The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner

Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravasc...

Full description

Saved in:
Bibliographic Details
Published inViruses Vol. 12; no. 6; p. 629
Main Authors Yamamoto, Mizuki, Kiso, Maki, Sakai-Tagawa, Yuko, Iwatsuki-Horimoto, Kiyoko, Imai, Masaki, Takeda, Makoto, Kinoshita, Noriko, Ohmagari, Norio, Gohda, Jin, Semba, Kentaro, Matsuda, Zene, Kawaguchi, Yasushi, Kawaoka, Yoshihiro, Inoue, Jun-ichiro
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 10.06.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19.
AbstractList Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)₅₀ around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC₅₀ around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19.
Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19.Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19.
Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC)50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC50 around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19.
Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC) 50 around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC 50 around 30 μM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat’s safety, make it a likely candidate drug to treat COVID-19.
Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be sufficiently effective for treating COVID-19. We previously found that nafamostat mesylate, an existing drug used for disseminated intravascular coagulation (DIC), effectively blocked Middle East respiratory syndrome coronavirus (MERS-CoV) S protein-mediated cell fusion by targeting transmembrane serine protease 2 (TMPRSS2), and inhibited MERS-CoV infection of human lung epithelium-derived Calu-3 cells. Here we established a quantitative fusion assay dependent on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein, angiotensin I converting enzyme 2 (ACE2) and TMPRSS2, and found that nafamostat mesylate potently inhibited the fusion while camostat mesylate was about 10-fold less active. Furthermore, nafamostat mesylate blocked SARS-CoV-2 infection of Calu-3 cells with an effective concentration (EC) around 10 nM, which is below its average blood concentration after intravenous administration through continuous infusion. On the other hand, a significantly higher dose (EC around 30 mM) was required for VeroE6/TMPRSS2 cells, where the TMPRSS2-independent but cathepsin-dependent endosomal infection pathway likely predominates. Together, our study shows that nafamostat mesylate potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and also inhibits SARS-CoV-2 infection in vitro in a cell-type-dependent manner. These findings, together with accumulated clinical data regarding nafamostat's safety, make it a likely candidate drug to treat COVID-19.
Author Takeda, Makoto
Ohmagari, Norio
Semba, Kentaro
Matsuda, Zene
Iwatsuki-Horimoto, Kiyoko
Kinoshita, Noriko
Kawaguchi, Yasushi
Inoue, Jun-ichiro
Gohda, Jin
Yamamoto, Mizuki
Kiso, Maki
Kawaoka, Yoshihiro
Sakai-Tagawa, Yuko
Imai, Masaki
AuthorAffiliation 6 Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
7 Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
5 Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; ksemba@waseda.jp
1 Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; mizuyama@ims.u-tokyo.ac.jp (M.Y.); jgohda@ims.u-tokyo.ac.jp (J.G.); zmatsuda@ims.u-tokyo.ac.jp (Z.M.); ykawagu@ims.u-tokyo.ac.jp (Y.K.)
8 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan;
AuthorAffiliation_xml – name: 9 Senior Professor Office, University of Tokyo, Tokyo 113-0033, Japan
– name: 8 Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
– name: 4 Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; nkinoshita@hosp.ncgm.go.jp (N.K.); nohmagari@hosp.ncgm.go.jp (N.O.)
– name: 2 Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; kisomaki@ims.u-tokyo.ac.jp (M.K.); ytsakai@ims.u-tokyo.ac.jp (Y.S.-T.); kenken@ims.u-tokyo.ac.jp (K.I.-H.); mimai@ims.u-tokyo.ac.jp (M.I.); yoshihiro.kawaoka@wisc.edu (Y.K.)
– name: 5 Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; ksemba@waseda.jp
– name: 6 Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
– name: 7 Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
– name: 1 Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; mizuyama@ims.u-tokyo.ac.jp (M.Y.); jgohda@ims.u-tokyo.ac.jp (J.G.); zmatsuda@ims.u-tokyo.ac.jp (Z.M.); ykawagu@ims.u-tokyo.ac.jp (Y.K.)
– name: 3 Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; mtakeda@nih.go.jp
Author_xml – sequence: 1
  givenname: Mizuki
  orcidid: 0000-0003-3731-1702
  surname: Yamamoto
  fullname: Yamamoto, Mizuki
– sequence: 2
  givenname: Maki
  surname: Kiso
  fullname: Kiso, Maki
– sequence: 3
  givenname: Yuko
  surname: Sakai-Tagawa
  fullname: Sakai-Tagawa, Yuko
– sequence: 4
  givenname: Kiyoko
  surname: Iwatsuki-Horimoto
  fullname: Iwatsuki-Horimoto, Kiyoko
– sequence: 5
  givenname: Masaki
  surname: Imai
  fullname: Imai, Masaki
– sequence: 6
  givenname: Makoto
  orcidid: 0000-0002-8194-7727
  surname: Takeda
  fullname: Takeda, Makoto
– sequence: 7
  givenname: Noriko
  orcidid: 0000-0001-5471-7363
  surname: Kinoshita
  fullname: Kinoshita, Noriko
– sequence: 8
  givenname: Norio
  surname: Ohmagari
  fullname: Ohmagari, Norio
– sequence: 9
  givenname: Jin
  surname: Gohda
  fullname: Gohda, Jin
– sequence: 10
  givenname: Kentaro
  surname: Semba
  fullname: Semba, Kentaro
– sequence: 11
  givenname: Zene
  surname: Matsuda
  fullname: Matsuda, Zene
– sequence: 12
  givenname: Yasushi
  surname: Kawaguchi
  fullname: Kawaguchi, Yasushi
– sequence: 13
  givenname: Yoshihiro
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
– sequence: 14
  givenname: Jun-ichiro
  orcidid: 0000-0001-6389-7036
  surname: Inoue
  fullname: Inoue, Jun-ichiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32532094$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhkeoiF5gwQsgL2Ex1Je5nQ1SFChEaqEioVvL4zlOXE3sdOxUmpfiGXFJG1rEgpWtc77z61z-4-zAeYdZ9prR90IAPb1lnFa04vAsO2IAkBfAyoNH_8PsOIRrSqsKaP0iOxS8FJxCcZT9XKyQTFy02qvltlcukq_KqLUPUUVy6SO62I9k5la2tTGQ-eT7PJ_6q5yTObkcUt66_AI7qyJ25GwbrHfEOqLIFPv-ITAJQY1kPoaIa6JcR67soPqkalDHO2DmUigO_k9pvhg3mH_EDbou9UAulHM4vMyeG9UHfHX_nmQ_zj4tpl_y82-fZ9PJea6Luoh5h0UDpel0zTkIagCKuq0E1zztoGENGKYZbSgC1VAzMFWCu7auGtPqpuLiJJvtdDuvruVmsGs1jNIrK38H_LCUakhL61GigbKtS21AdQW2HSgK6RaqVlQoDZi0Puy0Ntt2jZ1O06Thn4g-zTi7kkt_K2tRFiWUSeDtvcDgb7YYolzboNOOlEO_DZIX0PBK1A37D5RxAFEVIqFvHre17-fBGwl4twP04EMY0OwRRuWd7-Ted4k9_YvVNhkonTZNZPt_VPwCVXHaHA
CitedBy_id crossref_primary_10_1007_s40262_022_01170_x
crossref_primary_10_1093_bib_bbab490
crossref_primary_10_1016_j_jointm_2024_02_003
crossref_primary_10_1038_s41392_022_01039_2
crossref_primary_10_1371_journal_ppat_1009233
crossref_primary_10_3390_v12091006
crossref_primary_10_1128_mbio_02327_24
crossref_primary_10_1128_mbio_02923_22
crossref_primary_10_1016_j_biopha_2021_112513
crossref_primary_10_3390_molecules25184086
crossref_primary_10_1007_s40119_022_00263_9
crossref_primary_10_1165_rcmb_2020_0322PS
crossref_primary_10_1186_s12879_024_09012_w
crossref_primary_10_1016_j_ebiom_2024_105439
crossref_primary_10_1371_journal_ppat_1009225
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1056_EVIDoa2300132
crossref_primary_10_7883_yoken_JJID_2021_699
crossref_primary_10_2174_1874467214666210906125959
crossref_primary_10_1002_jca_21861
crossref_primary_10_3390_v15051171
crossref_primary_10_1124_jpet_122_001248
crossref_primary_10_1016_j_ymeth_2021_04_026
crossref_primary_10_1017_S0022029924000657
crossref_primary_10_1038_s41392_021_00733_x
crossref_primary_10_4062_biomolther_2020_201
crossref_primary_10_1016_j_tacc_2020_07_004
crossref_primary_10_1248_bpb_b20_00889
crossref_primary_10_1186_s13062_024_00523_9
crossref_primary_10_1016_j_antiviral_2023_105735
crossref_primary_10_3390_molecules27061881
crossref_primary_10_1111_jcpt_13646
crossref_primary_10_1016_j_biopha_2021_111330
crossref_primary_10_1039_D0SC05064D
crossref_primary_10_1021_acsomega_4c08640
crossref_primary_10_2174_1389557521666210308144302
crossref_primary_10_3201_eid2612_203386
crossref_primary_10_5551_jat_RPT001
crossref_primary_10_1007_s11239_020_02275_5
crossref_primary_10_1016_j_chom_2024_01_001
crossref_primary_10_1002_jcb_30528
crossref_primary_10_1093_jb_mvae037
crossref_primary_10_1146_annurev_pharmtox_121120_012309
crossref_primary_10_1111_ped_14479
crossref_primary_10_3390_jcm10112306
crossref_primary_10_4110_in_2023_23_e13
crossref_primary_10_1007_s13337_021_00751_x
crossref_primary_10_1038_s12276_021_00624_9
crossref_primary_10_1186_s13063_021_05760_1
crossref_primary_10_1186_s12974_021_02357_y
crossref_primary_10_1016_j_clim_2021_108849
crossref_primary_10_1038_s41392_021_00653_w
crossref_primary_10_3390_ijms22041797
crossref_primary_10_2217_fmb_2021_0019
crossref_primary_10_3390_jcm12186079
crossref_primary_10_1016_j_csbj_2020_12_035
crossref_primary_10_1039_D3CP01723K
crossref_primary_10_1111_cts_13400
crossref_primary_10_3389_fviro_2024_1353661
crossref_primary_10_3390_ijms22062815
crossref_primary_10_1007_s12185_020_03029_y
crossref_primary_10_1128_mbio_00519_22
crossref_primary_10_1016_j_xpro_2022_101773
crossref_primary_10_3390_ijms23031296
crossref_primary_10_5551_jat_61747_R
crossref_primary_10_3390_ijms22137060
crossref_primary_10_1038_s41586_022_04462_1
crossref_primary_10_3390_epidemiologia3010008
crossref_primary_10_1080_17460441_2022_2029843
crossref_primary_10_1016_j_ebiom_2022_103856
crossref_primary_10_3390_ijms21165707
crossref_primary_10_3390_cells9112377
crossref_primary_10_1093_pcmedi_pbac024
crossref_primary_10_1016_j_apsb_2021_06_016
crossref_primary_10_1371_journal_pone_0297679
crossref_primary_10_3851_IMP3368
crossref_primary_10_1080_0886022X_2022_2105233
crossref_primary_10_1186_s13054_020_03235_4
crossref_primary_10_1089_ten_tea_2024_0016
crossref_primary_10_5551_jat_61747
crossref_primary_10_3389_fcimb_2022_911313
crossref_primary_10_1016_j_intimp_2021_108049
crossref_primary_10_3390_ijms23095125
crossref_primary_10_1096_fj_202002097
crossref_primary_10_1016_j_eclinm_2021_101169
crossref_primary_10_1080_23744235_2022_2111464
crossref_primary_10_1002_cpt_3118
crossref_primary_10_1111_cts_13052
crossref_primary_10_1186_s12985_021_01624_x
crossref_primary_10_2174_1389450122666210809090909
crossref_primary_10_1089_vim_2021_0023
crossref_primary_10_3390_ijms24108711
crossref_primary_10_1021_acs_jmedchem_4c00384
crossref_primary_10_1002_jmv_26397
crossref_primary_10_1128_jvi_00128_22
crossref_primary_10_51987_revhospitalbaires_v42i4_237
crossref_primary_10_1007_s10753_022_01656_7
crossref_primary_10_1186_s12929_022_00847_6
crossref_primary_10_33611_trs_2021_011
crossref_primary_10_1016_j_isci_2023_106955
crossref_primary_10_1016_j_ejphar_2021_173930
crossref_primary_10_2147_DDDT_S320320
crossref_primary_10_1021_acs_jmedchem_3c01238
crossref_primary_10_3390_ijms25021353
crossref_primary_10_1016_j_ijid_2020_10_093
crossref_primary_10_3390_ijms21144953
crossref_primary_10_3390_jcm11010116
crossref_primary_10_1056_EVIDe2300222
crossref_primary_10_7759_cureus_34293
crossref_primary_10_1210_clinem_dgad165
crossref_primary_10_1590_1678_4685_gmb_2020_0452
crossref_primary_10_1186_s13063_022_06929_y
crossref_primary_10_3390_v14102118
crossref_primary_10_1016_j_jtumed_2022_11_007
crossref_primary_10_12998_wjcc_v8_i21_5320
crossref_primary_10_1080_07391102_2022_2043938
crossref_primary_10_1136_jclinpath_2020_206867
crossref_primary_10_1111_bcpt_13533
crossref_primary_10_3389_fviro_2023_1328229
crossref_primary_10_1038_s41467_024_45274_3
crossref_primary_10_3390_biomedicines9070710
crossref_primary_10_4014_jmb_2110_10029
crossref_primary_10_1016_j_mam_2022_101151
crossref_primary_10_1128_mbio_03129_23
crossref_primary_10_3390_ijms23063338
crossref_primary_10_1016_j_ypmed_2020_106280
crossref_primary_10_1016_j_mbs_2024_109144
crossref_primary_10_1002_VIW_20200181
crossref_primary_10_1002_jmv_28124
crossref_primary_10_1007_s42485_021_00074_x
crossref_primary_10_1248_bpb_b20_00808
crossref_primary_10_3389_fnins_2023_1169740
crossref_primary_10_52586_5043
crossref_primary_10_3390_jcm9123962
crossref_primary_10_1128_Spectrum_00472_21
crossref_primary_10_1016_j_celrep_2021_109385
crossref_primary_10_1128_JVI_00975_21
crossref_primary_10_1016_j_ijantimicag_2023_106922
crossref_primary_10_1080_07391102_2023_2169762
crossref_primary_10_1016_j_coviro_2021_02_006
crossref_primary_10_1177_1721727X221095382
crossref_primary_10_3389_fviro_2021_815388
crossref_primary_10_2147_RMHP_S265030
crossref_primary_10_2491_jjsth_32_315
crossref_primary_10_1080_14787210_2021_1864327
crossref_primary_10_1016_j_bbrc_2020_10_094
crossref_primary_10_5620_eaht_2021010
crossref_primary_10_3389_fmicb_2022_789882
crossref_primary_10_2222_jsv_71_163
crossref_primary_10_1016_j_tice_2024_102319
crossref_primary_10_2174_0929867328666210420103021
crossref_primary_10_1002_ddr_21729
crossref_primary_10_1177_02611929231170392
crossref_primary_10_1016_j_cell_2022_04_035
crossref_primary_10_1016_j_heliyon_2024_e26577
crossref_primary_10_1111_cbdd_14600
crossref_primary_10_1016_j_cellin_2023_100144
crossref_primary_10_1590_0074_02760200552
crossref_primary_10_1016_j_bioorg_2022_105985
crossref_primary_10_1016_j_pupt_2021_102055
crossref_primary_10_1172_jci_insight_143174
crossref_primary_10_1186_s12967_022_03501_9
crossref_primary_10_3390_biology12040519
crossref_primary_10_3390_v12121475
crossref_primary_10_1038_s41467_022_34364_9
crossref_primary_10_1016_j_bcp_2020_114169
crossref_primary_10_1016_j_jphs_2021_10_007
crossref_primary_10_1002_bab_2369
crossref_primary_10_3390_v14020389
crossref_primary_10_2174_1568026622666220726122339
crossref_primary_10_1016_j_cell_2022_09_018
crossref_primary_10_1016_j_chom_2022_10_003
crossref_primary_10_1016_j_intimp_2021_108232
crossref_primary_10_1186_s41100_022_00405_8
crossref_primary_10_3390_pharmaceutics13091519
crossref_primary_10_1128_mBio_00970_21
crossref_primary_10_3389_fphar_2022_987816
crossref_primary_10_3390_v14020177
crossref_primary_10_1016_j_cmi_2024_01_029
crossref_primary_10_3389_fimmu_2021_649122
crossref_primary_10_1039_D0RA05821A
crossref_primary_10_1021_acs_jafc_2c07811
crossref_primary_10_1016_j_isci_2022_105596
crossref_primary_10_3390_ijms23031351
crossref_primary_10_1016_j_molstruc_2021_130094
crossref_primary_10_2491_jjsth_31_604
crossref_primary_10_1021_acsinfecdis_0c00646
crossref_primary_10_3389_fphar_2021_827172
crossref_primary_10_1371_journal_pone_0271112
crossref_primary_10_1016_j_lfs_2021_119201
crossref_primary_10_1093_jb_mvad020
crossref_primary_10_3390_v15081744
crossref_primary_10_3390_biomedicines9111620
crossref_primary_10_1002_psp4_12681
crossref_primary_10_35772_ghm_2020_01082
crossref_primary_10_1016_j_ijid_2022_12_039
crossref_primary_10_1128_JVI_00807_21
crossref_primary_10_1021_acsinfecdis_2c00172
Cites_doi 10.1128/JVI.00094-12
10.1038/s41422-020-0282-0
10.1371/journal.pone.0096790
10.1111/jth.14858
10.1101/2020.04.06.028522
10.1016/j.cell.2020.02.052
10.1111/jth.14817
10.1101/2020.03.11.987016
10.1016/j.biochi.2017.07.016
10.26434/chemrxiv.12037416
10.1128/JVI.01815-18
10.1016/S0301-472X(03)00260-1
10.1038/s41591-020-0868-6
10.1016/j.jaci.2006.02.047
10.1038/s41586-020-2012-7
10.1073/pnas.2002589117
10.1128/AAC.00754-20
10.1016/j.cell.2020.04.035
10.1073/pnas.2003138117
10.1128/AAC.01043-16
10.26434/chemrxiv.12009582
10.5501/wjv.v5.i2.85
10.1038/s42003-019-0547-7
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/v12060629
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1999-4915
ExternalDocumentID oai_doaj_org_article_ef95b75cf9ad4ebd9a09062a7a03ac9e
PMC7354595
32532094
10_3390_v12060629
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: 16H06575
GroupedDBID ---
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
TR2
TUS
UKHRP
3V.
CGR
CUY
CVF
ECM
EIF
ISR
NPM
7X8
PPXIY
PQGLB
7S9
L.6
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c474t-de4895fdc722930f9947b632c20068189f1c1080e90c9719f65fddb768fbc8623
IEDL.DBID M48
ISSN 1999-4915
IngestDate Wed Aug 27 01:15:39 EDT 2025
Thu Aug 21 17:55:02 EDT 2025
Fri Jul 11 00:28:15 EDT 2025
Fri Jul 11 06:52:45 EDT 2025
Wed Feb 19 02:29:41 EST 2025
Tue Jul 01 02:48:11 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords TMPRSS2
SARS-CoV-2
fusion inhibitor
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-de4895fdc722930f9947b632c20068189f1c1080e90c9719f65fddb768fbc8623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8194-7727
0000-0003-3731-1702
0000-0001-6389-7036
0000-0001-5471-7363
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/v12060629
PMID 32532094
PQID 2412993643
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ef95b75cf9ad4ebd9a09062a7a03ac9e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7354595
proquest_miscellaneous_2498263781
proquest_miscellaneous_2412993643
pubmed_primary_32532094
crossref_primary_10_3390_v12060629
crossref_citationtrail_10_3390_v12060629
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200610
PublicationDateYYYYMMDD 2020-06-10
PublicationDate_xml – month: 6
  year: 2020
  text: 20200610
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Viruses
PublicationTitleAlternate Viruses
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Esumi (ref_21) 1984; 15
Zhou (ref_1) 2020; 579
Yamamoto (ref_11) 2019; 2
Ziegler (ref_6) 2020; 181
Shang (ref_3) 2020; 117
ref_19
Ramakrishnan (ref_13) 2016; 5
ref_17
ref_16
ref_15
Chen (ref_25) 2006; 118
Shen (ref_2) 2017; 142
ref_24
Matsuyama (ref_12) 2020; 117
Kawase (ref_18) 2012; 86
ref_23
ref_22
Wang (ref_20) 2020; 30
Hoffmann (ref_14) 2020; 181
ref_9
Kitamura (ref_10) 2003; 31
ref_4
ref_7
Yamamoto (ref_8) 2016; 60
Sungnak (ref_5) 2020; 26
References_xml – volume: 86
  start-page: 6537
  year: 2012
  ident: ref_18
  article-title: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.00094-12
– volume: 30
  start-page: 269
  year: 2020
  ident: ref_20
  article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro
  publication-title: Cell Res.
  doi: 10.1038/s41422-020-0282-0
– ident: ref_9
  doi: 10.1371/journal.pone.0096790
– ident: ref_24
  doi: 10.1111/jth.14858
– ident: ref_4
  doi: 10.1101/2020.04.06.028522
– volume: 181
  start-page: 271
  year: 2020
  ident: ref_14
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– ident: ref_23
  doi: 10.1111/jth.14817
– ident: ref_17
  doi: 10.1101/2020.03.11.987016
– volume: 142
  start-page: 1
  year: 2017
  ident: ref_2
  article-title: TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2017.07.016
– ident: ref_16
  doi: 10.26434/chemrxiv.12037416
– ident: ref_7
  doi: 10.1128/JVI.01815-18
– volume: 31
  start-page: 1007
  year: 2003
  ident: ref_10
  article-title: Retrovirus-mediated gene transfer and expression cloning: Powerful tools in functional genomics
  publication-title: Exp. Hematol.
  doi: 10.1016/S0301-472X(03)00260-1
– volume: 26
  start-page: 681
  year: 2020
  ident: ref_5
  article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0868-6
– volume: 118
  start-page: 105
  year: 2006
  ident: ref_25
  article-title: Serine protease inhibitors nafamostat mesilate and gabexate mesilate attenuate allergen-induced airway inflammation and eosinophilia in a murine model of asthma
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2006.02.047
– volume: 579
  start-page: 270
  year: 2020
  ident: ref_1
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 117
  start-page: 7001
  year: 2020
  ident: ref_12
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2002589117
– ident: ref_22
  doi: 10.1128/AAC.00754-20
– volume: 181
  start-page: 1016
  year: 2020
  ident: ref_6
  article-title: SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.035
– volume: 15
  start-page: 4050
  year: 1984
  ident: ref_21
  article-title: Pharmacokinetic studies of FUT-175 (Nafamostat mesilate) (6)-blood level profiles, distribution, metabolism and excretion in rats after constant-rate infusion
  publication-title: Clin. Rep.
– volume: 117
  start-page: 11727
  year: 2020
  ident: ref_3
  article-title: Cell entry mechanisms of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2003138117
– volume: 60
  start-page: 6532
  year: 2016
  ident: ref_8
  article-title: Identification of Nafamostat as a Potent Inhibitor of Middle East Respiratory Syndrome Coronavirus S Protein-Mediated Membrane Fusion Using the Split-Protein-Based Cell-Cell Fusion Assay
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01043-16
– ident: ref_15
  doi: 10.26434/chemrxiv.12009582
– volume: 5
  start-page: 85
  year: 2016
  ident: ref_13
  article-title: Determination of 50% endpoint titer using a simple formula
  publication-title: World J. Virol.
  doi: 10.5501/wjv.v5.i2.85
– ident: ref_19
– volume: 2
  start-page: 292
  year: 2019
  ident: ref_11
  article-title: TRAF6 maintains mammary stem cells and promotes pregnancy-induced mammary epithelial cell expansion
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0547-7
SSID ssj0066907
Score 2.6096754
Snippet Although infection by SARS-CoV-2, the causative agent of coronavirus pneumonia disease (COVID-19), is spreading rapidly worldwide, no drug has been shown to be...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 629
SubjectTerms Angiotensin-Converting Enzyme 2
Angiotensin-Converting Enzyme Inhibitors - pharmacology
Animals
anticoagulants
Anticoagulants - pharmacology
Betacoronavirus - drug effects
Betacoronavirus - metabolism
blood
cell fusion
Cell Line
Chlorocebus aethiops
Communication
Coronavirus Infections - drug therapy
Coronavirus Infections - virology
COVID-19
COVID-19 infection
disseminated intravascular coagulation
etiological agents
fusion inhibitor
Gabexate - analogs & derivatives
Gabexate - pharmacology
Guanidines - pharmacology
HEK293 Cells
Humans
intravenous injection
lungs
median effective concentration
Middle East respiratory syndrome coronavirus
Pandemics
peptidyl-dipeptidase A
Peptidyl-Dipeptidase A - metabolism
pneumonia
Pneumonia, Viral - drug therapy
Pneumonia, Viral - virology
SARS-CoV-2
Serine Endopeptidases - metabolism
serine proteinases
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - antagonists & inhibitors
Spike Glycoprotein, Coronavirus - metabolism
TMPRSS2
Vero Cells
Virus Internalization - drug effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlEOiltOmX27SopYdeRLyWbFnH7bZLUkgI3SbkZmR9EMNGLhtvYP9Uf2NnLO8mG0J76c3IYyN7Rpo3svweIZ9KabW33LBcGsmESD2rU--ZLbWDgVk40dMxHJ8Uh2fi-0V-cUfqC_eERXrg-OIOnFd5LXPjlbbC1VbpFKl1tdQp10Y5nH0h562LqTgHF1jzRR4hDkX9wc0oSwGp9zjyNvv0JP0PIcv7GyTvZJzpU_JkgIp0HLv4jDxyYY_sRvHI1XPyGzxMxwFOthr15ENHT7TXVy3-I0RPWwDD3XxFj8JlUzfdNZ2Nf8zYpD1nGZ3RU6RnaAI77pU6nKXTJS6b0SZQTSduPl83gPv0ikZec6qDpecNdBXuGvdwBTiCpm7R3l7KsLZlXwd13Y6iDrNbvCBn028_J4dsUF9gRkjRMQtuUrm3RmYACVKvlJB1wTODixCQ5pUfGdyg6FRqlBwpX4CxraF88bWBOom_JDuhDe41od5xl3vAQg59WBptNKTOMi_KTGbe1Qn5vPZKZQZqclTImFdQoqADq40DE_JxY_or8nE8ZPQFXbsxQArtvgECqxoCq_pXYCXkwzowKhhy-B1FB9curysAPZDEOWC5v9koKNy4LEcJeRWDadMdnqEahxIJkVthttXf7TOhueypvyUHxKvyN__jAd-SxxkuHqAQU7pPdrrF0r0DhNXV7_vB9AdGeCip
  priority: 102
  providerName: Directory of Open Access Journals
Title The Anticoagulant Nafamostat Potently Inhibits SARS-CoV-2 S Protein-Mediated Fusion in a Cell Fusion Assay System and Viral Infection In Vitro in a Cell-Type-Dependent Manner
URI https://www.ncbi.nlm.nih.gov/pubmed/32532094
https://www.proquest.com/docview/2412993643
https://www.proquest.com/docview/2498263781
https://pubmed.ncbi.nlm.nih.gov/PMC7354595
https://doaj.org/article/ef95b75cf9ad4ebd9a09062a7a03ac9e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiPeWR2UQBy6GvB0fEOqWLQtSq2pLV71FjmOzkYqzm6aI_il-IzNJGiiqEJeociaRlZnRfGO730fIq5hn0mS-YiFXnAWBY1jqGMOyWGpIzEgHNR3DeBKdz4PPi3BxQLYam-0HXO1t7VBPal4u3_y42byHhH-HHSe07G-_u54DONwTh-QYChJHIYNx0G0mRNgA1pvLAgXV3LAhGNp9dKcs1ez9-yDn3ycn_yhFo7vkTosh6aBx-j1yoO19cqtRldw8ID_B9XRg4WYhUWjeVnQijfxW4J-H6LQAlFwtN_STvcrTvFrR2eBixobFJfPojE6RtyG3bFxLeOiMjta4nkZzSyUd6uVyOwB-lRvaEJ5TaTN6mcNU4a3N4S4Lv2CoKovfjzJsetmHVna3oijQrMuHZD46-zI8Z60sA1MBDyqWgf9EaDLFPcAKjhEi4GnkewpXJ6D-C-MqPLmohaMEd4WJwDhLoa8xqYIGyn9Ejmxh9QmhRvs6NACSIJ4DHSupJNTUOIxij3tGpz3yeuuVRLWc5SidsUygd0EHJp0De-RlZ3rdEHXsMzpF13YGyK1dDxTl16RN1UQbEaY8VEbgpNJMSAfJnCWXji-V0D3yYhsYCeQibrBIq4v1KoHgg-ruA8j7l42Ajs7nsdsjj5tg6qbjeyjTIYIe4TthtjPf3Ts2v6o5wbkPUFiET_7nKzwltz1cNUAFJucZOarKtX4O0KpK--SQL3ifHJ-eTaYX_XqBAq4fF26_TqlfnfMnuQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Anticoagulant+Nafamostat+Potently+Inhibits+SARS-CoV-2+S+Protein-Mediated+Fusion+in+a+Cell+Fusion+Assay+System+and+Viral+Infection+In+Vitro+in+a+Cell-Type-Dependent+Manner&rft.jtitle=Viruses&rft.au=Yamamoto%2C+Mizuki&rft.au=Kiso%2C+Maki&rft.au=Sakai-Tagawa%2C+Yuko&rft.au=Iwatsuki-Horimoto%2C+Kiyoko&rft.date=2020-06-10&rft.issn=1999-4915&rft.eissn=1999-4915&rft.volume=12&rft.issue=6&rft.spage=629&rft_id=info:doi/10.3390%2Fv12060629&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_v12060629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon