Characterizing directed functional pathways in the visual system by multivariate nonlinear coherence of fMRI data
A multivariate measure of directed functional connectivity is used with resting-state fMRI data of 40 healthy subjects to identify directed pathways of signal progression in the human visual system. The method utilizes 4-nodes networks of mutual interacted BOLD signals to obtains their temporal hier...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 16362 - 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.11.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-018-34672-5 |
Cover
Loading…
Abstract | A multivariate measure of directed functional connectivity is used with resting-state fMRI data of 40 healthy subjects to identify directed pathways of signal progression in the human visual system. The method utilizes 4-nodes networks of mutual interacted BOLD signals to obtains their temporal hierarchy and functional connectivity. Patterns of signal progression were defined at frequency windows by appealing to a hierarchy based upon phase differences, and their significance was assessed by permutation testing. Assuming consistent phase relationship between neuronal and fMRI signals and unidirectional coupling, we were able to characterize directed pathways in the visual system. The ventral and dorsal systems were found to have different functional organizations. The dorsal system, particularly of the left hemisphere, had numerous feedforward pathways connecting the striate and extrastriate cortices with non-visual regions. The ventral system had fewer pathways primarily of two types: (1) feedback pathways initiated in the fusiform gyrus that were either confined to the striate and the extrastriate cortices or connected to the temporal cortex, (2) feedforward pathways initiated in V2, excluded the striate cortex, and connected to non-visual regions. The multivariate measure demonstrated higher specificity than bivariate (pairwise) measure. The analysis can be applied to other neuroimaging and electrophysiological data. |
---|---|
AbstractList | A multivariate measure of directed functional connectivity is used with resting-state fMRI data of 40 healthy subjects to identify directed pathways of signal progression in the human visual system. The method utilizes 4-nodes networks of mutual interacted BOLD signals to obtains their temporal hierarchy and functional connectivity. Patterns of signal progression were defined at frequency windows by appealing to a hierarchy based upon phase differences, and their significance was assessed by permutation testing. Assuming consistent phase relationship between neuronal and fMRI signals and unidirectional coupling, we were able to characterize directed pathways in the visual system. The ventral and dorsal systems were found to have different functional organizations. The dorsal system, particularly of the left hemisphere, had numerous feedforward pathways connecting the striate and extrastriate cortices with non-visual regions. The ventral system had fewer pathways primarily of two types: (1) feedback pathways initiated in the fusiform gyrus that were either confined to the striate and the extrastriate cortices or connected to the temporal cortex, (2) feedforward pathways initiated in V2, excluded the striate cortex, and connected to non-visual regions. The multivariate measure demonstrated higher specificity than bivariate (pairwise) measure. The analysis can be applied to other neuroimaging and electrophysiological data. A multivariate measure of directed functional connectivity is used with resting-state fMRI data of 40 healthy subjects to identify directed pathways of signal progression in the human visual system. The method utilizes 4-nodes networks of mutual interacted BOLD signals to obtains their temporal hierarchy and functional connectivity. Patterns of signal progression were defined at frequency windows by appealing to a hierarchy based upon phase differences, and their significance was assessed by permutation testing. Assuming consistent phase relationship between neuronal and fMRI signals and unidirectional coupling, we were able to characterize directed pathways in the visual system. The ventral and dorsal systems were found to have different functional organizations. The dorsal system, particularly of the left hemisphere, had numerous feedforward pathways connecting the striate and extrastriate cortices with non-visual regions. The ventral system had fewer pathways primarily of two types: (1) feedback pathways initiated in the fusiform gyrus that were either confined to the striate and the extrastriate cortices or connected to the temporal cortex, (2) feedforward pathways initiated in V2, excluded the striate cortex, and connected to non-visual regions. The multivariate measure demonstrated higher specificity than bivariate (pairwise) measure. The analysis can be applied to other neuroimaging and electrophysiological data.A multivariate measure of directed functional connectivity is used with resting-state fMRI data of 40 healthy subjects to identify directed pathways of signal progression in the human visual system. The method utilizes 4-nodes networks of mutual interacted BOLD signals to obtains their temporal hierarchy and functional connectivity. Patterns of signal progression were defined at frequency windows by appealing to a hierarchy based upon phase differences, and their significance was assessed by permutation testing. Assuming consistent phase relationship between neuronal and fMRI signals and unidirectional coupling, we were able to characterize directed pathways in the visual system. The ventral and dorsal systems were found to have different functional organizations. The dorsal system, particularly of the left hemisphere, had numerous feedforward pathways connecting the striate and extrastriate cortices with non-visual regions. The ventral system had fewer pathways primarily of two types: (1) feedback pathways initiated in the fusiform gyrus that were either confined to the striate and the extrastriate cortices or connected to the temporal cortex, (2) feedforward pathways initiated in V2, excluded the striate cortex, and connected to non-visual regions. The multivariate measure demonstrated higher specificity than bivariate (pairwise) measure. The analysis can be applied to other neuroimaging and electrophysiological data. |
ArticleNumber | 16362 |
Author | Dan, Rotem Keadan, Tarek Goelman, Gadi |
Author_xml | – sequence: 1 givenname: Gadi surname: Goelman fullname: Goelman, Gadi email: gadig@hadassah.org.il organization: Department of Neurology, Hadassah Hebrew University Medical Center – sequence: 2 givenname: Rotem orcidid: 0000-0003-4341-330X surname: Dan fullname: Dan, Rotem organization: Department of Neurology, Hadassah Hebrew University Medical Center, Edmond and Lily Safra Center for Brain Sciences (ELSC), the Hebrew University of Jerusalem – sequence: 3 givenname: Tarek surname: Keadan fullname: Keadan, Tarek organization: Department of Neurology, Hadassah Hebrew University Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30397245$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhSNUREvpH2CBLLFhE7AdO4k3SGhES6UiJARry4-biauMPbWdqYZfj4e0ULqoN3595-jonpfVkQ8equo1we8JbvoPiREu-hqTvm5Y29GaP6tOKGa8pg2lRw_Ox9VZSte4LE4FI-JFddzgRnSU8ZPqZjWqqEyG6H45v0bWRSg3i4bZm-yCVxPaqjzeqn1CzqM8Atq5NJfntE8ZNkjv0Waestup6FQGVHJOzoOKyIQRIngDKAxo-Pr9ElmV1avq-aCmBGd3-2n18_zzj9WX-urbxeXq01VtWMdybXsKtqMYD63Sgnaa09Za2xHeCMF1SzQhg9YaGGfMDFyrVreCDFh0vLMcmtPq4-K7nfUGrAGfo5rkNrqNinsZlJP__3g3ynXYyZaSnglRDN7dGcRwM0PKcuOSgWlSHsKcJCVljLjDjBX07SP0OsyxzG6hMG8wPVBvHib6G-W-jQL0C2BiSCnCII3L6tBCCegmSbA8dC-X7mXpXv7pXh6k9JH03v1JUbOIUoH9GuK_2E-ofgPDEsMJ |
CitedBy_id | crossref_primary_10_3389_fnagi_2023_1222352 crossref_primary_10_1111_ejn_15053 crossref_primary_10_1142_S012906572050046X crossref_primary_10_1002_epi4_12426 crossref_primary_10_1038_s41598_024_54802_6 crossref_primary_10_1016_j_nic_2020_09_008 crossref_primary_10_1371_journal_pone_0313900 crossref_primary_10_1016_j_nic_2022_04_001 crossref_primary_10_1016_j_media_2022_102471 crossref_primary_10_1111_ejn_15432 crossref_primary_10_1016_j_media_2025_103462 |
Cites_doi | 10.1016/j.neuroimage.2008.09.036 10.1002/mrm.1910340409 10.1016/j.neuroimage.2009.05.005 10.1038/srep43743 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.1038/nrn2201 10.1089/brain.2011.0008 10.1046/j.0953-816x.2001.01850.x 10.1016/j.neuroimage.2013.08.048 10.1073/pnas.1503960112 10.1016/S0165-0173(01)00085-6 10.1089/brain.2012.0073 10.1162/jocn.2007.19.7.1081 10.1016/j.neuroimage.2012.05.050 10.1006/nimg.2001.0978 10.1002/jmri.20064 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2 10.1038/nature02078 10.1016/j.tics.2012.10.011 10.1016/j.neuroimage.2009.12.011 10.1038/srep01481 10.1016/j.conb.2012.11.010 10.1016/0006-8993(89)91010-X 10.1038/jcbfm.2010.164 10.1002/hbm.20346 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1016/j.neubiorev.2006.10.003 10.1152/jn.00804.2013 10.1126/science.1238411 10.1038/nrn3008 10.1073/pnas.0700622104 10.1016/j.neuroimage.2013.02.008 10.1002/hbm.23460 10.1152/jn.90777.2008 10.1016/j.neuroimage.2013.08.056 10.1126/science.1195870 10.1073/pnas.1607289113 10.1016/j.neuroimage.2011.08.048 10.2307/1912791 10.1016/S0167-2789(00)00087-7 10.1093/cercor/bhv294 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-018-34672-5 |
DatabaseName | Springer Nature Link CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | PMC6218499 30397245 10_1038_s41598_018_34672_5 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-d82ed7200f6ab927b526ddd7153995b61b11fbbbe4544cf5ba6b691f09757d5e3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:24:14 EDT 2025 Thu Jul 10 19:05:00 EDT 2025 Wed Aug 13 11:24:50 EDT 2025 Mon Mar 03 15:04:22 EST 2025 Tue Jul 01 00:58:17 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Fri Feb 21 02:37:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Resting-state fMRI Data Feedforward Pathway Extrastriate Cortex Vent System Dorsal System |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-d82ed7200f6ab927b526ddd7153995b61b11fbbbe4544cf5ba6b691f09757d5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4341-330X |
OpenAccessLink | https://www.proquest.com/docview/2130053024?pq-origsite=%requestingapplication% |
PMID | 30397245 |
PQID | 2130053024 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6218499 proquest_miscellaneous_2130307044 proquest_journals_2130053024 pubmed_primary_30397245 crossref_citationtrail_10_1038_s41598_018_34672_5 crossref_primary_10_1038_s41598_018_34672_5 springer_journals_10_1038_s41598_018_34672_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-05 |
PublicationDateYYYYMMDD | 2018-11-05 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Kravitz, Saleem, Baker, Mishkin (CR12) 2011; 12 Biswal, Yetkin, Haughton, Hyde (CR28) 1995; 34 Friston, Moran, Seth (CR3) 2013; 23 Murphy, Birn, Handwerker, Jones, Bandettini (CR34) 2009; 44 Bianciardi, Fukunaga, van Gelderen, de Zwart, Duyn (CR37) 2011; 31 Rorden, Karnath, Bonilha (CR41) 2007; 19 Berkes, Orban, Lengyel, Fiser (CR27) 2011; 331 Fox, Zhang, Snyder, Raichle (CR33) 2009; 101 Kravitz, Saleem, Baker, Ungerleider, Mishkin (CR13) 2013; 17 Chang, Glover (CR25) 2010; 50 Fox, Raichle (CR29) 2007; 8 Raiguel, Lagae, Gulyas, Orban (CR16) 1989; 493 Granger (CR4) 1969; 37 Mitra (CR11) 2016; 113 Aydore, Pantazis, Leahy (CR21) 2013; 74 Stam, van Straaten (CR23) 2012; 62 Kenet, Bibitchkov, Tsodyks, Grinvald, Arieli (CR26) 2003; 425 Laycock, Crewther, Crewther (CR18) 2007; 31 Goelman (CR7) 2017; 7 Lachaux, Rodriguez, Martinerie, Varela (CR19) 1999; 8 Goelman, Dan (CR6) 2017; 38 Ghuman, van den Honert, Martin (CR30) 2013; 3 Lobier, Siebenhuhner, Palva, Palva (CR5) 2014; 85 Tzourio-Mazoyer (CR42) 2002; 15 Friston (CR2) 2011; 1 Mitra, Snyder, Blazey, Raichle (CR10) 2015; 112 CR9 Muller (CR38) 2004; 20 Torrence, Compo (CR39) 1998; 79 Serre, Oliva, Poggio (CR14) 2007; 104 Stam, Nolte, Daffertshofer (CR22) 2007; 28 CR20 Lancaster (CR40) 2000; 10 Torrence, Webster (CR24) 1999; 12 Park, Friston (CR1) 2013; 342 Bussey, Saksida (CR15) 2002; 15 Power (CR32) 2014; 84 Whitfield-Gabrieli, Nieto-Castanon (CR31) 2012; 2 Chai, Castanon, Ongur, Whitfield-Gabrieli (CR36) 2011; 59 Weissenbacher (CR35) 2009; 47 Bullier (CR17) 2001; 36 Mitra, Snyder, Hacker, Raichle (CR8) 2014; 111 A Mitra (34672_CR11) 2016; 113 XJ Chai (34672_CR36) 2011; 59 M Bianciardi (34672_CR37) 2011; 31 TJ Bussey (34672_CR15) 2002; 15 M Lobier (34672_CR5) 2014; 85 A Weissenbacher (34672_CR35) 2009; 47 S Whitfield-Gabrieli (34672_CR31) 2012; 2 J Bullier (34672_CR17) 2001; 36 T Serre (34672_CR14) 2007; 104 MD Fox (34672_CR33) 2009; 101 34672_CR9 K Murphy (34672_CR34) 2009; 44 T Kenet (34672_CR26) 2003; 425 R Laycock (34672_CR18) 2007; 31 CWJ Granger (34672_CR4) 1969; 37 DJ Kravitz (34672_CR13) 2013; 17 KJ Friston (34672_CR2) 2011; 1 G Goelman (34672_CR7) 2017; 7 34672_CR20 JP Lachaux (34672_CR19) 1999; 8 A Mitra (34672_CR10) 2015; 112 K Muller (34672_CR38) 2004; 20 G Goelman (34672_CR6) 2017; 38 A Mitra (34672_CR8) 2014; 111 MD Fox (34672_CR29) 2007; 8 JL Lancaster (34672_CR40) 2000; 10 C Rorden (34672_CR41) 2007; 19 JD Power (34672_CR32) 2014; 84 CJ Stam (34672_CR23) 2012; 62 K Friston (34672_CR3) 2013; 23 P Berkes (34672_CR27) 2011; 331 C Torrence (34672_CR39) 1998; 79 C Torrence (34672_CR24) 1999; 12 HJ Park (34672_CR1) 2013; 342 DJ Kravitz (34672_CR12) 2011; 12 S Aydore (34672_CR21) 2013; 74 C Chang (34672_CR25) 2010; 50 N Tzourio-Mazoyer (34672_CR42) 2002; 15 SE Raiguel (34672_CR16) 1989; 493 B Biswal (34672_CR28) 1995; 34 CJ Stam (34672_CR22) 2007; 28 AS Ghuman (34672_CR30) 2013; 3 25825720 - Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2235-44 20006716 - Neuroimage. 2010 Mar;50(1):81-98 22634858 - Neuroimage. 2012 Sep;62(3):1415-28 23265839 - Trends Cogn Sci. 2013 Jan;17(1):26-49 23994314 - Neuroimage. 2014 Jan 1;84:320-41 17404214 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6424-9 24179229 - Science. 2013 Nov 1;342(6158):1238411 21415848 - Nat Rev Neurosci. 2011 Apr;12(4):217-30 24598530 - J Neurophysiol. 2014 Jun 1;111(11):2374-91 23435210 - Neuroimage. 2013 Jul 1;74:231-44 21889994 - Neuroimage. 2012 Jan 16;59(2):1420-8 23265964 - Curr Opin Neurobiol. 2013 Apr;23(2):172-8 15221820 - J Magn Reson Imaging. 2004 Jul;20(1):145-52 2776003 - Brain Res. 1989 Jul 24;493(1):155-9 21212356 - Science. 2011 Jan 7;331(6013):83-7 22432952 - Brain Connect. 2011;1(1):13-36 17266107 - Hum Brain Mapp. 2007 Nov;28(11):1178-93 20859295 - J Cereb Blood Flow Metab. 2011 Feb;31(2):401-12 26656726 - Cereb Cortex. 2017 Feb 1;27(2):1083-1093 11690606 - Brain Res Brain Res Rev. 2001 Oct;36(2-3):96-107 24007803 - Neuroimage. 2014 Jan 15;85 Pt 2:853-72 28272522 - Sci Rep. 2017 Mar 08;7:43743 22642651 - Brain Connect. 2012;2(3):125-41 18976716 - Neuroimage. 2009 Feb 1;44(3):893-905 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 10619414 - Hum Brain Mapp. 1999;8(4):194-208 17583985 - J Cogn Neurosci. 2007 Jul;19(7):1081-8 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16 27859905 - Hum Brain Mapp. 2017 Mar;38(3):1374-1386 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 19339462 - J Neurophysiol. 2009 Jun;101(6):3270-83 27791089 - Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6868-E6876 11849301 - Eur J Neurosci. 2002 Jan;15(2):355-64 14586468 - Nature. 2003 Oct 30;425(6961):954-6 11771995 - Neuroimage. 2002 Jan;15(1):273-89 10912591 - Hum Brain Mapp. 2000 Jul;10(3):120-31 23512004 - Sci Rep. 2013;3:1481 17141311 - Neurosci Biobehav Rev. 2007;31(3):363-76 |
References_xml | – volume: 44 start-page: 893 year: 2009 end-page: 905 ident: CR34 article-title: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 34 start-page: 537 issue: 4 year: 1995 end-page: 541 ident: CR28 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.1910340409 – volume: 47 start-page: 1408 year: 2009 end-page: 1416 ident: CR35 article-title: Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.005 – volume: 7 year: 2017 ident: CR7 article-title: Frequency-phase analysis of resting-state functional MRI publication-title: Scientific reports doi: 10.1038/srep43743 – volume: 8 start-page: 194 year: 1999 end-page: 208 ident: CR19 article-title: Measuring phase synchrony in brain signals publication-title: Human brain mapping doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – volume: 8 start-page: 700 year: 2007 end-page: 711 ident: CR29 article-title: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging publication-title: Nature reviews. Neuroscience doi: 10.1038/nrn2201 – volume: 1 start-page: 13 year: 2011 end-page: 36 ident: CR2 article-title: Functional and effective connectivity: a review publication-title: Brain connectivity doi: 10.1089/brain.2011.0008 – volume: 15 start-page: 355 year: 2002 end-page: 364 ident: CR15 article-title: The organization of visual object representations: a connectionist model of effects of lesions in perirhinal cortex publication-title: The European journal of neuroscience doi: 10.1046/j.0953-816x.2001.01850.x – volume: 84 start-page: 320 year: 2014 end-page: 341 ident: CR32 article-title: Methods to detect, characterize, and remove motion artifact in resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 112 start-page: E2235 year: 2015 end-page: 2244 ident: CR10 article-title: Lag threads organize the brain’s intrinsic activity publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1503960112 – volume: 36 start-page: 96 year: 2001 end-page: 107 ident: CR17 article-title: Integrated model of visual processing publication-title: Brain research. Brain research reviews doi: 10.1016/S0165-0173(01)00085-6 – volume: 2 start-page: 125 year: 2012 end-page: 141 ident: CR31 article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain connectivity doi: 10.1089/brain.2012.0073 – volume: 19 start-page: 1081 year: 2007 end-page: 1088 ident: CR41 article-title: Improving lesion-symptom mapping publication-title: Journal of cognitive neuroscience doi: 10.1162/jocn.2007.19.7.1081 – volume: 62 start-page: 1415 year: 2012 end-page: 1428 ident: CR23 article-title: Go with the flow: use of a directed phase lag index (dPLI) to characterize patterns of phase relations in a large-scale model of brain dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.05.050 – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: CR42 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 20 start-page: 145 year: 2004 end-page: 152 ident: CR38 article-title: Investigating the wavelet coherence phase of the BOLD signal publication-title: Journal of magnetic resonance imaging: JMRI doi: 10.1002/jmri.20064 – volume: 12 start-page: 2679 year: 1999 end-page: 2690 ident: CR24 article-title: Interdecadal changes in the ENSO-Monsoon system publication-title: J Clim doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2 – volume: 425 start-page: 954 year: 2003 end-page: 956 ident: CR26 article-title: Spontaneously emerging cortical representations of visual attributes publication-title: Nature doi: 10.1038/nature02078 – volume: 17 start-page: 26 year: 2013 end-page: 49 ident: CR13 article-title: The ventral visual pathway: an expanded neural framework for the processing of object quality publication-title: Trends in cognitive sciences doi: 10.1016/j.tics.2012.10.011 – volume: 50 start-page: 81 year: 2010 end-page: 98 ident: CR25 article-title: Time-frequency dynamics of resting-state brain connectivity measured with fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.011 – volume: 3 year: 2013 ident: CR30 article-title: Interregional neural synchrony has similar dynamics during spontaneous and stimulus-driven states publication-title: Scientific reports doi: 10.1038/srep01481 – volume: 23 start-page: 172 year: 2013 end-page: 178 ident: CR3 article-title: Analysing connectivity with Granger causality and dynamic causal modelling publication-title: Current opinion in neurobiology doi: 10.1016/j.conb.2012.11.010 – volume: 493 start-page: 155 year: 1989 end-page: 159 ident: CR16 article-title: Response latencies of visual cells in macaque areas V1, V2 and V5 publication-title: Brain research doi: 10.1016/0006-8993(89)91010-X – volume: 31 start-page: 401 year: 2011 end-page: 412 ident: CR37 article-title: Negative BOLD-fMRI signals in large cerebral veins publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2010.164 – volume: 28 start-page: 1178 year: 2007 end-page: 1193 ident: CR22 article-title: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources publication-title: Human brain mapping doi: 10.1002/hbm.20346 – volume: 10 start-page: 120 year: 2000 end-page: 131 ident: CR40 article-title: Automated Talairach atlas labels for functional brain mapping publication-title: Human brain mapping doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – volume: 79 start-page: 61 year: 1998 end-page: 78 ident: CR39 article-title: Wavelet Analysis publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – volume: 31 start-page: 363 year: 2007 end-page: 376 ident: CR18 article-title: A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders publication-title: Neuroscience and biobehavioral reviews doi: 10.1016/j.neubiorev.2006.10.003 – volume: 111 start-page: 2374 year: 2014 end-page: 2391 ident: CR8 article-title: Lag structure in resting-state fMRI publication-title: Journal of neurophysiology doi: 10.1152/jn.00804.2013 – ident: CR9 – volume: 342 start-page: 1238411 year: 2013 ident: CR1 article-title: Structural and functional brain networks: from connections to cognition publication-title: Science doi: 10.1126/science.1238411 – volume: 12 start-page: 217 year: 2011 end-page: 230 ident: CR12 article-title: A new neural framework for visuospatial processing publication-title: Nature reviews. Neuroscience doi: 10.1038/nrn3008 – volume: 104 start-page: 6424 year: 2007 end-page: 6429 ident: CR14 article-title: A feedforward architecture accounts for rapid categorization publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0700622104 – volume: 74 start-page: 231 year: 2013 end-page: 244 ident: CR21 article-title: A note on the phase locking value and its properties publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.02.008 – volume: 38 start-page: 1374 year: 2017 end-page: 1386 ident: CR6 article-title: Multiple-region directed functional connectivity based on phase delays publication-title: Human brain mapping doi: 10.1002/hbm.23460 – volume: 101 start-page: 3270 year: 2009 end-page: 3283 ident: CR33 article-title: The global signal and observed anticorrelated resting state brain networks publication-title: Journal of neurophysiology doi: 10.1152/jn.90777.2008 – volume: 85 start-page: 853 issue: Pt 2 year: 2014 end-page: 872 ident: CR5 article-title: Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.056 – volume: 331 start-page: 83 year: 2011 end-page: 87 ident: CR27 article-title: Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment publication-title: Science doi: 10.1126/science.1195870 – volume: 113 start-page: E6868 year: 2016 end-page: E6876 ident: CR11 article-title: Human cortical-hippocampal dialogue in wake and slow-wave sleep publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1607289113 – volume: 59 start-page: 1420 year: 2011 end-page: 1428 ident: CR36 article-title: Anticorrelations in resting state networks without global signal regression publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.048 – volume: 37 start-page: 424 year: 1969 end-page: 438 ident: CR4 article-title: Investigating causal relations by econometric models and cross-spectral methods publication-title: Econometrica doi: 10.2307/1912791 – ident: CR20 – volume: 3 year: 2013 ident: 34672_CR30 publication-title: Scientific reports doi: 10.1038/srep01481 – volume: 37 start-page: 424 year: 1969 ident: 34672_CR4 publication-title: Econometrica doi: 10.2307/1912791 – volume: 8 start-page: 700 year: 2007 ident: 34672_CR29 publication-title: Nature reviews. Neuroscience doi: 10.1038/nrn2201 – volume: 111 start-page: 2374 year: 2014 ident: 34672_CR8 publication-title: Journal of neurophysiology doi: 10.1152/jn.00804.2013 – volume: 62 start-page: 1415 year: 2012 ident: 34672_CR23 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.05.050 – volume: 85 start-page: 853 issue: Pt 2 year: 2014 ident: 34672_CR5 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.056 – volume: 104 start-page: 6424 year: 2007 ident: 34672_CR14 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0700622104 – volume: 34 start-page: 537 issue: 4 year: 1995 ident: 34672_CR28 publication-title: Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine doi: 10.1002/mrm.1910340409 – volume: 47 start-page: 1408 year: 2009 ident: 34672_CR35 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.05.005 – volume: 10 start-page: 120 year: 2000 ident: 34672_CR40 publication-title: Human brain mapping doi: 10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8 – volume: 342 start-page: 1238411 year: 2013 ident: 34672_CR1 publication-title: Science doi: 10.1126/science.1238411 – volume: 113 start-page: E6868 year: 2016 ident: 34672_CR11 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1607289113 – volume: 15 start-page: 355 year: 2002 ident: 34672_CR15 publication-title: The European journal of neuroscience doi: 10.1046/j.0953-816x.2001.01850.x – volume: 79 start-page: 61 year: 1998 ident: 34672_CR39 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – volume: 31 start-page: 363 year: 2007 ident: 34672_CR18 publication-title: Neuroscience and biobehavioral reviews doi: 10.1016/j.neubiorev.2006.10.003 – volume: 112 start-page: E2235 year: 2015 ident: 34672_CR10 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1503960112 – volume: 74 start-page: 231 year: 2013 ident: 34672_CR21 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.02.008 – volume: 59 start-page: 1420 year: 2011 ident: 34672_CR36 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.048 – volume: 20 start-page: 145 year: 2004 ident: 34672_CR38 publication-title: Journal of magnetic resonance imaging: JMRI doi: 10.1002/jmri.20064 – volume: 15 start-page: 273 year: 2002 ident: 34672_CR42 publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – ident: 34672_CR20 doi: 10.1016/S0167-2789(00)00087-7 – volume: 19 start-page: 1081 year: 2007 ident: 34672_CR41 publication-title: Journal of cognitive neuroscience doi: 10.1162/jocn.2007.19.7.1081 – volume: 38 start-page: 1374 year: 2017 ident: 34672_CR6 publication-title: Human brain mapping doi: 10.1002/hbm.23460 – volume: 8 start-page: 194 year: 1999 ident: 34672_CR19 publication-title: Human brain mapping doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – volume: 425 start-page: 954 year: 2003 ident: 34672_CR26 publication-title: Nature doi: 10.1038/nature02078 – volume: 44 start-page: 893 year: 2009 ident: 34672_CR34 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.09.036 – volume: 31 start-page: 401 year: 2011 ident: 34672_CR37 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2010.164 – volume: 331 start-page: 83 year: 2011 ident: 34672_CR27 publication-title: Science doi: 10.1126/science.1195870 – volume: 2 start-page: 125 year: 2012 ident: 34672_CR31 publication-title: Brain connectivity doi: 10.1089/brain.2012.0073 – volume: 84 start-page: 320 year: 2014 ident: 34672_CR32 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 7 year: 2017 ident: 34672_CR7 publication-title: Scientific reports doi: 10.1038/srep43743 – volume: 17 start-page: 26 year: 2013 ident: 34672_CR13 publication-title: Trends in cognitive sciences doi: 10.1016/j.tics.2012.10.011 – volume: 23 start-page: 172 year: 2013 ident: 34672_CR3 publication-title: Current opinion in neurobiology doi: 10.1016/j.conb.2012.11.010 – volume: 36 start-page: 96 year: 2001 ident: 34672_CR17 publication-title: Brain research. Brain research reviews doi: 10.1016/S0165-0173(01)00085-6 – ident: 34672_CR9 doi: 10.1093/cercor/bhv294 – volume: 28 start-page: 1178 year: 2007 ident: 34672_CR22 publication-title: Human brain mapping doi: 10.1002/hbm.20346 – volume: 12 start-page: 2679 year: 1999 ident: 34672_CR24 publication-title: J Clim doi: 10.1175/1520-0442(1999)012<2679:ICITEM>2.0.CO;2 – volume: 12 start-page: 217 year: 2011 ident: 34672_CR12 publication-title: Nature reviews. Neuroscience doi: 10.1038/nrn3008 – volume: 493 start-page: 155 year: 1989 ident: 34672_CR16 publication-title: Brain research doi: 10.1016/0006-8993(89)91010-X – volume: 1 start-page: 13 year: 2011 ident: 34672_CR2 publication-title: Brain connectivity doi: 10.1089/brain.2011.0008 – volume: 50 start-page: 81 year: 2010 ident: 34672_CR25 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.011 – volume: 101 start-page: 3270 year: 2009 ident: 34672_CR33 publication-title: Journal of neurophysiology doi: 10.1152/jn.90777.2008 – reference: 23265964 - Curr Opin Neurobiol. 2013 Apr;23(2):172-8 – reference: 11771995 - Neuroimage. 2002 Jan;15(1):273-89 – reference: 26656726 - Cereb Cortex. 2017 Feb 1;27(2):1083-1093 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 17704812 - Nat Rev Neurosci. 2007 Sep;8(9):700-11 – reference: 24598530 - J Neurophysiol. 2014 Jun 1;111(11):2374-91 – reference: 19339462 - J Neurophysiol. 2009 Jun;101(6):3270-83 – reference: 10912591 - Hum Brain Mapp. 2000 Jul;10(3):120-31 – reference: 22642651 - Brain Connect. 2012;2(3):125-41 – reference: 23265839 - Trends Cogn Sci. 2013 Jan;17(1):26-49 – reference: 10619414 - Hum Brain Mapp. 1999;8(4):194-208 – reference: 20006716 - Neuroimage. 2010 Mar;50(1):81-98 – reference: 11690606 - Brain Res Brain Res Rev. 2001 Oct;36(2-3):96-107 – reference: 17141311 - Neurosci Biobehav Rev. 2007;31(3):363-76 – reference: 22432952 - Brain Connect. 2011;1(1):13-36 – reference: 24179229 - Science. 2013 Nov 1;342(6158):1238411 – reference: 18976716 - Neuroimage. 2009 Feb 1;44(3):893-905 – reference: 23994314 - Neuroimage. 2014 Jan 1;84:320-41 – reference: 2776003 - Brain Res. 1989 Jul 24;493(1):155-9 – reference: 19442749 - Neuroimage. 2009 Oct 1;47(4):1408-16 – reference: 21212356 - Science. 2011 Jan 7;331(6013):83-7 – reference: 15221820 - J Magn Reson Imaging. 2004 Jul;20(1):145-52 – reference: 17266107 - Hum Brain Mapp. 2007 Nov;28(11):1178-93 – reference: 21415848 - Nat Rev Neurosci. 2011 Apr;12(4):217-30 – reference: 11849301 - Eur J Neurosci. 2002 Jan;15(2):355-64 – reference: 17404214 - Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6424-9 – reference: 22634858 - Neuroimage. 2012 Sep;62(3):1415-28 – reference: 20859295 - J Cereb Blood Flow Metab. 2011 Feb;31(2):401-12 – reference: 25825720 - Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2235-44 – reference: 23435210 - Neuroimage. 2013 Jul 1;74:231-44 – reference: 24007803 - Neuroimage. 2014 Jan 15;85 Pt 2:853-72 – reference: 21889994 - Neuroimage. 2012 Jan 16;59(2):1420-8 – reference: 27859905 - Hum Brain Mapp. 2017 Mar;38(3):1374-1386 – reference: 27791089 - Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6868-E6876 – reference: 17583985 - J Cogn Neurosci. 2007 Jul;19(7):1081-8 – reference: 14586468 - Nature. 2003 Oct 30;425(6961):954-6 – reference: 28272522 - Sci Rep. 2017 Mar 08;7:43743 – reference: 23512004 - Sci Rep. 2013;3:1481 |
SSID | ssj0000529419 |
Score | 2.3148677 |
Snippet | A multivariate measure of directed functional connectivity is used with resting-state fMRI data of 40 healthy subjects to identify directed pathways of signal... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16362 |
SubjectTerms | 59 59/36 631/378/2613/2614 631/553/2701 631/553/2712 Functional magnetic resonance imaging Hemispheric laterality Humanities and Social Sciences Medical imaging multidisciplinary Neural networks Neuroimaging Science Science (multidisciplinary) Temporal lobe Visual cortex Visual system |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEA4-ELyIb9cXEbxp2W2bR3MSEUUFPYjC3krTJOyCdHftrrL-emeabmUVvfTQTNqmM8m8km8IOU14DnZ87gLLXRywGC5J7HjAO7mJHIiUE3h2-OFR3L6w-y7v1gG3st5WOVsTq4XaDHKMkbcjzLtgiRt2MRwFWDUKs6t1CY1FsozQZeh8ya5sYiyYxWKhqs_KdOKkXYK-wjNlYRLEsESAHzavj34Zmb_3Sv5ImFZ66GadrNUGJL30HN8gC7bYJCu-pOR0i4yuGgTmT-hPvcqyhqIC83E_ilWIP7JpSfsFBfuPvvfLCdz2oM5UT2m1y_AdvGgwRGnhwTSyN5oPev5wIB046h6e7ijuL90mLzfXz1e3QV1WIciZZOPAJJE1EmYHsEGrSGoeCWOMDBGklmsR6jB0WmvLOGO54zoTWqjQdZTk0nAb75AleLXdIxSsjUQxZqWUAhzFLGOKZSLRlkcWHBfeIuHs56Z5jTmOpS9e0yr3HSepZ0gKDEkrhqTQ56zpM_SIG_9SH854ltazr0y_ZaVFTppmmDeYDMkKO5h4GlzvGNDsehY3r4MWJSMGD5dzzG8IEJN7vqXo9ypsboEus1Itcj4Tk-_P-nsU-_-P4oCsRiiyGM3mh2Rp_DaxR2ALjfVxJfBfEIEHgw priority: 102 providerName: ProQuest – databaseName: Springer Nature Link dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELaWrSpxQdAWurBURuqtjdg4fsRHtALRStsD6krcojixxUooS_eFll_PjJ0EbXlIXHKIx3mNJzPjmfmGkO-pKMCOL1xkhUsinsAhTZyIxKAomYMl5STWDo_-yMsx_30trjuENbUwPmnfQ1r633STHXY6B0WDxWBxGiUg2-BAbZEPCN2OaXxDOWz3VTByxWNd18cMkvSFqZs66Jlh-Tw_8r8gqdc9F7tkpzYa6Vl4zD3SsdUn8jG0kVx_Jv-GLeryA8ynQU3ZkqLSCnt9FDsP3-frOZ1UFGw-uprMl3A6ADlTs6Y-s3AFnjMYn7QKABr5jBbTm1AQSKeOutHVL4o5pV_I-OL87_AyqlspRAVXfBGVKbOlAomAT280U0YwWZalihGYVhgZmzh2xhjLBeeFEyaXRurYDbQSqhQ22SdduLX9SihYGKnm3CqlJDiHec41z2VqrGAWnBXRI3HzcbOixhnHdhe3mY93J2kWGJIBQzLPkAzm_Gjn3AWUjTep-w3Pslri5hnDuBy2QOI9ctIOg6xgACSv7HQZaPAfx4HmILC4vR2MaMU4XFxtML8lQBzuzZFqcuPxuCW6yVr3yM9mmTw91utvcfg-8iOyzXAJ44626JPuYra0x2APLcw3LwCPDwcFjQ priority: 102 providerName: Springer Nature |
Title | Characterizing directed functional pathways in the visual system by multivariate nonlinear coherence of fMRI data |
URI | https://link.springer.com/article/10.1038/s41598-018-34672-5 https://www.ncbi.nlm.nih.gov/pubmed/30397245 https://www.proquest.com/docview/2130053024 https://www.proquest.com/docview/2130307044 https://pubmed.ncbi.nlm.nih.gov/PMC6218499 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL5XGJWReIPA4vgjfkCoVJtGpU5oUKlvUZzYWqUpZf0YlL-euzgJKhtIvKRSbCdN7i53Z_t-P4BXqSwwji985KRPIpHgIU28jORRUXKPKuUV1Q6Pz9TpRIymcroDLd1R8wKXt6Z2xCc1WVy-_XG1-YAG_z6UjKfvluiEqFAsTqME7R6Tq13YR8-kicph3IT7AeubG1FzfRAIe4TBBG_qaG6_zLavuhGA3txH-cdiau2jTu7DvSa4ZIOgDQ9gx1UP4U6gm9w8gqthh878E8ez4M5cyci5hTlBRgzF3_PNks0qhrEhu54t13g6AD4zu2H1DsRrzLAxSGVVANrIF6yYX4TCQTb3zI_PPzHae_oYJifHX4enUUO5EBVCi1VUptyVGi0HRWQN11ZyVZaljgnAVloV2zj21lonpBCFlzZXVpnYHxktdSld8gT28NbuABhGIqkRwmmtFSaReS6MyFVqneQOkxrZg7h9uVnR4JETLcZlVq-LJ2kWBJKhQLJaIBmOed2N-RbQOP7Z-7CVWdYqVsZp_Y6okkQPXnbNaFO0UJJXbr4OfehbKLDP0yDi7nbYYjQXeHG9JfyuA-F1b7dUs4sat1tROm1MD960avL7b_39KZ791zM_h7ucNJgmvuUh7K0Wa_cCw6aV7cOunuo-7A8Goy8j_P14fPb5HM8O1bBfT0X0a2v5BXoCFmw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6IXhBfFMYYCR4gmiNY8fxA0IwNrVsrdC0SXvL4sTWKqF0W9pN5UfxG7mLk0xlYm97yUP87Tv7vnx3AO8TmSMfn7vAShcFIsJPEjkZyEFecIco5WLyHR5P4uGh-HEkj9bgT-sLQ88q2zuxvqiLWU468k1OdhdKcSO-nJ4FlDWKrKttCg2PFrt2eYkiW_V59B3h-4Hzne2DrWHQZBUIcqHEPCgSbguFyIGzMJorI3lcFIUKKUarNHFowtAZY6yQQuROmiw2sQ7dQCupCmkj7PcOrIsIWYUerH_bnvzc77Q6ZDcToW68cwZRslkhhSQvtjAJIryUUPJbpYDX2NrrrzP_MdHWlG_nITxoWFb21ePYI1iz5WO465NYLp_A2VYX8_k3tmeeSNqCEcn0mkZGeY8vs2XFpiVDjpNdTKsF_vZhpJlZsvpd4wXK7cj6stKH78jOWT478e6IbOaYG--PGL1ofQqHt7Llz6CHQ9sXwJC_SbQQVikVo2iaZUKLLE6MldyiqCT7ELabm-ZNlHNKtvErra3tUZJ6gKQIkLQGSIptPnZtTn2Mjxtrb7QwS5vzXqVX2NmHd10xnlQyv2SlnS18HbphBdZ57kHcDYclWnGBnasV4HcVKAr4akk5PamjgcckpGvdh08tmlxN6_-reHnzKt7CveHBeC_dG012X8F9TuhLunS5Ab35-cK-Rk5sbt406M_g-LZP3F8oaUX6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFIC6INwsFjAQniHbj-BEfEEItqy6lFUJU2puJY1tdCWXbZrfV8ml8HTNxkmqp6K2XHOJnMjOeGc-LkDe5KEGOL0PiRcgSnsEjz4JIxKh0LABKBYmxw_sHcveQf5mK6Qb508XCoFtldyY2B7Wbl3hHPmRod8ESN3wYWreIbzvjj8cnCVaQQktrV04josieX52D-lZ_mOwArN8yNv78Y3s3aSsMJCVXfJG4nHmnAFFgR1YzZQWTzjmVYr5WYWVq0zRYaz0XnJdB2EJaqdMw0kooJ3wG894gN1UGbBNoSU1Vf7-DFjSe6jZOZ5Tlwxp4JcazpXmSwfEEOuA6L7wk4F720_zHWNvwwPE9crcVXumniG33yYavHpBbsZzl6iE52e6zP_-G8TSyS-8oMs9450ixAvJ5sarprKIge9KzWb2E1zGhNLUr2ng4noEGD0IwrWIij-KUlvOjGJhI54GG_e8Tir6tj8jhtfzwx2QTlvZPCQVJJ9ece6WUBCW1KLjmhcytF8yD0iQGJO1-rinbfOdYduOXaezuWW4iQAwAxDQAMTDmXT_mOGb7uLL3Vgcz01J-bS7wdEBe981As2iIKSo_X8Y-eNZy6PMkgrhfDlq0YhwmV2vA7ztgPvD1lmp21OQFl6iuaz0g7zs0udjW_7_i2dVf8YrcBjozXycHe8_JHYbYi5fqYotsLk6X_gWIZAv7ssF9Sn5eN7H9BbuDSMo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+directed+functional+pathways+in+the+visual+system+by+multivariate+nonlinear+coherence+of+fMRI+data&rft.jtitle=Scientific+reports&rft.au=Goelman%2C+Gadi&rft.au=Dan%2C+Rotem&rft.au=Keadan%2C+Tarek&rft.date=2018-11-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-018-34672-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_018_34672_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |