The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner
Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravasc...
Saved in:
Published in | Viruses Vol. 12; no. 6; p. 629 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
10.06.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19. |
---|---|
AbstractList | Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)₅₀ around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC₅₀ around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19. Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19.Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19. Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19. Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC) 50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC 50 around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19. Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC) around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19. |
Author | Takeda, Makoto Ohmagari, Norio Semba, Kentaro Matsuda, Zene Iwatsuki-Horimoto, Kiyoko Kinoshita, Noriko Kawaguchi, Yasushi Inoue, Jun-ichiro Gohda, Jin Yamamoto, Mizuki Kiso, Maki Kawaoka, Yoshihiro Sakai-Tagawa, Yuko Imai, Masaki |
AuthorAffiliation | 6 Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan 7 Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA 5 Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; ksemba@waseda.jp 1 Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; mizuyama@ims.u-tokyo.ac.jp (M.Y.); jgohda@ims.u-tokyo.ac.jp (J.G.); zmatsuda@ims.u-tokyo.ac.jp (Z.M.); ykawagu@ims.u-tokyo.ac.jp (Y.K.) 8 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; |
AuthorAffiliation_xml | – name: 9 Senior Professor Office, University of Tokyo, Tokyo 113-0033, Japan – name: 8 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan – name: 4 Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; nkinoshita@hosp.ncgm.go.jp (N.K.); nohmagari@hosp.ncgm.go.jp (N.O.) – name: 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; kisomaki@ims.u-tokyo.ac.jp (M.K.); ytsakai@ims.u-tokyo.ac.jp (Y.S.-T.); kenken@ims.u-tokyo.ac.jp (K.I.-H.); mimai@ims.u-tokyo.ac.jp (M.I.); yoshihiro.kawaoka@wisc.edu (Y.K.) – name: 5 Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; ksemba@waseda.jp – name: 6 Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan – name: 7 Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA – name: 1 Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; mizuyama@ims.u-tokyo.ac.jp (M.Y.); jgohda@ims.u-tokyo.ac.jp (J.G.); zmatsuda@ims.u-tokyo.ac.jp (Z.M.); ykawagu@ims.u-tokyo.ac.jp (Y.K.) – name: 3 Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; mtakeda@nih.go.jp |
Author_xml | – sequence: 1 givenname: Mizuki orcidid: 0000-0003-3731-1702 surname: Yamamoto fullname: Yamamoto, Mizuki – sequence: 2 givenname: Maki surname: Kiso fullname: Kiso, Maki – sequence: 3 givenname: Yuko surname: Sakai-Tagawa fullname: Sakai-Tagawa, Yuko – sequence: 4 givenname: Kiyoko surname: Iwatsuki-Horimoto fullname: Iwatsuki-Horimoto, Kiyoko – sequence: 5 givenname: Masaki surname: Imai fullname: Imai, Masaki – sequence: 6 givenname: Makoto orcidid: 0000-0002-8194-7727 surname: Takeda fullname: Takeda, Makoto – sequence: 7 givenname: Noriko orcidid: 0000-0001-5471-7363 surname: Kinoshita fullname: Kinoshita, Noriko – sequence: 8 givenname: Norio surname: Ohmagari fullname: Ohmagari, Norio – sequence: 9 givenname: Jin surname: Gohda fullname: Gohda, Jin – sequence: 10 givenname: Kentaro surname: Semba fullname: Semba, Kentaro – sequence: 11 givenname: Zene surname: Matsuda fullname: Matsuda, Zene – sequence: 12 givenname: Yasushi surname: Kawaguchi fullname: Kawaguchi, Yasushi – sequence: 13 givenname: Yoshihiro surname: Kawaoka fullname: Kawaoka, Yoshihiro – sequence: 14 givenname: Jun-ichiro orcidid: 0000-0001-6389-7036 surname: Inoue fullname: Inoue, Jun-ichiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32532094$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhkeoiF5gwQsgL2Ex1Je5nQ1SFChEaqEioVvL4zlOXE3sdOxUmpfiGXFJG1rEgpWtc77z61z-4-zAeYdZ9prR90IAPb1lnFa04vAsO2IAkBfAyoNH_8PsOIRrSqsKaP0iOxS8FJxCcZT9XKyQTFy02qvltlcukq_KqLUPUUVy6SO62I9k5la2tTGQ-eT7PJ_6q5yTObkcUt66_AI7qyJ25GwbrHfEOqLIFPv-ITAJQY1kPoaIa6JcR67soPqkalDHO2DmUigO_k9pvhg3mH_EDbou9UAulHM4vMyeG9UHfHX_nmQ_zj4tpl_y82-fZ9PJea6Luoh5h0UDpel0zTkIagCKuq0E1zztoGENGKYZbSgC1VAzMFWCu7auGtPqpuLiJJvtdDuvruVmsGs1jNIrK38H_LCUakhL61GigbKtS21AdQW2HSgK6RaqVlQoDZi0Puy0Ntt2jZ1O06Thn4g-zTi7kkt_K2tRFiWUSeDtvcDgb7YYolzboNOOlEO_DZIX0PBK1A37D5RxAFEVIqFvHre17-fBGwl4twP04EMY0OwRRuWd7-Ted4k9_YvVNhkonTZNZPt_VPwCVXHaHA |
CitedBy_id | crossref_primary_10_1007_s40262_022_01170_x crossref_primary_10_1093_bib_bbab490 crossref_primary_10_1016_j_jointm_2024_02_003 crossref_primary_10_1038_s41392_022_01039_2 crossref_primary_10_1371_journal_ppat_1009233 crossref_primary_10_3390_v12091006 crossref_primary_10_1128_mbio_02327_24 crossref_primary_10_1128_mbio_02923_22 crossref_primary_10_1016_j_biopha_2021_112513 crossref_primary_10_3390_molecules25184086 crossref_primary_10_1007_s40119_022_00263_9 crossref_primary_10_1165_rcmb_2020_0322PS crossref_primary_10_1186_s12879_024_09012_w crossref_primary_10_1016_j_ebiom_2024_105439 crossref_primary_10_1371_journal_ppat_1009225 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1056_EVIDoa2300132 crossref_primary_10_7883_yoken_JJID_2021_699 crossref_primary_10_2174_1874467214666210906125959 crossref_primary_10_1002_jca_21861 crossref_primary_10_3390_v15051171 crossref_primary_10_1124_jpet_122_001248 crossref_primary_10_1016_j_ymeth_2021_04_026 crossref_primary_10_1017_S0022029924000657 crossref_primary_10_1038_s41392_021_00733_x crossref_primary_10_4062_biomolther_2020_201 crossref_primary_10_1016_j_tacc_2020_07_004 crossref_primary_10_1248_bpb_b20_00889 crossref_primary_10_1186_s13062_024_00523_9 crossref_primary_10_1016_j_antiviral_2023_105735 crossref_primary_10_3390_molecules27061881 crossref_primary_10_1111_jcpt_13646 crossref_primary_10_1016_j_biopha_2021_111330 crossref_primary_10_1039_D0SC05064D crossref_primary_10_1021_acsomega_4c08640 crossref_primary_10_2174_1389557521666210308144302 crossref_primary_10_3201_eid2612_203386 crossref_primary_10_5551_jat_RPT001 crossref_primary_10_1007_s11239_020_02275_5 crossref_primary_10_1016_j_chom_2024_01_001 crossref_primary_10_1002_jcb_30528 crossref_primary_10_1093_jb_mvae037 crossref_primary_10_1146_annurev_pharmtox_121120_012309 crossref_primary_10_1111_ped_14479 crossref_primary_10_3390_jcm10112306 crossref_primary_10_4110_in_2023_23_e13 crossref_primary_10_1007_s13337_021_00751_x crossref_primary_10_1038_s12276_021_00624_9 crossref_primary_10_1186_s13063_021_05760_1 crossref_primary_10_1186_s12974_021_02357_y crossref_primary_10_1016_j_clim_2021_108849 crossref_primary_10_1038_s41392_021_00653_w crossref_primary_10_3390_ijms22041797 crossref_primary_10_2217_fmb_2021_0019 crossref_primary_10_3390_jcm12186079 crossref_primary_10_1016_j_csbj_2020_12_035 crossref_primary_10_1039_D3CP01723K crossref_primary_10_1111_cts_13400 crossref_primary_10_3389_fviro_2024_1353661 crossref_primary_10_3390_ijms22062815 crossref_primary_10_1007_s12185_020_03029_y crossref_primary_10_1128_mbio_00519_22 crossref_primary_10_1016_j_xpro_2022_101773 crossref_primary_10_3390_ijms23031296 crossref_primary_10_5551_jat_61747_R crossref_primary_10_3390_ijms22137060 crossref_primary_10_1038_s41586_022_04462_1 crossref_primary_10_3390_epidemiologia3010008 crossref_primary_10_1080_17460441_2022_2029843 crossref_primary_10_1016_j_ebiom_2022_103856 crossref_primary_10_3390_ijms21165707 crossref_primary_10_3390_cells9112377 crossref_primary_10_1093_pcmedi_pbac024 crossref_primary_10_1016_j_apsb_2021_06_016 crossref_primary_10_1371_journal_pone_0297679 crossref_primary_10_3851_IMP3368 crossref_primary_10_1080_0886022X_2022_2105233 crossref_primary_10_1186_s13054_020_03235_4 crossref_primary_10_1089_ten_tea_2024_0016 crossref_primary_10_5551_jat_61747 crossref_primary_10_3389_fcimb_2022_911313 crossref_primary_10_1016_j_intimp_2021_108049 crossref_primary_10_3390_ijms23095125 crossref_primary_10_1096_fj_202002097 crossref_primary_10_1016_j_eclinm_2021_101169 crossref_primary_10_1080_23744235_2022_2111464 crossref_primary_10_1002_cpt_3118 crossref_primary_10_1111_cts_13052 crossref_primary_10_1186_s12985_021_01624_x crossref_primary_10_2174_1389450122666210809090909 crossref_primary_10_1089_vim_2021_0023 crossref_primary_10_3390_ijms24108711 crossref_primary_10_1021_acs_jmedchem_4c00384 crossref_primary_10_1002_jmv_26397 crossref_primary_10_1128_jvi_00128_22 crossref_primary_10_51987_revhospitalbaires_v42i4_237 crossref_primary_10_1007_s10753_022_01656_7 crossref_primary_10_1186_s12929_022_00847_6 crossref_primary_10_33611_trs_2021_011 crossref_primary_10_1016_j_isci_2023_106955 crossref_primary_10_1016_j_ejphar_2021_173930 crossref_primary_10_2147_DDDT_S320320 crossref_primary_10_1021_acs_jmedchem_3c01238 crossref_primary_10_3390_ijms25021353 crossref_primary_10_1016_j_ijid_2020_10_093 crossref_primary_10_3390_ijms21144953 crossref_primary_10_3390_jcm11010116 crossref_primary_10_1056_EVIDe2300222 crossref_primary_10_7759_cureus_34293 crossref_primary_10_1210_clinem_dgad165 crossref_primary_10_1590_1678_4685_gmb_2020_0452 crossref_primary_10_1186_s13063_022_06929_y crossref_primary_10_3390_v14102118 crossref_primary_10_1016_j_jtumed_2022_11_007 crossref_primary_10_12998_wjcc_v8_i21_5320 crossref_primary_10_1080_07391102_2022_2043938 crossref_primary_10_1136_jclinpath_2020_206867 crossref_primary_10_1111_bcpt_13533 crossref_primary_10_3389_fviro_2023_1328229 crossref_primary_10_1038_s41467_024_45274_3 crossref_primary_10_3390_biomedicines9070710 crossref_primary_10_4014_jmb_2110_10029 crossref_primary_10_1016_j_mam_2022_101151 crossref_primary_10_1128_mbio_03129_23 crossref_primary_10_3390_ijms23063338 crossref_primary_10_1016_j_ypmed_2020_106280 crossref_primary_10_1016_j_mbs_2024_109144 crossref_primary_10_1002_VIW_20200181 crossref_primary_10_1002_jmv_28124 crossref_primary_10_1007_s42485_021_00074_x crossref_primary_10_1248_bpb_b20_00808 crossref_primary_10_3389_fnins_2023_1169740 crossref_primary_10_52586_5043 crossref_primary_10_3390_jcm9123962 crossref_primary_10_1128_Spectrum_00472_21 crossref_primary_10_1016_j_celrep_2021_109385 crossref_primary_10_1128_JVI_00975_21 crossref_primary_10_1016_j_ijantimicag_2023_106922 crossref_primary_10_1080_07391102_2023_2169762 crossref_primary_10_1016_j_coviro_2021_02_006 crossref_primary_10_1177_1721727X221095382 crossref_primary_10_3389_fviro_2021_815388 crossref_primary_10_2147_RMHP_S265030 crossref_primary_10_2491_jjsth_32_315 crossref_primary_10_1080_14787210_2021_1864327 crossref_primary_10_1016_j_bbrc_2020_10_094 crossref_primary_10_5620_eaht_2021010 crossref_primary_10_3389_fmicb_2022_789882 crossref_primary_10_2222_jsv_71_163 crossref_primary_10_1016_j_tice_2024_102319 crossref_primary_10_2174_0929867328666210420103021 crossref_primary_10_1002_ddr_21729 crossref_primary_10_1177_02611929231170392 crossref_primary_10_1016_j_cell_2022_04_035 crossref_primary_10_1016_j_heliyon_2024_e26577 crossref_primary_10_1111_cbdd_14600 crossref_primary_10_1016_j_cellin_2023_100144 crossref_primary_10_1590_0074_02760200552 crossref_primary_10_1016_j_bioorg_2022_105985 crossref_primary_10_1016_j_pupt_2021_102055 crossref_primary_10_1172_jci_insight_143174 crossref_primary_10_1186_s12967_022_03501_9 crossref_primary_10_3390_biology12040519 crossref_primary_10_3390_v12121475 crossref_primary_10_1038_s41467_022_34364_9 crossref_primary_10_1016_j_bcp_2020_114169 crossref_primary_10_1016_j_jphs_2021_10_007 crossref_primary_10_1002_bab_2369 crossref_primary_10_3390_v14020389 crossref_primary_10_2174_1568026622666220726122339 crossref_primary_10_1016_j_cell_2022_09_018 crossref_primary_10_1016_j_chom_2022_10_003 crossref_primary_10_1016_j_intimp_2021_108232 crossref_primary_10_1186_s41100_022_00405_8 crossref_primary_10_3390_pharmaceutics13091519 crossref_primary_10_1128_mBio_00970_21 crossref_primary_10_3389_fphar_2022_987816 crossref_primary_10_3390_v14020177 crossref_primary_10_1016_j_cmi_2024_01_029 crossref_primary_10_3389_fimmu_2021_649122 crossref_primary_10_1039_D0RA05821A crossref_primary_10_1021_acs_jafc_2c07811 crossref_primary_10_1016_j_isci_2022_105596 crossref_primary_10_3390_ijms23031351 crossref_primary_10_1016_j_molstruc_2021_130094 crossref_primary_10_2491_jjsth_31_604 crossref_primary_10_1021_acsinfecdis_0c00646 crossref_primary_10_3389_fphar_2021_827172 crossref_primary_10_1371_journal_pone_0271112 crossref_primary_10_1016_j_lfs_2021_119201 crossref_primary_10_1093_jb_mvad020 crossref_primary_10_3390_v15081744 crossref_primary_10_3390_biomedicines9111620 crossref_primary_10_1002_psp4_12681 crossref_primary_10_35772_ghm_2020_01082 crossref_primary_10_1016_j_ijid_2022_12_039 crossref_primary_10_1128_JVI_00807_21 crossref_primary_10_1021_acsinfecdis_2c00172 |
Cites_doi | 10.1128/JVI.00094-12 10.1038/s41422-020-0282-0 10.1371/journal.pone.0096790 10.1111/jth.14858 10.1101/2020.04.06.028522 10.1016/j.cell.2020.02.052 10.1111/jth.14817 10.1101/2020.03.11.987016 10.1016/j.biochi.2017.07.016 10.26434/chemrxiv.12037416 10.1128/JVI.01815-18 10.1016/S0301-472X(03)00260-1 10.1038/s41591-020-0868-6 10.1016/j.jaci.2006.02.047 10.1038/s41586-020-2012-7 10.1073/pnas.2002589117 10.1128/AAC.00754-20 10.1016/j.cell.2020.04.035 10.1073/pnas.2003138117 10.1128/AAC.01043-16 10.26434/chemrxiv.12009582 10.5501/wjv.v5.i2.85 10.1038/s42003-019-0547-7 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/v12060629 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1999-4915 |
ExternalDocumentID | oai_doaj_org_article_ef95b75cf9ad4ebd9a09062a7a03ac9e PMC7354595 32532094 10_3390_v12060629 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: 16H06575 |
GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS AFKRA AFPKN AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TR2 TUS UKHRP 3V. CGR CUY CVF ECM EIF ISR NPM 7X8 PPXIY PQGLB 7S9 L.6 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c474t-de4895fdc722930f9947b632c20068189f1c1080e90c9719f65fddb768fbc8623 |
IEDL.DBID | M48 |
ISSN | 1999-4915 |
IngestDate | Wed Aug 27 01:15:39 EDT 2025 Thu Aug 21 17:55:02 EDT 2025 Fri Jul 11 00:28:15 EDT 2025 Fri Jul 11 06:52:45 EDT 2025 Wed Feb 19 02:29:41 EST 2025 Tue Jul 01 02:48:11 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | TMPRSS2 SARS-CoV-2 fusion inhibitor |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-de4895fdc722930f9947b632c20068189f1c1080e90c9719f65fddb768fbc8623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8194-7727 0000-0003-3731-1702 0000-0001-6389-7036 0000-0001-5471-7363 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/v12060629 |
PMID | 32532094 |
PQID | 2412993643 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ef95b75cf9ad4ebd9a09062a7a03ac9e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7354595 proquest_miscellaneous_2498263781 proquest_miscellaneous_2412993643 pubmed_primary_32532094 crossref_primary_10_3390_v12060629 crossref_citationtrail_10_3390_v12060629 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200610 |
PublicationDateYYYYMMDD | 2020-06-10 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200610 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Viruses |
PublicationTitleAlternate | Viruses |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Esumi (ref_21) 1984; 15 Zhou (ref_1) 2020; 579 Yamamoto (ref_11) 2019; 2 Ziegler (ref_6) 2020; 181 Shang (ref_3) 2020; 117 ref_19 Ramakrishnan (ref_13) 2016; 5 ref_17 ref_16 ref_15 Chen (ref_25) 2006; 118 Shen (ref_2) 2017; 142 ref_24 Matsuyama (ref_12) 2020; 117 Kawase (ref_18) 2012; 86 ref_23 ref_22 Wang (ref_20) 2020; 30 Hoffmann (ref_14) 2020; 181 ref_9 Kitamura (ref_10) 2003; 31 ref_4 ref_7 Yamamoto (ref_8) 2016; 60 Sungnak (ref_5) 2020; 26 |
References_xml | – volume: 86 start-page: 6537 year: 2012 ident: ref_18 article-title: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry publication-title: J. Virol. doi: 10.1128/JVI.00094-12 – volume: 30 start-page: 269 year: 2020 ident: ref_20 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res. doi: 10.1038/s41422-020-0282-0 – ident: ref_9 doi: 10.1371/journal.pone.0096790 – ident: ref_24 doi: 10.1111/jth.14858 – ident: ref_4 doi: 10.1101/2020.04.06.028522 – volume: 181 start-page: 271 year: 2020 ident: ref_14 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – ident: ref_23 doi: 10.1111/jth.14817 – ident: ref_17 doi: 10.1101/2020.03.11.987016 – volume: 142 start-page: 1 year: 2017 ident: ref_2 article-title: TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections publication-title: Biochimie doi: 10.1016/j.biochi.2017.07.016 – ident: ref_16 doi: 10.26434/chemrxiv.12037416 – ident: ref_7 doi: 10.1128/JVI.01815-18 – volume: 31 start-page: 1007 year: 2003 ident: ref_10 article-title: Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics publication-title: Exp. Hematol. doi: 10.1016/S0301-472X(03)00260-1 – volume: 26 start-page: 681 year: 2020 ident: ref_5 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat. Med. doi: 10.1038/s41591-020-0868-6 – volume: 118 start-page: 105 year: 2006 ident: ref_25 article-title: Serine protease inhibitors nafamostat mesilate and gabexate mesilate attenuate allergen-induced airway inflammation and eosinophilia in a murine model of asthma publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2006.02.047 – volume: 579 start-page: 270 year: 2020 ident: ref_1 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 117 start-page: 7001 year: 2020 ident: ref_12 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2002589117 – ident: ref_22 doi: 10.1128/AAC.00754-20 – volume: 181 start-page: 1016 year: 2020 ident: ref_6 article-title: SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues publication-title: Cell doi: 10.1016/j.cell.2020.04.035 – volume: 15 start-page: 4050 year: 1984 ident: ref_21 article-title: Pharmacokinetic studies of FUT-175 (Nafamostat mesilate) (6)-blood level profiles, distribution, metabolism and excretion in rats after constant-rate infusion publication-title: Clin. Rep. – volume: 117 start-page: 11727 year: 2020 ident: ref_3 article-title: Cell entry mechanisms of SARS-CoV-2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2003138117 – volume: 60 start-page: 6532 year: 2016 ident: ref_8 article-title: Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01043-16 – ident: ref_15 doi: 10.26434/chemrxiv.12009582 – volume: 5 start-page: 85 year: 2016 ident: ref_13 article-title: Determination of 50% endpoint titer using a simple formula publication-title: World J. Virol. doi: 10.5501/wjv.v5.i2.85 – ident: ref_19 – volume: 2 start-page: 292 year: 2019 ident: ref_11 article-title: TRAF6 maintains mammary stem cells and promotes pregnancy-induced mammary epithelial cell expansion publication-title: Commun. Biol. doi: 10.1038/s42003-019-0547-7 |
SSID | ssj0066907 |
Score | 2.6096754 |
Snippet | Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 629 |
SubjectTerms | Angiotensin-Converting Enzyme 2 Angiotensin-Converting Enzyme Inhibitors - pharmacology Animals anticoagulants Anticoagulants - pharmacology Betacoronavirus - drug effects Betacoronavirus - metabolism blood cell fusion Cell Line Chlorocebus aethiops Communication Coronavirus Infections - drug therapy Coronavirus Infections - virology COVID-19 COVID-19 infection disseminated intravascular coagulation etiological agents fusion inhibitor Gabexate - analogs & derivatives Gabexate - pharmacology Guanidines - pharmacology HEK293 Cells Humans intravenous injection lungs median effective concentration Middle East respiratory syndrome coronavirus Pandemics peptidyl-dipeptidase A Peptidyl-Dipeptidase A - metabolism pneumonia Pneumonia, Viral - drug therapy Pneumonia, Viral - virology SARS-CoV-2 Serine Endopeptidases - metabolism serine proteinases Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - antagonists & inhibitors Spike Glycoprotein, Coronavirus - metabolism TMPRSS2 Vero Cells Virus Internalization - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlEOiltOmX27SopYdeRLyWbFnH7bZLUkgI3SbkZmR9EMNGLhtvYP9Uf2NnLO8mG0J76c3IYyN7Rpo3svweIZ9KabW33LBcGsmESD2rU--ZLbWDgVk40dMxHJ8Uh2fi-0V-cUfqC_eERXrg-OIOnFd5LXPjlbbC1VbpFKl1tdQp10Y5nH0h562LqTgHF1jzRR4hDkX9wc0oSwGp9zjyNvv0JP0PIcv7GyTvZJzpU_JkgIp0HLv4jDxyYY_sRvHI1XPyGzxMxwFOthr15ENHT7TXVy3-I0RPWwDD3XxFj8JlUzfdNZ2Nf8zYpD1nGZ3RU6RnaAI77pU6nKXTJS6b0SZQTSduPl83gPv0ikZec6qDpecNdBXuGvdwBTiCpm7R3l7KsLZlXwd13Y6iDrNbvCBn028_J4dsUF9gRkjRMQtuUrm3RmYACVKvlJB1wTODixCQ5pUfGdyg6FRqlBwpX4CxraF88bWBOom_JDuhDe41od5xl3vAQg59WBptNKTOMi_KTGbe1Qn5vPZKZQZqclTImFdQoqADq40DE_JxY_or8nE8ZPQFXbsxQArtvgECqxoCq_pXYCXkwzowKhhy-B1FB9curysAPZDEOWC5v9koKNy4LEcJeRWDadMdnqEahxIJkVthttXf7TOhueypvyUHxKvyN__jAd-SxxkuHqAQU7pPdrrF0r0DhNXV7_vB9AdGeCip priority: 102 providerName: Directory of Open Access Journals |
Title | The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32532094 https://www.proquest.com/docview/2412993643 https://www.proquest.com/docview/2498263781 https://pubmed.ncbi.nlm.nih.gov/PMC7354595 https://doaj.org/article/ef95b75cf9ad4ebd9a09062a7a03ac9e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiPeWR2UQBy6GvB0fEOqWLQtSq2pLV71FjmOzkYqzm6aI_il-IzNJGiiqEJeociaRlZnRfGO730fIq5hn0mS-YiFXnAWBY1jqGMOyWGpIzEgHNR3DeBKdz4PPi3BxQLYam-0HXO1t7VBPal4u3_y42byHhH-HHSe07G-_u54DONwTh-QYChJHIYNx0G0mRNgA1pvLAgXV3LAhGNp9dKcs1ez9-yDn3ycn_yhFo7vkTosh6aBx-j1yoO19cqtRldw8ID_B9XRg4WYhUWjeVnQijfxW4J-H6LQAlFwtN_STvcrTvFrR2eBixobFJfPojE6RtyG3bFxLeOiMjta4nkZzSyUd6uVyOwB-lRvaEJ5TaTN6mcNU4a3N4S4Lv2CoKovfjzJsetmHVna3oijQrMuHZD46-zI8Z60sA1MBDyqWgf9EaDLFPcAKjhEi4GnkewpXJ6D-C-MqPLmohaMEd4WJwDhLoa8xqYIGyn9Ejmxh9QmhRvs6NACSIJ4DHSupJNTUOIxij3tGpz3yeuuVRLWc5SidsUygd0EHJp0De-RlZ3rdEHXsMzpF13YGyK1dDxTl16RN1UQbEaY8VEbgpNJMSAfJnCWXji-V0D3yYhsYCeQibrBIq4v1KoHgg-ruA8j7l42Ajs7nsdsjj5tg6qbjeyjTIYIe4TthtjPf3Ts2v6o5wbkPUFiET_7nKzwltz1cNUAFJucZOarKtX4O0KpK--SQL3ifHJ-eTaYX_XqBAq4fF26_TqlfnfMnuQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Anticoagulant+Nafamostat+Potently+Inhibits+SARS-CoV-2+S+Protein-Mediated+Fusion+in+a+Cell+Fusion+Assay+System+and+Viral+Infection+In+Vitro+in+a+Cell-Type-Dependent+Manner&rft.jtitle=Viruses&rft.au=Yamamoto%2C+Mizuki&rft.au=Kiso%2C+Maki&rft.au=Sakai-Tagawa%2C+Yuko&rft.au=Iwatsuki-Horimoto%2C+Kiyoko&rft.date=2020-06-10&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=12&rft.issue=6&rft.spage=629&rft_id=info:doi/10.3390%2Fv12060629&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_v12060629 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |