Academic performance warning system based on data driven for higher education

Academic probation at universities has become a matter of pressing concern in recent years, as many students face severe consequences of academic probation. We carried out research to find solutions to decrease the situation mentioned above. Our research used the power of massive data sources from t...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 8; pp. 5819 - 5837
Main Authors Duong, Hanh Thi-Hong, Tran, Linh Thi-My, To, Huy Quoc, Van Nguyen, Kiet
Format Journal Article
LanguageEnglish
Published London Springer London 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0941-0643
1433-3058
DOI10.1007/s00521-022-07997-6

Cover

Loading…
Abstract Academic probation at universities has become a matter of pressing concern in recent years, as many students face severe consequences of academic probation. We carried out research to find solutions to decrease the situation mentioned above. Our research used the power of massive data sources from the education sector and the modernity of machine learning techniques to build an academic warning system. Our system is based on academic performance that directly reflects students’ academic probation status at the university. Through the research process, we provided a dataset that has been extracted and developed from raw data sources, including a wealth of information about students, subjects, and scores. We build a dataset with many features that are extremely useful in predicting students’ academic warning status via feature generation techniques and feature selection strategies. Remarkably, the dataset contributed is flexible and scalable because we provided detailed calculation formulas that its materials are found in any university or college in Vietnam. That allows any university to reuse or reconstruct another similar dataset based on their raw academic database. Moreover, we variously combined data, unbalanced data handling techniques, model selection techniques, and research to propose suitable machine learning algorithms to build the best possible warning system. As a result, a two-stage academic performance warning system for higher education was proposed, with the F2-score measure of more than 74% at the beginning of the semester using the algorithm Support Vector Machine and more than 92% before the final examination using the algorithm LightGBM.
AbstractList Academic probation at universities has become a matter of pressing concern in recent years, as many students face severe consequences of academic probation. We carried out research to find solutions to decrease the situation mentioned above. Our research used the power of massive data sources from the education sector and the modernity of machine learning techniques to build an academic warning system. Our system is based on academic performance that directly reflects students' academic probation status at the university. Through the research process, we provided a dataset that has been extracted and developed from raw data sources, including a wealth of information about students, subjects, and scores. We build a dataset with many features that are extremely useful in predicting students' academic warning status via feature generation techniques and feature selection strategies. Remarkably, the dataset contributed is flexible and scalable because we provided detailed calculation formulas that its materials are found in any university or college in Vietnam. That allows any university to reuse or reconstruct another similar dataset based on their raw academic database. Moreover, we variously combined data, unbalanced data handling techniques, model selection techniques, and research to propose suitable machine learning algorithms to build the best possible warning system. As a result, a two-stage academic performance warning system for higher education was proposed, with the F2-score measure of more than 74% at the beginning of the semester using the algorithm Support Vector Machine and more than 92% before the final examination using the algorithm LightGBM.
Academic probation at universities has become a matter of pressing concern in recent years, as many students face severe consequences of academic probation. We carried out research to find solutions to decrease the situation mentioned above. Our research used the power of massive data sources from the education sector and the modernity of machine learning techniques to build an academic warning system. Our system is based on academic performance that directly reflects students' academic probation status at the university. Through the research process, we provided a dataset that has been extracted and developed from raw data sources, including a wealth of information about students, subjects, and scores. We build a dataset with many features that are extremely useful in predicting students' academic warning status via feature generation techniques and feature selection strategies. Remarkably, the dataset contributed is flexible and scalable because we provided detailed calculation formulas that its materials are found in any university or college in Vietnam. That allows any university to reuse or reconstruct another similar dataset based on their raw academic database. Moreover, we variously combined data, unbalanced data handling techniques, model selection techniques, and research to propose suitable machine learning algorithms to build the best possible warning system. As a result, a two-stage academic performance warning system for higher education was proposed, with the F2-score measure of more than 74% at the beginning of the semester using the algorithm Support Vector Machine and more than 92% before the final examination using the algorithm LightGBM.Academic probation at universities has become a matter of pressing concern in recent years, as many students face severe consequences of academic probation. We carried out research to find solutions to decrease the situation mentioned above. Our research used the power of massive data sources from the education sector and the modernity of machine learning techniques to build an academic warning system. Our system is based on academic performance that directly reflects students' academic probation status at the university. Through the research process, we provided a dataset that has been extracted and developed from raw data sources, including a wealth of information about students, subjects, and scores. We build a dataset with many features that are extremely useful in predicting students' academic warning status via feature generation techniques and feature selection strategies. Remarkably, the dataset contributed is flexible and scalable because we provided detailed calculation formulas that its materials are found in any university or college in Vietnam. That allows any university to reuse or reconstruct another similar dataset based on their raw academic database. Moreover, we variously combined data, unbalanced data handling techniques, model selection techniques, and research to propose suitable machine learning algorithms to build the best possible warning system. As a result, a two-stage academic performance warning system for higher education was proposed, with the F2-score measure of more than 74% at the beginning of the semester using the algorithm Support Vector Machine and more than 92% before the final examination using the algorithm LightGBM.
Author To, Huy Quoc
Duong, Hanh Thi-Hong
Van Nguyen, Kiet
Tran, Linh Thi-My
Author_xml – sequence: 1
  givenname: Hanh Thi-Hong
  surname: Duong
  fullname: Duong, Hanh Thi-Hong
  organization: Faculty of Information Science and Engineering, University of Information Technology, Vietnam National University
– sequence: 2
  givenname: Linh Thi-My
  surname: Tran
  fullname: Tran, Linh Thi-My
  organization: Faculty of Information Science and Engineering, University of Information Technology, Vietnam National University
– sequence: 3
  givenname: Huy Quoc
  surname: To
  fullname: To, Huy Quoc
  organization: Faculty of Information Science and Engineering, University of Information Technology, Vietnam National University
– sequence: 4
  givenname: Kiet
  orcidid: 0000-0002-8456-2742
  surname: Van Nguyen
  fullname: Van Nguyen, Kiet
  email: kietnv@uit.edu.vn
  organization: Faculty of Information Science and Engineering, University of Information Technology, Vietnam National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36408289$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URG8Lf4AFisSGTWD8SGxvkKqKl1TEBtaWY0_udZXYFzsp6r_H7S0FuujKi_nO8Zw5J-QopoiEvKTwlgLIdwWgY7QFxlqQWsu2f0I2VHDecujUEdmAFnXcC35MTkq5BADRq-4ZOea9AMWU3pCvZ856nINr9pjHlGcbHTa_bI4hbptyXRacm8EW9E2KjbeLbXwOVxibCje7sN1hbtCvzi4hxefk6Wingi_u3lPy4-OH7-ef24tvn76cn120TkixtF5zDZ7SQaGVyivLhxG1o9JJZL3U1HNrwTNGB60BRnRCKGe5Y9w68JyfkvcH3_06zOgdxiXbyexzmG2-NskG8_8khp3Zpiujb4KLrhq8uTPI6eeKZTFzKA6nyUZMazFMciV0xzpW0dcP0Mu05ljjVUpBJxn0UKlX_250v8qfS1eAHQCXUykZx3uEgrmp0xzqNLVOc1un6atIPRC5sNxeuqYK0-NSfpCW-k_cYv679iOq34YftLY
CitedBy_id crossref_primary_10_1007_s10639_024_12610_5
crossref_primary_10_1142_S2972370123500010
crossref_primary_10_3390_diagnostics14121296
crossref_primary_10_22399_ijcesen_799
Cites_doi 10.1007/978-3-030-86993-9_44
10.1007/BF00116251
10.1109/ACCESS.2021.3093563
10.1007/978-3-030-91387-8_26
10.1007/s40747-021-00383-0
10.1088/1757-899x/1099/1/012077
10.1186/s40537-020-00327-4
10.1080/00131911.2018.1483892
10.1088/1755-1315/357/1/012035
10.4018/IJWLTT.297622
10.1109/ICITISEE.2017.8285509
10.1007/978-3-030-03192-3_17
10.1007/s13042-017-0734-0
10.19044/esj.2021.v17n7p1
10.1109/TrustCom.2016.0163
10.1016/j.ifacol.2021.04.172
10.3390/educsci9040275
10.1109/ACCESS.2020.3026222
10.1109/5254.708428
10.1023/A:1010933404324
10.1016/j.dss.2018.09.001
10.1016/j.comnet.2018.01.007
10.1186/s40561-022-00192-z
10.1057/jt.2009.5
10.1109/ISCC47284.2019.8969637
10.1109/MLSP.2006.275572
10.1007/s10994-006-6226-1
10.1214/aos/1013203451
10.1371/journal.pone.0171207
10.1214/aoms/1177729586
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2023
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00521-022-07997-6
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
Advanced Technologies & Aerospace Collection

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Education
EISSN 1433-3058
EndPage 5837
ExternalDocumentID PMC9640845
36408289
10_1007_s00521_022_07997_6
Genre Journal Article
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZT
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
NPM
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-d9390d11b8ea78d8a3bfe9c17c7e26791d3aa0d221b9900fec448ca3c23ac0d33
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Thu Aug 21 18:39:49 EDT 2025
Fri Jul 11 08:22:10 EDT 2025
Fri Jul 25 20:54:34 EDT 2025
Mon Jul 21 05:45:30 EDT 2025
Sun Jul 06 05:05:27 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Thu Apr 10 07:42:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Data driven
Imbalanced data
Feature selection
Feature generation
Academic performance
Machine learning
Warning system
Language English
License The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-d9390d11b8ea78d8a3bfe9c17c7e26791d3aa0d221b9900fec448ca3c23ac0d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8456-2742
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9640845
PMID 36408289
PQID 2780572060
PQPubID 2043988
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9640845
proquest_miscellaneous_2738495252
proquest_journals_2780572060
pubmed_primary_36408289
crossref_primary_10_1007_s00521_022_07997_6
crossref_citationtrail_10_1007_s00521_022_07997_6
springer_journals_10_1007_s00521_022_07997_6
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationTitleAlternate Neural Comput Appl
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 7997_CR22
7997_CR20
L Niu (7997_CR34) 2020; 72
JR Quinlan (7997_CR31) 2004; 1
Z Mingyu (7997_CR2) 2021; 8
L Li (7997_CR17) 2020; 53
VL Miguéis (7997_CR1) 2018; 115
B Madeira (7997_CR6) 2021
N Nahar (7997_CR19) 2021
P Kumar (7997_CR27) 2021; 1099
S Corchs (7997_CR8) 2019; 10
R Carrasco (7997_CR11) 2020; 8
R-C Chen (7997_CR21) 2020; 7
H Hasan (7997_CR15) 2019; 357
7997_CR26
H Shi (7997_CR18) 2018; 132
HE Robbins (7997_CR35) 2007; 22
JH Friedman (7997_CR13) 2001; 29
7997_CR12
MA Hearst (7997_CR14) 1998; 13
L Breiman (7997_CR32) 2004; 45
7997_CR10
N Rachburee (7997_CR25) 2021; 11
SDA Bujang (7997_CR3) 2021; 9
M Yağcı (7997_CR30) 2022; 9
S Rovira (7997_CR28) 2017; 12
J Namdeo (7997_CR5) 2014; 2
7997_CR9
7997_CR7
I Guyon (7997_CR23) 2003; 3
B Ratner (7997_CR37) 2009
T-N Huynh-Ly (7997_CR29) 2021
T Barros (7997_CR24) 2019; 9
P Geurts (7997_CR33) 2006; 63
7997_CR16
T Hamim (7997_CR4) 2022; 17
7997_CR36
References_xml – start-page: 496
  volume-title: Brain informatics
  year: 2021
  ident: 7997_CR19
  doi: 10.1007/978-3-030-86993-9_44
– volume: 1
  start-page: 81
  year: 2004
  ident: 7997_CR31
  publication-title: Mach Learn
  doi: 10.1007/BF00116251
– volume: 9
  start-page: 95608
  year: 2021
  ident: 7997_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093563
– start-page: 408
  volume-title: Future data and security engineering
  year: 2021
  ident: 7997_CR29
  doi: 10.1007/978-3-030-91387-8_26
– volume: 8
  start-page: 323
  issue: 1
  year: 2021
  ident: 7997_CR2
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-021-00383-0
– volume: 1099
  start-page: 012077
  issue: 1
  year: 2021
  ident: 7997_CR27
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899x/1099/1/012077
– ident: 7997_CR16
– volume: 7
  start-page: 26
  year: 2020
  ident: 7997_CR21
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00327-4
– volume: 72
  start-page: 41
  issue: 1
  year: 2020
  ident: 7997_CR34
  publication-title: Educ Rev
  doi: 10.1080/00131911.2018.1483892
– volume: 357
  start-page: 012035
  year: 2019
  ident: 7997_CR15
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/357/1/012035
– volume: 17
  start-page: 1
  issue: 5
  year: 2022
  ident: 7997_CR4
  publication-title: Int J Web-Based Learn Teach Technol (IJWLTT)
  doi: 10.4018/IJWLTT.297622
– ident: 7997_CR12
– ident: 7997_CR20
  doi: 10.1109/ICITISEE.2017.8285509
– ident: 7997_CR7
  doi: 10.1007/978-3-030-03192-3_17
– ident: 7997_CR26
– volume: 10
  start-page: 2057
  issue: 8
  year: 2019
  ident: 7997_CR8
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-017-0734-0
– year: 2021
  ident: 7997_CR6
  publication-title: Eur Sci J
  doi: 10.19044/esj.2021.v17n7p1
– ident: 7997_CR9
  doi: 10.1109/TrustCom.2016.0163
– volume: 3
  start-page: 1157
  year: 2003
  ident: 7997_CR23
  publication-title: J Mach Learn Res
– volume: 53
  start-page: 774
  issue: 5
  year: 2020
  ident: 7997_CR17
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.04.172
– volume: 9
  start-page: 275
  year: 2019
  ident: 7997_CR24
  publication-title: Educ. Sci.
  doi: 10.3390/educsci9040275
– volume: 8
  start-page: 186421
  year: 2020
  ident: 7997_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3026222
– volume: 13
  start-page: 18
  year: 1998
  ident: 7997_CR14
  publication-title: IEEE Intell. Syst.
  doi: 10.1109/5254.708428
– volume: 45
  start-page: 5
  year: 2004
  ident: 7997_CR32
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 7997_CR36
– volume: 115
  start-page: 36
  year: 2018
  ident: 7997_CR1
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2018.09.001
– volume: 132
  start-page: 81
  year: 2018
  ident: 7997_CR18
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.01.007
– volume: 9
  start-page: 11
  issue: 1
  year: 2022
  ident: 7997_CR30
  publication-title: Smart Learn Environ
  doi: 10.1186/s40561-022-00192-z
– volume: 2
  start-page: 367
  year: 2014
  ident: 7997_CR5
  publication-title: Int J Adv Res Comput Sci Manag Stud
– year: 2009
  ident: 7997_CR37
  publication-title: J Target Meas Anal Market
  doi: 10.1057/jt.2009.5
– ident: 7997_CR10
  doi: 10.1109/ISCC47284.2019.8969637
– ident: 7997_CR22
  doi: 10.1109/MLSP.2006.275572
– volume: 63
  start-page: 3
  year: 2006
  ident: 7997_CR33
  publication-title: Mach Learn
  doi: 10.1007/s10994-006-6226-1
– volume: 29
  start-page: 1189
  year: 2001
  ident: 7997_CR13
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 12
  start-page: 0171207
  issue: 2
  year: 2017
  ident: 7997_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0171207
– volume: 11
  start-page: 3567
  year: 2021
  ident: 7997_CR25
  publication-title: Int J Electr Comput Eng
– volume: 22
  start-page: 400
  year: 2007
  ident: 7997_CR35
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729586
SSID ssj0004685
Score 2.377222
Snippet Academic probation at universities has become a matter of pressing concern in recent years, as many students face severe consequences of academic probation. We...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5819
SubjectTerms Academic achievement
Academic probation
Algorithms
Artificial Intelligence
Colleges & universities
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Data sources
Datasets
Education
Higher education
Image Processing and Computer Vision
Machine learning
Original
Original Article
Parole & probation
Probability and Statistics in Computer Science
Students
Support vector machines
Warning systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXLjwfhQGChI3qNQkfeU4IaYJaZyYtFuVVzUk1E1sE3-fuK8xBkic67SpHcd28tkGuM2VVc4N0L7MaeyHUjNfWB74aSiZ4lGcRxYP9IfP8WAUPo2jcZ0UNm_Q7s2VZLlTt8lueILpQl-GaEmsIRpvw06EsbtbxSPW-5INWTbidHELYnpCXqfK_PyOdXO04WNuQiW_3ZeWZqh_AHu1_0h6lcAPYcsWR7Df9GYgtaoew7ABvpPZKjWAfFTnIKSq30zQhBkyLQjiRIl5x52POGIyKdEfxDbojxMY9R9fHgZ-3TrB12ESLnwjuAgMpSq1MklNKrnKrdA00YllcSKo4VIGhjGqnDkKcqtdmKYl14xLHRjOT6FTTAt7DsQ4H4dSLdzO6LSdSUGjxKapsLlSMmDCA9pwMNN1XXFsb_GWtRWRS65njutZyfUs9uCuHTOrqmr8Sd1tBJPVGjbPGDZjSFgQBx7ctI-dbuCFhyzsdIk0PHUBIIuYB2eVHNvP8Rhbbadu-smahFsCrLu9_qR4nZT1twUODSMP7pu1sJrW739x8T_yS9jFzvYV3K0LncX70l45_2ehrsvl_glvXvv1
  priority: 102
  providerName: Springer Nature
Title Academic performance warning system based on data driven for higher education
URI https://link.springer.com/article/10.1007/s00521-022-07997-6
https://www.ncbi.nlm.nih.gov/pubmed/36408289
https://www.proquest.com/docview/2780572060
https://www.proquest.com/docview/2738495252
https://pubmed.ncbi.nlm.nih.gov/PMC9640845
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7oULhfJKKSsjcYOI2M7DPqEF7bYCtUKIlcop8isqEsou7Vb8fWYSJ8tS0WtsJ3bGHs-MP88H8LqxwaIZ4FLT8DLNjROpDjJLVW6ElUXZFIEC-mfn5eky_3RRXMSA23WEVQ46sVPUfuUoRv5OUPL9SmRl9n79KyXWKDpdjRQaezBBFazQ-Zp8mJ9_-frXzciOlBN9GML35DJem-kuz1FEFJ8KQl9STtJyd2u6ZW_ehk3-c3babUmLh_Ag2pJs1gv_EdwL7SEcDDwNLC7bQ2JmjiiOx3A2AOLZentlgP3u4yOsz-vMaGvzbNUywo8yf0UakWFldtmhQlgY3vcElov5t4-naaRUSF1e5ZvUa6kzz7lVwVTKKyNtE7TjlauCKCvNvTQm80Jwi9tU1gSH7psz0glpXOalfAr77aoNz4F5tH04dxo1JmoBYTQvqqCUDo21JhM6AT78zdrFfONEe_GzHjMldxKoUQJ1J4G6TODN2GbdZ9u4s_bxIKQ6rrzrejtPEng1FuOaoYMQ04bVDdWRCh1DUYgEnvUyHT8nS6LgVtj9akfaYwXKx71b0v647PJya2qaFwm8HebFtlv_H8XR3aN4AfeJ4b6HvR3D_ubqJrxEO2hjp7CnFidTmMxOvn-eT-PUx6dLMfsDNpMHhg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAXHuXRQAEjwQkiYjsP-4AQApYt7fbUSr0Fx3ZUJJRd2q0q_hS_kRknzrJU9NZrbCexZzyeGX8zA_CybXyDaoBNTcvLNDdWpNrLLFW5EY0syrbw5NCfHZTTo_zrcXG8Ab9jLAzBKqNMDILazS35yN8KSr5fiazM3i9-plQ1im5XYwmNni32_K8LNNnO3u1-Qvq-EmLy-fDjNB2qCqQ2r_Jl6jSa-Y7zRnlTKaeMbFqvLa9s5UVZae6kMZkTgjcoqbPWW7RgrJFWSGMzRw5QFPk3cik17Sg1-fJXHGYoAYoWE6GJcjkE6YRQPfK_4lNBWE_KgFquH4SXtNvLIM1_bmrDATi5C7cHzZV96FntHmz4bgvuxKoQbBASW1QHesCM3IdZhN-zxSpAgV303hjWZ5FmdJA6Nu8YoVWZOyX5y7AzOwkYFObj-x7A0bUs9UPY7Oad3wbmUNPi3GqUzyhzhNG8qLxS2rdNYzKhE-BxNWs7ZDenIhs_6jEvc6BAjRSoAwXqMoHX45hFn9vjyt47kUj1sM_P6hVXJvBibMYdStcupvPzc-ojFZqhohAJPOppOn5OllTwW-HvV2vUHjtQ9u_1lu77ScgCrmloXiTwJvLF6rf-P4vHV8_iOdycHs726_3dg70ncEugRtcD7nZgc3l67p-iBrZsngW2Z_DtuvfZH5NZQG8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8MwDLZgSIgX7qOcQeINKpqkVx4nYOIWD0zircpVDQl1Ewzx94l7wbgknuu0qR3HdvLZBjjIlVXODdC-zGnsh1IzX1ge-GkomeJRnEcWD_RvbuPzfnj5ED18yuIv0e7NlWSV04BVmorx8cjkx23iG55mujCYIXIS64nG0zDjtmOK67rPup8yI8umnC6GQXxPyOu0mZ_fMWmavvmb32GTX-5OS5PUW4T52pck3Ur4SzBli2VYaPo0kFptV-CmAcGT0UeaAHmrzkRIVcuZoDkzZFgQxIwS84y7IHHEZFAiQYhtkCCr0O-d3Z-c-3UbBV-HSTj2jeAiMJSq1MokNankKrdC00QnlsWJoIZLGRjGqHKmKcitdiGbllwzLnVgOF-DTjEs7AYQ4_wdSrVwu6TTfCYFjRKbpsLmSsmACQ9ow8FM1zXGsdXFU9ZWRy65njmuZyXXs9iDw3bMqKqw8Sf1diOYrNa2l4xhY4aEBXHgwX772OkJXn7Iwg5fkYanLhhkEfNgvZJj-zkeY9vt1E0_mZBwS4A1uCefFI-Dsha3wKFh5MFRsxY-pvX7X2z-j3wPZu9Oe9n1xe3VFsxhw_sKBbcNnfHzq91xbtFY7ZYr_x0PqQMz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Academic+performance+warning+system+based+on+data+driven+for+higher+education&rft.jtitle=Neural+computing+%26+applications&rft.au=Duong%2C+Hanh+Thi-Hong&rft.au=Tran%2C+Linh+Thi-My&rft.au=To%2C+Huy+Quoc&rft.au=Van+Nguyen%2C+Kiet&rft.date=2023-03-01&rft.issn=0941-0643&rft.volume=35&rft.issue=8&rft.spage=5819&rft_id=info:doi/10.1007%2Fs00521-022-07997-6&rft_id=info%3Apmid%2F36408289&rft.externalDocID=36408289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon