Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa
Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigate...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 208; p. 111575 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
15.01.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs.
[Display omitted]
•PVC, PS, and PE MPs all had an obvious inhibition effect on M. aeruginosa growth.•All three MPs can cause oxidation stress and cell membrane destruction.•All three MPs can promote the production and release of MCs.•The resistance of M. aeruginosa to three MPs was followed PE> PS> PVC. |
---|---|
AbstractList | Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs. Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs. [Display omitted] •PVC, PS, and PE MPs all had an obvious inhibition effect on M. aeruginosa growth.•All three MPs can cause oxidation stress and cell membrane destruction.•All three MPs can promote the production and release of MCs.•The resistance of M. aeruginosa to three MPs was followed PE> PS> PVC. Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs.Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms. However, the underlying toxicity of different kinds of MPs on freshwater microalgae has not been examined in detail. In this study, we investigated the effects of polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE) MPs on the growth of Microcystis aeruginosa, as well as on its toxin production and oxidative stress. We found that all three kinds of MPs had an obvious inhibition effect on the growth of M. aeruginosa. Considering the results of antioxidant-related indicators, the activity of superoxide dismutase (SOD) and catalase (CAT), and cell membrane integrity were greatly affected with exposure to PVC, PS and PE MPs. Moreover, the content of intracellular (intra-) and extracellular (extra-) microcystins (MCs) had a noticeable increase due to the presence of PVC, PS, and PE MPs. Finally, according to the comprehensive stress resistance indicators, the resistance of M. aeruginosa to three MPs followed the order: PE (3.701)> PS (3.607)> PVC (2.901). Our results provide insights into the effects of different kinds of MPs on freshwater algae and provide valuable data for risk assessment of different types of MPs. |
ArticleNumber | 111575 |
Author | Liu, Xianglin Yuan, Yuan Li, Yanyao Zhang, Weizhen Zheng, Xiaowei Wang, Xiangrong Fan, Zhengqiu |
Author_xml | – sequence: 1 givenname: Xiaowei surname: Zheng fullname: Zheng, Xiaowei – sequence: 2 givenname: Weizhen surname: Zhang fullname: Zhang, Weizhen – sequence: 3 givenname: Yuan surname: Yuan fullname: Yuan, Yuan – sequence: 4 givenname: Yanyao surname: Li fullname: Li, Yanyao – sequence: 5 givenname: Xianglin surname: Liu fullname: Liu, Xianglin – sequence: 6 givenname: Xiangrong surname: Wang fullname: Wang, Xiangrong email: xrxrwang@fudan.edu.cn – sequence: 7 givenname: Zhengqiu surname: Fan fullname: Fan, Zhengqiu email: zhqfan@fudan.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33396101$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vFCEYxompsdvqNzCGowdn5e-w48GkabQ2qfGiZ8LAO102s7ACs7rfXsZpPXjQE_DkeX7A816gsxADIPSSkjUltH27W4ONEI5rRliVKJVKPkErSjrSMEHFGVoRKlTTSsrP0UXOO0IIJ1I-Q-ec866tlBU63KT4o2yxD1vf--JjeINL_OkDPqToJjsr2ASHq-ZM8UfAuSTIGVszZXC4P-GyTQB4722Kh9Hk4m2uPPx5FuypnjM2kKZ7H2I2z9HTwYwZXjysl-jbxw9frz81d19ubq-v7horlCgNcNpzKocNg65ueqZ62VLDNkNniRhawQbpONnw-iXoug0RjnRWOEeV4C0Z-CW6Xbgump0-JL836aSj8fq3ENO9Nqk-dQTdMZBK8Y1xPRE9J4b3qucWmJMMmHKV9Xph1U6-T5CL3vtsYRxNgDhlzYSSgjDJVLW-erBO_R7cn4sfG6-Gd4uhlpNzgkFbX8xcc0nGj5oSPY9X7_QyXj2PVy_jrWHxV_iR_5_Y-yUGtfCjh6Sz9RAsOJ_AltqI_zfgF2RmwTc |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_158906 crossref_primary_10_1016_j_scitotenv_2024_173864 crossref_primary_10_1007_s12210_022_01104_6 crossref_primary_10_1016_j_scitotenv_2022_153855 crossref_primary_10_1016_j_envpol_2024_125505 crossref_primary_10_1038_s41598_025_89006_z crossref_primary_10_1016_j_scitotenv_2023_163537 crossref_primary_10_1016_j_scitotenv_2024_177383 crossref_primary_10_1016_j_scitotenv_2022_157260 crossref_primary_10_1016_j_envpol_2022_119108 crossref_primary_10_1016_j_jhazmat_2021_128094 crossref_primary_10_2139_ssrn_3983981 crossref_primary_10_1016_j_chemosphere_2023_138256 crossref_primary_10_1016_j_jhazmat_2021_126591 crossref_primary_10_1016_j_psep_2023_12_058 crossref_primary_10_1016_j_marpolbul_2023_114745 crossref_primary_10_1021_acs_est_2c05817 crossref_primary_10_1016_j_ecoenv_2023_114564 crossref_primary_10_1016_j_ecoenv_2023_115259 crossref_primary_10_1016_j_marpolbul_2024_117437 crossref_primary_10_3390_w14152422 crossref_primary_10_1016_j_scitotenv_2021_147628 crossref_primary_10_1016_j_algal_2024_103755 crossref_primary_10_1016_j_cbpc_2023_109587 crossref_primary_10_1016_j_envpol_2022_119515 crossref_primary_10_1016_j_watres_2024_121121 crossref_primary_10_1016_j_jhazmat_2022_129355 crossref_primary_10_1016_j_scitotenv_2022_159614 crossref_primary_10_1007_s00128_024_03959_x crossref_primary_10_1016_j_chemosphere_2022_135034 crossref_primary_10_1016_j_envpol_2021_117950 crossref_primary_10_1016_j_tifs_2022_08_021 crossref_primary_10_1039_D4EN01074D crossref_primary_10_1016_j_scitotenv_2021_148200 crossref_primary_10_3390_w13121713 crossref_primary_10_1016_j_envpol_2024_123349 crossref_primary_10_1016_j_scitotenv_2023_168414 crossref_primary_10_1016_j_envpol_2024_123347 crossref_primary_10_1007_s10661_025_13636_z crossref_primary_10_1016_j_jece_2025_115624 crossref_primary_10_1016_j_scitotenv_2024_176151 crossref_primary_10_1016_j_foodchem_2025_142940 crossref_primary_10_1039_D4EM00780H crossref_primary_10_1089_ast_2021_0100 crossref_primary_10_1007_s10661_025_13737_9 crossref_primary_10_1111_brv_13164 crossref_primary_10_1016_j_measurement_2025_116754 crossref_primary_10_1039_D4EN00233D crossref_primary_10_1016_j_watres_2024_121706 crossref_primary_10_1016_j_scitotenv_2024_174660 crossref_primary_10_2139_ssrn_3990787 crossref_primary_10_1016_j_marenvres_2024_106793 crossref_primary_10_1039_D3EM00120B crossref_primary_10_1016_j_envres_2022_114402 crossref_primary_10_1016_j_ecoenv_2025_117772 crossref_primary_10_1093_etojnl_vgae008 crossref_primary_10_1016_j_chemosphere_2023_139476 crossref_primary_10_1016_j_plaphy_2022_12_008 crossref_primary_10_1016_j_chemosphere_2024_143120 crossref_primary_10_1016_j_jes_2022_09_023 crossref_primary_10_1016_j_envpol_2024_124574 crossref_primary_10_1016_j_jhazmat_2023_131071 crossref_primary_10_1016_j_jhazmat_2024_136087 crossref_primary_10_1016_j_toxrep_2022_10_013 crossref_primary_10_1016_j_watres_2025_123476 crossref_primary_10_1016_j_aquatox_2024_106967 crossref_primary_10_1016_j_chemosphere_2022_134370 crossref_primary_10_1016_j_aquatox_2023_106725 crossref_primary_10_1002_wer_11089 crossref_primary_10_1016_j_tplants_2022_06_005 crossref_primary_10_1039_D4EN00300D crossref_primary_10_1016_j_scitotenv_2023_163608 crossref_primary_10_2139_ssrn_4048898 crossref_primary_10_1016_j_jhazmat_2024_136470 crossref_primary_10_1016_j_algal_2023_103378 crossref_primary_10_1007_s11368_023_03479_x crossref_primary_10_1016_j_chemosphere_2023_140755 crossref_primary_10_1016_j_scitotenv_2023_167017 crossref_primary_10_1016_j_envpol_2022_119395 crossref_primary_10_1016_j_scitotenv_2021_151638 crossref_primary_10_3390_toxics13010053 crossref_primary_10_1016_j_chemosphere_2022_137182 crossref_primary_10_1016_j_scitotenv_2022_155655 crossref_primary_10_3390_toxins13040293 crossref_primary_10_1016_j_scitotenv_2024_172034 crossref_primary_10_1016_j_jhazmat_2024_134241 crossref_primary_10_1016_j_scitotenv_2022_153350 crossref_primary_10_1016_j_envpol_2024_124478 crossref_primary_10_1016_j_chemosphere_2022_137225 crossref_primary_10_1016_j_scitotenv_2023_163842 crossref_primary_10_1016_j_scitotenv_2023_167129 crossref_primary_10_2139_ssrn_4169579 crossref_primary_10_1016_j_jhazmat_2024_136948 crossref_primary_10_1016_j_trac_2024_118095 crossref_primary_10_1016_j_jclepro_2020_125755 crossref_primary_10_1016_j_marpolbul_2021_113197 crossref_primary_10_1016_j_envpol_2024_124084 crossref_primary_10_3390_nano11102471 crossref_primary_10_3390_molecules27185906 crossref_primary_10_1016_j_envpol_2024_125290 crossref_primary_10_1016_j_jhazmat_2022_128323 crossref_primary_10_1016_j_plaphy_2024_108987 crossref_primary_10_1016_j_scitotenv_2023_166140 |
Cites_doi | 10.1016/j.envpol.2019.04.088 10.1016/j.jhazmat.2020.122746 10.1016/j.aquatox.2015.12.002 10.1016/j.ecoenv.2020.110609 10.1007/s10811-012-9867-4 10.1016/j.ecoenv.2018.03.052 10.1016/j.scitotenv.2020.136767 10.1016/j.scitotenv.2019.02.132 10.1126/science.1094559 10.1021/es503001d 10.1016/j.scitotenv.2018.03.176 10.1016/j.envpol.2017.11.081 10.1016/j.scitotenv.2018.09.213 10.1016/j.envpol.2016.11.005 10.1016/j.envpol.2018.09.073 10.1016/j.envpol.2016.06.036 10.1016/j.chemosphere.2018.10.110 10.1016/j.chemosphere.2018.05.170 10.1016/j.chemosphere.2018.08.045 10.1007/s11356-015-5809-4 10.1016/j.envpol.2018.12.044 10.1016/j.envpol.2019.113850 10.1016/j.jhazmat.2020.123372 10.1016/j.scitotenv.2018.08.280 10.1016/j.chemosphere.2015.01.040 