Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa

Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigate...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 208; p. 111575
Main Authors Zheng, Xiaowei, Zhang, Weizhen, Yuan, Yuan, Li, Yanyao, Liu, Xianglin, Wang, Xiangrong, Fan, Zhengqiu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.01.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs. [Display omitted] •PVC, PS, and PE MPs all had an obvious inhibition effect on M. aeruginosa growth.•All three MPs can cause oxidation stress and cell membrane destruction.•All three MPs can promote the production and release of MCs.•The resistance of M. aeruginosa to three MPs was followed PE> PS> PVC.
AbstractList Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs.
Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs. [Display omitted] •PVC, PS, and PE MPs all had an obvious inhibition effect on M. aeruginosa growth.•All three MPs can cause oxidation stress and cell membrane destruction.•All three MPs can promote the production and release of MCs.•The resistance of M. aeruginosa to three MPs was followed PE> PS> PVC.
Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs.Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs.
ArticleNumber 111575
Author Liu, Xianglin
Yuan, Yuan
Li, Yanyao
Zhang, Weizhen
Zheng, Xiaowei
Wang, Xiangrong
Fan, Zhengqiu
Author_xml – sequence: 1
  givenname: Xiaowei
  surname: Zheng
  fullname: Zheng, Xiaowei
– sequence: 2
  givenname: Weizhen
  surname: Zhang
  fullname: Zhang, Weizhen
– sequence: 3
  givenname: Yuan
  surname: Yuan
  fullname: Yuan, Yuan
– sequence: 4
  givenname: Yanyao
  surname: Li
  fullname: Li, Yanyao
– sequence: 5
  givenname: Xianglin
  surname: Liu
  fullname: Liu, Xianglin
– sequence: 6
  givenname: Xiangrong
  surname: Wang
  fullname: Wang, Xiangrong
  email: xrxrwang@fudan.edu.cn
– sequence: 7
  givenname: Zhengqiu
  surname: Fan
  fullname: Fan, Zhengqiu
  email: zhqfan@fudan.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33396101$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vFCEYxompsdvqNzCGowdn5e-w48GkabQ2qfGiZ8LAO102s7ACs7rfXsZpPXjQE_DkeX7A816gsxADIPSSkjUltH27W4ONEI5rRliVKJVKPkErSjrSMEHFGVoRKlTTSsrP0UXOO0IIJ1I-Q-ec866tlBU63KT4o2yxD1vf--JjeINL_OkDPqToJjsr2ASHq-ZM8UfAuSTIGVszZXC4P-GyTQB4722Kh9Hk4m2uPPx5FuypnjM2kKZ7H2I2z9HTwYwZXjysl-jbxw9frz81d19ubq-v7horlCgNcNpzKocNg65ueqZ62VLDNkNniRhawQbpONnw-iXoug0RjnRWOEeV4C0Z-CW6Xbgump0-JL836aSj8fq3ENO9Nqk-dQTdMZBK8Y1xPRE9J4b3qucWmJMMmHKV9Xph1U6-T5CL3vtsYRxNgDhlzYSSgjDJVLW-erBO_R7cn4sfG6-Gd4uhlpNzgkFbX8xcc0nGj5oSPY9X7_QyXj2PVy_jrWHxV_iR_5_Y-yUGtfCjh6Sz9RAsOJ_AltqI_zfgF2RmwTc
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_158906
crossref_primary_10_1016_j_scitotenv_2024_173864
crossref_primary_10_1007_s12210_022_01104_6
crossref_primary_10_1016_j_scitotenv_2022_153855
crossref_primary_10_1016_j_envpol_2024_125505
crossref_primary_10_1038_s41598_025_89006_z
crossref_primary_10_1016_j_scitotenv_2023_163537
crossref_primary_10_1016_j_scitotenv_2024_177383
crossref_primary_10_1016_j_scitotenv_2022_157260
crossref_primary_10_1016_j_envpol_2022_119108
crossref_primary_10_1016_j_jhazmat_2021_128094
crossref_primary_10_2139_ssrn_3983981
crossref_primary_10_1016_j_chemosphere_2023_138256
crossref_primary_10_1016_j_jhazmat_2021_126591
crossref_primary_10_1016_j_psep_2023_12_058
crossref_primary_10_1016_j_marpolbul_2023_114745
crossref_primary_10_1021_acs_est_2c05817
crossref_primary_10_1016_j_ecoenv_2023_114564
crossref_primary_10_1016_j_ecoenv_2023_115259
crossref_primary_10_1016_j_marpolbul_2024_117437
crossref_primary_10_3390_w14152422
crossref_primary_10_1016_j_scitotenv_2021_147628
crossref_primary_10_1016_j_algal_2024_103755
crossref_primary_10_1016_j_cbpc_2023_109587
crossref_primary_10_1016_j_envpol_2022_119515
crossref_primary_10_1016_j_watres_2024_121121
crossref_primary_10_1016_j_jhazmat_2022_129355
crossref_primary_10_1016_j_scitotenv_2022_159614
crossref_primary_10_1007_s00128_024_03959_x
crossref_primary_10_1016_j_chemosphere_2022_135034
crossref_primary_10_1016_j_envpol_2021_117950
crossref_primary_10_1016_j_tifs_2022_08_021
crossref_primary_10_1039_D4EN01074D
crossref_primary_10_1016_j_scitotenv_2021_148200
crossref_primary_10_3390_w13121713
crossref_primary_10_1016_j_envpol_2024_123349
crossref_primary_10_1016_j_scitotenv_2023_168414
crossref_primary_10_1016_j_envpol_2024_123347
crossref_primary_10_1007_s10661_025_13636_z
crossref_primary_10_1016_j_jece_2025_115624
crossref_primary_10_1016_j_scitotenv_2024_176151
crossref_primary_10_1016_j_foodchem_2025_142940
crossref_primary_10_1039_D4EM00780H
crossref_primary_10_1089_ast_2021_0100
crossref_primary_10_1007_s10661_025_13737_9
crossref_primary_10_1111_brv_13164
crossref_primary_10_1016_j_measurement_2025_116754
crossref_primary_10_1039_D4EN00233D
crossref_primary_10_1016_j_watres_2024_121706
crossref_primary_10_1016_j_scitotenv_2024_174660
crossref_primary_10_2139_ssrn_3990787
crossref_primary_10_1016_j_marenvres_2024_106793
crossref_primary_10_1039_D3EM00120B
crossref_primary_10_1016_j_envres_2022_114402
crossref_primary_10_1016_j_ecoenv_2025_117772
crossref_primary_10_1093_etojnl_vgae008
crossref_primary_10_1016_j_chemosphere_2023_139476
crossref_primary_10_1016_j_plaphy_2022_12_008
crossref_primary_10_1016_j_chemosphere_2024_143120
crossref_primary_10_1016_j_jes_2022_09_023
crossref_primary_10_1016_j_envpol_2024_124574
crossref_primary_10_1016_j_jhazmat_2023_131071
crossref_primary_10_1016_j_jhazmat_2024_136087
crossref_primary_10_1016_j_toxrep_2022_10_013
crossref_primary_10_1016_j_watres_2025_123476
crossref_primary_10_1016_j_aquatox_2024_106967
crossref_primary_10_1016_j_chemosphere_2022_134370
crossref_primary_10_1016_j_aquatox_2023_106725
crossref_primary_10_1002_wer_11089
crossref_primary_10_1016_j_tplants_2022_06_005
crossref_primary_10_1039_D4EN00300D
crossref_primary_10_1016_j_scitotenv_2023_163608
crossref_primary_10_2139_ssrn_4048898
crossref_primary_10_1016_j_jhazmat_2024_136470
crossref_primary_10_1016_j_algal_2023_103378
crossref_primary_10_1007_s11368_023_03479_x
crossref_primary_10_1016_j_chemosphere_2023_140755
crossref_primary_10_1016_j_scitotenv_2023_167017
crossref_primary_10_1016_j_envpol_2022_119395
crossref_primary_10_1016_j_scitotenv_2021_151638
crossref_primary_10_3390_toxics13010053
crossref_primary_10_1016_j_chemosphere_2022_137182
crossref_primary_10_1016_j_scitotenv_2022_155655
crossref_primary_10_3390_toxins13040293
crossref_primary_10_1016_j_scitotenv_2024_172034
crossref_primary_10_1016_j_jhazmat_2024_134241
crossref_primary_10_1016_j_scitotenv_2022_153350
crossref_primary_10_1016_j_envpol_2024_124478
crossref_primary_10_1016_j_chemosphere_2022_137225
crossref_primary_10_1016_j_scitotenv_2023_163842
crossref_primary_10_1016_j_scitotenv_2023_167129
crossref_primary_10_2139_ssrn_4169579
crossref_primary_10_1016_j_jhazmat_2024_136948
crossref_primary_10_1016_j_trac_2024_118095
crossref_primary_10_1016_j_jclepro_2020_125755
crossref_primary_10_1016_j_marpolbul_2021_113197
crossref_primary_10_1016_j_envpol_2024_124084
crossref_primary_10_3390_nano11102471
crossref_primary_10_3390_molecules27185906
crossref_primary_10_1016_j_envpol_2024_125290
crossref_primary_10_1016_j_jhazmat_2022_128323
crossref_primary_10_1016_j_plaphy_2024_108987
crossref_primary_10_1016_j_scitotenv_2023_166140
Cites_doi 10.1016/j.envpol.2019.04.088
10.1016/j.jhazmat.2020.122746
10.1016/j.aquatox.2015.12.002
10.1016/j.ecoenv.2020.110609
10.1007/s10811-012-9867-4
10.1016/j.ecoenv.2018.03.052
10.1016/j.scitotenv.2020.136767
10.1016/j.scitotenv.2019.02.132
10.1126/science.1094559
10.1021/es503001d
10.1016/j.scitotenv.2018.03.176
10.1016/j.envpol.2017.11.081
10.1016/j.scitotenv.2018.09.213
10.1016/j.envpol.2016.11.005
10.1016/j.envpol.2018.09.073
10.1016/j.envpol.2016.06.036
10.1016/j.chemosphere.2018.10.110
10.1016/j.chemosphere.2018.05.170
10.1016/j.chemosphere.2018.08.045
10.1007/s11356-015-5809-4
10.1016/j.envpol.2018.12.044
10.1016/j.envpol.2019.113850
10.1016/j.jhazmat.2020.123372
10.1016/j.scitotenv.2018.08.280
10.1016/j.chemosphere.2015.01.040
10.1016/j.ecoenv.2019.05.036
10.1016/j.ecoenv.2018.11.126
10.1016/j.chemosphere.2020.126914
10.1016/j.aquatox.2018.08.010
10.1016/j.envpol.2019.05.135
10.1002/aoc.4600
10.1007/s11356-020-07704-9
10.1016/j.scitotenv.2018.03.211
10.1016/j.jhazmat.2019.04.039
10.1016/j.scitotenv.2018.09.106
10.1016/j.chemosphere.2019.03.070
10.1016/j.envint.2013.06.013
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.ecoenv.2020.111575
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_92e57738adb04b30a3b7b3ce2d52e27d
33396101
10_1016_j_ecoenv_2020_111575
S0147651320314123
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
ZU3
~G-
29G
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
H~9
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XPP
ZMT
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c474t-e31b315f82e9b31b27b561a28f9c04f642f5d3083030e99804d09c4dd174360f3
IEDL.DBID DOA
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:18:44 EDT 2025
Fri Jul 11 07:23:05 EDT 2025
Wed Feb 19 02:29:59 EST 2025
Tue Jul 01 04:00:21 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Fri Feb 23 02:49:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Toxin production
Microplastic
Growth
Antioxidant enzyme activity
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-e31b315f82e9b31b27b561a28f9c04f642f5d3083030e99804d09c4dd174360f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/92e57738adb04b30a3b7b3ce2d52e27d
PMID 33396101
PQID 2475402527
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_92e57738adb04b30a3b7b3ce2d52e27d
proquest_miscellaneous_2475402527
pubmed_primary_33396101
crossref_citationtrail_10_1016_j_ecoenv_2020_111575
crossref_primary_10_1016_j_ecoenv_2020_111575
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2020_111575
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Li, Wang, Zhang, Zhou, Yin, Hu, Hu, Liu, Zhu (bib13) 2020; 714
Magni, Della Torre, Garrone, D’Amato, Parenti, Binelli (bib16) 2019; 250
Mao, Ai, Chen, Zhang, Zeng, Kang, Li, Gu, He, Li (bib17) 2018; 208
Merel, Walker, Chicana, Snyder, Baurès, Thomas (bib18) 2013; 59
Thompson (bib27) 2004; 304
Fan, Liu, Dong, Chen, Wang, Guo, Du (bib8) 2019; 651
Zhu, Wang, Zhao, Wang, Liu, Liu (bib42) 2019; 246
Bordós, Urbányi, Micsinai, Kriszt, Palotai, Szabó, Hantosi, Szoboszlay (bib2) 2019; 216
Fan, Zhou, Zheng, Chen (bib9) 2018; 32
Zhang, Qu, Lu, Ke, Zhu, Zhang, Zhang, Du, Pan, Sun, Qian (bib39) 2018; 243
Yang, Fan, Xie, Fang, Wang, Yuan, Li (bib34) 2020; 397
Zhao, Zheng, Zhang, Roger, Luo (bib41) 2019; 225
Canniff, Hoang (bib3) 2018; 633
Dong, Wang, Qian, Tang, Zhu, Wang, Cai, Wang (bib6) 2020; 259
Lin, Jiang, Hu, Xiao, Wu, Wei, Xiong, Ouyang (bib11) 2019; 180
Besseling, Wang, Lurling, Koelmans (bib1) 2014; 48
Dai, Zhou, Chen, Zhang, Yan, An (bib5) 2019; 651
Xiao, Jiang, Liao, Zhao, Zhao, Li (bib33) 2020; 255
Hu, Wang, Zhao, Wang, Guo, Li (bib10) 2015; 128
Zhang, Gu, Zheng, Wang, Wu, He, Luo, Zhou, Zheng (bib37) 2021; 401
Li, Yi, Zhou, Chi, Li, Yang (bib14) 2019; 257
Liu, Wang, Zhang, Cui, Chen, Xie, Wu, Liu (bib12) 2014; 9
Lu, Zhu, Xu, Ke, Zhang, Tan, Fu, Qian (bib15) 2018; 234
Organization for Economic Cooperation and Development (OECD) (bib20) 2011
Prata, da Costa, Lopes, Duarte, Rocha-Santos (bib22) 2019; 665
Wang, Yuan, Chen, Wang (bib30) 2018; 633
Peng, Fu, Qi, Lan, Yu, Ge (bib21) 2019
Zhang, Chen, Wang, Tan (bib36) 2017; 220
Wang, Lu, Xiong, Yuan, Lu, Liu, Mao, Xiao (bib28) 2020; 27
Ni, Rong, Gu, Hu, Wang, Li, Yue, Wang, Wu, Li (bib19) 2018; 212
Wang, Zhao, Chen, Li, Na, Zhuo (bib31) 2013; 25
Wang, Wang, Ma, Xu (bib29) 2016; 23
Zhang, Meng, Shi, Guo, Si, Yang, Quan (bib38) 2019; 649
Esperanza, Seoane, Servia, Cid (bib7) 2020; 197
Yuan, Liu, Wang, Di, Wang (bib35) 2019; 170
Zhang, Wang, Tao, Li, Hao, Zhu, Hong (bib40) 2018; 157
Chen, Zhang, Li, Yuan, Zhang, Xu, Xu, Zheng, Wang (bib4) 2020; 263
Sjollema, Redondo-Hasselerharm, Leslie, Kraak, Vethaak (bib24) 2016; 170
Su, Xue, Li, Yang, Kolandhasamy, Li, Shi (bib25) 2016; 216
Saavedra, Stoll, Slaveykova (bib23) 2019; 252
Wu, Guo, Zhang, Zhang, Xie, Deng (bib32) 2019; 374
Tang, Xin, Yang, Guo, Malkoske, Yin, Xia (bib26) 2018; 204
Saavedra (10.1016/j.ecoenv.2020.111575_bib23) 2019; 252
Zhang (10.1016/j.ecoenv.2020.111575_bib39) 2018; 243
Peng (10.1016/j.ecoenv.2020.111575_bib21) 2019
Sjollema (10.1016/j.ecoenv.2020.111575_bib24) 2016; 170
Xiao (10.1016/j.ecoenv.2020.111575_bib33) 2020; 255
Dong (10.1016/j.ecoenv.2020.111575_bib6) 2020; 259
Hu (10.1016/j.ecoenv.2020.111575_bib10) 2015; 128
Liu (10.1016/j.ecoenv.2020.111575_bib12) 2014; 9
Su (10.1016/j.ecoenv.2020.111575_bib25) 2016; 216
Zhang (10.1016/j.ecoenv.2020.111575_bib36) 2017; 220
Fan (10.1016/j.ecoenv.2020.111575_bib9) 2018; 32
Mao (10.1016/j.ecoenv.2020.111575_bib17) 2018; 208
Ni (10.1016/j.ecoenv.2020.111575_bib19) 2018; 212
Bordós (10.1016/j.ecoenv.2020.111575_bib2) 2019; 216
Wang (10.1016/j.ecoenv.2020.111575_bib28) 2020; 27
Dai (10.1016/j.ecoenv.2020.111575_bib5) 2019; 651
Organization for Economic Cooperation and Development (OECD) (10.1016/j.ecoenv.2020.111575_bib20) 2011
Fan (10.1016/j.ecoenv.2020.111575_bib8) 2019; 651
Lu (10.1016/j.ecoenv.2020.111575_bib15) 2018; 234
Wang (10.1016/j.ecoenv.2020.111575_bib30) 2018; 633
Li (10.1016/j.ecoenv.2020.111575_bib13) 2020; 714
Yuan (10.1016/j.ecoenv.2020.111575_bib35) 2019; 170
Esperanza (10.1016/j.ecoenv.2020.111575_bib7) 2020; 197
Li (10.1016/j.ecoenv.2020.111575_bib14) 2019; 257
Prata (10.1016/j.ecoenv.2020.111575_bib22) 2019; 665
Besseling (10.1016/j.ecoenv.2020.111575_bib1) 2014; 48
Zhu (10.1016/j.ecoenv.2020.111575_bib42) 2019; 246
Merel (10.1016/j.ecoenv.2020.111575_bib18) 2013; 59
Yang (10.1016/j.ecoenv.2020.111575_bib34) 2020; 397
Magni (10.1016/j.ecoenv.2020.111575_bib16) 2019; 250
Thompson (10.1016/j.ecoenv.2020.111575_bib27) 2004; 304
Zhao (10.1016/j.ecoenv.2020.111575_bib41) 2019; 225
Zhang (10.1016/j.ecoenv.2020.111575_bib37) 2021; 401
Wang (10.1016/j.ecoenv.2020.111575_bib31) 2013; 25
Lin (10.1016/j.ecoenv.2020.111575_bib11) 2019; 180
Wu (10.1016/j.ecoenv.2020.111575_bib32) 2019; 374
Chen (10.1016/j.ecoenv.2020.111575_bib4) 2020; 263
Wang (10.1016/j.ecoenv.2020.111575_bib29) 2016; 23
Tang (10.1016/j.ecoenv.2020.111575_bib26) 2018; 204
Canniff (10.1016/j.ecoenv.2020.111575_bib3) 2018; 633
Zhang (10.1016/j.ecoenv.2020.111575_bib40) 2018; 157
Zhang (10.1016/j.ecoenv.2020.111575_bib38) 2019; 649
References_xml – volume: 374
  start-page: 219
  year: 2019
  end-page: 227
  ident: bib32
  article-title: Effect of microplastics exposure on the photosynthesis system of freshwater algae
  publication-title: J. Hazard. Mater.
– volume: 197
  year: 2020
  ident: bib7
  article-title: Effects of Bisphenol A on the microalga
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 649
  start-page: 163
  year: 2019
  end-page: 171
  ident: bib38
  article-title: The effects of humic acid on the toxicity of graphene oxide to
  publication-title: Sci. Total Environ.
– volume: 250
  start-page: 407
  year: 2019
  end-page: 415
  ident: bib16
  article-title: First evidence of protein modulation by polystyrene microplastics in a freshwater biological model
  publication-title: Environ. Pollut.
– volume: 225
  start-page: 424
  year: 2019
  end-page: 433
  ident: bib41
  article-title: Allelopathically inhibitory effects of eucalyptus extracts on the growth of
  publication-title: Chemosphere
– volume: 255
  year: 2020
  ident: bib33
  article-title: Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae
  publication-title: Chemosphere
– volume: 243
  start-page: 1106
  year: 2018
  end-page: 1112
  ident: bib39
  article-title: The combined toxicity effect of nanoplastics and glyphosate on
  publication-title: Environ. Pollut.
– volume: 170
  start-page: 259
  year: 2016
  end-page: 261
  ident: bib24
  article-title: Do plastic particles affect microalgal photosynthesis and growth?
  publication-title: Aquat. Toxicol.
– volume: 208
  start-page: 59
  year: 2018
  end-page: 68
  ident: bib17
  article-title: Phytoplankton response to polystyrene microplastics: perspective from an entire growth period
  publication-title: Chemosphere
– volume: 665
  start-page: 400
  year: 2019
  end-page: 405
  ident: bib22
  article-title: Effects of microplastics on microalgae populations: a critical review
  publication-title: Sci. Total Environ.
– year: 2019
  ident: bib21
  article-title: Micro- and nano-plastics in marine environment: source, distribution and threats - a review
  publication-title: Sci. Total Environ.
– volume: 32
  year: 2018
  ident: bib9
  article-title: Growth inhibition of
  publication-title: Appl. Organomet. Chem.
– volume: 714
  year: 2020
  ident: bib13
  article-title: Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae
  publication-title: Sci. Total Environ.
– volume: 234
  start-page: 379
  year: 2018
  end-page: 388
  ident: bib15
  article-title: Evaluation of the toxic response induced by azoxystrobin in the non-target green alga
  publication-title: Environ. Pollut.
– volume: 180
  start-page: 509
  year: 2019
  end-page: 516
  ident: bib11
  article-title: Investigating the toxicities of different functionalized polystyrene nanoplastics on
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 9
  year: 2014
  ident: bib12
  article-title: Synergistic and antagonistic effects of salinity and pH on germination in switchgrass (
  publication-title: PLoS One
– volume: 212
  start-page: 654
  year: 2018
  end-page: 661
  ident: bib19
  article-title: Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on
  publication-title: Chemosphere
– volume: 252
  start-page: 715
  year: 2019
  end-page: 722
  ident: bib23
  article-title: Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton
  publication-title: Environ. Pollut. (Barking, Essex 1987)
– volume: 263
  year: 2020
  ident: bib4
  article-title: Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (
  publication-title: Environ. Pollut. (Barking, Essex 1987)
– volume: 304
  start-page: 838
  year: 2004
  ident: bib27
  article-title: Lost at sea: where is all the plastic?
  publication-title: Science
– volume: 259
  year: 2020
  ident: bib6
  article-title: Mitigation effects of CO
  publication-title: Environ. Pollut.
– volume: 204
  start-page: 19
  year: 2018
  end-page: 26
  ident: bib26
  article-title: Environmental risks of ZnO nanoparticle exposure on
  publication-title: Aquat. Toxicol.
– volume: 128
  start-page: 184
  year: 2015
  end-page: 190
  ident: bib10
  article-title: Ecotoxicological effects of graphene oxide on the protozoan
  publication-title: Chemosphere
– volume: 157
  start-page: 134
  year: 2018
  end-page: 142
  ident: bib40
  article-title: PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 25
  start-page: 329
  year: 2013
  end-page: 336
  ident: bib31
  article-title: Small water clusters stimulate microcystin biosynthesis in cyanobacterial
  publication-title: J. Appl. Phycol.
– volume: 27
  start-page: 11246
  year: 2020
  end-page: 11259
  ident: bib28
  article-title: Toxicological responses, bioaccumulation, and metabolic fate of triclosan in
  publication-title: Environ. Sci. Pollut. Res.
– volume: 633
  start-page: 500
  year: 2018
  end-page: 507
  ident: bib3
  article-title: Microplastic ingestion by
  publication-title: Sci. Total Environ.
– year: 2011
  ident: bib20
  article-title: Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2
– volume: 651
  start-page: 706
  year: 2019
  end-page: 712
  ident: bib5
  article-title: Effects of arginine on the growth and microcystin-LR production of
  publication-title: Sci. Total Environ.
– volume: 216
  start-page: 110
  year: 2019
  end-page: 116
  ident: bib2
  article-title: Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin
  publication-title: Eur. Chemosphere
– volume: 257
  year: 2019
  ident: bib14
  article-title: Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae
  publication-title: Environ. Pollut.
– volume: 401
  year: 2021
  ident: bib37
  article-title: Ecological damage of submerged macrophytes by fresh cyanobacteria (FC) and cyanobacterial decomposition solution (CDS)
  publication-title: J. Hazard. Mater.
– volume: 48
  start-page: 12336
  year: 2014
  end-page: 12343
  ident: bib1
  article-title: Nanoplastic affects growth of
  publication-title: Environ. Sci. Technol.
– volume: 59
  start-page: 303
  year: 2013
  end-page: 327
  ident: bib18
  article-title: State of knowledge and concerns on cyanobacterial blooms and cyanotoxins
  publication-title: Environ. Int.
– volume: 246
  start-page: 509
  year: 2019
  end-page: 517
  ident: bib42
  article-title: Joint toxicity of microplastics with triclosan to marine microalgae
  publication-title: Environ. Pollut.
– volume: 216
  start-page: 711
  year: 2016
  end-page: 719
  ident: bib25
  article-title: Microplastics in Taihu Lake
  publication-title: China Environ. Pollut.
– volume: 170
  start-page: 180
  year: 2019
  end-page: 187
  ident: bib35
  article-title: Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 220
  start-page: 1282
  year: 2017
  end-page: 1288
  ident: bib36
  article-title: Toxic effects of microplastic on marine microalgae
  publication-title: Environ. Pollut.
– volume: 633
  start-page: 539
  year: 2018
  end-page: 545
  ident: bib30
  article-title: Microplastics in surface waters of Dongting Lake and Hong Lake
  publication-title: China Sci. Total Environ.
– volume: 651
  start-page: 570
  year: 2019
  end-page: 579
  ident: bib8
  article-title: Growth inhibition and oxidative stress caused by four ionic liquids in
  publication-title: Sci. Total Environ.
– volume: 23
  start-page: 5712
  year: 2016
  end-page: 5720
  ident: bib29
  article-title: Effects of garlic and diallyl trisulfide on the growth, photosynthesis, and alkaline phosphatase activity of the toxic cyanobacterium
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 397
  year: 2020
  ident: bib34
  article-title: Transcriptome analysis of the effect of bisphenol A exposure on the growth, photosynthetic activity and risk of microcystin-LR release by
  publication-title: J. Hazard. Mater.
– volume: 250
  start-page: 407
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib16
  article-title: First evidence of protein modulation by polystyrene microplastics in a freshwater biological model
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.04.088
– volume: 397
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111575_bib34
  article-title: Transcriptome analysis of the effect of bisphenol A exposure on the growth, photosynthetic activity and risk of microcystin-LR release by Microcystis aeruginosa
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122746
– year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib21
  article-title: Micro- and nano-plastics in marine environment: source, distribution and threats - a review
  publication-title: Sci. Total Environ.
– year: 2011
  ident: 10.1016/j.ecoenv.2020.111575_bib20
– volume: 170
  start-page: 259
  year: 2016
  ident: 10.1016/j.ecoenv.2020.111575_bib24
  article-title: Do plastic particles affect microalgal photosynthesis and growth?
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2015.12.002
– volume: 197
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111575_bib7
  article-title: Effects of Bisphenol A on the microalga Chlamydomonas reinhardtii and the clam Corbicula fluminea
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110609
– volume: 25
  start-page: 329
  year: 2013
  ident: 10.1016/j.ecoenv.2020.111575_bib31
  article-title: Small water clusters stimulate microcystin biosynthesis in cyanobacterial Microcystis aeruginosa
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-012-9867-4
– volume: 157
  start-page: 134
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib40
  article-title: PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.03.052
– volume: 714
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111575_bib13
  article-title: Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.136767
– volume: 665
  start-page: 400
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib22
  article-title: Effects of microplastics on microalgae populations: a critical review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.132
– volume: 304
  start-page: 838
  year: 2004
  ident: 10.1016/j.ecoenv.2020.111575_bib27
  article-title: Lost at sea: where is all the plastic?
  publication-title: Science
  doi: 10.1126/science.1094559
– volume: 48
  start-page: 12336
  year: 2014
  ident: 10.1016/j.ecoenv.2020.111575_bib1
  article-title: Nanoplastic affects growth of S. obliquus and reproduction of D. magna
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503001d
– volume: 633
  start-page: 500
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib3
  article-title: Microplastic ingestion by Daphnia magna and its enhancement on algal growth
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.176
– volume: 234
  start-page: 379
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib15
  article-title: Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.11.081
– volume: 651
  start-page: 706
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib5
  article-title: Effects of arginine on the growth and microcystin-LR production of Microcystis aeruginosa in culture
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.213
– volume: 220
  start-page: 1282
  year: 2017
  ident: 10.1016/j.ecoenv.2020.111575_bib36
  article-title: Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.11.005
– volume: 243
  start-page: 1106
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib39
  article-title: The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.09.073
– volume: 216
  start-page: 711
  year: 2016
  ident: 10.1016/j.ecoenv.2020.111575_bib25
  article-title: Microplastics in Taihu Lake
  publication-title: China Environ. Pollut.
  doi: 10.1016/j.envpol.2016.06.036
– volume: 216
  start-page: 110
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib2
  article-title: Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin
  publication-title: Eur. Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.110
– volume: 208
  start-page: 59
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib17
  article-title: Phytoplankton response to polystyrene microplastics: perspective from an entire growth period
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.170
– volume: 212
  start-page: 654
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib19
  article-title: Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.045
– volume: 23
  start-page: 5712
  year: 2016
  ident: 10.1016/j.ecoenv.2020.111575_bib29
  article-title: Effects of garlic and diallyl trisulfide on the growth, photosynthesis, and alkaline phosphatase activity of the toxic cyanobacterium Microcystis aeruginosa
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-015-5809-4
– volume: 246
  start-page: 509
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib42
  article-title: Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.12.044
– volume: 263
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111575_bib4
  article-title: Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum)
  publication-title: Environ. Pollut. (Barking, Essex 1987)
– volume: 259
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111575_bib6
  article-title: Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113850
– volume: 401
  year: 2021
  ident: 10.1016/j.ecoenv.2020.111575_bib37
  article-title: Ecological damage of submerged macrophytes by fresh cyanobacteria (FC) and cyanobacterial decomposition solution (CDS)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123372
– volume: 649
  start-page: 163
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib38
  article-title: The effects of humic acid on the toxicity of graphene oxide to Scenedesmus obliquus and Daphnia magna
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.280
– volume: 128
  start-page: 184
  year: 2015
  ident: 10.1016/j.ecoenv.2020.111575_bib10
  article-title: Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.01.040
– volume: 180
  start-page: 509
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib11
  article-title: Investigating the toxicities of different functionalized polystyrene nanoplastics on Daphnia magna
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.05.036
– volume: 170
  start-page: 180
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib35
  article-title: Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.11.126
– volume: 255
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111575_bib33
  article-title: Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126914
– volume: 204
  start-page: 19
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib26
  article-title: Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: toxic effects and environmental feedback
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2018.08.010
– volume: 9
  year: 2014
  ident: 10.1016/j.ecoenv.2020.111575_bib12
  article-title: Synergistic and antagonistic effects of salinity and pH on germination in switchgrass (Panicum virgatum L.)
  publication-title: PLoS One
– volume: 252
  start-page: 715
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib23
  article-title: Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton
  publication-title: Environ. Pollut. (Barking, Essex 1987)
  doi: 10.1016/j.envpol.2019.05.135
– volume: 32
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib9
  article-title: Growth inhibition of Microcystis aeruginosa by copper-based MOFs: performance and physiological effect on algal cells
  publication-title: Appl. Organomet. Chem.
  doi: 10.1002/aoc.4600
– volume: 257
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib14
  article-title: Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa
  publication-title: Environ. Pollut.
– volume: 27
  start-page: 11246
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111575_bib28
  article-title: Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-07704-9
– volume: 633
  start-page: 539
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111575_bib30
  article-title: Microplastics in surface waters of Dongting Lake and Hong Lake
  publication-title: China Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.211
– volume: 374
  start-page: 219
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib32
  article-title: Effect of microplastics exposure on the photosynthesis system of freshwater algae
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.04.039
– volume: 651
  start-page: 570
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib8
  article-title: Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus: Role of cations and anions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.106
– volume: 225
  start-page: 424
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111575_bib41
  article-title: Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.03.070
– volume: 59
  start-page: 303
  year: 2013
  ident: 10.1016/j.ecoenv.2020.111575_bib18
  article-title: State of knowledge and concerns on cyanobacterial blooms and cyanotoxins
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2013.06.013
SSID ssj0003055
Score 2.6281488
Snippet Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms....
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111575
SubjectTerms Antioxidant enzyme activity
Antioxidants - metabolism
Catalase - metabolism
Fresh Water
Growth
Microalgae - drug effects
Microcystins
Microcystis - drug effects
Microcystis - physiology
Microplastic
Microplastics - toxicity
Oxidative Stress - drug effects
Plastics - toxicity
Polyethylene
Polystyrenes - toxicity
Polyvinyl Chloride - toxicity
Superoxide Dismutase - metabolism
Toxin production
Water Pollutants, Chemical - toxicity
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhICEF5LS8ZiSNmEz_WyRGqlgoJTlTqzfJj0gZBEu1mEXvhtzO2k4UeUCVuuyOvY3km42-y33wh5DWIsnSVs0yunGASPGe14p4BeCubusQTMLF8P6_OzuXHC3VxQI7nXphIq5xyf87pKVtPluW0m8uhbZeRloQTxRZgUUpMwLGDHS0Y029__aF5REWrTGPULI6e2-cSxwsrPOh-YJXIU-5QkW341_GUVPyvnVL_QqHpNDq9R-5OMJK-yyu9Tw6gOyK3TpIE9e6I3MlP42huMnpAhg9YbY9XtO2uWpdIWm_o2P9sOzpkxVe0UNsFiraQpMBpbiKh3m43EKjb0RG9DvR7JPANCLmjvDPORz9Fg9_h9w21sN5etl2_sQ_J-enJl-MzNr1rgXmp5cjQZ06Uqqk41PjBce0QWVleNbUvZINVSqOCQLyGGwpYohUyFLWXIcSKZlU04hE57PoOnhBarBqlXSUrtfIIxsrKO7DK25qDcLKCBRHzFhs_CZHH92F8MzPj7KvJjjHRMSY7ZkHY_ldDFuK4Yfz76L392CijnQz9-tJMcWRwSUprUdngCulEYYXTTnjgQXHgOiyInn1vrkUlTtXecPlXc6gYvGHjvzC2g367MVxqRMlccb0gj3MM7RcphKgRz5ZP__u6z8htHlk3RclK9ZwcjustvEDYNLqX6b74DUDWFQY
  priority: 102
  providerName: Elsevier
Title Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa
URI https://dx.doi.org/10.1016/j.ecoenv.2020.111575
https://www.ncbi.nlm.nih.gov/pubmed/33396101
https://www.proquest.com/docview/2475402527
https://doaj.org/article/92e57738adb04b30a3b7b3ce2d52e27d
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCAkJISiv5bEyEkcM8StOjgW1LCB6olJvll-hQeBddbOIvfDbGdvJqhzQXrglluNYnrHnm-TzZ4ReBk6pbawhoraciOAYaSVzJARnRNdSiICZ5XtaL87Ex3N5fuWor8QJK_LAZeDetCxIpXhjvK2E5ZXhVlnuAvOSBaZ8Wn0h5k3J1LgGJx2rQl5UpJaUT5vmMrML8roQf0JuyPKKIRPH8EpQytr9f8Wmf2HPHINO7qI7I3jER6XT99C1EA_RzeMsPL09RLfLNzhcthbdR6v3kGMPF7iPF73N1KxXeFj-6iNeFZ1XKMEmegxlPguA47J1BDuzWQeP7RYPYOuAfyTa3gqAdhJ1hvbw51TgtnC_xiZcbr72cbk2D9DZyfGXdwsynrBAnFBiIGApy6nsGhZauLBMWcBThjVd6yrRQW7SSc8BpcGABkjMKuGr1gnvUx5TVx1_iA7iMobHCFd1J5VtRCNrBxCMNs4GI50B-3ErmjBDfBpi7Ub58XQKxnc98cy-6WIYnQyji2FmiOyeWhX5jT313ybr7eom8excAC6lR5fS-1xqhtRkez3ikIIvoKl-z-tfTK6iYZqmfy8mhuVmrZlQgI2ZZGqGHhUf2nWSc94CiqVP_kfnn6JbLNFuKkqofIYOhstNeA64abBzdP31bzpHN44-fFqczvOE-QP4XBb5
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIJISi0LE8jccRs4kecHKFqWaDtqZV6s_xKG0ST1W4WsRd-O2M7WegBVeK2O_I6lscef5P95jNCbz3Lc1MaTXhhGOHeUlIJaon3VvO6yuEEjCzfk2J2xr-ci_MttD_WwgRa5RD7U0yP0XqwTIfZnM6bZhpoSdBRKAFmOYcAfAvd5rB9wzUG73_94XkESavEY5QkNB_r5yLJC1I83_6ANJHG4CEC3fCv8ynK-F87pv4FQ-NxdPgQPRhwJP6QhvoIbfl2B905iBrU6x10P72Ow6nK6DGaf4J0u7_ETXvZmMjSeof77mfT4nmSfAUL1q3DYHNRCxynKhJs9WrpHTZr3IPbPb4KDL45YO6g7wz94eNgsGv4vsTaL1YXTdst9RN0dnhwuj8jw2ULxHLJewJOMywXdUl9BR8MlQaglaZlXdmM15Cm1MIxAGwwoR5ytIy7rLLcuZDSFFnNdtF227X-KcJZUQtpSl6KwgIay0trvBZWV9Qzw0s_QWycYmUHJfJwIcZ3NVLOvqnkGBUco5JjJohsfjVPShw3tP8YvLdpG3S0o6FbXKhhISkYkpCSldqZjBuWaWakYdZTJ6in0k2QHH2vri1L6Kq54fFvxqWiYMeGv2F067vVUlEuASZTQeUE7aU1tBkkY6wCQJs_--_nvkZ3Z6fHR-ro88nX5-geDRScLCe5eIG2-8XKvwQM1ZtXcY_8BiC-GCI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+inhibition%2C+toxin+production+and+oxidative+stress+caused+by+three+microplastics+in+Microcystis+aeruginosa&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Zheng%2C+Xiaowei&rft.au=Zhang%2C+Weizhen&rft.au=Yuan%2C+Yuan&rft.au=Li%2C+Yanyao&rft.date=2021-01-15&rft.eissn=1090-2414&rft.volume=208&rft.spage=111575&rft_id=info:doi/10.1016%2Fj.ecoenv.2020.111575&rft_id=info%3Apmid%2F33396101&rft.externalDocID=33396101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon