Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco Under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism
Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply...
Saved in:
Published in | Microbial ecology Vol. 83; no. 4; pp. 971 - 988 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF,
Glomus versiforme
) and plant growth-promoting rhizobacteria (PGPR,
Bacillus methylotrophicus)
inoculation in drought tolerance of tobacco (
Nicotiana tabacum
L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant’s growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system. |
---|---|
AbstractList | Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco (Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant’s growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system. Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme ) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco ( Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant’s growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system. Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco (Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant's growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system.Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco (Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant's growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system. |
Author | Ahmad, Husain Begum, Naheeda Akhtar, Kashif Zhao, Tuanjie Roy, Rana Khan, Muhammad Ishfaq Wang, Ling |
Author_xml | – sequence: 1 givenname: Naheeda surname: Begum fullname: Begum, Naheeda organization: National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University – sequence: 2 givenname: Ling surname: Wang fullname: Wang, Ling organization: National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University – sequence: 3 givenname: Husain surname: Ahmad fullname: Ahmad, Husain organization: College of Horticulture, Northwest A&F University – sequence: 4 givenname: Kashif surname: Akhtar fullname: Akhtar, Kashif organization: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio-resources, College of Life Science and Technology, Guangxi University – sequence: 5 givenname: Rana surname: Roy fullname: Roy, Rana organization: Department of Agroforestry and Environmental Science, Sylhet Agricultural University – sequence: 6 givenname: Muhammad Ishfaq surname: Khan fullname: Khan, Muhammad Ishfaq organization: Department of Weed Science, the University of Agriculture Peshawar – sequence: 7 givenname: Tuanjie surname: Zhao fullname: Zhao, Tuanjie email: tjzhao@njau.edu.cn organization: National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34309697$$D View this record in MEDLINE/PubMed |
BookMark | eNqFklFv0zAUhS00xLrBH-ABWeKFF4PtxHHyWBU2Jq1QjVXiLXKc29ZTYne2A5S_yp_BaQtIexhPlqzvnHuufc7QiXUWEHrJ6FtGqXwXKOV5SShnhLKSCSKfoAnLM05YmX89QRNKK0Gygpen6CyEO0qZLHj2DJ1meUaropIT9GvmiLFOD52KxlnsVnjqmyGMFx7Pd9p5vzE_VYcvBrs2WNkWxw3gRadsxJfefY8bsvCud9HYNb5JrGuUjuCNwlf91rtvcMT22sXGRRd2NnkEE7Cx-HbktcNL24LH770b1puIv0QPIeBmh5dbcgPrfb40YGpTzB-mHaePfnNjwad0n4bozX6DOUTVuM6E_jl6ulJdgBfH8xwtLz7czj6S68-XV7PpNdG5zCNpQXLaZAUrFVMNULrSDHINhVBaNIzzomVS5rwQOhOtLmTTCCHKEpRqoZJtdo7eHHzTtvcDhFj3Jmjo0hOBG0LNi4JRlleM_R9NzlkuBZMJff0AvXODt2mRZChYRVmyTdSrIzU0PbT11pte-V3954cTwA-A9i4ED6u_CKP1WKP6UKM61aje16geReUDkTZxX5Dolekel2YHaUhz7Br8v9iPqH4DXUnglA |
CitedBy_id | crossref_primary_10_17221_27_2024_PSE crossref_primary_10_1080_00103624_2023_2276265 crossref_primary_10_3390_microorganisms10050899 crossref_primary_10_3390_horticulturae9121274 crossref_primary_10_3390_agronomy14061316 crossref_primary_10_3390_ijpb15040067 crossref_primary_10_1007_s00299_022_02947_x crossref_primary_10_3389_fmicb_2023_1101773 crossref_primary_10_1007_s10725_023_01059_0 crossref_primary_10_1016_j_scienta_2023_112288 crossref_primary_10_3390_jof8090920 crossref_primary_10_1186_s12870_024_05952_2 crossref_primary_10_3389_fagro_2024_1386656 crossref_primary_10_1016_j_envexpbot_2024_106010 crossref_primary_10_1007_s42729_023_01521_y crossref_primary_10_1016_j_jhazmat_2024_136489 crossref_primary_10_3389_fpls_2023_1215394 crossref_primary_10_1016_j_stress_2024_100435 crossref_primary_10_1038_s41598_025_92486_8 crossref_primary_10_1016_j_plaphy_2023_107662 crossref_primary_10_3390_antiox10122024 crossref_primary_10_1016_j_plaphy_2024_108478 crossref_primary_10_3390_microorganisms11071737 crossref_primary_10_1007_s00284_023_03606_4 crossref_primary_10_1007_s11274_023_03781_3 crossref_primary_10_1016_j_eti_2024_103947 crossref_primary_10_3389_fpls_2023_1114288 crossref_primary_10_1007_s00344_024_11467_9 crossref_primary_10_3389_fpls_2023_1151467 crossref_primary_10_3390_jof10100713 crossref_primary_10_1007_s00248_024_02391_2 crossref_primary_10_1007_s42729_024_01640_0 crossref_primary_10_3390_jof9020239 crossref_primary_10_1016_j_scienta_2023_112155 crossref_primary_10_3390_agronomy12102458 crossref_primary_10_3390_plants14030366 crossref_primary_10_3389_fsufs_2023_1253735 crossref_primary_10_1111_jac_12652 crossref_primary_10_1007_s11756_023_01479_3 crossref_primary_10_1080_01904167_2024_2394131 crossref_primary_10_1007_s42729_024_01996_3 crossref_primary_10_1007_s40003_024_00725_7 crossref_primary_10_1007_s42729_023_01262_y crossref_primary_10_1007_s13199_023_00945_5 crossref_primary_10_1016_j_chemosphere_2024_142918 crossref_primary_10_3390_plants12112116 crossref_primary_10_1016_j_cbpa_2024_102427 crossref_primary_10_3390_plants13111556 crossref_primary_10_1016_j_envres_2023_116357 crossref_primary_10_1007_s10343_022_00804_1 crossref_primary_10_1186_s12870_024_05340_w crossref_primary_10_5586_aa_172075 crossref_primary_10_1007_s13562_024_00877_1 crossref_primary_10_3390_su151914643 crossref_primary_10_1007_s10343_022_00827_8 crossref_primary_10_1016_j_biocontrol_2024_105439 crossref_primary_10_3389_fpls_2024_1489993 crossref_primary_10_1016_j_micres_2024_127855 crossref_primary_10_1080_17429145_2022_2091801 crossref_primary_10_1007_s10343_023_00949_7 crossref_primary_10_1007_s42729_024_01793_y crossref_primary_10_3389_fmicb_2023_1323881 crossref_primary_10_1080_15592324_2025_2467935 crossref_primary_10_1016_j_heliyon_2023_e22909 crossref_primary_10_1007_s13762_024_05957_2 crossref_primary_10_1007_s00344_023_11177_8 crossref_primary_10_3390_agriculture13122252 crossref_primary_10_1007_s11104_022_05641_9 crossref_primary_10_1007_s10482_024_01975_9 crossref_primary_10_3390_plants12234000 crossref_primary_10_3390_agriculture14030367 crossref_primary_10_3390_ijpb16010032 crossref_primary_10_3389_fpls_2022_855090 crossref_primary_10_1186_s12870_024_05576_6 crossref_primary_10_1007_s00344_022_10787_y |
Cites_doi | 10.3389/fpls.2019.00863 10.1007/s11368-018-02226-x 10.1016/j.scienta.2019.108923 10.1007/s00572-020-00942-2 10.1080/17429145.2012.747629 10.1093/pcp/pcu035 10.1007/s11056-018-9681-1 10.1016/j.tplants.2008.10.004 10.1055/s-0029-1186180 10.1016/j.rhisph.2017.04.006 10.1007/s11120-018-0538-4 10.21273/HORTSCI13961-19 10.1016/S1002-0160(08)60055-7 10.1046/j.1469-8137.2002.00388.x 10.3389/fmicb.2016.01577 10.1007/s00253-009-2092-7 10.1080/01904167.2020.1711940 10.1080/17429145.2010.535178 10.1016/j.envexpbot.2020.104088 10.1016/j.indcrop.2018.06.030 10.1016/j.plaphy.2015.03.004 10.1007/s00709-017-1086-z 10.3389/fpls.2018.00024 10.1016/j.scienta.2015.11.002 10.3389/fpls.2017.00183 10.1093/oxfordjournals.pcp.a076232 10.1002/chir.22810 10.4161/psb.22098 10.1016/j.sjbs.2018.03.009 10.1111/j.1365-3040.2012.02520.x 10.3389/fpls.2015.00868 10.1007/s11099-015-0100-y 10.1016/S0308-8146(98)00102-2 10.1007/s00344-012-9292-6 10.1007/s00425-005-0003-4 10.1007/s00248-006-9078-0 10.1016/S1382-6689(97)00025-2 10.1016/S0168-9452(98)00025-9 10.1002/elps.201300568 10.3390/ijms18122651 10.1007/s11105-015-0903-9 10.1016/j.plaphy.2017.04.017 10.1007/s12298-017-0462-7 10.1016/j.jplph.2014.07.014 10.1016/j.indcrop.2018.12.058 10.1111/j.1469-8137.1990.tb00476.x 10.1016/j.ejrs.2016.11.007 10.15294/biosaintifika.v10i2.14303 10.1023/A:1026430019738 10.1002/ece3.4112 10.1007/s00572-010-0333-3 10.1093/jxb/eru191 10.1007/978-981-10-8402-7 10.1007/s00248-009-9544-6 10.1111/j.1469-8137.1950.tb05146.x 10.1186/s12870-021-02949-z 10.1016/j.supflu.2007.10.011 10.3390/plants8120579 10.1038/378626a0 10.1007/s00572-017-0775-y 10.3389/fpls.2016.01787 10.5424/sjar/2014123-4815 10.1080/11263504.2014.1001001 10.1093/jxb/32.1.93 10.1007/BF00018060 10.17221/427-pse 10.1016/j.jenvman.2019.109982 10.1007/s00572-013-0484-0 10.1046/j.1469-8137.2002.00460.x 10.3389/fsufs.2020.601004 10.1016/s0007-1536(70)80110-3 10.1007/s00572-019-00923-0 10.1016/j.plantsci.2014.08.002 10.1016/j.heliyon.2019.e02952 10.1016/j.plaphy.2013.08.005 10.1017/S0021859618000023 10.1016/0003-9861(68)90654-1 10.1093/jxb/eri060 10.3389/fpls.2019.01068 10.2134/agronmonogr9.1 10.1016/0167-4838(92)90429-H 10.1016/j.jplph.2016.07.006 10.1016/j.aoas.2017.08.001 10.6064/2012/963401 10.1016/S0003-9861(53)80009-3 10.1016/0003-9861(59)90090-6 10.4161/psb.21949 10.1016/S0076-6879(84)05016-3 10.1139/cjm-2018-0636 10.3389/fpls.2019.00470 10.1111/j.1399-3054.1983.tb04162.x 10.1016/0038-0717(86)90025-8 10.3390/su10093286 10.3390/plants8110442 10.1007/978-981-13-0044-8_9 10.5344/ajev.1965.16.3.144 10.1007/978-81-322-2056-5_1 10.1186/s40538-015-0035-3 10.3389/fpls.2015.00420 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. Copyright Springer Nature B.V. May 2022 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. – notice: Copyright Springer Nature B.V. May 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7T7 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FYUFA GHDGH GNUQQ H94 H95 HCIFZ K9. L.G LK8 M0S M1P M7N M7P P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00248-021-01815-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1432-184X |
EndPage | 988 |
ExternalDocumentID | 34309697 10_1007_s00248_021_01815_7 |
Genre | Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHBH AAHKG AAHNG AAIAL AAJKR AAJSJ AAKKN AANXM AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBHK ABBXA ABDZT ABECU ABEEZ ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABPLI ABPLY ABPPZ ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTLG ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACACY ACBXY ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACULB ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AFAZZ AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHXOZ AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AQVQM ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BVXVI C24 C6C CAG CBGCD CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DOOOF DPUIP DU5 EBD EBLON EBS EDH EIOEI EJD EMB EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GTFYD GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HTVGU HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBS JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST JZLTJ KDC KOV KOW KPH L8X LAS LK8 LLZTM M0L M1P M4Y M7P MA- MM. MVM N2Q N9A NB0 NDZJH NEJ NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 PCBAR PF0 PQQKQ PROAC PSQYO PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SA0 SAP SBL SBY SCLPG SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK6 WK8 XIH YLTOR YR2 Z45 Z7U Z7V Z7W Z7Y Z7Z Z86 Z8O Z8P Z8Q Z8S Z8T ZCG ZMTXR ZOVNA ZY4 ~02 ~EX ~KM AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AGUYK AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7SN 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO F1W FR3 GNUQQ H94 H95 K9. L.G M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c474t-de720b3618a1abe00fc1e4ce65ac5b1226d1774265c35dc67bb55588eaade97d3 |
IEDL.DBID | 7X7 |
ISSN | 0095-3628 1432-184X |
IngestDate | Fri Jul 11 16:27:40 EDT 2025 Sun Aug 24 03:41:40 EDT 2025 Wed Aug 13 07:05:18 EDT 2025 Mon Jul 21 06:02:24 EDT 2025 Tue Jul 01 03:39:10 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Fri Feb 21 02:46:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Drought stress Tobacco AMF PGPR Secondary metabolism |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-de720b3618a1abe00fc1e4ce65ac5b1226d1774265c35dc67bb55588eaade97d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 34309697 |
PQID | 2651901661 |
PQPubID | 54028 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2661014911 proquest_miscellaneous_2555347517 proquest_journals_2651901661 pubmed_primary_34309697 crossref_primary_10_1007_s00248_021_01815_7 crossref_citationtrail_10_1007_s00248_021_01815_7 springer_journals_10_1007_s00248_021_01815_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
PublicationTitle | Microbial ecology |
PublicationTitleAbbrev | Microb Ecol |
PublicationTitleAlternate | Microb Ecol |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Road, Division (CR46) 1990; 115 Hori, Kondo, Ariyoshi (CR62) 1997; 3 Dalal, Tripathy (CR91) 2012; 35 Cervantes-Gámez, Bueno-Ibarra, Cruz-Mendívil (CR106) 2016; 34 Steyermark (CR65) 1961 CR37 Begum, Ahanger, Su (CR18) 2019; 8 del Mar, Kohler, Caravaca, Roldán (CR77) 2009; 58 CR31 Olsen, Cole, Watandbe, Dean (CR66) 1954; 53 Meixner, Ludwig-Müller, Miersch (CR111) 2005; 222 Koffler, Luschin-Ebengreuth, Stabentheiner (CR4) 2014; 227 Vílchez, García-Fontana, Román-Naranjo (CR36) 2016; 7 Ahmad, Hashem, Abd-Allah (CR39) 2015; 6 Sbrana, Avio, Giovannetti (CR13) 2014; 35 Zhishen, Mengcheng, Jianming (CR56) 1999; 64 Heath, Packer (CR53) 1968; 126 Sato, Hachiya, Inamura (CR85) 2019 Zhang, Zhang, Xu (CR109) 2019; 50 Osakabe, Nishikubo, Osakabe (CR107) 2007; 1 Mohasseli, Sadeghi (CR12) 2019; 130 CR44 CR43 CR42 Dionisio-Sese, Tobita (CR54) 1998; 135 Suharno, Sufaati, Agustini, Tanjung (CR20) 2018; 10 Visen, Bohra, Singh (CR80) 2017; 3 Cheng, Han, Yang (CR5) 2018; 122 Phillips, Hayman (CR45) 1970; 55 Berg (CR82) 2009; 84 Yang, Kloepper, Ryu (CR30) 2009; 14 Aalipour, Nikbakht, Etemadi (CR73) 2020; 261 Zubek, Błaszkowski, Seidler-łozykowska (CR26) 2013; 12 Calvo-Polanco, Molina, Zamarreño (CR84) 2014; 55 CR58 Bates, Waldren, Teare (CR49) 1973; 39 CR57 CR55 Kumar, Sharma, Mishra (CR38) 2016; 150 CR51 CR50 Begum, Ahanger, Zhang (CR23) 2020; 176 Dhindsa, Plumb-dhindsa, Thorpe (CR59) 1981; 32 Porcar-Castell, Tyystjärvi, Atherton (CR90) 2014; 65 Nakano, Asada (CR61) 1981; 22 Shahzad, Khan, Bilal (CR15) 2018; 9 He, Sheng, Tang (CR94) 2017; 8 CR64 CR63 CR60 Musyoka, Njeru, Nyamwange, Maingi (CR87) 2020; 43 Walters (CR89) 2005; 56 Khosravi, Haydari, Shekoohizadegan, Zareie (CR67) 2017; 20 Yang, Cao, Li (CR21) 2020 Behrooz, Vahdati, Rejali (CR99) 2019; 54 Liu, Ravnskov, Liu (CR110) 2018; 156 Mathur, Tomar, Jajoo (CR1) 2019; 139 Liu, Sheng, Wang (CR48) 2015; 53 Ahanger, Agarwal (CR68) 2017; 115 Harrison, van Buuren (CR19) 1995; 378 Ye, Zhao, Bao (CR70) 2019; 10 Fang, Tao, Zhang (CR93) 2018; 30 Vardharajula, Ali, Grover (CR40) 2011; 6 Hanin, Ebel, Ngom (CR7) 2016; 7 Rahimzadeh, Pirzad (CR69) 2017; 27 Shaul-Keinan, Gadkar, Ginzberg (CR113) 2002; 154 Armada, Azcón, López-Castillo (CR88) 2015; 90 CR9 Nell, Wawrosch, Steinkellner (CR24) 2010; 76 Ahmad, Hayat, Ali (CR17) 2018; 8 CR86 Meena, Divyanshu, Kumar (CR98) 2019; 5 CR83 Hashem, Alqarawi, Radhakrishnan (CR78) 2018; 25 Moreira, Pereira, Vega (CR75) 2020; 257 Zhang, Zhang, Wang (CR8) 2019; 19 Arshad, Shaharoona, MAHMOOD (CR35) 2008; 18 Nagargade, Tyagi, Singh (CR81) 2018 Yooyongwech, Samphumphuang, Tisarum (CR92) 2016; 198 Gamalero, Martinotti, Trotta (CR71) 2002; 155 CR16 León Morcillo, Ocampo, García Garrido (CR27) 2012; 7 Begum, Qin, Ahanger (CR22) 2019; 10 Babenko, Shcherbatiuk, Skaterna, Kosakivska (CR28) 2017; 89 Qaddoury (CR102) 2014; 12 Diagne, Ndour, Djighaly (CR74) 2020; 4 Chastain, Snider, Collins (CR2) 2014; 171 CR10 Simova-Stoilova, Demirevska, Petrova (CR32) 2008; 54 Cvikrová, Gemperlová, Martincová, Vanková (CR41) 2013; 73 CR97 Su, Niu, Liu (CR33) 2017; 18 CR95 Ahanger, Tittal, Mir, Agarwal (CR96) 2017; 254 Kavatagi, Lakshman (CR79) 2014; 32 Ahmad, Ashraf, Hakeem (CR6) 2014; 9 Gianinazzi, Gollotte, Binet (CR25) 2010; 20 Arnon (CR47) 1949; 24 CR29 Ahanger, Tomar, Tittal (CR3) 2017; 23 Da (CR11) 2008; 45 Torelli, Trotta, Acerbi (CR112) 2000; 226 Zeng, Guo, Chen (CR14) 2013; 23 Mirzaee, Moieni, Ghanati (CR103) 2013; 15 CR104 CR105 CR100 CR101 Weatherley (CR52) 1949; 49 Gururani, Upadhyaya, Baskar (CR34) 2013; 32 Sheteiwy, Ali, Xiong (CR72) 2021; 21 CR108 Marulanda, Barea, Azcón (CR76) 2006; 52 S Suharno (1815_CR20) 2018; 10 M Arshad (1815_CR35) 2008; 18 MA Gururani (1815_CR34) 2013; 32 S Rahimzadeh (1815_CR69) 2017; 27 PMN Da (1815_CR11) 2008; 45 1815_CR29 J Zhishen (1815_CR56) 1999; 64 C Liu (1815_CR110) 2018; 156 A Steyermark (1815_CR65) 1961 A Torelli (1815_CR112) 2000; 226 1815_CR10 J Yang (1815_CR30) 2009; 14 1815_CR97 N Begum (1815_CR23) 2020; 176 BE Koffler (1815_CR4) 2014; 227 1815_CR16 C Meixner (1815_CR111) 2005; 222 M Mirzaee (1815_CR103) 2013; 15 F He (1815_CR94) 2017; 8 M Hori (1815_CR62) 1997; 3 Y Yang (1815_CR21) 2020 Y Nakano (1815_CR61) 1981; 22 S Zubek (1815_CR26) 2013; 12 1815_CR51 LS Bates (1815_CR49) 1973; 39 1815_CR50 1815_CR44 M Cvikrová (1815_CR41) 2013; 73 1815_CR43 SR Olsen (1815_CR66) 1954; 53 N Begum (1815_CR18) 2019; 8 1815_CR42 G Berg (1815_CR82) 2009; 84 S Gianinazzi (1815_CR25) 2010; 20 AM del Mar (1815_CR77) 2009; 58 MA Ahanger (1815_CR3) 2017; 23 S Yooyongwech (1815_CR92) 2016; 198 S Fang (1815_CR93) 2018; 30 Y Zeng (1815_CR14) 2013; 23 H Moreira (1815_CR75) 2020; 257 PK Kavatagi (1815_CR79) 2014; 32 JI Vílchez (1815_CR36) 2016; 7 DR Chastain (1815_CR2) 2014; 171 V Mohasseli (1815_CR12) 2019; 130 ML Dionisio-Sese (1815_CR54) 1998; 135 1815_CR37 S Mathur (1815_CR1) 2019; 139 1815_CR31 A Visen (1815_CR80) 2017; 3 A Hashem (1815_CR78) 2018; 25 J Zhang (1815_CR8) 2019; 19 E Armada (1815_CR88) 2015; 90 M Meena (1815_CR98) 2019; 5 Z Zhang (1815_CR109) 2019; 50 M Nagargade (1815_CR81) 2018 C Sbrana (1815_CR13) 2014; 35 H Ahmad (1815_CR17) 2018; 8 M Hanin (1815_CR7) 2016; 7 JM Phillips (1815_CR45) 1970; 55 MJ Harrison (1815_CR19) 1995; 378 R Heath (1815_CR53) 1968; 126 1815_CR64 1815_CR63 MA Ahanger (1815_CR96) 2017; 254 T Liu (1815_CR48) 2015; 53 O Road (1815_CR46) 1990; 115 M Nell (1815_CR24) 2010; 76 MA Ahanger (1815_CR68) 2017; 115 DM Musyoka (1815_CR87) 2020; 43 S Vardharajula (1815_CR40) 2011; 6 P Ahmad (1815_CR6) 2014; 9 MS Sheteiwy (1815_CR72) 2021; 21 N Diagne (1815_CR74) 2020; 4 L Ye (1815_CR70) 2019; 10 1815_CR60 M Calvo-Polanco (1815_CR84) 2014; 55 1815_CR58 1815_CR57 1815_CR55 VK Dalal (1815_CR91) 2012; 35 DI Arnon (1815_CR47) 1949; 24 LM Babenko (1815_CR28) 2017; 89 R Shahzad (1815_CR15) 2018; 9 T Sato (1815_CR85) 2019 H Khosravi (1815_CR67) 2017; 20 A Marulanda (1815_CR76) 2006; 52 Y Osakabe (1815_CR107) 2007; 1 RJ León Morcillo (1815_CR27) 2012; 7 1815_CR95 RG Cervantes-Gámez (1815_CR106) 2016; 34 A Kumar (1815_CR38) 2016; 150 1815_CR108 L Cheng (1815_CR5) 2018; 122 1815_CR105 E Gamalero (1815_CR71) 2002; 155 1815_CR104 1815_CR101 1815_CR100 P Ahmad (1815_CR39) 2015; 6 1815_CR86 A Qaddoury (1815_CR102) 2014; 12 H Aalipour (1815_CR73) 2020; 261 1815_CR9 A Behrooz (1815_CR99) 2019; 54 AY Su (1815_CR33) 2017; 18 L Simova-Stoilova (1815_CR32) 2008; 54 1815_CR83 A Porcar-Castell (1815_CR90) 2014; 65 PE Weatherley (1815_CR52) 1949; 49 O Shaul-Keinan (1815_CR113) 2002; 154 RS Dhindsa (1815_CR59) 1981; 32 N Begum (1815_CR22) 2019; 10 RG Walters (1815_CR89) 2005; 56 |
References_xml | – volume: 10 start-page: 1 year: 2019 end-page: 12 ident: CR70 article-title: Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem ii activities and stress-response gene expressions under salinity-alkalinity stresses publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00863 – volume: 19 start-page: 2313 year: 2019 end-page: 2321 ident: CR8 article-title: Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant publication-title: J Soils Sediments doi: 10.1007/s11368-018-02226-x – volume: 261 start-page: 108923 year: 2020 ident: CR73 article-title: Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress ( G.) under drought stress publication-title: Sci Hortic (Amsterdam) doi: 10.1016/j.scienta.2019.108923 – ident: CR97 – year: 2020 ident: CR21 article-title: Interactive effects of exogenous melatonin and on saline-alkaline stress tolerance in publication-title: Mycorrhiza doi: 10.1007/s00572-020-00942-2 – ident: CR16 – ident: CR51 – volume: 9 start-page: 1 year: 2014 end-page: 9 ident: CR6 article-title: Potassium starvation-induced oxidative stress and antioxidant defense responses in publication-title: J plant Interact doi: 10.1080/17429145.2012.747629 – volume: 55 start-page: 1017 year: 2014 end-page: 1029 ident: CR84 article-title: The symbiosis with the arbuscular mycorrhizal fungus drives root water transport in flooded tomato plants publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcu035 – volume: 50 start-page: 593 year: 2019 end-page: 604 ident: CR109 article-title: Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress publication-title: New For doi: 10.1007/s11056-018-9681-1 – volume: 12 start-page: 127 year: 2013 end-page: 141 ident: CR26 article-title: Arbuscular mycorrhizal fungi abundance, species richness and composition under the monocultures of five medicinal plants publication-title: Acta Sci Pol Hortorum Cultus – volume: 14 start-page: 1 year: 2009 end-page: 4 ident: CR30 article-title: Rhizosphere bacteria help plants tolerate abiotic stress publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2008.10.004 – volume: 76 start-page: 393 year: 2010 end-page: 398 ident: CR24 article-title: Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in L publication-title: Planta Med doi: 10.1055/s-0029-1186180 – volume: 3 start-page: 196 year: 2017 end-page: 202 ident: CR80 article-title: Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake publication-title: Rhizosphere doi: 10.1016/j.rhisph.2017.04.006 – volume: 139 start-page: 227 year: 2019 end-page: 238 ident: CR1 article-title: Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress publication-title: Photosynth Res doi: 10.1007/s11120-018-0538-4 – volume: 54 start-page: 1087 year: 2019 end-page: 1092 ident: CR99 article-title: Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut publication-title: HortScience doi: 10.21273/HORTSCI13961-19 – volume: 18 start-page: 611 year: 2008 end-page: 620 ident: CR35 article-title: Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea ( L.) Project supported by the Higher Education Commission, Islamabad, Pakistan (No. PIN 041 2 publication-title: Pedosphere doi: 10.1016/S1002-0160(08)60055-7 – ident: CR42 – volume: 154 start-page: 501 year: 2002 end-page: 507 ident: CR113 article-title: Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with publication-title: New Phytol doi: 10.1046/j.1469-8137.2002.00388.x – volume: 7 start-page: 1 year: 2016 end-page: 11 ident: CR36 article-title: Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01577 – volume: 84 start-page: 11 year: 2009 end-page: 18 ident: CR82 article-title: Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2092-7 – volume: 15 start-page: 593 year: 2013 end-page: 602 ident: CR103 article-title: Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola ( L.) cultivars publication-title: J Agric Sci Technol – ident: CR101 – volume: 43 start-page: 1036 year: 2020 end-page: 1047 ident: CR87 article-title: Arbuscular mycorrhizal fungi and Bradyrhizobium co-inoculation enhances nitrogen fixation and growth of green grams ( L.) under water stress publication-title: J Plant Nutr doi: 10.1080/01904167.2020.1711940 – volume: 6 start-page: 1 year: 2011 end-page: 14 ident: CR40 article-title: Drought-tolerant plant growth promoting bacillus spp.: effect on growth, osmol ytes, and antioxidant status of maize under drought stress publication-title: J Plant Interact doi: 10.1080/17429145.2010.535178 – volume: 176 start-page: 104088 year: 2020 ident: CR23 article-title: AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in by up-regulating antioxidant metabolism and osmolyte accumulation publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2020.104088 – volume: 122 start-page: 473 year: 2018 end-page: 482 ident: CR5 article-title: Changes in the physiological characteristics and baicalin biosynthesis metabolism of Georgi under drought stress publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2018.06.030 – ident: CR57 – volume: 90 start-page: 64 year: 2015 end-page: 74 ident: CR88 article-title: Autochthonous arbuscular mycorrhizal fungi and from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.03.004 – volume: 254 start-page: 1953 year: 2017 end-page: 1963 ident: CR96 article-title: Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in L. cultivars by potassium publication-title: Protoplasma doi: 10.1007/s00709-017-1086-z – ident: CR60 – volume: 9 start-page: 1 year: 2018 end-page: 10 ident: CR15 article-title: What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00024 – volume: 198 start-page: 107 year: 2016 end-page: 117 ident: CR92 article-title: Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline publication-title: Sci Hortic (Amsterdam) doi: 10.1016/j.scienta.2015.11.002 – volume: 8 start-page: 1 year: 2017 end-page: 14 ident: CR94 article-title: Effects of rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in L Under drought stress publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00183 – ident: CR100 – volume: 22 start-page: 867 year: 1981 end-page: 880 ident: CR61 article-title: Hydrogen Peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts publication-title: Plant Cell Physiol doi: 10.1093/oxfordjournals.pcp.a076232 – volume: 30 start-page: 469 year: 2018 end-page: 474 ident: CR93 article-title: Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings publication-title: Chirality doi: 10.1002/chir.22810 – volume: 7 start-page: 1584 year: 2012 end-page: 1588 ident: CR27 article-title: Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza publication-title: Plant Signal Behav doi: 10.4161/psb.22098 – volume: 25 start-page: 1102 year: 2018 end-page: 1114 ident: CR78 article-title: Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in L publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2018.03.009 – volume: 32 start-page: 2054 year: 2014 end-page: 2062 ident: CR79 article-title: Interaction between AMF and plant growth-promoting rhizobacteria on two varieties of L publication-title: World Appl Sci J – volume: 35 start-page: 1685 year: 2012 end-page: 1703 ident: CR91 article-title: Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis publication-title: Plant, Cell Environ doi: 10.1111/j.1365-3040.2012.02520.x – ident: CR10 – volume: 6 start-page: 1 year: 2015 end-page: 15 ident: CR39 article-title: Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard ( L) through antioxidative defense system publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00868 – volume: 53 start-page: 250 year: 2015 end-page: 258 ident: CR48 article-title: Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery publication-title: Photosynthetica doi: 10.1007/s11099-015-0100-y – volume: 64 start-page: 555 year: 1999 end-page: 559 ident: CR56 article-title: The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals publication-title: Food Chem doi: 10.1016/S0308-8146(98)00102-2 – ident: CR86 – volume: 32 start-page: 245 year: 2013 end-page: 258 ident: CR34 article-title: Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance publication-title: J Plant Growth Regul doi: 10.1007/s00344-012-9292-6 – ident: CR63 – volume: 222 start-page: 709 year: 2005 end-page: 715 ident: CR111 article-title: Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007 publication-title: Planta doi: 10.1007/s00425-005-0003-4 – ident: CR108 – volume: 52 start-page: 670 year: 2006 end-page: 678 ident: CR76 article-title: An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa publication-title: Microb Ecol doi: 10.1007/s00248-006-9078-0 – ident: CR44 – volume: 3 start-page: 267 year: 1997 end-page: 275 ident: CR62 article-title: Changes in the hepatic glutathione peroxidase redox system produced by coplanar polychlorinated biphenyls in Ah-responsive and -less-responsive strains of mice: mechanism and implications for toxicity publication-title: Environ Toxicol Pharmacol doi: 10.1016/S1382-6689(97)00025-2 – volume: 135 start-page: 1 year: 1998 end-page: 9 ident: CR54 article-title: Antioxidant responses of rice seedlings to salinity stress publication-title: Plant Sci doi: 10.1016/S0168-9452(98)00025-9 – volume: 35 start-page: 1535 year: 2014 end-page: 1546 ident: CR13 article-title: Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals publication-title: Electrophoresis doi: 10.1002/elps.201300568 – volume: 18 start-page: 1 year: 2017 end-page: 13 ident: CR33 article-title: Synergistic effects of bacillus amyloliquefaciens (GB03) and water retaining agent on drought tolerance of perennial ryegrass publication-title: Int J Mol Sci doi: 10.3390/ijms18122651 – volume: 34 start-page: 89 year: 2016 end-page: 102 ident: CR106 article-title: Arbuscular mycorrhizal symbiosis-induced expression changes in leaves revealed by RNA-seq analysis publication-title: Plant Mol Biol Report doi: 10.1007/s11105-015-0903-9 – volume: 115 start-page: 449 year: 2017 end-page: 460 ident: CR68 article-title: Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat ( L) as influenced by potassium supplementation publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.04.017 – volume: 23 start-page: 731 year: 2017 end-page: 744 ident: CR3 article-title: Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions publication-title: Physiol Mol Biol Plants doi: 10.1007/s12298-017-0462-7 – volume: 171 start-page: 1576 year: 2014 end-page: 1585 ident: CR2 article-title: Water deficit in field-grown primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis publication-title: J Plant Physiol doi: 10.1016/j.jplph.2014.07.014 – volume: 24 start-page: 1 year: 1949 end-page: 15 ident: CR47 article-title: Copper enzymes in isolated chloroplasts publication-title: Polyphenoloxidase in Beta vulgaris Plant Physiol – volume: 130 start-page: 130 year: 2019 end-page: 136 ident: CR12 article-title: Exogenously applied sodium nitroprusside improves physiological attributes and essential oil yield of two drought susceptible and resistant specie of Thymus under reduced irrigation publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2018.12.058 – volume: 115 start-page: 495 year: 1990 end-page: 495 ident: CR46 article-title: How To quantify amf colonization on root publication-title: New Phytol doi: 10.1111/j.1469-8137.1990.tb00476.x – volume: 20 start-page: S3 year: 2017 end-page: S12 ident: CR67 article-title: Assessment the effect of drought on vegetation in desert area using Landsat data publication-title: Egypt J Remote Sens Sp Sci doi: 10.1016/j.ejrs.2016.11.007 – volume: 10 start-page: 260 year: 2018 end-page: 266 ident: CR20 article-title: Arbuscular mycorrhizal fungi associated with wati ( ), a medicinal plant from Merauke Lowland, Papua, Indonesia publication-title: Biosaintifika J Biol Biol Educ doi: 10.15294/biosaintifika.v10i2.14303 – ident: CR55 – ident: CR83 – volume: 226 start-page: 29 year: 2000 end-page: 35 ident: CR112 article-title: IAA and ZR content in leek ( L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development publication-title: Plant Soil doi: 10.1023/A:1026430019738 – volume: 8 start-page: 5724 year: 2018 end-page: 5740 ident: CR17 article-title: The combination of arbuscular mycorrhizal fungi inoculation ( ) and 28-homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber ( L.) under sali publication-title: Ecol Evol doi: 10.1002/ece3.4112 – volume: 20 start-page: 519 year: 2010 end-page: 530 ident: CR25 article-title: Agroecology: the key role of arbuscular mycorrhizas in ecosystem services publication-title: Mycorrhiza doi: 10.1007/s00572-010-0333-3 – volume: 65 start-page: 4065 year: 2014 end-page: 4095 ident: CR90 article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges publication-title: J Exp Bot doi: 10.1093/jxb/eru191 – year: 2018 ident: CR81 article-title: Role of rhizospheric microbes in soil publication-title: Role Rhizospheric Microbes Soil doi: 10.1007/978-981-10-8402-7 – volume: 58 start-page: 942 year: 2009 end-page: 951 ident: CR77 article-title: Differential effects of and on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought publication-title: Microb Ecol doi: 10.1007/s00248-009-9544-6 – ident: CR29 – volume: 49 start-page: 81 year: 1949 end-page: 86 ident: CR52 article-title: Studies in the water relations of I. The field measurement of water deficits in leaves publication-title: New Phytol doi: 10.1111/j.1469-8137.1950.tb05146.x – volume: 21 start-page: 1 year: 2021 end-page: 21 ident: CR72 article-title: Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress publication-title: BMC Plant Biol doi: 10.1186/s12870-021-02949-z – ident: CR58 – volume: 45 start-page: 171 year: 2008 end-page: 176 ident: CR11 article-title: Supercritical fluid extraction of tobacco leaves: a preliminary study on the extraction of solanesol publication-title: J Supercrit Fluids doi: 10.1016/j.supflu.2007.10.011 – volume: 8 start-page: 1 year: 2019 end-page: 20 ident: CR18 article-title: Improved drought tolerance by AMF inoculation in maize ( ) involves physiological and biochemical implications publication-title: Plants doi: 10.3390/plants8120579 – volume: 378 start-page: 626 year: 1995 end-page: 629 ident: CR19 article-title: A phosphate transporter from the mycorrhizal fungus publication-title: Nature doi: 10.1038/378626a0 – ident: CR50 – ident: CR9 – volume: 27 start-page: 537 year: 2017 end-page: 552 ident: CR69 article-title: Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax ( L.): a field study publication-title: Mycorrhiza doi: 10.1007/s00572-017-0775-y – volume: 53 start-page: 1689 issue: 9 year: 1954 end-page: 1699 ident: CR66 article-title: Estimation of available phosphorus in soil by extraction with sodium bi- carbonate publication-title: J Chem Inf Model – volume: 7 start-page: 1787 year: 2016 ident: CR7 article-title: New insights on plant salt tolerance mechanisms and their potential use for breeding publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01787 – ident: CR64 – ident: CR105 – volume: 12 start-page: 763 year: 2014 end-page: 771 ident: CR102 article-title: Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought publication-title: Spanish J Agric Res doi: 10.5424/sjar/2014123-4815 – ident: CR95 – volume: 150 start-page: 1056 year: 2016 end-page: 1064 ident: CR38 article-title: Evaluating effect of arbuscular mycorrhizal fungal consortia and Azotobacter chroococcum in improving biomass yield of Jatropha curcas publication-title: Plant Biosyst doi: 10.1080/11263504.2014.1001001 – ident: CR43 – volume: 32 start-page: 93 year: 1981 end-page: 101 ident: CR59 article-title: Leaf senescence : correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase content in a trusted digital archive. We use information technology and tools to increase produ publication-title: J Exp Bot doi: 10.1093/jxb/32.1.93 – start-page: 665 year: 1961 ident: CR65 publication-title: Quantitative organic microanalysis – ident: CR37 – volume: 39 start-page: 205 year: 1973 end-page: 207 ident: CR49 article-title: Rapid determination of free proline for water-stress studies publication-title: Plant Soil doi: 10.1007/BF00018060 – volume: 54 start-page: 529 year: 2008 end-page: 536 ident: CR32 article-title: Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage publication-title: Plant Soil Environ doi: 10.17221/427-pse – ident: CR104 – volume: 257 start-page: 109982 year: 2020 ident: CR75 article-title: Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.109982 – volume: 23 start-page: 253 year: 2013 end-page: 265 ident: CR14 article-title: Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives publication-title: Mycorrhiza doi: 10.1007/s00572-013-0484-0 – volume: 155 start-page: 293 year: 2002 end-page: 300 ident: CR71 article-title: Morphogenetic modifications induced by A6RI and BEG12 in the root system of tomato differ according to plant growth conditions publication-title: New Phytol doi: 10.1046/j.1469-8137.2002.00460.x – volume: 4 start-page: 1 year: 2020 end-page: 8 ident: CR74 article-title: Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.) publication-title: Front Sustain Food Syst doi: 10.3389/fsufs.2020.601004 – volume: 55 start-page: 18 issue: 158 year: 1970 ident: CR45 article-title: Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection publication-title: Trans Br Mycol Soc doi: 10.1016/s0007-1536(70)80110-3 – year: 2019 ident: CR85 article-title: Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus is regulated in response to phosphate availability publication-title: Mycorrhiza doi: 10.1007/s00572-019-00923-0 – volume: 227 start-page: 133 year: 2014 end-page: 144 ident: CR4 article-title: Compartment specific response of antioxidants to drought stress in Arabidopsis publication-title: Plant Sci doi: 10.1016/j.plantsci.2014.08.002 – ident: CR31 – volume: 5 start-page: e02952 year: 2019 ident: CR98 article-title: Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02952 – volume: 89 start-page: 5 year: 2017 end-page: 21 ident: CR28 article-title: Lipoxygenases and their metabolites in formation of plant stress tolerance publication-title: Ukr Biochem J – volume: 73 start-page: 7 year: 2013 end-page: 15 ident: CR41 article-title: Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2013.08.005 – volume: 1 start-page: 103 year: 2007 end-page: 108 ident: CR107 article-title: Phenylalanine ammonia-lyase in woody plants: a key swich of carbon accumulation in biomass publication-title: Jpn J Plant Sci – volume: 156 start-page: 46 year: 2018 end-page: 58 ident: CR110 article-title: Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying publication-title: J Agric Sci doi: 10.1017/S0021859618000023 – volume: 126 start-page: 189 year: 1968 end-page: 198 ident: CR53 article-title: Photoperoxidation in isolated chloroplasts of fatty acid peroxidation chlorophyll publication-title: Arch Biochem biophisics doi: 10.1016/0003-9861(68)90654-1 – volume: 56 start-page: 435 year: 2005 end-page: 447 ident: CR89 article-title: Towards an understanding of photosynthetic acclimation publication-title: J Exp Bot doi: 10.1093/jxb/eri060 – volume: 10 start-page: 1 year: 2019 end-page: 15 ident: CR22 article-title: Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance publication-title: Front Plant Sci doi: 10.3389/fpls.2019.01068 – volume: 23 start-page: 731 year: 2017 ident: 1815_CR3 publication-title: Physiol Mol Biol Plants doi: 10.1007/s12298-017-0462-7 – volume: 156 start-page: 46 year: 2018 ident: 1815_CR110 publication-title: J Agric Sci doi: 10.1017/S0021859618000023 – ident: 1815_CR44 doi: 10.2134/agronmonogr9.1 – ident: 1815_CR58 doi: 10.1016/0167-4838(92)90429-H – ident: 1815_CR95 doi: 10.1016/j.jplph.2016.07.006 – volume: 22 start-page: 867 year: 1981 ident: 1815_CR61 publication-title: Plant Cell Physiol doi: 10.1093/oxfordjournals.pcp.a076232 – volume: 7 start-page: 1787 year: 2016 ident: 1815_CR7 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.01787 – ident: 1815_CR51 – volume: 53 start-page: 1689 issue: 9 year: 1954 ident: 1815_CR66 publication-title: J Chem Inf Model – volume: 150 start-page: 1056 year: 2016 ident: 1815_CR38 publication-title: Plant Biosyst doi: 10.1080/11263504.2014.1001001 – volume: 10 start-page: 1 year: 2019 ident: 1815_CR22 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.01068 – start-page: 665 volume-title: Quantitative organic microanalysis year: 1961 ident: 1815_CR65 – volume: 27 start-page: 537 year: 2017 ident: 1815_CR69 publication-title: Mycorrhiza doi: 10.1007/s00572-017-0775-y – year: 2018 ident: 1815_CR81 publication-title: Role Rhizospheric Microbes Soil doi: 10.1007/978-981-10-8402-7 – volume: 52 start-page: 670 year: 2006 ident: 1815_CR76 publication-title: Microb Ecol doi: 10.1007/s00248-006-9078-0 – volume: 3 start-page: 267 year: 1997 ident: 1815_CR62 publication-title: Environ Toxicol Pharmacol doi: 10.1016/S1382-6689(97)00025-2 – volume: 65 start-page: 4065 year: 2014 ident: 1815_CR90 publication-title: J Exp Bot doi: 10.1093/jxb/eru191 – volume: 20 start-page: 519 year: 2010 ident: 1815_CR25 publication-title: Mycorrhiza doi: 10.1007/s00572-010-0333-3 – ident: 1815_CR101 – volume: 155 start-page: 293 year: 2002 ident: 1815_CR71 publication-title: New Phytol doi: 10.1046/j.1469-8137.2002.00460.x – volume: 35 start-page: 1685 year: 2012 ident: 1815_CR91 publication-title: Plant, Cell Environ doi: 10.1111/j.1365-3040.2012.02520.x – volume: 7 start-page: 1 year: 2016 ident: 1815_CR36 publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01577 – volume: 130 start-page: 130 year: 2019 ident: 1815_CR12 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2018.12.058 – volume: 115 start-page: 449 year: 2017 ident: 1815_CR68 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2017.04.017 – ident: 1815_CR42 doi: 10.1016/j.aoas.2017.08.001 – volume: 222 start-page: 709 year: 2005 ident: 1815_CR111 publication-title: Planta doi: 10.1007/s00425-005-0003-4 – volume: 8 start-page: 1 year: 2019 ident: 1815_CR18 publication-title: Plants doi: 10.3390/plants8120579 – ident: 1815_CR31 doi: 10.6064/2012/963401 – volume: 6 start-page: 1 year: 2015 ident: 1815_CR39 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00868 – ident: 1815_CR50 doi: 10.1016/S0003-9861(53)80009-3 – volume: 3 start-page: 196 year: 2017 ident: 1815_CR80 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2017.04.006 – volume: 50 start-page: 593 year: 2019 ident: 1815_CR109 publication-title: New For doi: 10.1007/s11056-018-9681-1 – volume: 84 start-page: 11 year: 2009 ident: 1815_CR82 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2092-7 – volume: 254 start-page: 1953 year: 2017 ident: 1815_CR96 publication-title: Protoplasma doi: 10.1007/s00709-017-1086-z – volume: 6 start-page: 1 year: 2011 ident: 1815_CR40 publication-title: J Plant Interact doi: 10.1080/17429145.2010.535178 – volume: 12 start-page: 127 year: 2013 ident: 1815_CR26 publication-title: Acta Sci Pol Hortorum Cultus – volume: 18 start-page: 611 year: 2008 ident: 1815_CR35 publication-title: Pedosphere doi: 10.1016/S1002-0160(08)60055-7 – ident: 1815_CR63 doi: 10.1016/0003-9861(59)90090-6 – ident: 1815_CR57 – volume: 58 start-page: 942 year: 2009 ident: 1815_CR77 publication-title: Microb Ecol doi: 10.1007/s00248-009-9544-6 – volume: 30 start-page: 469 year: 2018 ident: 1815_CR93 publication-title: Chirality doi: 10.1002/chir.22810 – volume: 55 start-page: 18 issue: 158 year: 1970 ident: 1815_CR45 publication-title: Trans Br Mycol Soc doi: 10.1016/s0007-1536(70)80110-3 – volume: 135 start-page: 1 year: 1998 ident: 1815_CR54 publication-title: Plant Sci doi: 10.1016/S0168-9452(98)00025-9 – volume: 378 start-page: 626 year: 1995 ident: 1815_CR19 publication-title: Nature doi: 10.1038/378626a0 – ident: 1815_CR97 doi: 10.4161/psb.21949 – volume: 56 start-page: 435 year: 2005 ident: 1815_CR89 publication-title: J Exp Bot doi: 10.1093/jxb/eri060 – volume: 8 start-page: 1 year: 2017 ident: 1815_CR94 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00183 – volume: 54 start-page: 1087 year: 2019 ident: 1815_CR99 publication-title: HortScience doi: 10.21273/HORTSCI13961-19 – year: 2019 ident: 1815_CR85 publication-title: Mycorrhiza doi: 10.1007/s00572-019-00923-0 – volume: 14 start-page: 1 year: 2009 ident: 1815_CR30 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2008.10.004 – volume: 39 start-page: 205 year: 1973 ident: 1815_CR49 publication-title: Plant Soil doi: 10.1007/BF00018060 – volume: 10 start-page: 1 year: 2019 ident: 1815_CR70 publication-title: Front Plant Sci doi: 10.3389/fpls.2019.00863 – ident: 1815_CR10 – ident: 1815_CR60 doi: 10.1016/S0076-6879(84)05016-3 – volume: 10 start-page: 260 year: 2018 ident: 1815_CR20 publication-title: Biosaintifika J Biol Biol Educ doi: 10.15294/biosaintifika.v10i2.14303 – volume: 226 start-page: 29 year: 2000 ident: 1815_CR112 publication-title: Plant Soil doi: 10.1023/A:1026430019738 – volume: 89 start-page: 5 year: 2017 ident: 1815_CR28 publication-title: Ukr Biochem J – volume: 53 start-page: 250 year: 2015 ident: 1815_CR48 publication-title: Photosynthetica doi: 10.1007/s11099-015-0100-y – volume: 171 start-page: 1576 year: 2014 ident: 1815_CR2 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2014.07.014 – volume: 19 start-page: 2313 year: 2019 ident: 1815_CR8 publication-title: J Soils Sediments doi: 10.1007/s11368-018-02226-x – volume: 176 start-page: 104088 year: 2020 ident: 1815_CR23 publication-title: Environ Exp Bot doi: 10.1016/j.envexpbot.2020.104088 – volume: 34 start-page: 89 year: 2016 ident: 1815_CR106 publication-title: Plant Mol Biol Report doi: 10.1007/s11105-015-0903-9 – ident: 1815_CR104 doi: 10.1139/cjm-2018-0636 – volume: 8 start-page: 5724 year: 2018 ident: 1815_CR17 publication-title: Ecol Evol doi: 10.1002/ece3.4112 – volume: 126 start-page: 189 year: 1968 ident: 1815_CR53 publication-title: Arch Biochem biophisics doi: 10.1016/0003-9861(68)90654-1 – volume: 24 start-page: 1 year: 1949 ident: 1815_CR47 publication-title: Polyphenoloxidase in Beta vulgaris Plant Physiol – volume: 35 start-page: 1535 year: 2014 ident: 1815_CR13 publication-title: Electrophoresis doi: 10.1002/elps.201300568 – volume: 9 start-page: 1 year: 2014 ident: 1815_CR6 publication-title: J plant Interact doi: 10.1080/17429145.2012.747629 – volume: 257 start-page: 109982 year: 2020 ident: 1815_CR75 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2019.109982 – volume: 25 start-page: 1102 year: 2018 ident: 1815_CR78 publication-title: Saudi J Biol Sci doi: 10.1016/j.sjbs.2018.03.009 – volume: 23 start-page: 253 year: 2013 ident: 1815_CR14 publication-title: Mycorrhiza doi: 10.1007/s00572-013-0484-0 – ident: 1815_CR16 doi: 10.3389/fpls.2019.00470 – volume: 49 start-page: 81 year: 1949 ident: 1815_CR52 publication-title: New Phytol doi: 10.1111/j.1469-8137.1950.tb05146.x – ident: 1815_CR43 – volume: 1 start-page: 103 year: 2007 ident: 1815_CR107 publication-title: Jpn J Plant Sci – volume: 64 start-page: 555 year: 1999 ident: 1815_CR56 publication-title: Food Chem doi: 10.1016/S0308-8146(98)00102-2 – ident: 1815_CR64 doi: 10.1111/j.1399-3054.1983.tb04162.x – volume: 115 start-page: 495 year: 1990 ident: 1815_CR46 publication-title: New Phytol doi: 10.1111/j.1469-8137.1990.tb00476.x – volume: 139 start-page: 227 year: 2019 ident: 1815_CR1 publication-title: Photosynth Res doi: 10.1007/s11120-018-0538-4 – volume: 9 start-page: 1 year: 2018 ident: 1815_CR15 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00024 – ident: 1815_CR29 doi: 10.1016/0038-0717(86)90025-8 – volume: 12 start-page: 763 year: 2014 ident: 1815_CR102 publication-title: Spanish J Agric Res doi: 10.5424/sjar/2014123-4815 – ident: 1815_CR86 doi: 10.3390/su10093286 – ident: 1815_CR108 doi: 10.3390/plants8110442 – volume: 18 start-page: 1 year: 2017 ident: 1815_CR33 publication-title: Int J Mol Sci doi: 10.3390/ijms18122651 – volume: 227 start-page: 133 year: 2014 ident: 1815_CR4 publication-title: Plant Sci doi: 10.1016/j.plantsci.2014.08.002 – volume: 4 start-page: 1 year: 2020 ident: 1815_CR74 publication-title: Front Sustain Food Syst doi: 10.3389/fsufs.2020.601004 – ident: 1815_CR83 doi: 10.1007/978-981-13-0044-8_9 – volume: 54 start-page: 529 year: 2008 ident: 1815_CR32 publication-title: Plant Soil Environ doi: 10.17221/427-pse – volume: 261 start-page: 108923 year: 2020 ident: 1815_CR73 publication-title: Sci Hortic (Amsterdam) doi: 10.1016/j.scienta.2019.108923 – volume: 154 start-page: 501 year: 2002 ident: 1815_CR113 publication-title: New Phytol doi: 10.1046/j.1469-8137.2002.00388.x – ident: 1815_CR55 doi: 10.5344/ajev.1965.16.3.144 – volume: 32 start-page: 2054 year: 2014 ident: 1815_CR79 publication-title: World Appl Sci J – ident: 1815_CR9 – volume: 21 start-page: 1 year: 2021 ident: 1815_CR72 publication-title: BMC Plant Biol doi: 10.1186/s12870-021-02949-z – volume: 90 start-page: 64 year: 2015 ident: 1815_CR88 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2015.03.004 – volume: 15 start-page: 593 year: 2013 ident: 1815_CR103 publication-title: J Agric Sci Technol – volume: 20 start-page: S3 year: 2017 ident: 1815_CR67 publication-title: Egypt J Remote Sens Sp Sci doi: 10.1016/j.ejrs.2016.11.007 – volume: 43 start-page: 1036 year: 2020 ident: 1815_CR87 publication-title: J Plant Nutr doi: 10.1080/01904167.2020.1711940 – volume: 76 start-page: 393 year: 2010 ident: 1815_CR24 publication-title: Planta Med doi: 10.1055/s-0029-1186180 – volume: 122 start-page: 473 year: 2018 ident: 1815_CR5 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2018.06.030 – ident: 1815_CR37 doi: 10.1007/978-81-322-2056-5_1 – volume: 5 start-page: e02952 year: 2019 ident: 1815_CR98 publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02952 – volume: 73 start-page: 7 year: 2013 ident: 1815_CR41 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2013.08.005 – volume: 198 start-page: 107 year: 2016 ident: 1815_CR92 publication-title: Sci Hortic (Amsterdam) doi: 10.1016/j.scienta.2015.11.002 – volume: 55 start-page: 1017 year: 2014 ident: 1815_CR84 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcu035 – volume: 32 start-page: 93 year: 1981 ident: 1815_CR59 publication-title: J Exp Bot doi: 10.1093/jxb/32.1.93 – year: 2020 ident: 1815_CR21 publication-title: Mycorrhiza doi: 10.1007/s00572-020-00942-2 – ident: 1815_CR105 doi: 10.1186/s40538-015-0035-3 – volume: 45 start-page: 171 year: 2008 ident: 1815_CR11 publication-title: J Supercrit Fluids doi: 10.1016/j.supflu.2007.10.011 – volume: 7 start-page: 1584 year: 2012 ident: 1815_CR27 publication-title: Plant Signal Behav doi: 10.4161/psb.22098 – ident: 1815_CR100 doi: 10.3389/fpls.2015.00420 – volume: 32 start-page: 245 year: 2013 ident: 1815_CR34 publication-title: J Plant Growth Regul doi: 10.1007/s00344-012-9292-6 |
SSID | ssj0017623 |
Score | 2.6360173 |
Snippet | Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 971 |
SubjectTerms | Abscisic acid Accumulation Acetic acid Antioxidants Antioxidants - metabolism Arbuscular mycorrhizas Bacillus methylotrophicus biomass Biomedical and Life Sciences Carotenoids Chlorophyll Chlorophyll a Chlorophyll A - metabolism Crop growth Crop production Drought Drought resistance drought tolerance Droughts Ecology Electrolyte leakage Electrolytes Electrolytes - metabolism Environmental perception Enzymatic activity Enzyme activity Flavonoids Fungi Geoecology/Natural Processes Glomus versiforme indole acetic acid Indoleacetic acid Inoculation Leakage Life Sciences Lipid peroxidation Lipids Metabolism Microbial Ecology Microbiology Microorganisms Minerals - metabolism Mycorrhizae - physiology Nature Conservation Nicotiana Nicotiana tabacum Nutrition Nutritional Status Peroxidation Phenols Photosynthesis Photosystem II Plant growth plant growth-promoting rhizobacteria Plant Microbe Interactions Plant nutrition Plant Roots - microbiology Probiotics Shoots Tobacco vesicular arbuscular mycorrhizae Water Quality/Water Pollution water stress |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-0IvgifntaZQXfdCEfu9nk8ag9i3Cl1B70LexXvECblCYHxn_Vf8aZ3SQi1YIvx8HNTuaYmd2Z7Mz8CHnPq0TZCrtxYCNgHE5IllsZsZzHBqGO4RNfDayPs6MN_3IuzsemsG6qdp-uJP1OPTe7-fFbDEsKcMiUYPIuuScwdwcr3iTL-e4A3HucPSkYbM_52Crzdx5_Hkc3Yswb96P-2Fk9Ig_HeJEug4IfkzuueULuBwTJAb4d-qnTw1Py86BlddOaEY6LthUs0rtQZ0rXA2SZ19v6B_BagX_XVDWWQvBHEbWop58hG--37CQU5zXf6CnW4ukwylnR8OrBjWR-7cm27dtuaIBHV3e0bugZ0puWeigl-snj__T0q29GoXqgmyt2GpDv8QFLLLP8Xlt8OvJb137-NT2e4AHo2vVgoRd1d_mMbFaHZwdHbERuYIZL3jPrZBLpNItzFSvtoqgysePGZUIZoWMI-WwMcWeSCZMKazKpNc4dy51S1hXSps_JXtM27iWhhUojJSNpLOwcWqlCcS7SqsBABjsnFiSeFFiacaw5omtclPNAZq_0EpReeqWXckE-zGuuwlCPW6n3J7soRwfvShAdJYDoZkHezT-Da-J9i2pcuwMa-E8plyKWt9AAB8xSY-DzItjcLFLKU0gwC1j9cTLC3wL8W95X_0f-mjxIsKXDF3Huk73-eufeQKDV67fer34BUVkgvw priority: 102 providerName: Springer Nature |
Title | Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco Under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism |
URI | https://link.springer.com/article/10.1007/s00248-021-01815-7 https://www.ncbi.nlm.nih.gov/pubmed/34309697 https://www.proquest.com/docview/2651901661 https://www.proquest.com/docview/2555347517 https://www.proquest.com/docview/2661014911 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG-6jclIvIFFPpw4eUJltJtAraqySuUpcmxnjTSSsqQS5V_ln-HOcTOhib60UnO-uLqz786-ux8hb3kRSF1gNQ5sBIyDhWSJFh5LuK8Q6hg-8WhgMo0vFvzLMlq6A7fGpVXu9kS7Ueta4Rn5hyCO0HaBOfm4_skQNQpvVx2Exn1yiK3LMKVLLPuAy4eF7rpQRgw26sQVzdjSOdvMi2GCArasipj41zDd8Tbv3JRaAzR-TB45z5EOO1E_IfdM9ZQ86LAkt8_In7OalVWtHBwXrQsgzTddnimdbCHKvFmVv4HDGNZ3SWWlKTh_FFGLWnoO0Xi7YrMuOa-6onPMxcu7Vs6SdkcPxpHZsbNV3dbNtgIeTdnQsqKXSK9qaqGU6GeL_9PSb7YYheZbulizeYd8jy8YYprlr1Lj25HfpLT9r-l0Bw9AJ6YFDb0umx_PyWI8ujy7YA65gSkueMu0EYGXh7GfSF_mxvMK5RuuTBxJFeU-uHzaB78TZKrCSKtY5Dn2HUuMlNqkQocvyEFVV-YVoakMPSk8oTTsHLmUqeQ8CosUlQErJwbE34ktU66tOaJrXGd9Q2Yr6gxEnVlRZ2JA3vVj1l1Tj73UJzttyNwCb7JbdRyQN_1jWJp43yIrU2-ABv5TyEXkiz00wAGjVB_4vOw0rZ9SyEMIMFMY_X6nercT-P98j_bP95g8DLCEwyZtnpCD9mZjXoNj1eandvWcksPh-fevI_j-NJrO5vDrIhj-BWslJQU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdELwgvikMMBI8gbV8OHH6gNDYVjq2VlVppb0Fx3bXSCMpSyoIP4o_xJ_hzkk6oYm-7aUvPZ8vuvN92PdByGs-96SeYzUOKALGwUKySAuHRdxVOOoYfvFqYDgKBzP--TQ43SK_21oYTKtsdaJV1DpXeEe-64UB2i4wJx-W3xlOjcLX1XaERi0Wx6b6ASFb8f7oAPj7xvP6h9P9AWumCjDFBS-ZNsJzEj90I-nKxDjOXLmGKxMGUgWJC-6IdsEngv2UH2gViiTBnliRkVKbntA-4L1BtrkPoUyHbH88HI0n63cLUC1N38uAgWmImjIdW6xn24cxTInAJlkBE_-awiv-7ZW3WWvy-nfJncZXpXu1cN0jWya7T27W0yurB-TPfs7SLFfNADCazwE0WdWZrXRYQVx7sUh_AYY-aJSUykxTcDcpzkkq6SeI_8sFG9fpgNkZnWD2X1I3j5a0vuwwDZhdO17kZV5UGeAo0oKmGZ0ivMqpHd5ED-zEoZJ-seUvNKnobMkm5szSBxvsYWLnz1Tj7ohvmNqO23TUDiSgQ1PCmThPi28PyexauPqIdLI8M08I7UnfkcIRSoOuSqTsSc4Df95D8cNajS5xW7bFqmmkjvM8zuN1C2jL6hhYHVtWx6JL3q7XLOs2Ihuhd1ppiBuVUsSXB6BLXq3_BmWALzwyM_kKYOCbfC4CV2yAAQwYF7uA53EtaWuSfO5DSNuD1e9a0bsk4P_0Pt1M70tyazAdnsQnR6PjZ-S2hwUkNmV0h3TKi5V5Dm5dmbxozhIlX6_7-P4Fg69f-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1BpDIC6IbwoDjAQnsBYnTt0eEJpWysZoVY1V6i1zbGeNNJLSpBrhp_FX-DO85ySd0ERvu_TS52dH79t-H4S8EYmvTILVOKAImAALyXpGeqwnuMZRx_CLVwOjcfdgKr7MwtkW-d3WwmBaZasTnaI2ucY78l2_G6LtAnOymzRpEZPB8OPiB8MJUvjS2o7TqFnkyFYXEL4VHw4HQOu3vj_8dLJ_wJoJA0wLKUpmrPS9OOjynuIqtp6XaG6Ftt1Q6TDm4JoYDv4R7K2D0OiujGPsj9WzShnblyYAvDfITRmEHGVMztbBHgcl03TADBkYiV5TsOPK9lwjMYbJEdguK2TyX6N4xdO98krrjN_wHrnbeK10r2az-2TLZg_IrXqOZfWQ_NnPWZrluhkFRvMEQONVneNKRxVEuMt5-gswDEG3pFRlhoLjSXFiUkk_L_OLcs4mdWJgdkaPMQ8wrttIK1pfe9gGzK2dzPMyL6oMcBRpQdOMniC8zqkb40QHbvZQSb-5QhgaV3S6YMf2zJ0PNtjDFM-fqcHdEd8odb236bgdTUBHtgTpOE-L74_I9Fpo-phsZ3lmnxLaV4GnpCe1Aa0VK9VXQoRB0kdGxKqNDuEt2SLdtFTHyR7n0boZtCN1BKSOHKkj2SHv1msWdUORjdA7LTdEjXIpoktR6JDX679BLeBbj8psvgIY-KZAyJDLDTCAASNkDnie1Jy2PlIgAghu-7D6fct6lwf4_3mfbT7vK3IbhDb6ejg-ek7u-FhJ4nJHd8h2uVzZF-DflfFLJ0iUnF635P4F7ZViyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-inoculation+of+Arbuscular+Mycorrhizal+Fungi+and+the+Plant+Growth-Promoting+Rhizobacteria+Improve+Growth+and+Photosynthesis+in+Tobacco+Under+Drought+Stress+by+Up-Regulating+Antioxidant+and+Mineral+Nutrition+Metabolism&rft.jtitle=Microbial+ecology&rft.au=Begum%2C+Naheeda&rft.au=Wang%2C+Ling&rft.au=Ahmad%2C+Husain&rft.au=Akhtar%2C+Kashif&rft.date=2022-05-01&rft.issn=0095-3628&rft.eissn=1432-184X&rft.volume=83&rft.issue=4&rft.spage=971&rft.epage=988&rft_id=info:doi/10.1007%2Fs00248-021-01815-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00248_021_01815_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0095-3628&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0095-3628&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0095-3628&client=summon |