Evaluating the effectiveness of publishers’ features in fake news detection on social media

With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most cri...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 2; pp. 2913 - 2939
Main Authors Jarrahi, Ali, Safari, Leila
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers’ features in detecting fake news on social media, including Credibility , Influence , Sociality , Validity , and Lifetime . In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers’ credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers’ features with latent textual content features. Experimental results show that the publishers’ features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed.
AbstractList With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers' features in detecting fake news on social media, including Credibility, Influence, Sociality, Validity, and Lifetime. In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers' credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers' features with latent textual content features. Experimental results show that the publishers' features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed.With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers' features in detecting fake news on social media, including Credibility, Influence, Sociality, Validity, and Lifetime. In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers' credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers' features with latent textual content features. Experimental results show that the publishers' features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed.
With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers' features in detecting fake news on social media, including , , , , and . In this regard, we propose an algorithm, namely for evaluating publishers' credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers' features with latent textual content features. Experimental results show that the publishers' features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed.
With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers’ features in detecting fake news on social media, including Credibility , Influence , Sociality , Validity , and Lifetime . In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers’ credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers’ features with latent textual content features. Experimental results show that the publishers’ features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed.
With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers’ features in detecting fake news on social media, including Credibility, Influence, Sociality, Validity, and Lifetime. In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers’ credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers’ features with latent textual content features. Experimental results show that the publishers’ features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed.
Author Jarrahi, Ali
Safari, Leila
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-4969-3624
  surname: Jarrahi
  fullname: Jarrahi, Ali
  email: jarrahi@znu.ac.ir
  organization: Electrical and Computer Engineering, University of Zanjan
– sequence: 2
  givenname: Leila
  surname: Safari
  fullname: Safari, Leila
  organization: Electrical and Computer Engineering, University of Zanjan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35431607$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtuFDEUtFAQ-cAFWCBLbNh0eP53b5BQFD5SJDZkGVke53nGoccOdvcgdlyD63ESPExCIItItvwkV5XLVYdkL-WEhDxncMwAzOvKGEjeAecd41r3Xf-IHDBlRGcMZ3ttFj10RgHbJ4e1XgEwrbh8QvaFkoJpMAfk4nTjxtlNMS3ptEKKIaCf4gYT1kpzoNfzYox1haX--vGTBnTTXLDSmGhwX5Am_FbpJU5bUk60rZp9dCNd42V0T8nj4MaKz27OI3L-7vTzyYfu7NP7jydvzzovjZw65I4hLhhXzrURAANzQgds20sdTM9RLoQ0HLX0MABnehi0M-iMFHoQR-TNTre5bQ97TFNxo70uce3Kd5tdtP_fpLiyy7yx_TAoJlUTeHUjUPLXGetk17F6HEeXMM_V8hYcCJBgGvTlPehVnktq37PcaBBKCb5FvfjX0V8rt8k3QL8D-JJrLRisj5PbhtgMxtEysNuS7a5k20q2f0q2faPye9Rb9QdJYkeqDZyWWO5sP8D6DRpJus4
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3518204
crossref_primary_10_1016_j_ipm_2024_103653
crossref_primary_10_1007_s00521_023_08657_z
crossref_primary_10_1038_s41598_024_76286_0
crossref_primary_10_20310_2587_6953_2023_9_3_630_640
crossref_primary_10_1007_s42979_024_03280_8
crossref_primary_10_2174_2666255816666230825100307
crossref_primary_10_1007_s10479_024_06388_5
crossref_primary_10_1007_s13042_024_02431_w
crossref_primary_10_1109_ACCESS_2024_3462151
crossref_primary_10_1007_s10994_024_06727_4
crossref_primary_10_1109_ACCESS_2024_3381038
crossref_primary_10_1007_s11042_024_18499_z
crossref_primary_10_1007_s13278_024_01344_4
crossref_primary_10_1145_3589184
crossref_primary_10_1007_s13278_024_01290_1
crossref_primary_10_3390_su15010133
crossref_primary_10_1007_s42979_024_03534_5
crossref_primary_10_1007_s10489_024_05883_3
crossref_primary_10_1109_ACCESS_2022_3216892
crossref_primary_10_1007_s11227_023_05531_6
crossref_primary_10_1007_s11042_025_20734_0
crossref_primary_10_1007_s10115_024_02321_1
crossref_primary_10_1057_s41599_024_03083_5
crossref_primary_10_3390_info13110527
crossref_primary_10_1109_ACCESS_2025_3530688
crossref_primary_10_1007_s11042_023_16198_9
crossref_primary_10_1007_s11227_024_06216_4
Cites_doi 10.1016/j.tele.2020.101475
10.1177/0146167294203006
10.1108/IJICC-04-2021-0069
10.1016/j.neucom.2020.01.095
10.1145/3341161.3342927
10.1002/pra2.2015.145052010083
10.1002/meet.14504701124
10.3115/v1/D14-1181
10.1016/j.physa.2019.123174
10.1109/ACCESS.2021.3112806
10.1007/978-3-030-47436-2_27
10.1145/3123266.3123454
10.1016/j.ipm.2019.03.004
10.1016/j.measurement.2020.108502
10.1016/j.ipm.2020.102418
10.1145/3341161.3342894
10.1145/3137597.3137600
10.18653/v1/N19-1347
10.18653/v1/D18-1389
10.1016/j.ins.2019.05.035
10.1016/j.jksuci.2021.05.006
10.1016/j.future.2020.11.022
10.1037/1089-2680.2.2.175
10.1145/3377478
10.3390/computation9020020
10.1016/j.asoc.2021.107614
10.3390/info12010038
10.1257/jep.31.2.211
10.1007/s11227-020-03294-y
10.2307/1882692
10.24963/ijcai.2018/533
10.1089/big.2020.0062
10.1109/ACCESS.2021.3056079
10.1016/j.eswa.2020.114171
10.1109/TCYB.2019.2894498
10.1126/science.aap9559
10.1109/MIS.2019.2899143
10.1109/MIS.2020.2997781
10.18653/v1/P17-2067
10.1016/j.cogsys.2019.12.005
10.3115/1667583.1667679
10.1007/s11042-020-10183-2
10.1007/978-3-030-42699-6_9
10.7717/peerj-cs.518
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s11042-022-12668-8
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 2939
ExternalDocumentID PMC8995145
35431607
10_1007_s11042_022_12668_8
Genre News
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
NPM
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-e2a1eeb125aa2a100ef1a36fe36fc46f782e4b3472e64c090216996a7ea743693
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Thu Aug 21 18:04:53 EDT 2025
Fri Jul 11 05:09:41 EDT 2025
Fri Jul 25 22:58:48 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
Tue Jul 01 05:17:02 EDT 2025
Thu Apr 10 07:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Fake news detection
Deep neural network
CreditRank algorithm
Social media
Machine learning
Text classification
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-e2a1eeb125aa2a100ef1a36fe36fc46f782e4b3472e64c090216996a7ea743693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-News-1
ORCID 0000-0002-4969-3624
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8995145
PMID 35431607
PQID 2760355327
PQPubID 54626
PageCount 27
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8995145
proquest_miscellaneous_2652030407
proquest_journals_2760355327
pubmed_primary_35431607
crossref_citationtrail_10_1007_s11042_022_12668_8
crossref_primary_10_1007_s11042_022_12668_8
springer_journals_10_1007_s11042_022_12668_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References RK Kaliyar (12668_CR21) 2020; 61
S Vosoughi (12668_CR57) 2018; 359
K Shu (12668_CR50) 2020; 36
H Leibenstein (12668_CR27) 1950; 64
X Zhou (12668_CR69) 2020; 1
L Wang (12668_CR61) 2019; 50
12668_CR20
12668_CR64
A Choudhary (12668_CR8) 2021; 169
MH Goldani (12668_CR14) 2021; 58
T Jiang (12668_CR19) 2021; 9
12668_CR4
12668_CR3
S Yang (12668_CR65) 2019
RK Kaliyar (12668_CR23) 2021; 80
12668_CR28
12668_CR25
S Singhania (12668_CR53) 2017
12668_CR26
RK Kaliyar (12668_CR22) 2021; 77
J Zhang (12668_CR67) 2020
12668_CR24
T Mitra (12668_CR30) 2015
12668_CR68
X Zhang (12668_CR66) 2020; 57
S Singhal (12668_CR52) 2019
Y Xu (12668_CR62) 2021; 169
SB Parikh (12668_CR36) 2018
Y Wang (12668_CR60) 2018
12668_CR10
12668_CR55
J Pennington (12668_CR37) 2014
K Shu (12668_CR48) 2017; 19
S Hakak (12668_CR15) 2021; 117
L Cui (12668_CR11) 2019
12668_CR16
12668_CR17
A D’Ulizia (12668_CR12) 2021; 7
12668_CR58
A Zubiaga (12668_CR71) 2018; 51
DK Sharma (12668_CR47) 2021
NR de Oliveira (12668_CR13) 2021; 12
12668_CR43
TL Huynh (12668_CR18) 2020; 40
12668_CR44
Z Yang (12668_CR63) 2016
12668_CR42
D Mouratidis (12668_CR31) 2021; 9
12668_CR40
A Verma (12668_CR56) 2019
JA Nasir (12668_CR32) 2021; 1
12668_CR49
RS Nickerson (12668_CR33) 1998; 2
12668_CR45
N Sitaula (12668_CR54) 2020
LE Boehm (12668_CR6) 1994; 20
Z Wang (12668_CR59) 2020; 397
JC Reis (12668_CR41) 2019; 34
OD Apuke (12668_CR2) 2021; 56
K Shu (12668_CR51) 2020; 8
H Saleh (12668_CR46) 2021; 9
A Bondielli (12668_CR7) 2019; 497
T Mikolov (12668_CR29) 2013
L Page (12668_CR35) 1999
B Bhutani (12668_CR5) 2019
M Choudhary (12668_CR9) 2021; 110
12668_CR70
12668_CR38
12668_CR39
H Allcott (12668_CR1) 2017; 31
FA Ozbay (12668_CR34) 2020; 540
References_xml – volume: 56
  start-page: 101475
  year: 2021
  ident: 12668_CR2
  publication-title: Telematics Inform
  doi: 10.1016/j.tele.2020.101475
– volume: 20
  start-page: 285
  issue: 3
  year: 1994
  ident: 12668_CR6
  publication-title: Personal Soc Psychol Bull
  doi: 10.1177/0146167294203006
– volume-title: Proceedings of the 28th ACM international conference on information and knowledge management
  year: 2019
  ident: 12668_CR11
– volume-title: Advances in neural information processing systems
  year: 2013
  ident: 12668_CR29
– ident: 12668_CR55
  doi: 10.1108/IJICC-04-2021-0069
– volume: 397
  start-page: 224
  year: 2020
  ident: 12668_CR59
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.095
– ident: 12668_CR49
  doi: 10.1145/3341161.3342927
– ident: 12668_CR43
  doi: 10.1002/pra2.2015.145052010083
– ident: 12668_CR42
  doi: 10.1002/meet.14504701124
– volume-title: 2018 IEEE conference on multimedia information processing and retrieval (MIPR)
  year: 2018
  ident: 12668_CR36
– ident: 12668_CR17
– ident: 12668_CR25
  doi: 10.3115/v1/D14-1181
– volume: 540
  start-page: 123174
  year: 2020
  ident: 12668_CR34
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2019.123174
– volume: 9
  start-page: 129471
  year: 2021
  ident: 12668_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3112806
– ident: 12668_CR70
  doi: 10.1007/978-3-030-47436-2_27
– ident: 12668_CR20
  doi: 10.1145/3123266.3123454
– volume: 57
  start-page: 102025
  issue: 2
  year: 2020
  ident: 12668_CR66
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2019.03.004
– volume: 169
  start-page: 108502
  year: 2021
  ident: 12668_CR62
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108502
– volume: 1
  start-page: 100007
  issue: 1
  year: 2021
  ident: 12668_CR32
  publication-title: Int J Inf Manage Data Insights
– volume: 58
  start-page: 102418
  issue: 1
  year: 2021
  ident: 12668_CR14
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2020.102418
– volume: 51
  start-page: 32
  issue: 2
  year: 2018
  ident: 12668_CR71
  publication-title: ACM Computing Surveys (CSUR)
– ident: 12668_CR10
  doi: 10.1145/3341161.3342894
– volume: 19
  start-page: 22
  issue: 1
  year: 2017
  ident: 12668_CR48
  publication-title: ACM SIGKDD Explorations Newsletter
  doi: 10.1145/3137597.3137600
– volume-title: 2019 twelfth international conference on contemporary computing (IC3)
  year: 2019
  ident: 12668_CR5
– volume-title: 2020 IEEE 36th international conference on data engineering (ICDE)
  year: 2020
  ident: 12668_CR67
– ident: 12668_CR24
  doi: 10.18653/v1/N19-1347
– volume-title: Ninth International AAAI Conference on Web and Social Media
  year: 2015
  ident: 12668_CR30
– ident: 12668_CR38
– ident: 12668_CR3
  doi: 10.18653/v1/D18-1389
– volume: 497
  start-page: 38
  year: 2019
  ident: 12668_CR7
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.05.035
– ident: 12668_CR4
  doi: 10.1016/j.jksuci.2021.05.006
– volume: 117
  start-page: 47
  year: 2021
  ident: 12668_CR15
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2020.11.022
– volume: 2
  start-page: 175
  issue: 2
  year: 1998
  ident: 12668_CR33
  publication-title: Rev Gen Psychol
  doi: 10.1037/1089-2680.2.2.175
– ident: 12668_CR45
– volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2019
  ident: 12668_CR65
– volume: 1
  start-page: 1
  issue: 2
  year: 2020
  ident: 12668_CR69
  publication-title: Digital Threats: Research and Practice
  doi: 10.1145/3377478
– volume: 9
  start-page: 20
  issue: 2
  year: 2021
  ident: 12668_CR31
  publication-title: Computation
  doi: 10.3390/computation9020020
– volume-title: International conference on neural information processing
  year: 2017
  ident: 12668_CR53
– volume: 110
  start-page: 107614
  year: 2021
  ident: 12668_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107614
– volume: 12
  start-page: 38
  issue: 1
  year: 2021
  ident: 12668_CR13
  publication-title: Information
  doi: 10.3390/info12010038
– volume: 31
  start-page: 211
  issue: 2
  year: 2017
  ident: 12668_CR1
  publication-title: J Econ Perspect
  doi: 10.1257/jep.31.2.211
– volume: 77
  start-page: 1015
  issue: 2
  year: 2021
  ident: 12668_CR22
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03294-y
– volume: 64
  start-page: 183
  issue: 2
  year: 1950
  ident: 12668_CR27
  publication-title: Q J Econ
  doi: 10.2307/1882692
– ident: 12668_CR39
  doi: 10.24963/ijcai.2018/533
– ident: 12668_CR40
– volume: 8
  start-page: 171
  issue: 3
  year: 2020
  ident: 12668_CR51
  publication-title: Big data
  doi: 10.1089/big.2020.0062
– volume: 9
  start-page: 22626
  year: 2021
  ident: 12668_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056079
– start-page: 1
  volume-title: Complex & Intelligent Systems
  year: 2021
  ident: 12668_CR47
– volume: 40
  start-page: 758
  issue: 1
  year: 2020
  ident: 12668_CR18
  publication-title: Econ Bull
– ident: 12668_CR44
– volume: 169
  start-page: 114171
  year: 2021
  ident: 12668_CR8
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.114171
– volume-title: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining
  year: 2018
  ident: 12668_CR60
– volume: 50
  start-page: 3330
  issue: 7
  year: 2019
  ident: 12668_CR61
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2894498
– volume-title: Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies
  year: 2016
  ident: 12668_CR63
– ident: 12668_CR26
– volume-title: The PageRank citation ranking: bringing order to the web
  year: 1999
  ident: 12668_CR35
– volume-title: 2019 twelfth international conference on contemporary computing (IC3)
  year: 2019
  ident: 12668_CR56
– volume: 359
  start-page: 1146
  issue: 6380
  year: 2018
  ident: 12668_CR57
  publication-title: Science
  doi: 10.1126/science.aap9559
– volume: 34
  start-page: 76
  issue: 2
  year: 2019
  ident: 12668_CR41
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2019.2899143
– volume: 36
  start-page: 96
  year: 2020
  ident: 12668_CR50
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2020.2997781
– ident: 12668_CR58
  doi: 10.18653/v1/P17-2067
– volume: 61
  start-page: 32
  year: 2020
  ident: 12668_CR21
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2019.12.005
– ident: 12668_CR28
  doi: 10.3115/1667583.1667679
– ident: 12668_CR16
– volume: 80
  start-page: 11765
  issue: 8
  year: 2021
  ident: 12668_CR23
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10183-2
– volume-title: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)
  year: 2014
  ident: 12668_CR37
– start-page: 163
  volume-title: Disinformation, Misinformation, and Fake News in Social Media
  year: 2020
  ident: 12668_CR54
  doi: 10.1007/978-3-030-42699-6_9
– volume-title: 2019 IEEE fifth international conference on multimedia big data (BigMM)
  year: 2019
  ident: 12668_CR52
– ident: 12668_CR68
– volume: 7
  year: 2021
  ident: 12668_CR12
  publication-title: Peer J Comput Sci
  doi: 10.7717/peerj-cs.518
– ident: 12668_CR64
SSID ssj0016524
Score 2.4764829
Snippet With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2913
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Authenticity
Computer Communication Networks
Computer Science
Credibility
Data Structures and Information Theory
Dictionaries
Digital media
Internet
Journalism
Multimedia
Multimedia Information Systems
Neural networks
News
Social networks
Special Purpose and Application-Based Systems
Text categorization
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvTgo76qVVbwpoE8NpvkWKSlCHqy0IuEzXZWi5IWm979G_49f4mzm01qfYGQQGBn85p9fLsz8w0h5ywEJpj0HTkCvXUjwREJ9xwucUWkwkAFhqfg5pb3B-x6GA5tUNis8navTJJmpF4Eu3k6lER7n3s4q8ROvErWQr12x1Y88Du17YCHNpVt7Do4H3o2VObneyxPR98w5ndXyS_2UjMN9bbJpsWPtFMqfIesQN4kW1VuBmq7apNsfCIa3CX3XUvqnT9QRHy09OKwAx2dKDqtvePfX9-oAkP3OaPjnCrxBFRjbzqCwvht5RSPcq-dmsCTPTLode-u-o5NrOBIFrHCAV94gIO0HwqBl64LyhMBV4CnZFwhagCWBSzygTOpPTc9jusiEYFAwMGTYJ808kkOh4TyJAaFIFNGiAWwjvAz5grGhHTjJMziFvGq_5tKyzquk188pwu-ZK2TFHWSGp2kWOeirjMtOTf-lG5Xaktt_5ulfsRdRFKBH7XIWV2MPUebQ0QOkznKYEPRhmEXZQ5KLdePCwxFgC6JlvRfC2hW7uWSfPxo2LlxAYsgNGyRy6qlLF7r9684-p_4MVnXee_LvaA2aRQvczhBdFRkp6YzfACozwaB
  priority: 102
  providerName: Springer Nature
Title Evaluating the effectiveness of publishers’ features in fake news detection on social media
URI https://link.springer.com/article/10.1007/s11042-022-12668-8
https://www.ncbi.nlm.nih.gov/pubmed/35431607
https://www.proquest.com/docview/2760355327
https://www.proquest.com/docview/2652030407
https://pubmed.ncbi.nlm.nih.gov/PMC8995145
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fT9swED8N-sIeYCvbKGOVkfYG1vLHcdKnqZ1a0CaqCVGJPUyR654ZAqWFlne-Bl9vn2Rnx0nXVUNq1Eq2lSZn3_18d_4dwEeRoFBCR1xP0LpuNHLVkSGXmnZEJolN7HgKzobydCS-XiaX3uE292mVlU50inoy1dZH_ilKZUC2MY7Sz7M7bqtG2eiqL6GxAQ1SwRltvhq9_vD7eR1HkIkva5sFnGxj6I_NlIfnQns0xWazh2SlMp6tmqY1vLmeNvlP7NSZpMEr2PZYknVL4b-GF1g0Yaeq08D8sm3Cy79IB3fhZ98TfBdXjNAfKzM6vNJjU8Nmdab878cnZtBRf87ZdcGMukFmcTib4MLlcBWMPqXfnblDKG9gNOhffDnlvsgC1yIVC46RCpEUdpQoRT-DAE2oYmmQLi2kIQSBYhyLNEIptM3iDCXtkVSKisCH7MRvYbOYFrgHTHYyNAQ4dUq4gMaoaCwCJYTSQdZJxlkLwur95tozkNtCGLf5kjvZyiQnmeROJjmNOarHzEr-jWd7H1Riy_1anOfLmdOCw7qZVpENjagCpw_UhyaKDRIH1OddKeX6drGjC7At6Yr86w6WoXu1pbj-5Zi6aTNLgDRpwXE1U5Z_6_9Psf_8U7yHLVvzvvQDHcDm4v4BPxAyWozbsJENTtrQ6A56vaH9Pvnxrd_2i4JaR1H3D8XXD9s
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V5QAcCpRXoICR4ARWd71e7-aAEIKGlD5OrdQLWhxnDFXRJpBUiBt_gz_Bj-KXMOP1bggVvVXKSpFsax_ztGfmG4AnOkdttVPSjZGPbhxK2zepNI52RD7PfBZwCvb2zfBQvzvKj1bgV1sLw2mVrU4Mino8cXxGvqkKk5BtzFTxcvpFctcojq62LTQattjB799oyzZ7sf2G6PtUqcHWweuhjF0FpNOFnktUNkXSUCq3lv4mCfrUZsYjXU4bTyYT9SjThUKjHactpoY2BbZAS9bWMPgSqfxLOsv6LFHl4G0XtTB5bKJbJpIscRqLdJpSvZQLYTh3PiWbWMpy2RCe8W7PJmn-E6kNBnBwHdai5ypeNax2A1awXodrbVcIEZXEOlz9C-LwJrzfinDi9UdBvqZo8keiihUTL6ZdXv7vHz-FxwA0OhPHtfD2BAV7_WKM85AxVgv6Naf8IpS83ILDC_n4t2G1ntR4F4Tpl-jJvXUFeSG0xqqRTqzW1iVlPx-VPUjb71u5iHfObTc-VwukZqZJRTSpAk0qWvOsWzNt0D7Onb3Rkq2Kkj-rFnzag8fdMMksB2JsjZNTmkOMwiHphObcaajc3S4L4AQ8UizRv5vAeODLI_Xxp4ALTltncn_zHjxvOWXxWP9_i3vnv8UjuDw82Nutdrf3d-7DFUU-XnMCtQGr86-n-IB8svnoYRAEAR8uWvL-AJnXRdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VqYTgQKFASWmLkeAEVne9Xu_mgKr-JGopRBWiUi9o6zhjqECbQFIhbrwGr8Lj9Ek69no3hIreKmWlSLa1PzOeH8_MNwDPZYpSSyO4GaI7ujHIdUfFXBnyiGya2MTjFLzrq_1j-eYkPVmAP3UtjEurrGWiF9TDkXFn5JsiUxHpxoRcdRvSIo72elvjb9x1kHKR1rqdRsUih_jzB7lvk9cHe0TrF0L0uh9293noMMCNzOSUo9AxkrQSqdb0N4rQxjpRFukyUllSnygHicwEKmlcCmOsyEHQGWrSvMoBMZH4X8zIK4pasLjT7R-9b2IYKg0tdfOIk16OQ8lOVbgXu7IYl0kfk4bMeT6vFq_YuldTNv-J23p12LsHd4Mdy7YrxrsPC1guw1LdI4IFkbEMd_4CPHwAH7sBXLz8xMjyZFU2SRC4bGTZuMnSv_j1m1n0sKMTdlYyq78gcz4AG-LU54-VjH7VmT_zBTAP4fhGPv8jaJWjEh8DU50cLRm7JiObhNZoMZCRllKbKO-kg7wNcf19CxPQz10Tjq_FDLfZ0aQgmhSeJgWtedmsGVfYH9fOXqvJVgQ5MClmXNuGZ80w7WAXltEljs5pDjGKC1BHNGelonJzu8RDFbiRbI7-zQSHDj4_Up599ijh5EiTMZy24VXNKbPH-v9brF7_Fk_hFu264u1B__AJ3BZk8FXHUWvQmn4_x3Uy0KaDjbATGJze9Oa7BGG8S2I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+effectiveness+of+publishers%E2%80%99+features+in+fake+news+detection+on+social+media&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jarrahi%2C+Ali&rft.au=Safari%2C+Leila&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=2&rft.spage=2913&rft.epage=2939&rft_id=info:doi/10.1007%2Fs11042-022-12668-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon