density values were also calculated using W–H method with different models namely uniform deformation model, uniform stress deformation model and uniform deformation energy density model. The surface morphology and elemental analysis of the prepared samples were characterized by field emission scanning electron microscopy and energy dispersive spectra. |
---|---|
AbstractList | ZnO doped with different concentrations of Al2O3 (2, 4, 6, 8 and 10wt%) is prepared by conventional solid-state reaction method. X-ray diffraction results revealed that the samples were crystalline with a hexagonal wurtzite phase. As the concentration of alumina (Al2O3) increases in ZnO, the X-ray diffraction peaks shifts towards higher angle. This shifting in peak position and decrease in intensity reflect that Al is successfully replaced Zn in ZnO matrix. X-ray peak broadening analysis was used to evaluate the crystallite size and lattice strain by the Williamson–Hall (W–H) method and size-strain plot (SSP) method. The physical parameters such as strain, stress, and energy density values were also calculated using W–H method with different models namely uniform deformation model, uniform stress deformation model and uniform deformation energy density model. The surface morphology and elemental analysis of the prepared samples were characterized by field emission scanning electron microscopy and energy dispersive spectra. ZnO doped with different concentrations of Al2O3 (2, 4, 6, 8 and 10 wt%) is prepared by conventional solid-state reaction method. X-ray diffraction results revealed that the samples were crystalline with a hexagonal wurtzite phase. As the concentration of alumina (Al2O3) increases in ZnO, the X-ray diffraction peaks shifts towards higher angle. This shifting in peak position and decrease in intensity reflect that Al is successfully replaced Zn in ZnO matrix. X-ray peak broadening analysis was used to evaluate the crystallite size and lattice strain by the Williamson–Hall (W–H) method and size-strain plot (SSP) method. The physical parameters such as strain, stress, and energy density values were also calculated using W–H method with different models namely uniform deformation model, uniform stress deformation model and uniform deformation energy density model. The surface morphology and elemental analysis of the prepared samples were characterized by field emission scanning electron microscopy and energy dispersive spectra. ZnO doped with different concentrations of Al 2 O 3 (2, 4, 6, 8 and 10 wt%) is prepared by conventional solid-state reaction method. X-ray diffraction results revealed that the samples were crystalline with a hexagonal wurtzite phase. As the concentration of alumina (Al 2 O 3 ) increases in ZnO, the X-ray diffraction peaks shifts towards higher angle. This shifting in peak position and decrease in intensity reflect that Al is successfully replaced Zn in ZnO matrix. X-ray peak broadening analysis was used to evaluate the crystallite size and lattice strain by the Williamson-Hall (W-H) method and size-strain plot (SSP) method. The physical parameters such as strain, stress, and energy density values were also calculated using W-H method with different models namely uniform deformation model, uniform stress deformation model and uniform deformation energy density model. The surface morphology and elemental analysis of the prepared samples were characterized by field emission scanning electron microscopy and energy dispersive spectra. |
Author | Hymavathi, B. Rajesh Kumar, B. |
Author_xml | – sequence: 1 givenname: B. surname: Rajesh Kumar fullname: Rajesh Kumar, B. email: rajphyind@gmail.com organization: Department of Physics, GITAM Institute of Technology, GITAM University, Visakhapatnam 530045, AP, India – sequence: 2 givenname: B. surname: Hymavathi fullname: Hymavathi, B. organization: Department of Physics, Anil Neerukonda Institute of Technology and Sciences (Autonomous), Sangivalasa, Visakhapatnam 531162, AP, India |
BookMark | eNqFkc1u1TAQhSNUJErpG7DwCyTY-XPCAoQqoJUqsQHBzpprj2GCY1_ZgZKu2PUB-oY8Cb4EIcSCrjyemfNpdM7D4sgHj0XxWPBKcNE_maoJksZY1VzIitcV5-JecVyLQZZc9u3RX_WD4jSliecN2QxCiuPi5kMZYWV7hM9sH4Mlhww8uDVRYsGyFByZMi2wIEvkF4xoGLgvM3lgJuzz75q8ZuEbGWT5DJhJJ7Zb2XtyjmBOwf_4fnsOzmWuyYxrzLgI5NnehYXNuHwKJj0q7ltwCU9_vyfFu1cv356dl5dvXl-cvbgsdSvbpcS2acwwYL1rd_UI2phOI3Za7KSu-QCdRWnHEYwZxJgntrF9DbxH6Jpu7LrmpLjYuCbApPaRZoirCkDqVyPEjwriQtqhahsAwaGpzSBbQA16QAtmlCj6vhlkZrUbS8eQUkT7hye4OmSjJrVlow7ZKF6r7HyWPf1Hpin7S8EfbHF3iZ9vYvI2xBmuQnRGLbC6EG0Erymp5g7Cs42A2eavlKdJE3qNhiLqJftA_z_hJ7JQyVo |
CitedBy_id | crossref_primary_10_1007_s10854_022_08591_1 crossref_primary_10_1088_1742_6596_1943_1_012020 crossref_primary_10_14233_ajchem_2023_28026 crossref_primary_10_1039_D4TC03081H crossref_primary_10_33003_fjs_2024_0803_2655 crossref_primary_10_1016_j_biopha_2024_117539 crossref_primary_10_1016_j_ijhydene_2020_09_053 crossref_primary_10_1016_j_sna_2020_111912 crossref_primary_10_1007_s11664_020_08659_w crossref_primary_10_1016_j_physb_2019_411832 crossref_primary_10_1016_j_physe_2021_115110 crossref_primary_10_1142_S1793292021500594 crossref_primary_10_1007_s10854_022_07742_8 crossref_primary_10_1016_j_jece_2020_104670 crossref_primary_10_1088_2043_6254_aadc6b crossref_primary_10_15251_JOR_2022_183_443 crossref_primary_10_4028_www_scientific_net_KEM_846_9 crossref_primary_10_1007_s10971_024_06514_6 crossref_primary_10_1016_j_msea_2021_142258 crossref_primary_10_1016_j_jeurceramsoc_2021_05_045 crossref_primary_10_1016_j_nanoso_2025_101436 crossref_primary_10_1007_s10854_025_14617_1 crossref_primary_10_1016_j_heliyon_2024_e39734 crossref_primary_10_1016_j_arabjc_2021_103518 crossref_primary_10_1016_j_heliyon_2023_e20049 crossref_primary_10_1016_j_msea_2022_142956 crossref_primary_10_1007_s10854_017_7105_1 crossref_primary_10_1007_s00339_024_07482_y crossref_primary_10_1016_j_jece_2024_112719 crossref_primary_10_1016_j_physb_2024_416359 crossref_primary_10_1016_j_vacuum_2022_111496 crossref_primary_10_1016_j_matchemphys_2020_123754 crossref_primary_10_1007_s10854_022_07778_w crossref_primary_10_1007_s10854_024_12374_1 crossref_primary_10_3390_catal10091052 crossref_primary_10_1007_s10854_019_02694_y crossref_primary_10_3934_matersci_2017_5_1095 crossref_primary_10_1007_s10854_022_08610_1 crossref_primary_10_1007_s11696_023_03059_w crossref_primary_10_1016_j_matchemphys_2022_127015 crossref_primary_10_1016_j_rinp_2021_105121 crossref_primary_10_1007_s10971_021_05679_8 crossref_primary_10_1007_s10854_019_01479_7 crossref_primary_10_26634_jms_6_3_14725 crossref_primary_10_3390_cryst12030372 crossref_primary_10_3390_app13148448 crossref_primary_10_1080_01411594_2021_1969396 crossref_primary_10_1016_j_ceramint_2021_02_020 crossref_primary_10_1016_j_jmrt_2020_02_034 crossref_primary_10_1021_acsomega_1c04526 crossref_primary_10_1002_crat_202200253 crossref_primary_10_1002_aesr_202500017 crossref_primary_10_1016_j_ceramint_2022_12_086 crossref_primary_10_1016_j_powtec_2024_119377 crossref_primary_10_1016_j_ceramint_2019_05_337 crossref_primary_10_1088_2043_6254_ab52f7 crossref_primary_10_1007_s00339_022_05655_1 crossref_primary_10_1007_s10854_020_03358_y crossref_primary_10_1063_1_5023814 crossref_primary_10_1007_s10904_023_02947_8 crossref_primary_10_1007_s40516_024_00273_6 crossref_primary_10_1016_j_physb_2020_412342 crossref_primary_10_1142_S2010135X21400038 crossref_primary_10_1016_j_jmrt_2022_05_137 crossref_primary_10_1016_j_matpr_2023_01_199 crossref_primary_10_1016_j_ceramint_2025_02_384 crossref_primary_10_1016_j_electacta_2024_145119 crossref_primary_10_1021_acs_energyfuels_4c04875 crossref_primary_10_1016_j_aej_2023_11_009 crossref_primary_10_1016_j_matpr_2020_12_1178 crossref_primary_10_1088_1361_6463_ac4c22 crossref_primary_10_1088_2053_1591_aaf529 crossref_primary_10_1007_s11051_023_05730_5 crossref_primary_10_1016_j_jmrt_2023_12_101 crossref_primary_10_1016_j_jallcom_2021_158937 crossref_primary_10_25092_baunfbed_826433 crossref_primary_10_1016_j_jallcom_2019_153381 crossref_primary_10_1016_j_rinma_2023_100492 crossref_primary_10_1002_zaac_202100397 crossref_primary_10_1016_j_molstruc_2024_139593 crossref_primary_10_1016_j_powtec_2021_01_026 crossref_primary_10_1016_j_physb_2023_414918 crossref_primary_10_3934_matersci_2021034 crossref_primary_10_1021_acsanm_4c01203 crossref_primary_10_1007_s00339_022_05334_1 crossref_primary_10_1007_s10853_022_07390_7 crossref_primary_10_1007_s41204_024_00395_4 crossref_primary_10_1016_j_surfin_2020_100725 crossref_primary_10_1155_2021_8341924 crossref_primary_10_1021_acsami_4c11358 crossref_primary_10_1016_j_apt_2019_11_006 crossref_primary_10_1016_j_matchar_2020_110803 crossref_primary_10_1088_1757_899X_987_1_012027 crossref_primary_10_1016_j_nanoso_2020_100428 crossref_primary_10_1007_s10971_022_05811_2 crossref_primary_10_1007_s10971_020_05264_5 crossref_primary_10_1016_j_jallcom_2021_162694 crossref_primary_10_3390_en15228520 crossref_primary_10_1007_s00339_024_07379_w crossref_primary_10_1080_10420150_2022_2073871 crossref_primary_10_1039_D4RA03111C crossref_primary_10_1007_s42452_020_2645_z crossref_primary_10_1016_j_matpr_2020_05_167 crossref_primary_10_1088_2053_1591_abbd09 crossref_primary_10_2174_2405461505999200930141732 crossref_primary_10_1088_2053_1591_ab4ad2 crossref_primary_10_1088_2053_1591_ab7b2a crossref_primary_10_1016_j_physb_2019_04_020 crossref_primary_10_1007_s00339_022_05358_7 crossref_primary_10_1021_acsomega_3c00423 crossref_primary_10_1088_1757_899X_757_1_012026 crossref_primary_10_1007_s00339_019_2695_5 crossref_primary_10_1016_j_matchemphys_2021_125190 crossref_primary_10_1088_1742_6596_1178_1_012035 crossref_primary_10_1364_OPTCON_531075 crossref_primary_10_3390_nano11092311 crossref_primary_10_1080_19475411_2019_1710001 crossref_primary_10_1016_j_electacta_2023_142890 crossref_primary_10_3390_ma15031165 crossref_primary_10_1016_j_ijleo_2019_01_070 crossref_primary_10_1016_j_jallcom_2019_05_203 crossref_primary_10_1002_cctc_202401603 crossref_primary_10_1007_s00339_023_07074_2 crossref_primary_10_1016_j_jsamd_2018_09_001 crossref_primary_10_1038_s41598_024_51618_2 crossref_primary_10_1016_j_jmat_2021_02_011 crossref_primary_10_1016_j_ijhydene_2024_11_244 crossref_primary_10_1016_j_rinma_2025_100666 crossref_primary_10_4028_p_vv17a6 crossref_primary_10_1016_j_spmi_2018_08_015 crossref_primary_10_1039_D4MA00513A crossref_primary_10_1080_02670836_2018_1490857 crossref_primary_10_1080_21870764_2024_2383008 crossref_primary_10_1007_s10876_021_02144_y crossref_primary_10_1080_21650373_2020_1737593 crossref_primary_10_1007_s11164_021_04396_9 crossref_primary_10_1088_2053_1591_ab547e crossref_primary_10_1016_j_ceramint_2020_09_211 crossref_primary_10_1088_2053_1591_ac5ef2 crossref_primary_10_1016_j_cej_2020_127401 crossref_primary_10_1007_s10904_023_02942_z crossref_primary_10_1016_j_molstruc_2024_137537 crossref_primary_10_1016_j_mssp_2019_03_026 crossref_primary_10_1016_j_physb_2019_411760 crossref_primary_10_1016_j_radphyschem_2024_111638 crossref_primary_10_1007_s10854_018_9558_2 crossref_primary_10_1016_j_jlumin_2022_118770 crossref_primary_10_1007_s10854_020_04284_9 crossref_primary_10_1016_j_physb_2021_413087 crossref_primary_10_1016_j_ceramint_2021_05_006 crossref_primary_10_1088_2053_1591_ab2668 crossref_primary_10_1016_j_jallcom_2025_179413 |
Cites_doi | 10.1016/0025-5408(93)90178-G 10.1063/1.1699713 10.1107/S0365110X67000234 10.1016/0001-6160(53)90006-6 10.1007/978-1-4899-0148-4 10.1016/j.pmatsci.2004.04.001 10.1007/BF00738651 10.1016/j.solidstatesciences.2010.11.024 10.1016/j.matlet.2013.08.096 10.1016/S0022-0248(00)00834-4 10.1007/s12034-008-0089-y 10.1107/S0021889892008987 10.1016/0167-577X(95)00101-8 10.1016/0079-6425(90)90003-R 10.1007/s40094-014-0141-9 10.1016/j.apsusc.2012.10.158 10.1016/j.ssc.2006.05.026 10.1016/j.nimb.2008.02.036 |
ContentType | Journal Article |
Copyright | 2017 The Ceramic Society of Japan and the Korean Ceramic Society 2017 The Ceramic Society of Japan and the Korean Ceramic Society 2017 |
Copyright_xml | – notice: 2017 The Ceramic Society of Japan and the Korean Ceramic Society – notice: 2017 The Ceramic Society of Japan and the Korean Ceramic Society 2017 |
DBID | 6I. AAFTH 0YH AAYXX CITATION DOA |
DOI | 10.1016/j.jascer.2017.02.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Taylor & Francis Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2187-0764 |
EndPage | 103 |
ExternalDocumentID | oai_doaj_org_article_43aa10a32d874aecac8efad97e166387 10_1016_j_jascer_2017_02_001 12001266 S2187076416301683 |
Genre | Original Article |
GroupedDBID | 0R~ 0SF 0YH 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ADBBV ADEZE AEFWE AEXQZ AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HH5 HZ~ IPNFZ IXB KQ8 M4Z M~E NCXOZ O-L O9- OK1 RIG ROL SSZ TFW ADVLN AKRWK TDBHL AAYWO AAYXX ACVFH ADCNI ADMLS AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c474t-e433d88e2b4b29acdd5cee5c1b7c208a5fe7f99add819ceef3f62a06ea5359553 |
IEDL.DBID | IXB |
ISSN | 2187-0764 |
IngestDate | Wed Aug 27 01:31:48 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Tue Jul 01 04:11:55 EDT 2025 Wed Dec 25 09:07:57 EST 2024 Fri Feb 23 02:31:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Scanning electron microscopy Solid-state reaction XRD |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-e433d88e2b4b29acdd5cee5c1b7c208a5fe7f99add819ceef3f62a06ea5359553 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2187076416301683 |
PageCount | 10 |
ParticipantIDs | informaworld_taylorfrancis_310_1016_j_jascer_2017_02_001 crossref_primary_10_1016_j_jascer_2017_02_001 doaj_primary_oai_doaj_org_article_43aa10a32d874aecac8efad97e166387 elsevier_sciencedirect_doi_10_1016_j_jascer_2017_02_001 crossref_citationtrail_10_1016_j_jascer_2017_02_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 6/1/2017 2017-06-01 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationTitle | Journal of Asian Ceramic Societies |
PublicationYear | 2017 |
Publisher | Elsevier B.V Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Elsevier B.V – name: Taylor & Francis – name: Taylor & Francis Group |
References | Hingorani, Pillai, Kumar, Muntai, Shah (bib0005) 1993; 28 Williamson, Hall (bib0095) 1953; 1 Gutmanas (bib0040) 1990; 34 Khorsand Zak, Abd. Majid, Abrishami, Yousefi (bib0065) 2011; 13 Singh, Kumar, Kaushal, Kaur, Pandey, Goyal (bib0080) 2008; 31 Chen, Pei, Sun, Wen, Wang (bib0025) 2000; 220 El-Nabarawy, Attia, Alaya (bib0030) 1995; 24 Leblud, Anseau, Di Rupo, Cambier, Fierens (bib0035) 1981; 16 Zhang, Zhang, Xu, Ji (bib0100) 2006; 139 Rietveld (bib0050) 1967; 22 Balzar, Ledbetter (bib0055) 1993; 26 Pearton, Norton, Ip, Heo, Steiner (bib0015) 2005; 50 Tagliente, Massaro (bib0115) 2008; 266 Cullity, Stock (bib0045) 2001 Rodrigueg-Carvajal (bib0085) 2009 Nye (bib0110) 1995 Warren, Averbach (bib0060) 1950; 21 Rajesh Kumar, Subba Rao (bib0010) 2013; 265 Zhang, Pu, Chen, Gu, Xu, Zhang (bib0020) 2013; 112 Bindu, Thomas (bib0075) 2014; 8 Azaroff (bib0090) 1968 Suryanarayana, Norton (bib0070) 1998 Mote, Purushotham, Dole (bib0105) 2012; 6 bib0005 bib0115 bib0055 bib0110 bib0010 bib0065 bib0020 bib0075 bib0030 bib0085 bib0015 bib0025 Mote V.D. (bib0105) 2012; 6 bib0035 bib0045 bib0100 bib0080 bib0090 bib0040 bib0095 bib0050 bib0060 bib0070 |
References_xml | – year: 1998 ident: bib0070 article-title: X-ray Diffraction: A Practical Approach – volume: 50 start-page: 293 year: 2005 end-page: 340 ident: bib0015 publication-title: Prog. Mater. Sci. – year: 1995 ident: bib0110 article-title: Physical Properties of Crystals: Their Representation by Tensors and Matrices – volume: 28 start-page: 1303 year: 1993 end-page: 1310 ident: bib0005 publication-title: Mater. Res. Bull. – volume: 13 start-page: 251 year: 2011 end-page: 256 ident: bib0065 publication-title: Solid State Sci. – volume: 112 start-page: 129 year: 2013 end-page: 132 ident: bib0020 publication-title: Mater. Lett. – year: 1968 ident: bib0090 article-title: Element of X-ray Crystallography – year: 2001 ident: bib0045 article-title: Elements of X-ray Diffraction – volume: 139 start-page: 87 year: 2006 end-page: 91 ident: bib0100 publication-title: Solid State Commun. – volume: 266 start-page: 1055 year: 2008 end-page: 1061 ident: bib0115 publication-title: Nucl. Instrum. Methods Phys. Res. B – volume: 8 start-page: 123 year: 2014 end-page: 134 ident: bib0075 publication-title: J. Theor. Appl. Phys. – volume: 6 start-page: 1 year: 2012 end-page: 8 ident: bib0105 publication-title: J. Theor. Appl. Phys. – volume: 1 start-page: 22 year: 1953 end-page: 31 ident: bib0095 publication-title: Acta Metall. – volume: 16 start-page: 539 year: 1981 end-page: 544 ident: bib0035 publication-title: J. Mater. Sci. Lett. – volume: 265 start-page: 169 year: 2013 end-page: 175 ident: bib0010 publication-title: Appl. Surf. Sci. – volume: 24 start-page: 319 year: 1995 end-page: 325 ident: bib0030 publication-title: Mater. Lett. – volume: 220 start-page: 254 year: 2000 end-page: 262 ident: bib0025 publication-title: J. Cryst. Growth – volume: 34 start-page: 261 year: 1990 end-page: 366 ident: bib0040 publication-title: Prog. Mater. Sci. – volume: 26 start-page: 97 year: 1993 end-page: 103 ident: bib0055 publication-title: Appl. Crystallogr. – volume: 31 start-page: 573 year: 2008 end-page: 577 ident: bib0080 publication-title: Bull. Mater. Sci. – year: 2009 ident: bib0085 article-title: FULLPROF 2000: A Program for Rietveld, Profile Matching and Integrated Intensity Refinements for X-ray and Neutron data, version 1.6 – volume: 22 start-page: 151 year: 1967 end-page: 152 ident: bib0050 publication-title: Acta Crystallogr. – volume: 21 start-page: 595 year: 1950 end-page: 599 ident: bib0060 publication-title: J. Appl. Phys. – ident: bib0005 doi: 10.1016/0025-5408(93)90178-G – ident: bib0060 doi: 10.1063/1.1699713 – ident: bib0110 – ident: bib0050 doi: 10.1107/S0365110X67000234 – ident: bib0095 doi: 10.1016/0001-6160(53)90006-6 – ident: bib0070 doi: 10.1007/978-1-4899-0148-4 – ident: bib0045 – ident: bib0015 doi: 10.1016/j.pmatsci.2004.04.001 – ident: bib0035 doi: 10.1007/BF00738651 – ident: bib0065 doi: 10.1016/j.solidstatesciences.2010.11.024 – ident: bib0020 doi: 10.1016/j.matlet.2013.08.096 – ident: bib0025 doi: 10.1016/S0022-0248(00)00834-4 – ident: bib0080 doi: 10.1007/s12034-008-0089-y – ident: bib0085 – ident: bib0055 doi: 10.1107/S0021889892008987 – ident: bib0090 – ident: bib0030 doi: 10.1016/0167-577X(95)00101-8 – ident: bib0040 doi: 10.1016/0079-6425(90)90003-R – ident: bib0075 doi: 10.1007/s40094-014-0141-9 – ident: bib0010 doi: 10.1016/j.apsusc.2012.10.158 – ident: bib0100 doi: 10.1016/j.ssc.2006.05.026 – volume: 6 start-page: 1 issue: 6 year: 2012 ident: bib0105 publication-title: J. Theor. Appl. Phys. – ident: bib0115 doi: 10.1016/j.nimb.2008.02.036 |
SSID | ssj0001738171 |
Score | 2.4258504 |
Snippet | ZnO doped with different concentrations of Al2O3 (2, 4, 6, 8 and 10wt%) is prepared by conventional solid-state reaction method. X-ray diffraction results... ZnO doped with different concentrations of Al 2 O 3 (2, 4, 6, 8 and 10 wt%) is prepared by conventional solid-state reaction method. X-ray diffraction results... ZnO doped with different concentrations of Al2O3 (2, 4, 6, 8 and 10 wt%) is prepared by conventional solid-state reaction method. X-ray diffraction results... |
SourceID | doaj crossref informaworld elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | Scanning electron microscopy Solid-state reaction XRD |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT3BAUEAsP5UPXC2S2Pk7FkS1QionKu3NGtsTKWWVrDZBoj1x4wH6hjwJYzupshf20mMSezKyx_7Go_E3jH1o6hIT5aSoMXdC1ZgKghFfNdVWKebWQAhlX34r1lfq6ybfLEp9-ZywSA8cB-6jkgBpAjJzVakALdgKG3D0i5TAsgr3yAnzFoepEF0pPfOcP20RhPlYXKHme3MhuesaBoueDjQtI2VneoBLgb7_AJ4OeEwXCHTxjD2dXEd-HlV-zh5hd8qeLAgFX7A_G7GHG75D-MGnatwcJtoR3jecDK11Ilwi4oNnitij40D7U9sBd_2Onm7bzvL-V-uQk-6-Wv3AzQ2f4zJ99_f33Rq2W5LrSMYtiiGUmeC7bT_yWJB6eMmuLr58_7wWU6kFYVWpRoFKSldVmBllshqsczmhZ25TU9osqSBvsGzqmjZD8iDoSyObIoOkQMj9zd5cvmInXd_ha8ZTWVFvRHLVEkXr20Bm6iZ11pSyyMGsmJwHWtuJh9zrudVzwtm1jtOj_fToJPN5dysm7nvtIg_Hkfaf_Bzet_Us2uEF2ZaebEsfs60VK2cL0JNDEh0NEtUe-X21NBg9hvBLE2ulaPm_rm8eQvO37LEXGXPa3rGTcf8T35P3NJqzsFD-AU31G9A priority: 102 providerName: Directory of Open Access Journals – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucAB8RQLtPKBq0USO2vnCKjVqhKcqLScrLE9RimrZLVJJdo7_5txHu3uASpxdOJxrMyMZzya-Yax97HSmKkgRYVlEKrCXJAZSV1Tvcmx9A6GUPaXr8vVhTpfl-u9Kv6UVpnu0HEEihjO6qTc4LoPd7lZl9B5TGieuR4RN-n-87BIwkoSnX1f3UVZdEKgy-eaub8QH9ikAbr_wDQdYJjuWZ-zp-zJ5DbyjyOfn7EH2Dxnj_fABF-w32uxg2u-RfjJp07cHCbIEd5GTkJWBzEUEPEuoUTsMHCgs6lugId2S6ObuvG8_VUH5LT31Km-4-6azzGZthEr2Gxo1UAr3KDohgYTfLtpez62ou5esouz02-fV2JqsiC80qoXqKQMxmDhlCsq8CGUZDdLnzvti8xAGVHHqqJjkHwHehNlXBaQLRHKVNNbylfsqGkbfM14Lg1RI5KTlinSbAeFq2IevNNyWYJbMDn_ZusnBPK0z42dU80u7cgcm5hjsyJl3C2YuKXajggc98z_lDh4OzfhZw8P2t0PO6mjVRIgz0AWwWgF6MEbjBBIcHNywYxeMD3z306uyOhi0FL1PZ83--Ji-yHwEscuKVb-i_TN_5O-ZY_SaMxhe8eO-t0VHpO31LuTQSH-APQhFtE priority: 102 providerName: Taylor & Francis |
Title | X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods |
URI | https://dx.doi.org/10.1016/j.jascer.2017.02.001 https://www.tandfonline.com/doi/abs/10.1016/j.jascer.2017.02.001 https://doaj.org/article/43aa10a32d874aecac8efad97e166387 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKT3BA_IoFuvKBq7VJ7KydI61arZDgApWWkzWxJyhllaw2QaI9ceMBeEOehLGTlN0LlTjG8diWPZ4Zj2a-YexNVWhMlJeiwNwLVWAqSI2EqqnOpJi7EqIr-_2H5epSvVvn6yN2NuXChLDKUfYPMj1K67FlMe7mYlvXi4-knDS9woNFQXaLCYifUpmYxLc-_etn0QGDLry7Qn8RCKYMuhjmdQWdwwAMmuoBvDM90FARyP9AUR0gmu7pootH7OFoRPK3wzofsyNsnrAHe9CCT9nPtdjBNd8ifOVjXW4OIwAJbytOLFd7EdOJeBcwI3boOZCkqhvgvt3S103dON5-rz1yWnuoW9_x8ppPHpq2-f3j1wo2GxrX0xg3KLpYcIJvN23Ph9LU3TN2eXH-6WwlxqILwimteoFKSm8MZqUqswKc9znp0dylpXZZYiCvUFdFQWKRbAn6U8lqmUGyRMhDjm8un7Pjpm3wBeOpNESNSEZbouiml5CVRZV6V2q5zKGcMTlttHUjInlY58ZOoWdXdjgeG47HJlmIwJsxcUu1HRA57uh_Gs7wtm_A044N7e6LHRnKKgmQJiAzb7QCdOAMVuCJkVMyyYyeMT1xgD1gTxqqvmN6s88wto-OmGqommLlv0hf_vekr9j98DWEtL1mx_3uG56Q8dSXc3Yv-byaR9fDPN6UP2m1Hhc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxFNsefnA1dokdtbOkVZUW2h7oZX2Zk3sCUq7SqLdINGeeuMH8A_5JYzzKLsXKnGM47EtezwzHs18w9iHItMYKS9FhqkXKsNYkBoJVVOdiTF1OXSu7JPT2fxcfV6kix12MObChLDKQfb3Mr2T1kPLdNjNaVOW06-knDS9woNFQXaLkffYfbIGdKjfcLTY_-to0QGELjy8AoEIFGMKXRfndQFrhwEZNNY9eme8paI6JP8tTbUFabqhjA6fsMeDFck_9gt9ynawesYebWALPmc_F2IFV7xBuORDYW4OAwIJrwtOPFd60eUT8XUAjVih50CiqqyA-7qhr-uycrz-UXrktPZQuH7N8ys-umjq6vfNrzkslzSupzGuUay7ihO8WdYt72tTr1-w88NPZwdzMVRdEE5p1QpUUnpjMMlVnmTgvE9JkaYuzrVLIgNpgbrIMpKLZEzQn0IWswSiGUIaknxT-ZLtVnWFrxiPpSFqRLLaIkVXPYckz4rYu1zLWQr5hMlxo60bIMnDOpd2jD27sP3x2HA8NkpCCN6EiVuqpofkuKP_fjjD274BULtrqFff7MBRVkmAOAKZeKMVoANnsABPnByTTWb0hOmRA-wWf9JQ5R3Tm02GsW3niSn6silW_ot0778nfc8ezM9Oju3x0emX1-xh-NPHt71hu-3qO74lS6rN33U35Q9Noh9P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaGDhi2w7Anlj112FWYbUmRfNwryF7FDiuQnQQ9qCFtYBuxC7S973-P8qNNDluBHW2JsmCSIkWQHwl5HUsFmQiclSADEyXkDM1I6prqdQ7SO9uHsr8dzpdH4vNKrnaq-FNaZbpDxwEooj-rk3I3Ib65ys06tq2HhOaZqwFxE-8_N6VGU48Snf1cXkVZVEKgy6eaub8Q79mkHrp_zzTtYZjuWJ_FPXJ3dBvp24HP98kNqB6QOztggg_J7xXb2nPagD2hYyduakfIEVpHikK2DqwvIKJtQonYQqAWz6Z1ZWmoG3y6WFee1mfrABT3njrVt9Sd0ykmU1dsaTcbXDXgChfA2r7BBG02dUeHVtTtI3K0-Pjj_ZKNTRaYF0p0DATnQWsonHBFaX0IEu2m9LlTvsi0lRFULEs8BtF3wJHI47yw2RysTDW9kj8mB1VdwRNCc66RGgCdtEygZjtbuDLmwTvF59K6GeHTbzZ-RCBP-9yYKdXs2AzMMYk5JitSxt2MsEuqZkDguGb-u8TBy7kJP7t_UW9_mVEdjeDW5pnlRdBKWPDWa4g2oODm6IJpNSNq4r8ZXZHBxcCl1td8Xu-Ki-n6wEscuqQY_i_Sp_9P-orc-v5hYb5-OvzyjNxOA0M623Ny0G1P4QU6Tp172evGH1QuGXc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=X-ray+peak+profile+analysis+of+solid-state+sintered+alumina+doped+zinc+oxide+ceramics+by+Williamson%E2%80%93Hall+and+size-strain+plot+methods&rft.jtitle=Journal+of+Asian+Ceramic+Societies&rft.au=Rajesh+Kumar%2C+B.&rft.au=Hymavathi%2C+B.&rft.date=2017-06-01&rft.pub=Elsevier+B.V&rft.issn=2187-0764&rft.eissn=2187-0764&rft.volume=5&rft.issue=2&rft.spage=94&rft.epage=103&rft_id=info:doi/10.1016%2Fj.jascer.2017.02.001&rft.externalDocID=S2187076416301683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-0764&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-0764&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-0764&client=summon |