10.1016/j.ecoenv.2019.05.036 10.1016/j.ecoenv.2018.11.126 10.1016/j.chemosphere.2020.126914 10.1016/j.aquatox.2018.08.010 10.1016/j.envpol.2019.05.135 10.1002/aoc.4600 10.1007/s11356-020-07704-9 10.1016/j.scitotenv.2018.03.211 10.1016/j.jhazmat.2019.04.039 10.1016/j.scitotenv.2018.09.106 10.1016/j.chemosphere.2019.03.070 10.1016/j.envint.2013.06.013 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.ecoenv.2020.111575 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_92e57738adb04b30a3b7b3ce2d52e27d 33396101 10_1016_j_ecoenv_2020_111575 S0147651320314123 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSJ SSZ T5K ZU3 ~G- 29G 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ H~9 R2- RIG SEN SEW SSH VH1 WUQ XPP ZMT ZXP ~KM CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c474t-e31b315f82e9b31b27b561a28f9c04f642f5d3083030e99804d09c4dd174360f3 |
IEDL.DBID | DOA |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:18:44 EDT 2025 Fri Jul 11 07:23:05 EDT 2025 Wed Feb 19 02:29:59 EST 2025 Tue Jul 01 04:00:21 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Fri Feb 23 02:49:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Toxin production Microplastic Growth Antioxidant enzyme activity |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-e31b315f82e9b31b27b561a28f9c04f642f5d3083030e99804d09c4dd174360f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/92e57738adb04b30a3b7b3ce2d52e27d |
PMID | 33396101 |
PQID | 2475402527 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_92e57738adb04b30a3b7b3ce2d52e27d proquest_miscellaneous_2475402527 pubmed_primary_33396101 crossref_citationtrail_10_1016_j_ecoenv_2020_111575 crossref_primary_10_1016_j_ecoenv_2020_111575 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2020_111575 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Li, Wang, Zhang, Zhou, Yin, Hu, Hu, Liu, Zhu (bib13) 2020; 714 Magni, Della Torre, Garrone, D’Amato, Parenti, Binelli (bib16) 2019; 250 Mao, Ai, Chen, Zhang, Zeng, Kang, Li, Gu, He, Li (bib17) 2018; 208 Merel, Walker, Chicana, Snyder, Baurès, Thomas (bib18) 2013; 59 Thompson (bib27) 2004; 304 Fan, Liu, Dong, Chen, Wang, Guo, Du (bib8) 2019; 651 Zhu, Wang, Zhao, Wang, Liu, Liu (bib42) 2019; 246 Bordós, Urbányi, Micsinai, Kriszt, Palotai, Szabó, Hantosi, Szoboszlay (bib2) 2019; 216 Fan, Zhou, Zheng, Chen (bib9) 2018; 32 Zhang, Qu, Lu, Ke, Zhu, Zhang, Zhang, Du, Pan, Sun, Qian (bib39) 2018; 243 Yang, Fan, Xie, Fang, Wang, Yuan, Li (bib34) 2020; 397 Zhao, Zheng, Zhang, Roger, Luo (bib41) 2019; 225 Canniff, Hoang (bib3) 2018; 633 Dong, Wang, Qian, Tang, Zhu, Wang, Cai, Wang (bib6) 2020; 259 Lin, Jiang, Hu, Xiao, Wu, Wei, Xiong, Ouyang (bib11) 2019; 180 Besseling, Wang, Lurling, Koelmans (bib1) 2014; 48 Dai, Zhou, Chen, Zhang, Yan, An (bib5) 2019; 651 Xiao, Jiang, Liao, Zhao, Zhao, Li (bib33) 2020; 255 Hu, Wang, Zhao, Wang, Guo, Li (bib10) 2015; 128 Zhang, Gu, Zheng, Wang, Wu, He, Luo, Zhou, Zheng (bib37) 2021; 401 Li, Yi, Zhou, Chi, Li, Yang (bib14) 2019; 257 Liu, Wang, Zhang, Cui, Chen, Xie, Wu, Liu (bib12) 2014; 9 Lu, Zhu, Xu, Ke, Zhang, Tan, Fu, Qian (bib15) 2018; 234 Organization for Economic Cooperation and Development (OECD) (bib20) 2011 Prata, da Costa, Lopes, Duarte, Rocha-Santos (bib22) 2019; 665 Wang, Yuan, Chen, Wang (bib30) 2018; 633 Peng, Fu, Qi, Lan, Yu, Ge (bib21) 2019 Zhang, Chen, Wang, Tan (bib36) 2017; 220 Wang, Lu, Xiong, Yuan, Lu, Liu, Mao, Xiao (bib28) 2020; 27 Ni, Rong, Gu, Hu, Wang, Li, Yue, Wang, Wu, Li (bib19) 2018; 212 Wang, Zhao, Chen, Li, Na, Zhuo (bib31) 2013; 25 Wang, Wang, Ma, Xu (bib29) 2016; 23 Zhang, Meng, Shi, Guo, Si, Yang, Quan (bib38) 2019; 649 Esperanza, Seoane, Servia, Cid (bib7) 2020; 197 Yuan, Liu, Wang, Di, Wang (bib35) 2019; 170 Zhang, Wang, Tao, Li, Hao, Zhu, Hong (bib40) 2018; 157 Chen, Zhang, Li, Yuan, Zhang, Xu, Xu, Zheng, Wang (bib4) 2020; 263 Sjollema, Redondo-Hasselerharm, Leslie, Kraak, Vethaak (bib24) 2016; 170 Su, Xue, Li, Yang, Kolandhasamy, Li, Shi (bib25) 2016; 216 Saavedra, Stoll, Slaveykova (bib23) 2019; 252 Wu, Guo, Zhang, Zhang, Xie, Deng (bib32) 2019; 374 Tang, Xin, Yang, Guo, Malkoske, Yin, Xia (bib26) 2018; 204 Saavedra (10.1016/j.ecoenv.2020.111575_bib23) 2019; 252 Zhang (10.1016/j.ecoenv.2020.111575_bib39) 2018; 243 Peng (10.1016/j.ecoenv.2020.111575_bib21) 2019 Sjollema (10.1016/j.ecoenv.2020.111575_bib24) 2016; 170 Xiao (10.1016/j.ecoenv.2020.111575_bib33) 2020; 255 Dong (10.1016/j.ecoenv.2020.111575_bib6) 2020; 259 Hu (10.1016/j.ecoenv.2020.111575_bib10) 2015; 128 Liu (10.1016/j.ecoenv.2020.111575_bib12) 2014; 9 Su (10.1016/j.ecoenv.2020.111575_bib25) 2016; 216 Zhang (10.1016/j.ecoenv.2020.111575_bib36) 2017; 220 Fan (10.1016/j.ecoenv.2020.111575_bib9) 2018; 32 Mao (10.1016/j.ecoenv.2020.111575_bib17) 2018; 208 Ni (10.1016/j.ecoenv.2020.111575_bib19) 2018; 212 Bordós (10.1016/j.ecoenv.2020.111575_bib2) 2019; 216 Wang (10.1016/j.ecoenv.2020.111575_bib28) 2020; 27 Dai (10.1016/j.ecoenv.2020.111575_bib5) 2019; 651 Organization for Economic Cooperation and Development (OECD) (10.1016/j.ecoenv.2020.111575_bib20) 2011 Fan (10.1016/j.ecoenv.2020.111575_bib8) 2019; 651 Lu (10.1016/j.ecoenv.2020.111575_bib15) 2018; 234 Wang (10.1016/j.ecoenv.2020.111575_bib30) 2018; 633 Li (10.1016/j.ecoenv.2020.111575_bib13) 2020; 714 Yuan (10.1016/j.ecoenv.2020.111575_bib35) 2019; 170 Esperanza (10.1016/j.ecoenv.2020.111575_bib7) 2020; 197 Li (10.1016/j.ecoenv.2020.111575_bib14) 2019; 257 Prata (10.1016/j.ecoenv.2020.111575_bib22) 2019; 665 Besseling (10.1016/j.ecoenv.2020.111575_bib1) 2014; 48 Zhu (10.1016/j.ecoenv.2020.111575_bib42) 2019; 246 Merel (10.1016/j.ecoenv.2020.111575_bib18) 2013; 59 Yang (10.1016/j.ecoenv.2020.111575_bib34) 2020; 397 Magni (10.1016/j.ecoenv.2020.111575_bib16) 2019; 250 Thompson (10.1016/j.ecoenv.2020.111575_bib27) 2004; 304 Zhao (10.1016/j.ecoenv.2020.111575_bib41) 2019; 225 Zhang (10.1016/j.ecoenv.2020.111575_bib37) 2021; 401 Wang (10.1016/j.ecoenv.2020.111575_bib31) 2013; 25 Lin (10.1016/j.ecoenv.2020.111575_bib11) 2019; 180 Wu (10.1016/j.ecoenv.2020.111575_bib32) 2019; 374 Chen (10.1016/j.ecoenv.2020.111575_bib4) 2020; 263 Wang (10.1016/j.ecoenv.2020.111575_bib29) 2016; 23 Tang (10.1016/j.ecoenv.2020.111575_bib26) 2018; 204 Canniff (10.1016/j.ecoenv.2020.111575_bib3) 2018; 633 Zhang (10.1016/j.ecoenv.2020.111575_bib40) 2018; 157 Zhang (10.1016/j.ecoenv.2020.111575_bib38) 2019; 649 |
References_xml | – volume: 374 start-page: 219 year: 2019 end-page: 227 ident: bib32 article-title: Effect of microplastics exposure on the photosynthesis system of freshwater algae publication-title: J. Hazard. Mater. – volume: 197 year: 2020 ident: bib7 article-title: Effects of Bisphenol A on the microalga publication-title: Ecotoxicol. Environ. Saf. – volume: 649 start-page: 163 year: 2019 end-page: 171 ident: bib38 article-title: The effects of humic acid on the toxicity of graphene oxide to publication-title: Sci. Total Environ. – volume: 250 start-page: 407 year: 2019 end-page: 415 ident: bib16 article-title: First evidence of protein modulation by polystyrene microplastics in a freshwater biological model publication-title: Environ. Pollut. – volume: 225 start-page: 424 year: 2019 end-page: 433 ident: bib41 article-title: Allelopathically inhibitory effects of eucalyptus extracts on the growth of publication-title: Chemosphere – volume: 255 year: 2020 ident: bib33 article-title: Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae publication-title: Chemosphere – volume: 243 start-page: 1106 year: 2018 end-page: 1112 ident: bib39 article-title: The combined toxicity effect of nanoplastics and glyphosate on publication-title: Environ. Pollut. – volume: 170 start-page: 259 year: 2016 end-page: 261 ident: bib24 article-title: Do plastic particles affect microalgal photosynthesis and growth? publication-title: Aquat. Toxicol. – volume: 208 start-page: 59 year: 2018 end-page: 68 ident: bib17 article-title: Phytoplankton response to polystyrene microplastics: perspective from an entire growth period publication-title: Chemosphere – volume: 665 start-page: 400 year: 2019 end-page: 405 ident: bib22 article-title: Effects of microplastics on microalgae populations: a critical review publication-title: Sci. Total Environ. – year: 2019 ident: bib21 article-title: Micro- and nano-plastics in marine environment: source, distribution and threats - a review publication-title: Sci. Total Environ. – volume: 32 year: 2018 ident: bib9 article-title: Growth inhibition of publication-title: Appl. Organomet. Chem. – volume: 714 year: 2020 ident: bib13 article-title: Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae publication-title: Sci. Total Environ. – volume: 234 start-page: 379 year: 2018 end-page: 388 ident: bib15 article-title: Evaluation of the toxic response induced by azoxystrobin in the non-target green alga publication-title: Environ. Pollut. – volume: 180 start-page: 509 year: 2019 end-page: 516 ident: bib11 article-title: Investigating the toxicities of different functionalized polystyrene nanoplastics on publication-title: Ecotoxicol. Environ. Saf. – volume: 9 year: 2014 ident: bib12 article-title: Synergistic and antagonistic effects of salinity and pH on germination in switchgrass ( publication-title: PLoS One – volume: 212 start-page: 654 year: 2018 end-page: 661 ident: bib19 article-title: Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on publication-title: Chemosphere – volume: 252 start-page: 715 year: 2019 end-page: 722 ident: bib23 article-title: Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton publication-title: Environ. Pollut. (Barking, Essex 1987) – volume: 263 year: 2020 ident: bib4 article-title: Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga ( publication-title: Environ. Pollut. (Barking, Essex 1987) – volume: 304 start-page: 838 year: 2004 ident: bib27 article-title: Lost at sea: where is all the plastic? publication-title: Science – volume: 259 year: 2020 ident: bib6 article-title: Mitigation effects of CO publication-title: Environ. Pollut. – volume: 204 start-page: 19 year: 2018 end-page: 26 ident: bib26 article-title: Environmental risks of ZnO nanoparticle exposure on publication-title: Aquat. Toxicol. – volume: 128 start-page: 184 year: 2015 end-page: 190 ident: bib10 article-title: Ecotoxicological effects of graphene oxide on the protozoan publication-title: Chemosphere – volume: 157 start-page: 134 year: 2018 end-page: 142 ident: bib40 article-title: PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of publication-title: Ecotoxicol. Environ. Saf. – volume: 25 start-page: 329 year: 2013 end-page: 336 ident: bib31 article-title: Small water clusters stimulate microcystin biosynthesis in cyanobacterial publication-title: J. Appl. Phycol. – volume: 27 start-page: 11246 year: 2020 end-page: 11259 ident: bib28 article-title: Toxicological responses, bioaccumulation, and metabolic fate of triclosan in publication-title: Environ. Sci. Pollut. Res. – volume: 633 start-page: 500 year: 2018 end-page: 507 ident: bib3 article-title: Microplastic ingestion by publication-title: Sci. Total Environ. – year: 2011 ident: bib20 article-title: Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2 – volume: 651 start-page: 706 year: 2019 end-page: 712 ident: bib5 article-title: Effects of arginine on the growth and microcystin-LR production of publication-title: Sci. Total Environ. – volume: 216 start-page: 110 year: 2019 end-page: 116 ident: bib2 article-title: Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin publication-title: Eur. Chemosphere – volume: 257 year: 2019 ident: bib14 article-title: Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae publication-title: Environ. Pollut. – volume: 401 year: 2021 ident: bib37 article-title: Ecological damage of submerged macrophytes by fresh cyanobacteria (FC) and cyanobacterial decomposition solution (CDS) publication-title: J. Hazard. Mater. – volume: 48 start-page: 12336 year: 2014 end-page: 12343 ident: bib1 article-title: Nanoplastic affects growth of publication-title: Environ. Sci. Technol. – volume: 59 start-page: 303 year: 2013 end-page: 327 ident: bib18 article-title: State of knowledge and concerns on cyanobacterial blooms and cyanotoxins publication-title: Environ. Int. – volume: 246 start-page: 509 year: 2019 end-page: 517 ident: bib42 article-title: Joint toxicity of microplastics with triclosan to marine microalgae publication-title: Environ. Pollut. – volume: 216 start-page: 711 year: 2016 end-page: 719 ident: bib25 article-title: Microplastics in Taihu Lake publication-title: China Environ. Pollut. – volume: 170 start-page: 180 year: 2019 end-page: 187 ident: bib35 article-title: Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China publication-title: Ecotoxicol. Environ. Saf. – volume: 220 start-page: 1282 year: 2017 end-page: 1288 ident: bib36 article-title: Toxic effects of microplastic on marine microalgae publication-title: Environ. Pollut. – volume: 633 start-page: 539 year: 2018 end-page: 545 ident: bib30 article-title: Microplastics in surface waters of Dongting Lake and Hong Lake publication-title: China Sci. Total Environ. – volume: 651 start-page: 570 year: 2019 end-page: 579 ident: bib8 article-title: Growth inhibition and oxidative stress caused by four ionic liquids in publication-title: Sci. Total Environ. – volume: 23 start-page: 5712 year: 2016 end-page: 5720 ident: bib29 article-title: Effects of garlic and diallyl trisulfide on the growth, photosynthesis, and alkaline phosphatase activity of the toxic cyanobacterium publication-title: Environ. Sci. Pollut. Res. Int. – volume: 397 year: 2020 ident: bib34 article-title: Transcriptome analysis of the effect of bisphenol A exposure on the growth, photosynthetic activity and risk of microcystin-LR release by publication-title: J. Hazard. Mater. – volume: 250 start-page: 407 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib16 article-title: First evidence of protein modulation by polystyrene microplastics in a freshwater biological model publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.04.088 – volume: 397 year: 2020 ident: 10.1016/j.ecoenv.2020.111575_bib34 article-title: Transcriptome analysis of the effect of bisphenol A exposure on the growth, photosynthetic activity and risk of microcystin-LR release by Microcystis aeruginosa publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122746 – year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib21 article-title: Micro- and nano-plastics in marine environment: source, distribution and threats - a review publication-title: Sci. Total Environ. – year: 2011 ident: 10.1016/j.ecoenv.2020.111575_bib20 – volume: 170 start-page: 259 year: 2016 ident: 10.1016/j.ecoenv.2020.111575_bib24 article-title: Do plastic particles affect microalgal photosynthesis and growth? publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.12.002 – volume: 197 year: 2020 ident: 10.1016/j.ecoenv.2020.111575_bib7 article-title: Effects of Bisphenol A on the microalga Chlamydomonas reinhardtii and the clam Corbicula fluminea publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110609 – volume: 25 start-page: 329 year: 2013 ident: 10.1016/j.ecoenv.2020.111575_bib31 article-title: Small water clusters stimulate microcystin biosynthesis in cyanobacterial Microcystis aeruginosa publication-title: J. Appl. Phycol. doi: 10.1007/s10811-012-9867-4 – volume: 157 start-page: 134 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib40 article-title: PAHs would alter cyanobacterial blooms by affecting the microcystin production and physiological characteristics of Microcystis aeruginosa publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.03.052 – volume: 714 year: 2020 ident: 10.1016/j.ecoenv.2020.111575_bib13 article-title: Influence of polystyrene microplastics on the growth, photosynthetic efficiency and aggregation of freshwater microalgae Chlamydomonas reinhardtii publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.136767 – volume: 665 start-page: 400 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib22 article-title: Effects of microplastics on microalgae populations: a critical review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.132 – volume: 304 start-page: 838 year: 2004 ident: 10.1016/j.ecoenv.2020.111575_bib27 article-title: Lost at sea: where is all the plastic? publication-title: Science doi: 10.1126/science.1094559 – volume: 48 start-page: 12336 year: 2014 ident: 10.1016/j.ecoenv.2020.111575_bib1 article-title: Nanoplastic affects growth of S. obliquus and reproduction of D. magna publication-title: Environ. Sci. Technol. doi: 10.1021/es503001d – volume: 633 start-page: 500 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib3 article-title: Microplastic ingestion by Daphnia magna and its enhancement on algal growth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.176 – volume: 234 start-page: 379 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib15 article-title: Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.081 – volume: 651 start-page: 706 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib5 article-title: Effects of arginine on the growth and microcystin-LR production of Microcystis aeruginosa in culture publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.213 – volume: 220 start-page: 1282 year: 2017 ident: 10.1016/j.ecoenv.2020.111575_bib36 article-title: Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.11.005 – volume: 243 start-page: 1106 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib39 article-title: The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.09.073 – volume: 216 start-page: 711 year: 2016 ident: 10.1016/j.ecoenv.2020.111575_bib25 article-title: Microplastics in Taihu Lake publication-title: China Environ. Pollut. doi: 10.1016/j.envpol.2016.06.036 – volume: 216 start-page: 110 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib2 article-title: Identification of microplastics in fish ponds and natural freshwater environments of the Carpathian basin publication-title: Eur. Chemosphere doi: 10.1016/j.chemosphere.2018.10.110 – volume: 208 start-page: 59 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib17 article-title: Phytoplankton response to polystyrene microplastics: perspective from an entire growth period publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.05.170 – volume: 212 start-page: 654 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib19 article-title: Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.045 – volume: 23 start-page: 5712 year: 2016 ident: 10.1016/j.ecoenv.2020.111575_bib29 article-title: Effects of garlic and diallyl trisulfide on the growth, photosynthesis, and alkaline phosphatase activity of the toxic cyanobacterium Microcystis aeruginosa publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-015-5809-4 – volume: 246 start-page: 509 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib42 article-title: Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.12.044 – volume: 263 year: 2020 ident: 10.1016/j.ecoenv.2020.111575_bib4 article-title: Ecotoxicological effects of sulfonamides and fluoroquinolones and their removal by a green alga (Chlorella vulgaris) and a cyanobacterium (Chrysosporum ovalisporum) publication-title: Environ. Pollut. (Barking, Essex 1987) – volume: 259 year: 2020 ident: 10.1016/j.ecoenv.2020.111575_bib6 article-title: Mitigation effects of CO2-driven ocean acidification on Cd toxicity to the marine diatom Skeletonema costatum publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113850 – volume: 401 year: 2021 ident: 10.1016/j.ecoenv.2020.111575_bib37 article-title: Ecological damage of submerged macrophytes by fresh cyanobacteria (FC) and cyanobacterial decomposition solution (CDS) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123372 – volume: 649 start-page: 163 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib38 article-title: The effects of humic acid on the toxicity of graphene oxide to Scenedesmus obliquus and Daphnia magna publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.280 – volume: 128 start-page: 184 year: 2015 ident: 10.1016/j.ecoenv.2020.111575_bib10 article-title: Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.01.040 – volume: 180 start-page: 509 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib11 article-title: Investigating the toxicities of different functionalized polystyrene nanoplastics on Daphnia magna publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.05.036 – volume: 170 start-page: 180 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib35 article-title: Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.11.126 – volume: 255 year: 2020 ident: 10.1016/j.ecoenv.2020.111575_bib33 article-title: Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126914 – volume: 204 start-page: 19 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib26 article-title: Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: toxic effects and environmental feedback publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2018.08.010 – volume: 9 year: 2014 ident: 10.1016/j.ecoenv.2020.111575_bib12 article-title: Synergistic and antagonistic effects of salinity and pH on germination in switchgrass (Panicum virgatum L.) publication-title: PLoS One – volume: 252 start-page: 715 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib23 article-title: Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton publication-title: Environ. Pollut. (Barking, Essex 1987) doi: 10.1016/j.envpol.2019.05.135 – volume: 32 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib9 article-title: Growth inhibition of Microcystis aeruginosa by copper-based MOFs: performance and physiological effect on algal cells publication-title: Appl. Organomet. Chem. doi: 10.1002/aoc.4600 – volume: 257 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib14 article-title: Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa publication-title: Environ. Pollut. – volume: 27 start-page: 11246 year: 2020 ident: 10.1016/j.ecoenv.2020.111575_bib28 article-title: Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-07704-9 – volume: 633 start-page: 539 year: 2018 ident: 10.1016/j.ecoenv.2020.111575_bib30 article-title: Microplastics in surface waters of Dongting Lake and Hong Lake publication-title: China Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.211 – volume: 374 start-page: 219 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib32 article-title: Effect of microplastics exposure on the photosynthesis system of freshwater algae publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.04.039 – volume: 651 start-page: 570 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib8 article-title: Growth inhibition and oxidative stress caused by four ionic liquids in Scenedesmus obliquus: Role of cations and anions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.106 – volume: 225 start-page: 424 year: 2019 ident: 10.1016/j.ecoenv.2020.111575_bib41 article-title: Allelopathically inhibitory effects of eucalyptus extracts on the growth of Microcystis aeruginosa publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.070 – volume: 59 start-page: 303 year: 2013 ident: 10.1016/j.ecoenv.2020.111575_bib18 article-title: State of knowledge and concerns on cyanobacterial blooms and cyanotoxins publication-title: Environ. Int. doi: 10.1016/j.envint.2013.06.013 |
SSID | ssj0003055 |
Score | 2.6281488 |
Snippet | Microplastics (MPs) have aroused widespread concern due to their extensive distribution in aquatic environments and adverse effects on aquatic organisms.... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111575 |
SubjectTerms | Antioxidant enzyme activity Antioxidants - metabolism Catalase - metabolism Fresh Water Growth Microalgae - drug effects Microcystins Microcystis - drug effects Microcystis - physiology Microplastic Microplastics - toxicity Oxidative Stress - drug effects Plastics - toxicity Polyethylene Polystyrenes - toxicity Polyvinyl Chloride - toxicity Superoxide Dismutase - metabolism Toxin production Water Pollutants, Chemical - toxicity |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhICEF5LS8ZiSNmEz_WyRGqlgoJTlTqzfJj0gZBEu1mEXvhtzO2k4UeUCVuuyOvY3km42-y33wh5DWIsnSVs0yunGASPGe14p4BeCubusQTMLF8P6_OzuXHC3VxQI7nXphIq5xyf87pKVtPluW0m8uhbZeRloQTxRZgUUpMwLGDHS0Y029__aF5REWrTGPULI6e2-cSxwsrPOh-YJXIU-5QkW341_GUVPyvnVL_QqHpNDq9R-5OMJK-yyu9Tw6gOyK3TpIE9e6I3MlP42huMnpAhg9YbY9XtO2uWpdIWm_o2P9sOzpkxVe0UNsFiraQpMBpbiKh3m43EKjb0RG9DvR7JPANCLmjvDPORz9Fg9_h9w21sN5etl2_sQ_J-enJl-MzNr1rgXmp5cjQZ06Uqqk41PjBce0QWVleNbUvZINVSqOCQLyGGwpYohUyFLWXIcSKZlU04hE57PoOnhBarBqlXSUrtfIIxsrKO7DK25qDcLKCBRHzFhs_CZHH92F8MzPj7KvJjjHRMSY7ZkHY_ldDFuK4Yfz76L392CijnQz9-tJMcWRwSUprUdngCulEYYXTTnjgQXHgOiyInn1vrkUlTtXecPlXc6gYvGHjvzC2g367MVxqRMlccb0gj3MM7RcphKgRz5ZP__u6z8htHlk3RclK9ZwcjustvEDYNLqX6b74DUDWFQY priority: 102 providerName: Elsevier |
Title | Growth inhibition, toxin production and oxidative stress caused by three microplastics in Microcystis aeruginosa |
URI | https://dx.doi.org/10.1016/j.ecoenv.2020.111575 https://www.ncbi.nlm.nih.gov/pubmed/33396101 https://www.proquest.com/docview/2475402527 https://doaj.org/article/92e57738adb04b30a3b7b3ce2d52e27d |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagCAkJISiv5bEyEkcM8StOjgW1LCB6olJvll-hQeBddbOIvfDbGdvJqhzQXrglluNYnrHnm-TzZ4ReBk6pbawhoraciOAYaSVzJARnRNdSiICZ5XtaL87Ex3N5fuWor8QJK_LAZeDetCxIpXhjvK2E5ZXhVlnuAvOSBaZ8Wn0h5k3J1LgGJx2rQl5UpJaUT5vmMrML8roQf0JuyPKKIRPH8EpQytr9f8Wmf2HPHINO7qI7I3jER6XT99C1EA_RzeMsPL09RLfLNzhcthbdR6v3kGMPF7iPF73N1KxXeFj-6iNeFZ1XKMEmegxlPguA47J1BDuzWQeP7RYPYOuAfyTa3gqAdhJ1hvbw51TgtnC_xiZcbr72cbk2D9DZyfGXdwsynrBAnFBiIGApy6nsGhZauLBMWcBThjVd6yrRQW7SSc8BpcGABkjMKuGr1gnvUx5TVx1_iA7iMobHCFd1J5VtRCNrBxCMNs4GI50B-3ErmjBDfBpi7Ub58XQKxnc98cy-6WIYnQyji2FmiOyeWhX5jT313ybr7eom8excAC6lR5fS-1xqhtRkez3ikIIvoKl-z-tfTK6iYZqmfy8mhuVmrZlQgI2ZZGqGHhUf2nWSc94CiqVP_kfnn6JbLNFuKkqofIYOhstNeA64abBzdP31bzpHN44-fFqczvOE-QP4XBb5 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIJISi0LE8jccRs4kecHKFqWaDtqZV6s_xKG0ST1W4WsRd-O2M7WegBVeK2O_I6lscef5P95jNCbz3Lc1MaTXhhGOHeUlIJaon3VvO6yuEEjCzfk2J2xr-ci_MttD_WwgRa5RD7U0yP0XqwTIfZnM6bZhpoSdBRKAFmOYcAfAvd5rB9wzUG73_94XkESavEY5QkNB_r5yLJC1I83_6ANJHG4CEC3fCv8ynK-F87pv4FQ-NxdPgQPRhwJP6QhvoIbfl2B905iBrU6x10P72Ow6nK6DGaf4J0u7_ETXvZmMjSeof77mfT4nmSfAUL1q3DYHNRCxynKhJs9WrpHTZr3IPbPb4KDL45YO6g7wz94eNgsGv4vsTaL1YXTdst9RN0dnhwuj8jw2ULxHLJewJOMywXdUl9BR8MlQaglaZlXdmM15Cm1MIxAGwwoR5ytIy7rLLcuZDSFFnNdtF227X-KcJZUQtpSl6KwgIay0trvBZWV9Qzw0s_QWycYmUHJfJwIcZ3NVLOvqnkGBUco5JjJohsfjVPShw3tP8YvLdpG3S0o6FbXKhhISkYkpCSldqZjBuWaWakYdZTJ6in0k2QHH2vri1L6Kq54fFvxqWiYMeGv2F067vVUlEuASZTQeUE7aU1tBkkY6wCQJs_--_nvkZ3Z6fHR-ro88nX5-geDRScLCe5eIG2-8XKvwQM1ZtXcY_8BiC-GCI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+inhibition%2C+toxin+production+and+oxidative+stress+caused+by+three+microplastics+in+Microcystis+aeruginosa&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Zheng%2C+Xiaowei&rft.au=Zhang%2C+Weizhen&rft.au=Yuan%2C+Yuan&rft.au=Li%2C+Yanyao&rft.date=2021-01-15&rft.eissn=1090-2414&rft.volume=208&rft.spage=111575&rft_id=info:doi/10.1016%2Fj.ecoenv.2020.111575&rft_id=info%3Apmid%2F33396101&rft.externalDocID=33396101 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |