Evaluating the effectiveness of publishers’ features in fake news detection on social media
With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most cri...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 2; pp. 2913 - 2939 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers’ features in detecting fake news on social media, including
Credibility
,
Influence
,
Sociality
,
Validity
, and
Lifetime
. In this regard, we propose an algorithm, namely
CreditRank,
for evaluating publishers’ credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers’ features with latent textual content features. Experimental results show that the publishers’ features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed. |
---|---|
AbstractList | With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers' features in detecting fake news on social media, including Credibility, Influence, Sociality, Validity, and Lifetime. In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers' credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers' features with latent textual content features. Experimental results show that the publishers' features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed.With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers' features in detecting fake news on social media, including Credibility, Influence, Sociality, Validity, and Lifetime. In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers' credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers' features with latent textual content features. Experimental results show that the publishers' features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed. With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers' features in detecting fake news on social media, including , , , , and . In this regard, we propose an algorithm, namely for evaluating publishers' credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers' features with latent textual content features. Experimental results show that the publishers' features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed. With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers’ features in detecting fake news on social media, including Credibility , Influence , Sociality , Validity , and Lifetime . In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers’ credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers’ features with latent textual content features. Experimental results show that the publishers’ features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed. With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers’ features in detecting fake news on social media, including Credibility, Influence, Sociality, Validity, and Lifetime. In this regard, we propose an algorithm, namely CreditRank, for evaluating publishers’ credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers’ features with latent textual content features. Experimental results show that the publishers’ features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed. |
Author | Jarrahi, Ali Safari, Leila |
Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-4969-3624 surname: Jarrahi fullname: Jarrahi, Ali email: jarrahi@znu.ac.ir organization: Electrical and Computer Engineering, University of Zanjan – sequence: 2 givenname: Leila surname: Safari fullname: Safari, Leila organization: Electrical and Computer Engineering, University of Zanjan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35431607$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtuFDEUtFAQ-cAFWCBLbNh0eP53b5BQFD5SJDZkGVke53nGoccOdvcgdlyD63ESPExCIItItvwkV5XLVYdkL-WEhDxncMwAzOvKGEjeAecd41r3Xf-IHDBlRGcMZ3ttFj10RgHbJ4e1XgEwrbh8QvaFkoJpMAfk4nTjxtlNMS3ptEKKIaCf4gYT1kpzoNfzYox1haX--vGTBnTTXLDSmGhwX5Am_FbpJU5bUk60rZp9dCNd42V0T8nj4MaKz27OI3L-7vTzyYfu7NP7jydvzzovjZw65I4hLhhXzrURAANzQgds20sdTM9RLoQ0HLX0MABnehi0M-iMFHoQR-TNTre5bQ97TFNxo70uce3Kd5tdtP_fpLiyy7yx_TAoJlUTeHUjUPLXGetk17F6HEeXMM_V8hYcCJBgGvTlPehVnktq37PcaBBKCb5FvfjX0V8rt8k3QL8D-JJrLRisj5PbhtgMxtEysNuS7a5k20q2f0q2faPye9Rb9QdJYkeqDZyWWO5sP8D6DRpJus4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3518204 crossref_primary_10_1016_j_ipm_2024_103653 crossref_primary_10_1007_s00521_023_08657_z crossref_primary_10_1038_s41598_024_76286_0 crossref_primary_10_20310_2587_6953_2023_9_3_630_640 crossref_primary_10_1007_s42979_024_03280_8 crossref_primary_10_2174_2666255816666230825100307 crossref_primary_10_1007_s10479_024_06388_5 crossref_primary_10_1007_s13042_024_02431_w crossref_primary_10_1109_ACCESS_2024_3462151 crossref_primary_10_1007_s10994_024_06727_4 crossref_primary_10_1109_ACCESS_2024_3381038 crossref_primary_10_1007_s11042_024_18499_z crossref_primary_10_1007_s13278_024_01344_4 crossref_primary_10_1145_3589184 crossref_primary_10_1007_s13278_024_01290_1 crossref_primary_10_3390_su15010133 crossref_primary_10_1007_s42979_024_03534_5 crossref_primary_10_1007_s10489_024_05883_3 crossref_primary_10_1109_ACCESS_2022_3216892 crossref_primary_10_1007_s11227_023_05531_6 crossref_primary_10_1007_s11042_025_20734_0 crossref_primary_10_1007_s10115_024_02321_1 crossref_primary_10_1057_s41599_024_03083_5 crossref_primary_10_3390_info13110527 crossref_primary_10_1109_ACCESS_2025_3530688 crossref_primary_10_1007_s11042_023_16198_9 crossref_primary_10_1007_s11227_024_06216_4 |
Cites_doi | 10.1016/j.tele.2020.101475 10.1177/0146167294203006 10.1108/IJICC-04-2021-0069 10.1016/j.neucom.2020.01.095 10.1145/3341161.3342927 10.1002/pra2.2015.145052010083 10.1002/meet.14504701124 10.3115/v1/D14-1181 10.1016/j.physa.2019.123174 10.1109/ACCESS.2021.3112806 10.1007/978-3-030-47436-2_27 10.1145/3123266.3123454 10.1016/j.ipm.2019.03.004 10.1016/j.measurement.2020.108502 10.1016/j.ipm.2020.102418 10.1145/3341161.3342894 10.1145/3137597.3137600 10.18653/v1/N19-1347 10.18653/v1/D18-1389 10.1016/j.ins.2019.05.035 10.1016/j.jksuci.2021.05.006 10.1016/j.future.2020.11.022 10.1037/1089-2680.2.2.175 10.1145/3377478 10.3390/computation9020020 10.1016/j.asoc.2021.107614 10.3390/info12010038 10.1257/jep.31.2.211 10.1007/s11227-020-03294-y 10.2307/1882692 10.24963/ijcai.2018/533 10.1089/big.2020.0062 10.1109/ACCESS.2021.3056079 10.1016/j.eswa.2020.114171 10.1109/TCYB.2019.2894498 10.1126/science.aap9559 10.1109/MIS.2019.2899143 10.1109/MIS.2020.2997781 10.18653/v1/P17-2067 10.1016/j.cogsys.2019.12.005 10.3115/1667583.1667679 10.1007/s11042-020-10183-2 10.1007/978-3-030-42699-6_9 10.7717/peerj-cs.518 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s11042-022-12668-8 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 2939 |
ExternalDocumentID | PMC8995145 35431607 10_1007_s11042_022_12668_8 |
Genre | News |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM NPM 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-e2a1eeb125aa2a100ef1a36fe36fc46f782e4b3472e64c090216996a7ea743693 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 18:04:53 EDT 2025 Fri Jul 11 05:09:41 EDT 2025 Fri Jul 25 22:58:48 EDT 2025 Thu Apr 03 07:08:39 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 Tue Jul 01 05:17:02 EDT 2025 Thu Apr 10 07:12:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Fake news detection Deep neural network CreditRank algorithm Social media Machine learning Text classification |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-e2a1eeb125aa2a100ef1a36fe36fc46f782e4b3472e64c090216996a7ea743693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-News-1 |
ORCID | 0000-0002-4969-3624 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8995145 |
PMID | 35431607 |
PQID | 2760355327 |
PQPubID | 54626 |
PageCount | 27 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8995145 proquest_miscellaneous_2652030407 proquest_journals_2760355327 pubmed_primary_35431607 crossref_citationtrail_10_1007_s11042_022_12668_8 crossref_primary_10_1007_s11042_022_12668_8 springer_journals_10_1007_s11042_022_12668_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | RK Kaliyar (12668_CR21) 2020; 61 S Vosoughi (12668_CR57) 2018; 359 K Shu (12668_CR50) 2020; 36 H Leibenstein (12668_CR27) 1950; 64 X Zhou (12668_CR69) 2020; 1 L Wang (12668_CR61) 2019; 50 12668_CR20 12668_CR64 A Choudhary (12668_CR8) 2021; 169 MH Goldani (12668_CR14) 2021; 58 T Jiang (12668_CR19) 2021; 9 12668_CR4 12668_CR3 S Yang (12668_CR65) 2019 RK Kaliyar (12668_CR23) 2021; 80 12668_CR28 12668_CR25 S Singhania (12668_CR53) 2017 12668_CR26 RK Kaliyar (12668_CR22) 2021; 77 J Zhang (12668_CR67) 2020 12668_CR24 T Mitra (12668_CR30) 2015 12668_CR68 X Zhang (12668_CR66) 2020; 57 S Singhal (12668_CR52) 2019 Y Xu (12668_CR62) 2021; 169 SB Parikh (12668_CR36) 2018 Y Wang (12668_CR60) 2018 12668_CR10 12668_CR55 J Pennington (12668_CR37) 2014 K Shu (12668_CR48) 2017; 19 S Hakak (12668_CR15) 2021; 117 L Cui (12668_CR11) 2019 12668_CR16 12668_CR17 A D’Ulizia (12668_CR12) 2021; 7 12668_CR58 A Zubiaga (12668_CR71) 2018; 51 DK Sharma (12668_CR47) 2021 NR de Oliveira (12668_CR13) 2021; 12 12668_CR43 TL Huynh (12668_CR18) 2020; 40 12668_CR44 Z Yang (12668_CR63) 2016 12668_CR42 D Mouratidis (12668_CR31) 2021; 9 12668_CR40 A Verma (12668_CR56) 2019 JA Nasir (12668_CR32) 2021; 1 12668_CR49 RS Nickerson (12668_CR33) 1998; 2 12668_CR45 N Sitaula (12668_CR54) 2020 LE Boehm (12668_CR6) 1994; 20 Z Wang (12668_CR59) 2020; 397 JC Reis (12668_CR41) 2019; 34 OD Apuke (12668_CR2) 2021; 56 K Shu (12668_CR51) 2020; 8 H Saleh (12668_CR46) 2021; 9 A Bondielli (12668_CR7) 2019; 497 T Mikolov (12668_CR29) 2013 L Page (12668_CR35) 1999 B Bhutani (12668_CR5) 2019 M Choudhary (12668_CR9) 2021; 110 12668_CR70 12668_CR38 12668_CR39 H Allcott (12668_CR1) 2017; 31 FA Ozbay (12668_CR34) 2020; 540 |
References_xml | – volume: 56 start-page: 101475 year: 2021 ident: 12668_CR2 publication-title: Telematics Inform doi: 10.1016/j.tele.2020.101475 – volume: 20 start-page: 285 issue: 3 year: 1994 ident: 12668_CR6 publication-title: Personal Soc Psychol Bull doi: 10.1177/0146167294203006 – volume-title: Proceedings of the 28th ACM international conference on information and knowledge management year: 2019 ident: 12668_CR11 – volume-title: Advances in neural information processing systems year: 2013 ident: 12668_CR29 – ident: 12668_CR55 doi: 10.1108/IJICC-04-2021-0069 – volume: 397 start-page: 224 year: 2020 ident: 12668_CR59 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.095 – ident: 12668_CR49 doi: 10.1145/3341161.3342927 – ident: 12668_CR43 doi: 10.1002/pra2.2015.145052010083 – ident: 12668_CR42 doi: 10.1002/meet.14504701124 – volume-title: 2018 IEEE conference on multimedia information processing and retrieval (MIPR) year: 2018 ident: 12668_CR36 – ident: 12668_CR17 – ident: 12668_CR25 doi: 10.3115/v1/D14-1181 – volume: 540 start-page: 123174 year: 2020 ident: 12668_CR34 publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2019.123174 – volume: 9 start-page: 129471 year: 2021 ident: 12668_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3112806 – ident: 12668_CR70 doi: 10.1007/978-3-030-47436-2_27 – ident: 12668_CR20 doi: 10.1145/3123266.3123454 – volume: 57 start-page: 102025 issue: 2 year: 2020 ident: 12668_CR66 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2019.03.004 – volume: 169 start-page: 108502 year: 2021 ident: 12668_CR62 publication-title: Measurement doi: 10.1016/j.measurement.2020.108502 – volume: 1 start-page: 100007 issue: 1 year: 2021 ident: 12668_CR32 publication-title: Int J Inf Manage Data Insights – volume: 58 start-page: 102418 issue: 1 year: 2021 ident: 12668_CR14 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2020.102418 – volume: 51 start-page: 32 issue: 2 year: 2018 ident: 12668_CR71 publication-title: ACM Computing Surveys (CSUR) – ident: 12668_CR10 doi: 10.1145/3341161.3342894 – volume: 19 start-page: 22 issue: 1 year: 2017 ident: 12668_CR48 publication-title: ACM SIGKDD Explorations Newsletter doi: 10.1145/3137597.3137600 – volume-title: 2019 twelfth international conference on contemporary computing (IC3) year: 2019 ident: 12668_CR5 – volume-title: 2020 IEEE 36th international conference on data engineering (ICDE) year: 2020 ident: 12668_CR67 – ident: 12668_CR24 doi: 10.18653/v1/N19-1347 – volume-title: Ninth International AAAI Conference on Web and Social Media year: 2015 ident: 12668_CR30 – ident: 12668_CR38 – ident: 12668_CR3 doi: 10.18653/v1/D18-1389 – volume: 497 start-page: 38 year: 2019 ident: 12668_CR7 publication-title: Inf Sci doi: 10.1016/j.ins.2019.05.035 – ident: 12668_CR4 doi: 10.1016/j.jksuci.2021.05.006 – volume: 117 start-page: 47 year: 2021 ident: 12668_CR15 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2020.11.022 – volume: 2 start-page: 175 issue: 2 year: 1998 ident: 12668_CR33 publication-title: Rev Gen Psychol doi: 10.1037/1089-2680.2.2.175 – ident: 12668_CR45 – volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2019 ident: 12668_CR65 – volume: 1 start-page: 1 issue: 2 year: 2020 ident: 12668_CR69 publication-title: Digital Threats: Research and Practice doi: 10.1145/3377478 – volume: 9 start-page: 20 issue: 2 year: 2021 ident: 12668_CR31 publication-title: Computation doi: 10.3390/computation9020020 – volume-title: International conference on neural information processing year: 2017 ident: 12668_CR53 – volume: 110 start-page: 107614 year: 2021 ident: 12668_CR9 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107614 – volume: 12 start-page: 38 issue: 1 year: 2021 ident: 12668_CR13 publication-title: Information doi: 10.3390/info12010038 – volume: 31 start-page: 211 issue: 2 year: 2017 ident: 12668_CR1 publication-title: J Econ Perspect doi: 10.1257/jep.31.2.211 – volume: 77 start-page: 1015 issue: 2 year: 2021 ident: 12668_CR22 publication-title: J Supercomput doi: 10.1007/s11227-020-03294-y – volume: 64 start-page: 183 issue: 2 year: 1950 ident: 12668_CR27 publication-title: Q J Econ doi: 10.2307/1882692 – ident: 12668_CR39 doi: 10.24963/ijcai.2018/533 – ident: 12668_CR40 – volume: 8 start-page: 171 issue: 3 year: 2020 ident: 12668_CR51 publication-title: Big data doi: 10.1089/big.2020.0062 – volume: 9 start-page: 22626 year: 2021 ident: 12668_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3056079 – start-page: 1 volume-title: Complex & Intelligent Systems year: 2021 ident: 12668_CR47 – volume: 40 start-page: 758 issue: 1 year: 2020 ident: 12668_CR18 publication-title: Econ Bull – ident: 12668_CR44 – volume: 169 start-page: 114171 year: 2021 ident: 12668_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.114171 – volume-title: Proceedings of the 24th acm sigkdd international conference on knowledge discovery & data mining year: 2018 ident: 12668_CR60 – volume: 50 start-page: 3330 issue: 7 year: 2019 ident: 12668_CR61 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2019.2894498 – volume-title: Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies year: 2016 ident: 12668_CR63 – ident: 12668_CR26 – volume-title: The PageRank citation ranking: bringing order to the web year: 1999 ident: 12668_CR35 – volume-title: 2019 twelfth international conference on contemporary computing (IC3) year: 2019 ident: 12668_CR56 – volume: 359 start-page: 1146 issue: 6380 year: 2018 ident: 12668_CR57 publication-title: Science doi: 10.1126/science.aap9559 – volume: 34 start-page: 76 issue: 2 year: 2019 ident: 12668_CR41 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2019.2899143 – volume: 36 start-page: 96 year: 2020 ident: 12668_CR50 publication-title: IEEE Intell Syst doi: 10.1109/MIS.2020.2997781 – ident: 12668_CR58 doi: 10.18653/v1/P17-2067 – volume: 61 start-page: 32 year: 2020 ident: 12668_CR21 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2019.12.005 – ident: 12668_CR28 doi: 10.3115/1667583.1667679 – ident: 12668_CR16 – volume: 80 start-page: 11765 issue: 8 year: 2021 ident: 12668_CR23 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10183-2 – volume-title: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) year: 2014 ident: 12668_CR37 – start-page: 163 volume-title: Disinformation, Misinformation, and Fake News in Social Media year: 2020 ident: 12668_CR54 doi: 10.1007/978-3-030-42699-6_9 – volume-title: 2019 IEEE fifth international conference on multimedia big data (BigMM) year: 2019 ident: 12668_CR52 – ident: 12668_CR68 – volume: 7 year: 2021 ident: 12668_CR12 publication-title: Peer J Comput Sci doi: 10.7717/peerj-cs.518 – ident: 12668_CR64 |
SSID | ssj0016524 |
Score | 2.4764829 |
Snippet | With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2913 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Authenticity Computer Communication Networks Computer Science Credibility Data Structures and Information Theory Dictionaries Digital media Internet Journalism Multimedia Multimedia Information Systems Neural networks News Social networks Special Purpose and Application-Based Systems Text categorization |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvTgo76qVVbwpoE8NpvkWKSlCHqy0IuEzXZWi5IWm979G_49f4mzm01qfYGQQGBn85p9fLsz8w0h5ywEJpj0HTkCvXUjwREJ9xwucUWkwkAFhqfg5pb3B-x6GA5tUNis8navTJJmpF4Eu3k6lER7n3s4q8ROvErWQr12x1Y88Du17YCHNpVt7Do4H3o2VObneyxPR98w5ndXyS_2UjMN9bbJpsWPtFMqfIesQN4kW1VuBmq7apNsfCIa3CX3XUvqnT9QRHy09OKwAx2dKDqtvePfX9-oAkP3OaPjnCrxBFRjbzqCwvht5RSPcq-dmsCTPTLode-u-o5NrOBIFrHCAV94gIO0HwqBl64LyhMBV4CnZFwhagCWBSzygTOpPTc9jusiEYFAwMGTYJ808kkOh4TyJAaFIFNGiAWwjvAz5grGhHTjJMziFvGq_5tKyzquk188pwu-ZK2TFHWSGp2kWOeirjMtOTf-lG5Xaktt_5ulfsRdRFKBH7XIWV2MPUebQ0QOkznKYEPRhmEXZQ5KLdePCwxFgC6JlvRfC2hW7uWSfPxo2LlxAYsgNGyRy6qlLF7r9684-p_4MVnXee_LvaA2aRQvczhBdFRkp6YzfACozwaB priority: 102 providerName: Springer Nature |
Title | Evaluating the effectiveness of publishers’ features in fake news detection on social media |
URI | https://link.springer.com/article/10.1007/s11042-022-12668-8 https://www.ncbi.nlm.nih.gov/pubmed/35431607 https://www.proquest.com/docview/2760355327 https://www.proquest.com/docview/2652030407 https://pubmed.ncbi.nlm.nih.gov/PMC8995145 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fT9swED8N-sIeYCvbKGOVkfYG1vLHcdKnqZ1a0CaqCVGJPUyR654ZAqWFlne-Bl9vn2Rnx0nXVUNq1Eq2lSZn3_18d_4dwEeRoFBCR1xP0LpuNHLVkSGXmnZEJolN7HgKzobydCS-XiaX3uE292mVlU50inoy1dZH_ilKZUC2MY7Sz7M7bqtG2eiqL6GxAQ1SwRltvhq9_vD7eR1HkIkva5sFnGxj6I_NlIfnQns0xWazh2SlMp6tmqY1vLmeNvlP7NSZpMEr2PZYknVL4b-GF1g0Yaeq08D8sm3Cy79IB3fhZ98TfBdXjNAfKzM6vNJjU8Nmdab878cnZtBRf87ZdcGMukFmcTib4MLlcBWMPqXfnblDKG9gNOhffDnlvsgC1yIVC46RCpEUdpQoRT-DAE2oYmmQLi2kIQSBYhyLNEIptM3iDCXtkVSKisCH7MRvYbOYFrgHTHYyNAQ4dUq4gMaoaCwCJYTSQdZJxlkLwur95tozkNtCGLf5kjvZyiQnmeROJjmNOarHzEr-jWd7H1Riy_1anOfLmdOCw7qZVpENjagCpw_UhyaKDRIH1OddKeX6drGjC7At6Yr86w6WoXu1pbj-5Zi6aTNLgDRpwXE1U5Z_6_9Psf_8U7yHLVvzvvQDHcDm4v4BPxAyWozbsJENTtrQ6A56vaH9Pvnxrd_2i4JaR1H3D8XXD9s |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V5QAcCpRXoICR4ARWd71e7-aAEIKGlD5OrdQLWhxnDFXRJpBUiBt_gz_Bj-KXMOP1bggVvVXKSpFsax_ztGfmG4AnOkdttVPSjZGPbhxK2zepNI52RD7PfBZwCvb2zfBQvzvKj1bgV1sLw2mVrU4Mino8cXxGvqkKk5BtzFTxcvpFctcojq62LTQattjB799oyzZ7sf2G6PtUqcHWweuhjF0FpNOFnktUNkXSUCq3lv4mCfrUZsYjXU4bTyYT9SjThUKjHactpoY2BbZAS9bWMPgSqfxLOsv6LFHl4G0XtTB5bKJbJpIscRqLdJpSvZQLYTh3PiWbWMpy2RCe8W7PJmn-E6kNBnBwHdai5ypeNax2A1awXodrbVcIEZXEOlz9C-LwJrzfinDi9UdBvqZo8keiihUTL6ZdXv7vHz-FxwA0OhPHtfD2BAV7_WKM85AxVgv6Naf8IpS83ILDC_n4t2G1ntR4F4Tpl-jJvXUFeSG0xqqRTqzW1iVlPx-VPUjb71u5iHfObTc-VwukZqZJRTSpAk0qWvOsWzNt0D7Onb3Rkq2Kkj-rFnzag8fdMMksB2JsjZNTmkOMwiHphObcaajc3S4L4AQ8UizRv5vAeODLI_Xxp4ALTltncn_zHjxvOWXxWP9_i3vnv8UjuDw82Nutdrf3d-7DFUU-XnMCtQGr86-n-IB8svnoYRAEAR8uWvL-AJnXRdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5VqYTgQKFASWmLkeAEVne9Xu_mgKr-JGopRBWiUi9o6zhjqECbQFIhbrwGr8Lj9Ek69no3hIreKmWlSLa1PzOeH8_MNwDPZYpSSyO4GaI7ujHIdUfFXBnyiGya2MTjFLzrq_1j-eYkPVmAP3UtjEurrGWiF9TDkXFn5JsiUxHpxoRcdRvSIo72elvjb9x1kHKR1rqdRsUih_jzB7lvk9cHe0TrF0L0uh9293noMMCNzOSUo9AxkrQSqdb0N4rQxjpRFukyUllSnygHicwEKmlcCmOsyEHQGWrSvMoBMZH4X8zIK4pasLjT7R-9b2IYKg0tdfOIk16OQ8lOVbgXu7IYl0kfk4bMeT6vFq_YuldTNv-J23p12LsHd4Mdy7YrxrsPC1guw1LdI4IFkbEMd_4CPHwAH7sBXLz8xMjyZFU2SRC4bGTZuMnSv_j1m1n0sKMTdlYyq78gcz4AG-LU54-VjH7VmT_zBTAP4fhGPv8jaJWjEh8DU50cLRm7JiObhNZoMZCRllKbKO-kg7wNcf19CxPQz10Tjq_FDLfZ0aQgmhSeJgWtedmsGVfYH9fOXqvJVgQ5MClmXNuGZ80w7WAXltEljs5pDjGKC1BHNGelonJzu8RDFbiRbI7-zQSHDj4_Up599ijh5EiTMZy24VXNKbPH-v9brF7_Fk_hFu264u1B__AJ3BZk8FXHUWvQmn4_x3Uy0KaDjbATGJze9Oa7BGG8S2I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+the+effectiveness+of+publishers%E2%80%99+features+in+fake+news+detection+on+social+media&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jarrahi%2C+Ali&rft.au=Safari%2C+Leila&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=2&rft.spage=2913&rft.epage=2939&rft_id=info:doi/10.1007%2Fs11042-022-12668-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |