Systematic Analysis and Biomarker Study for Alzheimer’s Disease

Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with Alzheimer’s Disease (AD) will help us to understand the pathology of this disease. In this study, we conducted the first such large systematic analysis to identify differentially expressed genes (DEG...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 17394 - 14
Main Authors Li, Xinzhong, Wang, Haiyan, Long, Jintao, Pan, Genhua, He, Taigang, Anichtchik, Oleg, Belshaw, Robert, Albani, Diego, Edison, Paul, Green, Elaine K, Scott, James
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.11.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with Alzheimer’s Disease (AD) will help us to understand the pathology of this disease. In this study, we conducted the first such large systematic analysis to identify differentially expressed genes (DEGs) in blood samples from 245 AD cases, 143 mild cognitive impairment (MCI) cases, and 182 healthy control subjects, and then compare these with DEGs in brain samples. We evaluated our findings using two independent AD blood datasets and performed a gene-based genome-wide association study to identify potential novel risk genes. We identified 789 and 998 DEGs common to both blood and brain of AD and MCI subjects respectively, over 77% of which had the same regulation directions across tissues and disease status, including the known ABCA7 , and the novel TYK2 and TCIRG1 . A machine learning classification model containing NDUFA1 , MRPL51, and RPL36AL , implicating mitochondrial and ribosomal function, was discovered which discriminated between AD patients and controls with 85.9% of area under the curve and 78.1% accuracy (sensitivity = 77.6%, specificity = 78.9%). Moreover, our findings strongly suggest that mitochondrial dysfunction, NF-κB signalling and iNOS signalling are important dysregulated pathways in AD pathogenesis.
AbstractList Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with Alzheimer’s Disease (AD) will help us to understand the pathology of this disease. In this study, we conducted the first such large systematic analysis to identify differentially expressed genes (DEGs) in blood samples from 245 AD cases, 143 mild cognitive impairment (MCI) cases, and 182 healthy control subjects, and then compare these with DEGs in brain samples. We evaluated our findings using two independent AD blood datasets and performed a gene-based genome-wide association study to identify potential novel risk genes. We identified 789 and 998 DEGs common to both blood and brain of AD and MCI subjects respectively, over 77% of which had the same regulation directions across tissues and disease status, including the known ABCA7 , and the novel TYK2 and TCIRG1 . A machine learning classification model containing NDUFA1 , MRPL51, and RPL36AL , implicating mitochondrial and ribosomal function, was discovered which discriminated between AD patients and controls with 85.9% of area under the curve and 78.1% accuracy (sensitivity = 77.6%, specificity = 78.9%). Moreover, our findings strongly suggest that mitochondrial dysfunction, NF-κB signalling and iNOS signalling are important dysregulated pathways in AD pathogenesis.
Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with Alzheimer's Disease (AD) will help us to understand the pathology of this disease. In this study, we conducted the first such large systematic analysis to identify differentially expressed genes (DEGs) in blood samples from 245 AD cases, 143 mild cognitive impairment (MCI) cases, and 182 healthy control subjects, and then compare these with DEGs in brain samples. We evaluated our findings using two independent AD blood datasets and performed a gene-based genome-wide association study to identify potential novel risk genes. We identified 789 and 998 DEGs common to both blood and brain of AD and MCI subjects respectively, over 77% of which had the same regulation directions across tissues and disease status, including the known ABCA7, and the novel TYK2 and TCIRG1. A machine learning classification model containing NDUFA1, MRPL51, and RPL36AL, implicating mitochondrial and ribosomal function, was discovered which discriminated between AD patients and controls with 85.9% of area under the curve and 78.1% accuracy (sensitivity = 77.6%, specificity = 78.9%). Moreover, our findings strongly suggest that mitochondrial dysfunction, NF-κB signalling and iNOS signalling are important dysregulated pathways in AD pathogenesis.Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with Alzheimer's Disease (AD) will help us to understand the pathology of this disease. In this study, we conducted the first such large systematic analysis to identify differentially expressed genes (DEGs) in blood samples from 245 AD cases, 143 mild cognitive impairment (MCI) cases, and 182 healthy control subjects, and then compare these with DEGs in brain samples. We evaluated our findings using two independent AD blood datasets and performed a gene-based genome-wide association study to identify potential novel risk genes. We identified 789 and 998 DEGs common to both blood and brain of AD and MCI subjects respectively, over 77% of which had the same regulation directions across tissues and disease status, including the known ABCA7, and the novel TYK2 and TCIRG1. A machine learning classification model containing NDUFA1, MRPL51, and RPL36AL, implicating mitochondrial and ribosomal function, was discovered which discriminated between AD patients and controls with 85.9% of area under the curve and 78.1% accuracy (sensitivity = 77.6%, specificity = 78.9%). Moreover, our findings strongly suggest that mitochondrial dysfunction, NF-κB signalling and iNOS signalling are important dysregulated pathways in AD pathogenesis.
Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with Alzheimer's Disease (AD) will help us to understand the pathology of this disease. In this study, we conducted the first such large systematic analysis to identify differentially expressed genes (DEGs) in blood samples from 245 AD cases, 143 mild cognitive impairment (MCI) cases, and 182 healthy control subjects, and then compare these with DEGs in brain samples. We evaluated our findings using two independent AD blood datasets and performed a gene-based genome-wide association study to identify potential novel risk genes. We identified 789 and 998 DEGs common to both blood and brain of AD and MCI subjects respectively, over 77% of which had the same regulation directions across tissues and disease status, including the known ABCA7, and the novel TYK2 and TCIRG1. A machine learning classification model containing NDUFA1, MRPL51, and RPL36AL, implicating mitochondrial and ribosomal function, was discovered which discriminated between AD patients and controls with 85.9% of area under the curve and 78.1% accuracy (sensitivity = 77.6%, specificity = 78.9%). Moreover, our findings strongly suggest that mitochondrial dysfunction, NF-κB signalling and iNOS signalling are important dysregulated pathways in AD pathogenesis.
ArticleNumber 17394
Author He, Taigang
Wang, Haiyan
Green, Elaine K
Li, Xinzhong
Anichtchik, Oleg
Edison, Paul
Long, Jintao
Albani, Diego
Scott, James
Pan, Genhua
Belshaw, Robert
Author_xml – sequence: 1
  givenname: Xinzhong
  orcidid: 0000-0002-6411-4045
  surname: Li
  fullname: Li, Xinzhong
  email: xinzhong.li@plymouth.ac.uk
  organization: Plymouth University Faculty of Medicine and Dentistry, Drake Circus
– sequence: 2
  givenname: Haiyan
  surname: Wang
  fullname: Wang, Haiyan
  organization: Department of Methodology, London School of Economics and Political Science, Houghton St
– sequence: 3
  givenname: Jintao
  surname: Long
  fullname: Long, Jintao
  organization: Plymouth University Faculty of Medicine and Dentistry, Drake Circus
– sequence: 4
  givenname: Genhua
  surname: Pan
  fullname: Pan, Genhua
  organization: School of Computing Electronics and Mathematics, Plymouth University, Drake Circus
– sequence: 5
  givenname: Taigang
  surname: He
  fullname: He, Taigang
  organization: Molecular and Clinical Sciences Research Institute, St George’s, University of London, Cranmer Terrace
– sequence: 6
  givenname: Oleg
  surname: Anichtchik
  fullname: Anichtchik, Oleg
  organization: Plymouth University Faculty of Medicine and Dentistry, Drake Circus
– sequence: 7
  givenname: Robert
  surname: Belshaw
  fullname: Belshaw, Robert
  organization: Plymouth University Faculty of Medicine and Dentistry, Drake Circus
– sequence: 8
  givenname: Diego
  orcidid: 0000-0002-7050-6723
  surname: Albani
  fullname: Albani, Diego
  organization: Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche “Mario Negri” Via La Masa 19
– sequence: 9
  givenname: Paul
  surname: Edison
  fullname: Edison, Paul
  organization: Department of Medicine, Imperial College London
– sequence: 10
  givenname: Elaine K
  surname: Green
  fullname: Green, Elaine K
  organization: Plymouth University Faculty of Medicine and Dentistry, Drake Circus
– sequence: 11
  givenname: James
  surname: Scott
  fullname: Scott, James
  organization: Department of Medicine, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30478411$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOxDAQRS0E4v0DFCgSDU3Az43dIC3LU0KiAGrLSSZgSGKwE6Sl4jf4Pb4EL-Fd4MYj-dyZ67kraL51LSC0QfAOwUzuBk6EkikmMmUikyplc2iZYi5Syiid_1EvofUQbnE8gipO1CJaYphnkhOyjMYX09BBYzpbJOPW1NNgQ2LaMtm3rjH-Dnxy0fXlNKmcT8b10w3YBvzr80tIDmwAE2ANLVSmDrD-ca-iq6PDy8lJenZ-fDoZn6UFz3iXllQSrvIS86KkVKqRyUDSjAMXOAfJGFYEhBFZyXNqOJWyIqqoMpkLSWLFVtHe0Pe-zxsoC2g7b2p97230OdXOWP37pbU3-to96hEVQhEWG2x_NPDuoYfQ6caGAuratOD6oClhcsQVxSSiW3_QW9f7uJ6BwiLjIxmpzZ-Ovqx8bjcCdAAK70LwUH0hBOtZinpIUccU9XuKemZT_hEVtov5uNmvbP2_lA3SEOe01-C_bf-jegPCu7Ck
CitedBy_id crossref_primary_10_1080_03772063_2021_1962747
crossref_primary_10_2174_1568026623666221026091010
crossref_primary_10_1016_j_ymeth_2020_04_008
crossref_primary_10_1038_s42003_022_03068_7
crossref_primary_10_1039_D1RA01553B
crossref_primary_10_3389_fphar_2020_01171
crossref_primary_10_3892_mmr_2020_11118
crossref_primary_10_3390_genes13081406
crossref_primary_10_3389_fdgth_2022_875895
crossref_primary_10_3389_fnagi_2020_00141
crossref_primary_10_1038_s41598_020_60595_1
crossref_primary_10_3390_cells11233864
crossref_primary_10_3390_biomedicines11123304
crossref_primary_10_1002_slct_202403362
crossref_primary_10_1016_j_neulet_2023_137609
crossref_primary_10_3389_fgene_2022_968598
crossref_primary_10_32604_cmc_2023_034734
crossref_primary_10_3389_fnins_2020_00209
crossref_primary_10_3390_biom13111563
crossref_primary_10_3390_ijms20215403
crossref_primary_10_1002_alz_12979
crossref_primary_10_1016_j_compbiomed_2021_104947
crossref_primary_10_1016_j_neurobiolaging_2021_07_005
crossref_primary_10_14336_AD_2020_0312
crossref_primary_10_3390_sym14030491
crossref_primary_10_1016_j_neulet_2022_136551
crossref_primary_10_3233_JAD_215640
crossref_primary_10_3389_fgene_2020_00334
crossref_primary_10_18632_aging_102943
crossref_primary_10_1111_pbi_13286
crossref_primary_10_1002_cbf_4056
crossref_primary_10_1002_bimj_202200209
crossref_primary_10_3390_ijms21103517
crossref_primary_10_3390_jpm10030115
crossref_primary_10_1038_s41588_021_00921_z
crossref_primary_10_3389_fnagi_2021_768229
crossref_primary_10_1038_s41598_023_48094_5
crossref_primary_10_3390_jcm9093016
crossref_primary_10_1002_ajmg_b_33019
crossref_primary_10_3233_JAD_240301
crossref_primary_10_1007_s42979_023_01688_2
crossref_primary_10_3390_brainsci13091318
crossref_primary_10_3934_mbe_2023366
crossref_primary_10_1186_s13195_024_01651_0
crossref_primary_10_1002_ana_26537
crossref_primary_10_3390_ijms241512372
crossref_primary_10_1002_alz_13406
crossref_primary_10_1109_JBHI_2020_2984355
crossref_primary_10_1016_j_asoc_2024_112307
crossref_primary_10_1126_sciadv_ado6894
crossref_primary_10_1097_WCO_0000000000000795
Cites_doi 10.1186/s13059-015-0750-x
10.1016/j.neuroimage.2010.10.081
10.1038/ng.2802
10.1038/srep43946
10.1523/JNEUROSCI.0519-10.2010
10.1038/ncomms9570
10.1523/JNEUROSCI.3040-05.2005
10.1038/srep19332
10.1016/j.jalz.2015.12.008
10.1038/srep12393
10.1101/pdb.top084970
10.1038/nature12415
10.1523/JNEUROSCI.3029-15.2016
10.1186/s13073-016-0355-3
10.1155/JBB.2005.147
10.1001/jamaneurol.2014.3049
10.1016/j.ijcard.2016.08.254
10.1016/j.jalz.2017.01.016
10.1155/2016/4250480
10.1007/s00223-016-0187-6
10.1038/ng.3842
10.1038/nm.3466
10.1016/j.jalz.2009.07.001
10.1016/j.csbj.2016.10.003
10.1016/j.jalz.2016.12.012
10.1016/j.jalz.2014.06.010
10.1093/eurheartj/ehx208
10.1371/journal.pone.0118432
10.1016/j.ymgme.2008.12.004
10.1016/j.neuroimage.2012.10.071
10.1186/1471-2105-13-335
10.1523/JNEUROSCI.2781-15.2015
10.15252/msb.20145304
10.1093/bioinformatics/bti623
10.1002/cncr.29976
10.1016/j.neuron.2015.09.048
10.1038/tp.2015.91
10.1038/nature25158
10.1016/j.cell.2013.03.030
10.1371/journal.pcbi.1004219
10.1038/nature25456
10.3233/JAD-150440
10.1038/gim.2015.117
10.3233/JAD-2012-121363
10.1371/journal.pone.0094661
10.1038/mp.2016.113
10.1093/biostatistics/4.2.249
10.1021/acs.jmedchem.5b01263
10.1002/gepi.21976
10.1001/archneurol.2010.215
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-018-35789-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID PMC6255913
30478411
10_1038_s41598_018_35789_3
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG032984
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: G84/6523
– fundername: NIA NIH HHS
  grantid: U01 AG016976
– fundername: NIA NIH HHS
  grantid: U24 AG021886
– fundername: NHLBI NIH HHS
  grantid: R01 HL105756
– fundername: NIA NIH HHS
  grantid: R01 AG033193
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-d28149bd04cd22896a7e8274e450be833091e5a57d4b2a4288f19cf78b58119c3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:33:15 EDT 2025
Thu Jul 10 20:26:05 EDT 2025
Sat Aug 23 13:36:44 EDT 2025
Mon Jul 21 06:08:15 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Tue Jul 01 00:58:21 EDT 2025
Fri Feb 21 02:38:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Genome-wide Association Studies
Area Under Precision-recall Curve (AUPR)
International Genomics Of Alzheimer’s Project (IGAP)
Differentially Expressed Genes (DEGs)
Least Absolute Shrinkage And Selection Operator (LASSO)
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-d28149bd04cd22896a7e8274e450be833091e5a57d4b2a4288f19cf78b58119c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6411-4045
0000-0002-7050-6723
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-35789-3
PMID 30478411
PQID 2138057468
PQPubID 2041939
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6255913
proquest_miscellaneous_2138649201
proquest_journals_2138057468
pubmed_primary_30478411
crossref_primary_10_1038_s41598_018_35789_3
crossref_citationtrail_10_1038_s41598_018_35789_3
springer_journals_10_1038_s41598_018_35789_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-26
PublicationDateYYYYMMDD 2018-11-26
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Karaca (CR25) 2015; 88
Voyle (CR13) 2015; 49
Ghosh, Chinnaiyan (CR20) 2005; 2005
Kim (CR33) 2015; 58
Nakamura (CR45) 2018; 554
Fehlbaum-Beurdeley (CR10) 2010; 6
Casanova (CR14) 2016; 12
Lambert (CR1) 2013; 45
Nevado-Holgado, Lovestone (CR30) 2017; 15
Chan (CR21) 2015; 5
Ding, Markesbery, Chen, Li, Keller (CR27) 2005; 25
Wan (CR32) 2010; 30
Escott-Price (CR3) 2014; 9
Zhang (CR4) 2013; 153
Van Cauwenberghe, Van Broeckhoven, Sleegers (CR2) 2016; 18
Rosenthal (CR36) 2016; 40
Narayanan (CR5) 2014; 10
Wolters, Rizopoulos, Ikram (CR39) 2017; 227
Kennedy (CR38) 2016; 6
O’Bryant (CR12) 2010; 67
Singh-Manoux (CR44) 2017; 38
Long, Pan, Ifeachor, Belshaw, Li (CR9) 2016; 2016
Zarei (CR37) 2013; 66
de Leeuw, Mooij, Heskes, Posthuma (CR19) 2015; 11
Yu (CR26) 2015; 72
Jun (CR41) 2017; 13
Hinrichs, Singh, Xu, Johnson (CR50) 2011; 55
Saito, Rehmsmeier (CR51) 2015; 10
Thudium (CR35) 2016; 99
Kukurba, Montgomery (CR48) 2015; 2015
Mukherjee (CR40) 2017; 13
Biron (CR47) 2016; 122
CR17
Ciucci (CR46) 2017; 7
Anazi (CR24) 2017; 22
Taminau (CR16) 2012; 13
Lunnon (CR11) 2013; 33
Mapstone (CR8) 2014; 20
Low (CR43) 2017; 49
Wang (CR6) 2016; 8
Irizarry (CR18) 2003; 4
Sing, Sander, Beerenwinkel, Lengauer (CR22) 2005; 21
Meier (CR28) 2016; 36
Potluri (CR31) 2009; 96
Logue (CR42) 2014; 10
Venegas (CR34) 2017; 552
Peters (CR23) 2015; 6
Caccamo (CR29) 2015; 35
Li, Long, He, Belshaw, Scott (CR7) 2015; 5
Sood (CR15) 2015; 16
Rhinn (CR49) 2013; 500
H Rhinn (35789_CR49) 2013; 500
FJ Wolters (35789_CR39) 2017; 227
D Ghosh (35789_CR20) 2005; 2005
B Zhang (35789_CR4) 2013; 153
S Anazi (35789_CR24) 2017; 22
C Venegas (35789_CR34) 2017; 552
J Long (35789_CR9) 2016; 2016
S Sood (35789_CR15) 2015; 16
SK Low (35789_CR43) 2017; 49
P Fehlbaum-Beurdeley (35789_CR10) 2010; 6
A Singh-Manoux (35789_CR44) 2017; 38
A Nakamura (35789_CR45) 2018; 554
VL Biron (35789_CR47) 2016; 122
M Narayanan (35789_CR5) 2014; 10
MK Kim (35789_CR33) 2015; 58
V Escott-Price (35789_CR3) 2014; 9
M Mapstone (35789_CR8) 2014; 20
R Casanova (35789_CR14) 2016; 12
J Taminau (35789_CR16) 2012; 13
CA de Leeuw (35789_CR19) 2015; 11
35789_CR17
J Wan (35789_CR32) 2010; 30
GR Jun (35789_CR41) 2017; 13
Q Ding (35789_CR27) 2005; 25
A Caccamo (35789_CR29) 2015; 35
MA Kennedy (35789_CR38) 2016; 6
MK Chan (35789_CR21) 2015; 5
P Potluri (35789_CR31) 2009; 96
MW Logue (35789_CR42) 2014; 10
S Ciucci (35789_CR46) 2017; 7
T Saito (35789_CR51) 2015; 10
C Van Cauwenberghe (35789_CR2) 2016; 18
M Wang (35789_CR6) 2016; 8
CS Thudium (35789_CR35) 2016; 99
E Karaca (35789_CR25) 2015; 88
S Meier (35789_CR28) 2016; 36
X Li (35789_CR7) 2015; 5
K Lunnon (35789_CR11) 2013; 33
EA Rosenthal (35789_CR36) 2016; 40
MJ Peters (35789_CR23) 2015; 6
S Mukherjee (35789_CR40) 2017; 13
T Sing (35789_CR22) 2005; 21
AJ Nevado-Holgado (35789_CR30) 2017; 15
M Zarei (35789_CR37) 2013; 66
RA Irizarry (35789_CR18) 2003; 4
SE O’Bryant (35789_CR12) 2010; 67
L Yu (35789_CR26) 2015; 72
C Hinrichs (35789_CR50) 2011; 55
N Voyle (35789_CR13) 2015; 49
KR Kukurba (35789_CR48) 2015; 2015
JC Lambert (35789_CR1) 2013; 45
References_xml – volume: 16
  year: 2015
  ident: CR15
  article-title: A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0750-x
– volume: 55
  start-page: 574
  year: 2011
  end-page: 589
  ident: CR50
  article-title: & Alzheimers Disease Neuroimaging, I. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.081
– volume: 45
  start-page: 1452
  year: 2013
  end-page: 1458
  ident: CR1
  article-title: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2802
– volume: 7
  year: 2017
  ident: CR46
  article-title: Enlightening discriminative network functional modules behind Principal Component Analysis separation in differential-omic science studies
  publication-title: Sci. Rep.
  doi: 10.1038/srep43946
– volume: 30
  start-page: 6873
  year: 2010
  end-page: 6881
  ident: CR32
  article-title: Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0519-10.2010
– volume: 6
  year: 2015
  ident: CR23
  article-title: The transcriptional landscape of age in human peripheral blood
  publication-title: Nature communications
  doi: 10.1038/ncomms9570
– volume: 25
  start-page: 9171
  year: 2005
  end-page: 9175
  ident: CR27
  article-title: Ribosome dysfunction is an early event in Alzheimer’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3040-05.2005
– volume: 6
  year: 2016
  ident: CR38
  article-title: A Signaling Lipid Associated with Alzheimer’s Disease Promotes Mitochondrial Dysfunction
  publication-title: Sci. Rep.
  doi: 10.1038/srep19332
– volume: 12
  start-page: 815
  year: 2016
  end-page: 822
  ident: CR14
  article-title: Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2015.12.008
– volume: 5
  year: 2015
  ident: CR7
  article-title: Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease
  publication-title: Sci. Rep.
  doi: 10.1038/srep12393
– volume: 2015
  start-page: 951
  year: 2015
  end-page: 969
  ident: CR48
  article-title: RNA Sequencing and Analysis
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.top084970
– volume: 500
  start-page: 45
  year: 2013
  end-page: 50
  ident: CR49
  article-title: Integrative genomics identifies APOE epsilon4 effectors in Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/nature12415
– volume: 36
  start-page: 1001
  year: 2016
  end-page: 1007
  ident: CR28
  article-title: Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function and Decreasing Protein Synthesis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3029-15.2016
– volume: 8
  year: 2016
  ident: CR6
  article-title: Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer’s disease
  publication-title: Genome Med.
  doi: 10.1186/s13073-016-0355-3
– volume: 2005
  start-page: 147
  year: 2005
  end-page: 154
  ident: CR20
  article-title: Classification and selection of biomarkers in genomic data using LASSO
  publication-title: J Biomed Biotechnol
  doi: 10.1155/JBB.2005.147
– volume: 72
  start-page: 15
  year: 2015
  end-page: 24
  ident: CR26
  article-title: Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2014.3049
– volume: 227
  start-page: 189
  year: 2017
  ident: CR39
  article-title: Dementia and death: Separate sides of the atrial fibrillation coin?
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2016.08.254
– volume: 13
  start-page: 1133
  year: 2017
  end-page: 1142
  ident: CR40
  article-title: Systems biology approach to late-onset Alzheimer’s disease genome-wide association study identifies novel candidate genes validated using brain expression data and Caenorhabditis elegans experiments
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2017.01.016
– volume: 2016
  start-page: 4250480
  year: 2016
  ident: CR9
  article-title: Discovery of Novel Biomarkers for Alzheimer’s Disease from Blood
  publication-title: Dis. Markers
  doi: 10.1155/2016/4250480
– volume: 99
  start-page: 638
  year: 2016
  end-page: 648
  ident: CR35
  article-title: Regulation and Function of Lentiviral Vector-Mediated TCIRG1 Expression in Osteoclasts from Patients with Infantile Malignant Osteopetrosis: Implications for Gene Therapy
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-016-0187-6
– volume: 49
  start-page: 953
  year: 2017
  end-page: 958
  ident: CR43
  article-title: Identification of six new genetic loci associated with atrial fibrillation in the Japanese population
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3842
– volume: 20
  start-page: 415
  year: 2014
  end-page: 418
  ident: CR8
  article-title: Plasma phospholipids identify antecedent memory impairment in older adults
  publication-title: Nat. Med.
  doi: 10.1038/nm.3466
– volume: 6
  start-page: 25
  year: 2010
  end-page: 38
  ident: CR10
  article-title: Toward an Alzheimer’s disease diagnosis via high-resolution blood gene expression
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2009.07.001
– volume: 15
  start-page: 1
  year: 2017
  end-page: 7
  ident: CR30
  article-title: Determining the Molecular Pathways Underlying the Protective Effect of Non-Steroidal Anti-Inflammatory Drugs for Alzheimer’s Disease: A Bioinformatics Approach
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2016.10.003
– volume: 13
  start-page: 727
  year: 2017
  end-page: 738
  ident: CR41
  article-title: Transethnic genome-wide scan identifies novel Alzheimer’s disease loci
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2016.12.012
– volume: 10
  start-page: 609
  year: 2014
  end-page: 618 e611
  ident: CR42
  article-title: Two rare AKAP9 variants are associated with Alzheimer’s disease in African Americans
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2014.06.010
– volume: 38
  start-page: 2612
  year: 2017
  end-page: 2618
  ident: CR44
  article-title: Atrial fibrillation as a risk factor for cognitive decline and dementia
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehx208
– volume: 10
  start-page: e0118432
  year: 2015
  ident: CR51
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
– volume: 96
  start-page: 189
  year: 2009
  end-page: 195
  ident: CR31
  article-title: A novel NDUFA1 mutation leads to a progressive mitochondrial complex I-specific neurodegenerative disease
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2008.12.004
– volume: 66
  start-page: 28
  year: 2013
  end-page: 35
  ident: CR37
  article-title: Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer’s disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.071
– volume: 13
  year: 2012
  ident: CR16
  article-title: Unlocking the potential of publicly available microarray data using inSilicoDb and inSilicoMerging R/Bioconductor packages
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-335
– volume: 35
  start-page: 14042
  year: 2015
  end-page: 14056
  ident: CR29
  article-title: Reducing Ribosomal Protein S6 Kinase 1 Expression Improves Spatial Memory and Synaptic Plasticity in a Mouse Model of Alzheimer’s Disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2781-15.2015
– volume: 10
  start-page: 743
  year: 2014
  ident: CR5
  article-title: Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20145304
– volume: 21
  start-page: 3940
  year: 2005
  end-page: 3941
  ident: CR22
  article-title: ROCR: visualizing classifier performance in R
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 122
  start-page: 1544
  year: 2016
  end-page: 1551
  ident: CR47
  article-title: Detection of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma using droplet digital polymerase chain reaction
  publication-title: Cancer
  doi: 10.1002/cncr.29976
– volume: 88
  start-page: 499
  year: 2015
  end-page: 513
  ident: CR25
  article-title: Genes that Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.048
– volume: 5
  year: 2015
  ident: CR21
  article-title: Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2015.91
– volume: 552
  start-page: 355
  year: 2017
  end-page: 361
  ident: CR34
  article-title: Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/nature25158
– volume: 153
  start-page: 707
  year: 2013
  end-page: 720
  ident: CR4
  article-title: Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.030
– volume: 11
  start-page: e1004219
  year: 2015
  ident: CR19
  article-title: MAGMA: generalized gene-set analysis of GWAS data
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004219
– volume: 554
  start-page: 249
  year: 2018
  end-page: 254
  ident: CR45
  article-title: High performance plasma amyloid-beta biomarkers for Alzheimer’s disease
  publication-title: Nature
  doi: 10.1038/nature25456
– volume: 49
  start-page: 659
  year: 2015
  end-page: 669
  ident: CR13
  article-title: A Pathway Based Classification Method for Analyzing Gene Expression for Alzheimer’s Disease Diagnosis
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150440
– volume: 18
  start-page: 421
  year: 2016
  end-page: 430
  ident: CR2
  article-title: The genetic landscape of Alzheimer disease: clinical implications and perspectives
  publication-title: Genet. Med.
  doi: 10.1038/gim.2015.117
– ident: CR17
– volume: 33
  start-page: 737
  year: 2013
  end-page: 753
  ident: CR11
  article-title: A blood gene expression marker of early Alzheimer’s disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2012-121363
– volume: 9
  start-page: e94661
  year: 2014
  ident: CR3
  article-title: Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094661
– volume: 22
  start-page: 615
  year: 2017
  end-page: 624
  ident: CR24
  article-title: Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.113
– volume: 4
  start-page: 249
  year: 2003
  end-page: 264
  ident: CR18
  article-title: Exploration, normalization, and summaries of high density oligonucleotide array probe level data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 58
  start-page: 7596
  year: 2015
  end-page: 7602
  ident: CR33
  article-title: Benzimidazole Derivatives as Potent JAK1-Selective Inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01263
– volume: 40
  start-page: 470
  year: 2016
  end-page: 474
  ident: CR36
  article-title: Association Between Absolute Neutrophil Count and Variation at TCIRG1: The NHLBI Exome Sequencing Project
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21976
– volume: 67
  start-page: 1077
  year: 2010
  end-page: 1081
  ident: CR12
  article-title: A serum protein-based algorithm for the detection of Alzheimer disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2010.215
– volume: 13
  start-page: 727
  year: 2017
  ident: 35789_CR41
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2016.12.012
– volume: 122
  start-page: 1544
  year: 2016
  ident: 35789_CR47
  publication-title: Cancer
  doi: 10.1002/cncr.29976
– volume: 13
  start-page: 1133
  year: 2017
  ident: 35789_CR40
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2017.01.016
– volume: 45
  start-page: 1452
  year: 2013
  ident: 35789_CR1
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2802
– volume: 66
  start-page: 28
  year: 2013
  ident: 35789_CR37
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.071
– volume: 227
  start-page: 189
  year: 2017
  ident: 35789_CR39
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2016.08.254
– volume: 10
  start-page: 609
  year: 2014
  ident: 35789_CR42
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2014.06.010
– volume: 6
  year: 2015
  ident: 35789_CR23
  publication-title: Nature communications
  doi: 10.1038/ncomms9570
– volume: 10
  start-page: 743
  year: 2014
  ident: 35789_CR5
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20145304
– volume: 153
  start-page: 707
  year: 2013
  ident: 35789_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.030
– volume: 72
  start-page: 15
  year: 2015
  ident: 35789_CR26
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2014.3049
– volume: 9
  start-page: e94661
  year: 2014
  ident: 35789_CR3
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094661
– volume: 5
  year: 2015
  ident: 35789_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/srep12393
– volume: 40
  start-page: 470
  year: 2016
  ident: 35789_CR36
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21976
– volume: 2005
  start-page: 147
  year: 2005
  ident: 35789_CR20
  publication-title: J Biomed Biotechnol
  doi: 10.1155/JBB.2005.147
– volume: 25
  start-page: 9171
  year: 2005
  ident: 35789_CR27
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3040-05.2005
– volume: 554
  start-page: 249
  year: 2018
  ident: 35789_CR45
  publication-title: Nature
  doi: 10.1038/nature25456
– volume: 96
  start-page: 189
  year: 2009
  ident: 35789_CR31
  publication-title: Mol. Genet. Metab.
  doi: 10.1016/j.ymgme.2008.12.004
– volume: 13
  year: 2012
  ident: 35789_CR16
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-335
– volume: 49
  start-page: 953
  year: 2017
  ident: 35789_CR43
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3842
– volume: 10
  start-page: e0118432
  year: 2015
  ident: 35789_CR51
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
– volume: 8
  year: 2016
  ident: 35789_CR6
  publication-title: Genome Med.
  doi: 10.1186/s13073-016-0355-3
– volume: 36
  start-page: 1001
  year: 2016
  ident: 35789_CR28
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3029-15.2016
– volume: 500
  start-page: 45
  year: 2013
  ident: 35789_CR49
  publication-title: Nature
  doi: 10.1038/nature12415
– volume: 55
  start-page: 574
  year: 2011
  ident: 35789_CR50
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.081
– ident: 35789_CR17
– volume: 15
  start-page: 1
  year: 2017
  ident: 35789_CR30
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2016.10.003
– volume: 6
  start-page: 25
  year: 2010
  ident: 35789_CR10
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2009.07.001
– volume: 38
  start-page: 2612
  year: 2017
  ident: 35789_CR44
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehx208
– volume: 6
  year: 2016
  ident: 35789_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep19332
– volume: 88
  start-page: 499
  year: 2015
  ident: 35789_CR25
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.09.048
– volume: 11
  start-page: e1004219
  year: 2015
  ident: 35789_CR19
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004219
– volume: 30
  start-page: 6873
  year: 2010
  ident: 35789_CR32
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0519-10.2010
– volume: 4
  start-page: 249
  year: 2003
  ident: 35789_CR18
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/4.2.249
– volume: 12
  start-page: 815
  year: 2016
  ident: 35789_CR14
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2015.12.008
– volume: 7
  year: 2017
  ident: 35789_CR46
  publication-title: Sci. Rep.
  doi: 10.1038/srep43946
– volume: 18
  start-page: 421
  year: 2016
  ident: 35789_CR2
  publication-title: Genet. Med.
  doi: 10.1038/gim.2015.117
– volume: 2015
  start-page: 951
  year: 2015
  ident: 35789_CR48
  publication-title: Cold Spring Harb Protoc
  doi: 10.1101/pdb.top084970
– volume: 49
  start-page: 659
  year: 2015
  ident: 35789_CR13
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150440
– volume: 58
  start-page: 7596
  year: 2015
  ident: 35789_CR33
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01263
– volume: 552
  start-page: 355
  year: 2017
  ident: 35789_CR34
  publication-title: Nature
  doi: 10.1038/nature25158
– volume: 33
  start-page: 737
  year: 2013
  ident: 35789_CR11
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2012-121363
– volume: 67
  start-page: 1077
  year: 2010
  ident: 35789_CR12
  publication-title: Arch. Neurol.
  doi: 10.1001/archneurol.2010.215
– volume: 2016
  start-page: 4250480
  year: 2016
  ident: 35789_CR9
  publication-title: Dis. Markers
  doi: 10.1155/2016/4250480
– volume: 16
  year: 2015
  ident: 35789_CR15
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0750-x
– volume: 20
  start-page: 415
  year: 2014
  ident: 35789_CR8
  publication-title: Nat. Med.
  doi: 10.1038/nm.3466
– volume: 99
  start-page: 638
  year: 2016
  ident: 35789_CR35
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-016-0187-6
– volume: 5
  year: 2015
  ident: 35789_CR21
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2015.91
– volume: 22
  start-page: 615
  year: 2017
  ident: 35789_CR24
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.113
– volume: 21
  start-page: 3940
  year: 2005
  ident: 35789_CR22
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti623
– volume: 35
  start-page: 14042
  year: 2015
  ident: 35789_CR29
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2781-15.2015
SSID ssj0000529419
Score 2.478097
Snippet Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with Alzheimer’s Disease (AD) will help us to understand the...
Revealing the relationship between dysfunctional genes in blood and brain tissues from patients with Alzheimer's Disease (AD) will help us to understand the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17394
SubjectTerms 45/43
45/61
631/553/1833
692/53/2421
Age
Alzheimer Disease - blood
Alzheimer Disease - genetics
Alzheimer Disease - metabolism
Alzheimer's disease
Biomarkers
Biomarkers - blood
Biomarkers - metabolism
Blood
Blood - metabolism
Brain
Brain - metabolism
Case-Control Studies
Cognitive ability
Cognitive Dysfunction - blood
Cognitive Dysfunction - genetics
Cognitive Dysfunction - metabolism
Datasets
Dementia
Gender
Gene expression
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genomics
Humanities and Social Sciences
Humans
Learning algorithms
Machine Learning
Mitochondria
Mitochondria - genetics
multidisciplinary
NF-kappa B - genetics
NF-κB protein
Nitric Oxide Synthase Type II - genetics
Nitric-oxide synthase
Parkinson's disease
Ribosomes - genetics
Science
Science (multidisciplinary)
Sensitivity and Specificity
Signal transduction
Signal Transduction - genetics
Tyk2 protein
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELbKVkhcENBCF5YqlXprrY3jZ04IQRFCak9F2lvk2I5Agux2H4flxN_g7_FLmMkLbRF79kSxZ_z4xt94hpDvhVHcB5nQPOeOCu0kta6QNC24hwMPmTtkdH__UZfX4mokR82F26wJq2z3xGqj9mOHd-TDhHED2EIoczL5R7FqFLKrTQmNDfIRU5fhrNYj3d2xIIslWNq8lYm5Gc7gvMI3ZcxQTPOSUr56Hr0BmW9jJf8jTKtz6GKHbDcAMjqtLb5LPoRyj2zWJSWXn2Cb7FIzR23CkciWPgKJewzFmUYYOriMAKxGp3cPN-H2PkyfH59m0XnN1Xwm1xe__p5d0qZMAnVCizn1iQE3J_excD4B_0lZHQw4m0HIOA-Gc4AEQVqpvcgTC-6GKVjqCm1yaUBrju-TXjkuwxeMcwI0VOjUeR6L4KQVca6UddrZUACy6RPWKitzTQ5xLGVxl1VcNjdZreAMFJxVCs7gmx_dN5M6g8Za6UFrg6xZTbPs1fZ98q1rhnWA5IYtw3hRyyiRAp7pk4PaZN3vkFo0gkGLXjFmJ4A5tldbytubKte2QpeLQbd-tmZ_7db7ozhcP4ojspXgFGSMJmpAevPpIhwDtpnnX6sJ_AIsAfZP
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7qIngR366uUsGbBptn02NRl2VBLyrsraRpygralX0c9OTf8O_5S5z0JesLvBUyoenMtPNNZ_IFoeNMSZZaQXGSMIN5YATWJhM4zFgKAc9V7lxF9-pa9u54fyAGC4jWe2GKpv2C0rL4TNfdYWcTCDRuMxhR2PGzhJgtopajagffbkVR_6bf_FlxtStOwmqHjM_UD5Pno9A3aPm9Q_JLmbSIPt01tFrBRi8qF7qOFmy-gZbLgySfN-Hj2BAyezXNiKfz1AOJR9eAM_Zcw-CzBxDVix5ehvb-0Y7fX98m3kVZodlCd93L2_Merg5HwIYHfIpTqiC5SVKfm5RC1iR1YBWkmJYLP7GKMQACVmgRpDyhGpIMlZHQZIFKhCJwxbbRUj7K7a7rbgIMlAWhSZnPrRGa-4mU2gRG2wzwTBuRWlmxqZjD3QEWD3FRwWYqLhUcg4LjQsExzDlp5jyVvBl_SndqG8TVOzSJKWEK0CSXqo2OmmHwflfS0LkdzUoZyUNAMW20U5qsuZ0rKCpOYCSYM2Yj4Ji150fy-2HBsC1dokVgWae12T-X9ftT7P1PfB-tUOeShGAqO2hpOp7ZA0A40-SwcukPH7n1lA
  priority: 102
  providerName: Springer Nature
Title Systematic Analysis and Biomarker Study for Alzheimer’s Disease
URI https://link.springer.com/article/10.1038/s41598-018-35789-3
https://www.ncbi.nlm.nih.gov/pubmed/30478411
https://www.proquest.com/docview/2138057468
https://www.proquest.com/docview/2138649201
https://pubmed.ncbi.nlm.nih.gov/PMC6255913
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUCsuFX3BFlilUm-t23X8zKGqli0IrQSq2q60t8hxHIG0BNhdJLan_g3-Xn9Jx3EStIX20FOieCw7M3bmm8x4BuBNoSXLnYhJljFLuLKCGFsIkhQsR4XnPXfeo3t8Io9GfDgW4xVoyh3VDJw9aNr5elKj6eT9zdXiE274j-HIuP4wQyXkD4pRTXzuloSwVVhHzaR8RYPjGu6HXN9xwmlSn515uOsGPPaeKM0pXVZV9_Dn_TDKP3yplYo63IQnNbaM-mExPIUVVz6DR6Ha5OI5fkHbrM1Rk4skMmUeIcW5j9KZRj6qcBEhjo36kx-n7uzcTX_9vJ1Fn4Mb5wWMDg--D45IXUGBWK74nOSxRgsoy3vc5jGaVtIop9EOdVz0MqcZQ7TghBEq51ls0BLRBU1soXQmNMU79hLWyovSbfsQKARKhUpsjuxxVhjey6Q0VlnjCgQ9HaANs1Jbpxf3VS4maeXmZjoNvE6R12nF6xT7vG37XIbkGv-k3m1kkDbrJI0p0wg5udQdeN024xbxfg9TuovrQCN5glCnA1tBZO1wjaw7oJaE2RL49NvLLeXZaZWGW3prjOK03jViv5vW39_i1X8PtAMbsV-olJJY7sLafHrt9hARzbMurKqx6sJ6vz_8NsTr_sHJl6_4dCAH3eovQ7faCL8BzHsMww
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxJuFAkGCE1iN384BoYpSbenj1Ep7M47jqJXabLu7FVpO_A3-BD-qv6QzeVVLRW-9rWQnm8yMPd_kG88Q8r60WhRRcZrnIlBpgqI-lIpmpSjA4SFzh4zu7p4eHsjvIzVaIn-7szCYVtntifVGXYwDfiNf40xYwBZS2y-nZxS7RiG72rXQaMxiO85_Qsg2_by1Afr9wPnmt_2vQ9p2FaBBGjmjBbcQFeRFKkPBIdzQ3kQLsVmUKs2jhfg-Y1F5ZQqZcw_o3JYsC6WxubIMfgm47x1yFxxvisGeGZn-mw6yZpJl7dmcVNi1KfhHPMPGLMWyMhkVi_7vGqi9npv5D0Fb-73Nh-RBC1iT9cbCHpGlWD0m95oWlvMnsC33paCTrsBJ4qsigRknmPozSTBVcZ4AOE7Wj38dxqOTOLn4_WeabDTc0FNycCsCfEaWq3EVX2BeFaCv0mShEKmMQXmZ5lr7YIKPJSCpAWGdsFxoa5Zj64xjV3PnwrpGwA4E7GoBO7jmY3_NaVOx48bZq50OXLt6p-7K1gbkXT8M6w7JFF_F8XkzR8sM8NOAPG9U1v8dUplWMhgxC8rsJ2BN78WR6uiwru2tMcRj8FifOrVfPdb_3-LlzW_xltwf7u_uuJ2tve1XZIWjOTJGuV4ly7PJeXwNuGqWv6mNOSE_bnv1XAItaTGl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKKhCXin9SChgJTmBlvfZ6vQeECmnUUogqRKXeXK_tVSu1m5KkQuHEa_AqPA5Pwsz-VaGit95WsvdvZmx_4288Q8jLQivhQxKzPBeOydQlzLoiYVkhPCx4yNwho_t5rLb35ceD5GCF_G7PwmBYZTsnVhO1nzjcIx_EXGjAFlLpQdGERewNR-_OvjGsIIVMa1tOozaR3bD4Du7b7O3OEHT9Ko5HW18_bLOmwgBzMpVz5mMNHkLuI-l8DK6HsmnQ4KcFmUR50ODrZzwkNkm9zGMLSF0XPHNFqvNEc7gS8NwbZDVFr6hHVt9vjfe-dDs8yKFJnjUndSKhBzNYLfFEG9cMk8xkTCyvhpcg7uVIzX_o2moVHN0haw18pZu1vd0lK6G8R27WBS0X92GS7hJD0zbdCbWlp9DjFAOBphQDFxcUoDLdPPlxFI5Pw_TPz18zOqyZogdk_1pE-JD0ykkZHmOUFWCxIs2cF5EMLrEyypWyLnU2FICr-oS3wjKuyWCOhTROTMWkC21qARsQsKkEbOCe1909Z3X-jit7b7Q6MM1YnpkLy-uTF10zjEKkVmwZJud1HyUzQFN98qhWWfc6JDa15NCSLimz64AZvpdbyuOjKtO3QoePw2e9adV-8Vn__4v1q__iObkFI8d82hnvPiG3Y7RGzlmsNkhvPj0PTwFkzfNnjTVTcnjdA-gvxww3QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Analysis+and+Biomarker+Study+for+Alzheimer%E2%80%99s+Disease&rft.jtitle=Scientific+reports&rft.au=Li%2C+Xinzhong&rft.au=Wang%2C+Haiyan&rft.au=Long%2C+Jintao&rft.au=Pan%2C+Genhua&rft.date=2018-11-26&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=8&rft_id=info:doi/10.1038%2Fs41598-018-35789-3&rft_id=info%3Apmid%2F30478411&rft.externalDocID=PMC6255913
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon