Object detection using YOLO: challenges, architectural successors, datasets and applications

Object detection is one of the predominant and challenging problems in computer vision. Over the decade, with the expeditious evolution of deep learning, researchers have extensively experimented and contributed in the performance enhancement of object detection and related tasks such as object clas...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 6; pp. 9243 - 9275
Main Authors Diwan, Tausif, Anirudh, G., Tembhurne, Jitendra V.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Object detection is one of the predominant and challenging problems in computer vision. Over the decade, with the expeditious evolution of deep learning, researchers have extensively experimented and contributed in the performance enhancement of object detection and related tasks such as object classification, localization, and segmentation using underlying deep models. Broadly, object detectors are classified into two categories viz. two stage and single stage object detectors. Two stage detectors mainly focus on selective region proposals strategy via complex architecture; however, single stage detectors focus on all the spatial region proposals for the possible detection of objects via relatively simpler architecture in one shot. Performance of any object detector is evaluated through detection accuracy and inference time. Generally, the detection accuracy of two stage detectors outperforms single stage object detectors. However, the inference time of single stage detectors is better compared to its counterparts. Moreover, with the advent of YOLO (You Only Look Once) and its architectural successors, the detection accuracy is improving significantly and sometime it is better than two stage detectors. YOLOs are adopted in various applications majorly due to their faster inferences rather than considering detection accuracy. As an example, detection accuracies are 63.4 and 70 for YOLO and Fast-RCNN respectively, however, inference time is around 300 times faster in case of YOLO. In this paper, we present a comprehensive review of single stage object detectors specially YOLOs, regression formulation, their architecture advancements, and performance statistics. Moreover, we summarize the comparative illustration between two stage and single stage object detectors, among different versions of YOLOs, applications based on two stage detectors, and different versions of YOLOs along with the future research directions.
AbstractList Object detection is one of the predominant and challenging problems in computer vision. Over the decade, with the expeditious evolution of deep learning, researchers have extensively experimented and contributed in the performance enhancement of object detection and related tasks such as object classification, localization, and segmentation using underlying deep models. Broadly, object detectors are classified into two categories viz. two stage and single stage object detectors. Two stage detectors mainly focus on selective region proposals strategy via complex architecture; however, single stage detectors focus on all the spatial region proposals for the possible detection of objects via relatively simpler architecture in one shot. Performance of any object detector is evaluated through detection accuracy and inference time. Generally, the detection accuracy of two stage detectors outperforms single stage object detectors. However, the inference time of single stage detectors is better compared to its counterparts. Moreover, with the advent of YOLO (You Only Look Once) and its architectural successors, the detection accuracy is improving significantly and sometime it is better than two stage detectors. YOLOs are adopted in various applications majorly due to their faster inferences rather than considering detection accuracy. As an example, detection accuracies are 63.4 and 70 for YOLO and Fast-RCNN respectively, however, inference time is around 300 times faster in case of YOLO. In this paper, we present a comprehensive review of single stage object detectors specially YOLOs, regression formulation, their architecture advancements, and performance statistics. Moreover, we summarize the comparative illustration between two stage and single stage object detectors, among different versions of YOLOs, applications based on two stage detectors, and different versions of YOLOs along with the future research directions.
Object detection is one of the predominant and challenging problems in computer vision. Over the decade, with the expeditious evolution of deep learning, researchers have extensively experimented and contributed in the performance enhancement of object detection and related tasks such as object classification, localization, and segmentation using underlying deep models. Broadly, object detectors are classified into two categories viz. two stage and single stage object detectors. Two stage detectors mainly focus on selective region proposals strategy via complex architecture; however, single stage detectors focus on all the spatial region proposals for the possible detection of objects via relatively simpler architecture in one shot. Performance of any object detector is evaluated through detection accuracy and inference time. Generally, the detection accuracy of two stage detectors outperforms single stage object detectors. However, the inference time of single stage detectors is better compared to its counterparts. Moreover, with the advent of YOLO (You Only Look Once) and its architectural successors, the detection accuracy is improving significantly and sometime it is better than two stage detectors. YOLOs are adopted in various applications majorly due to their faster inferences rather than considering detection accuracy. As an example, detection accuracies are 63.4 and 70 for YOLO and Fast-RCNN respectively, however, inference time is around 300 times faster in case of YOLO. In this paper, we present a comprehensive review of single stage object detectors specially YOLOs, regression formulation, their architecture advancements, and performance statistics. Moreover, we summarize the comparative illustration between two stage and single stage object detectors, among different versions of YOLOs, applications based on two stage detectors, and different versions of YOLOs along with the future research directions.Object detection is one of the predominant and challenging problems in computer vision. Over the decade, with the expeditious evolution of deep learning, researchers have extensively experimented and contributed in the performance enhancement of object detection and related tasks such as object classification, localization, and segmentation using underlying deep models. Broadly, object detectors are classified into two categories viz. two stage and single stage object detectors. Two stage detectors mainly focus on selective region proposals strategy via complex architecture; however, single stage detectors focus on all the spatial region proposals for the possible detection of objects via relatively simpler architecture in one shot. Performance of any object detector is evaluated through detection accuracy and inference time. Generally, the detection accuracy of two stage detectors outperforms single stage object detectors. However, the inference time of single stage detectors is better compared to its counterparts. Moreover, with the advent of YOLO (You Only Look Once) and its architectural successors, the detection accuracy is improving significantly and sometime it is better than two stage detectors. YOLOs are adopted in various applications majorly due to their faster inferences rather than considering detection accuracy. As an example, detection accuracies are 63.4 and 70 for YOLO and Fast-RCNN respectively, however, inference time is around 300 times faster in case of YOLO. In this paper, we present a comprehensive review of single stage object detectors specially YOLOs, regression formulation, their architecture advancements, and performance statistics. Moreover, we summarize the comparative illustration between two stage and single stage object detectors, among different versions of YOLOs, applications based on two stage detectors, and different versions of YOLOs along with the future research directions.
Author Anirudh, G.
Diwan, Tausif
Tembhurne, Jitendra V.
Author_xml – sequence: 1
  givenname: Tausif
  surname: Diwan
  fullname: Diwan, Tausif
  email: tdiwan@iiitn.ac.in
  organization: Department of Computer Science & Engineering, Indian Institute of Information Technology
– sequence: 2
  givenname: G.
  surname: Anirudh
  fullname: Anirudh, G.
  organization: Department of Data science and analytics, Central University of Rajasthan
– sequence: 3
  givenname: Jitendra V.
  surname: Tembhurne
  fullname: Tembhurne, Jitendra V.
  organization: Department of Computer Science & Engineering, Indian Institute of Information Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35968414$$D View this record in MEDLINE/PubMed
BookMark eNp9kU2LFDEQhoOsuB_6BzxIgxcPtuY7aQ8LsvgFA3PRgyCEdHV2JkNPMqa6hfn3ZnbWVfewpwrU81beqvecnKScAiHPGX3DKDVvkTEqeUs5b5nQUrb7R-SMKSNaYzg7qW9haWsUZafkHHFDKdOKyyfkVKhOW8nkGfmx7DcBpmYIUy0xp2bGmFbN9-Vi-a6BtR_HkFYBXze-wDoeoLn4scEZICDmUjuDnzyGCRufhsbvdmMEfxiFT8njaz9ieHZbL8i3jx--Xn1uF8tPX67eL1qQRk7twAbd9bbzUkkrOqmEBiM4oyp444cejA2d1tb0UkHoesUt8wBSSPDKaBAX5PI4dzf32zBASFP16HYlbn3Zu-yj-7-T4tqt8i_XCWWF4XXAq9sBJf-cA05uGxHCOPoU8oyOG8qlVZLTir68h27yXFJdr1LGGs2t7Sr14l9Hd1b-HL4C_AhAyYglXN8hjLpDuu6Yrqvpupt03b6K7D0RxOnm1HWrOD4sFUcp1n9qoOWv7QdUvwGy3LqE
CitedBy_id crossref_primary_10_3390_electronics12244924
crossref_primary_10_1007_s12040_024_02327_x
crossref_primary_10_1016_j_jrras_2025_101309
crossref_primary_10_1109_ACCESS_2023_3265195
crossref_primary_10_1177_03611981241246263
crossref_primary_10_1016_j_aiia_2025_02_006
crossref_primary_10_1093_iti_liad004
crossref_primary_10_3390_rs16050756
crossref_primary_10_3390_app14031153
crossref_primary_10_1016_j_neucom_2024_127975
crossref_primary_10_1016_j_marpetgeo_2024_106965
crossref_primary_10_1029_2023JD038987
crossref_primary_10_1051_wujns_2024294338
crossref_primary_10_3934_math_20231219
crossref_primary_10_1016_j_compag_2023_108442
crossref_primary_10_3390_drones9010011
crossref_primary_10_54392_irjmt2436
crossref_primary_10_1016_j_jormas_2025_102293
crossref_primary_10_1007_s12145_025_01825_w
crossref_primary_10_58769_joinssr_1498561
crossref_primary_10_1016_j_procs_2024_04_131
crossref_primary_10_4108_eetinis_v11i1_4618
crossref_primary_10_1007_s12040_024_02281_8
crossref_primary_10_1016_j_jag_2024_104229
crossref_primary_10_36930_40350117
crossref_primary_10_1016_j_jag_2024_104106
crossref_primary_10_1615_TelecomRadEng_2023048987
crossref_primary_10_3390_electronics12244936
crossref_primary_10_1016_j_vlsi_2024_102287
crossref_primary_10_3390_electronics14010093
crossref_primary_10_1016_j_ecoinf_2024_102543
crossref_primary_10_1007_s11629_023_8128_0
crossref_primary_10_1016_j_prosdent_2023_07_009
crossref_primary_10_1177_01423312241261087
crossref_primary_10_36930_40350115
crossref_primary_10_1007_s12145_024_01358_8
crossref_primary_10_36930_40340406
crossref_primary_10_1016_j_ufug_2025_128695
crossref_primary_10_1016_j_engappai_2024_109351
crossref_primary_10_1109_LGRS_2024_3372600
crossref_primary_10_1007_s11227_024_06611_x
crossref_primary_10_1038_s41598_024_78699_3
crossref_primary_10_1016_j_cscm_2023_e02779
crossref_primary_10_3390_app15010327
crossref_primary_10_23939_ujit2024_01_120
crossref_primary_10_3390_electronics13040773
crossref_primary_10_3390_s25061702
crossref_primary_10_3390_agriculture14030490
crossref_primary_10_3390_electronics13091699
crossref_primary_10_1007_s10266_024_00989_z
crossref_primary_10_1109_TAES_2023_3308096
crossref_primary_10_1007_s42979_023_02348_1
crossref_primary_10_31548_machinery_2_2024_33
crossref_primary_10_1016_j_culher_2024_05_009
crossref_primary_10_3390_app14145982
crossref_primary_10_1016_j_engappai_2023_107677
crossref_primary_10_1016_j_comcom_2024_05_022
crossref_primary_10_1016_j_ecoinf_2025_103009
crossref_primary_10_3390_plants14050760
crossref_primary_10_3390_electronics13183676
crossref_primary_10_1016_j_displa_2024_102714
crossref_primary_10_1016_j_jneumeth_2024_110256
crossref_primary_10_1109_ACCESS_2023_3315873
crossref_primary_10_3390_diagnostics14131443
crossref_primary_10_1109_ACCESS_2024_3350381
crossref_primary_10_1109_ACCESS_2024_3386826
crossref_primary_10_1007_s44196_023_00235_4
crossref_primary_10_1016_j_knosys_2024_112027
crossref_primary_10_1007_s11517_023_02855_6
crossref_primary_10_3390_app13158816
crossref_primary_10_1016_j_compag_2024_108738
crossref_primary_10_3390_en17143518
crossref_primary_10_3390_su17051902
crossref_primary_10_1007_s00521_025_11153_1
crossref_primary_10_3390_app14031003
crossref_primary_10_1038_s41598_023_43277_6
crossref_primary_10_3233_SCS_230007
crossref_primary_10_3389_fphy_2024_1398678
crossref_primary_10_3390_rs16173338
crossref_primary_10_1016_j_cosrev_2024_100690
crossref_primary_10_3390_agriculture14030485
crossref_primary_10_3390_s23208471
crossref_primary_10_1007_s00521_024_10246_7
crossref_primary_10_1109_ACCESS_2024_3425166
crossref_primary_10_2298_CSIS241110011Y
crossref_primary_10_55905_cuadv16n10_133
crossref_primary_10_1088_2631_8695_ad507d
crossref_primary_10_1021_acsagscitech_4c00633
crossref_primary_10_32604_cmc_2024_058409
crossref_primary_10_1007_s11250_024_04050_7
crossref_primary_10_1109_ACCESS_2025_3526458
crossref_primary_10_1016_j_jrras_2024_101281
crossref_primary_10_1016_j_jafr_2025_101734
crossref_primary_10_3390_s24175652
crossref_primary_10_1111_nph_19857
crossref_primary_10_3390_app13158927
crossref_primary_10_1016_j_jormas_2024_102124
crossref_primary_10_1016_j_compag_2024_108612
crossref_primary_10_3390_app13137689
crossref_primary_10_1016_j_optlastec_2024_110549
crossref_primary_10_3390_app13063812
crossref_primary_10_1017_aog_2024_20
crossref_primary_10_1109_ACCESS_2024_3517711
crossref_primary_10_3390_s25010214
crossref_primary_10_48084_etasr_8592
crossref_primary_10_1038_s41598_025_86239_w
crossref_primary_10_1115_1_4067980
crossref_primary_10_3389_fpls_2024_1508258
crossref_primary_10_3390_s24103036
crossref_primary_10_3390_solar4030016
crossref_primary_10_1016_j_rineng_2024_103482
crossref_primary_10_1007_s12518_025_00616_8
crossref_primary_10_3390_electronics12183760
crossref_primary_10_35970_jinita_v6i2_2446
crossref_primary_10_3390_agronomy15030582
crossref_primary_10_3390_electronics13214169
crossref_primary_10_3390_s23094381
crossref_primary_10_1109_ACCESS_2024_3513239
crossref_primary_10_1007_s10639_023_12350_y
crossref_primary_10_1145_3681796
crossref_primary_10_33769_aupse_1378578
crossref_primary_10_1038_s41598_025_89124_8
crossref_primary_10_3934_mbe_2024118
crossref_primary_10_24003_emitter_v11i2_832
crossref_primary_10_1016_j_jnca_2025_104134
crossref_primary_10_1038_s41598_023_43236_1
crossref_primary_10_1016_j_bspc_2024_106149
crossref_primary_10_3390_app14135559
crossref_primary_10_1016_j_dsp_2024_104594
crossref_primary_10_1109_ACCESS_2024_3373536
crossref_primary_10_3390_s24123791
crossref_primary_10_3390_app132011548
crossref_primary_10_3390_s24206609
crossref_primary_10_1109_ACCESS_2024_3463391
crossref_primary_10_1007_s11554_024_01439_3
crossref_primary_10_1007_s44196_023_00302_w
crossref_primary_10_1002_adem_202300956
crossref_primary_10_1016_j_compag_2025_110172
crossref_primary_10_1007_s11760_024_03018_2
crossref_primary_10_1016_j_compag_2024_109201
crossref_primary_10_1016_j_compbiomed_2023_107895
crossref_primary_10_1007_s11517_024_03202_z
crossref_primary_10_32604_cmc_2024_048998
crossref_primary_10_1007_s11042_024_19823_3
crossref_primary_10_3390_biology11121841
crossref_primary_10_1186_s13037_024_00406_y
crossref_primary_10_3390_info14120655
crossref_primary_10_1007_s12229_024_09299_z
crossref_primary_10_3390_futuretransp5010002
crossref_primary_10_1093_bib_bbad531
crossref_primary_10_3390_make5040083
crossref_primary_10_1016_j_measen_2024_101025
crossref_primary_10_23947_2687_1653_2023_23_3_317_328
crossref_primary_10_3390_app14146352
crossref_primary_10_3390_pr11092751
crossref_primary_10_1016_j_engappai_2024_108494
crossref_primary_10_1061_JCEMD4_COENG_15310
crossref_primary_10_3934_era_2023362
crossref_primary_10_1016_j_compag_2025_110183
crossref_primary_10_1016_j_procir_2025_01_023
crossref_primary_10_1007_s10791_025_09513_5
crossref_primary_10_3390_medicina60060972
crossref_primary_10_3390_safety10010026
crossref_primary_10_1016_j_dib_2023_109708
crossref_primary_10_1051_e3sconf_202560801007
crossref_primary_10_1007_s12293_025_00440_y
crossref_primary_10_3390_s24186050
crossref_primary_10_3390_eng5040172
crossref_primary_10_56038_ejrnd_v4i4_595
crossref_primary_10_1016_j_artmed_2024_102883
crossref_primary_10_1016_j_asej_2024_103227
crossref_primary_10_1016_j_jafr_2025_101665
crossref_primary_10_1007_s11554_024_01505_w
crossref_primary_10_1016_j_measurement_2024_115847
crossref_primary_10_1109_ACCESS_2024_3446613
crossref_primary_10_1016_j_procs_2024_10_095
crossref_primary_10_1109_ACCESS_2024_3469951
crossref_primary_10_1016_j_procir_2024_10_137
crossref_primary_10_3390_healthcare12232330
crossref_primary_10_1016_j_autcon_2024_105925
crossref_primary_10_3389_fpls_2023_1237695
crossref_primary_10_3390_pr11082266
crossref_primary_10_1109_TII_2024_3431044
crossref_primary_10_1016_j_robot_2024_104861
crossref_primary_10_22389_0016_7126_2024_1013_11_25_34
crossref_primary_10_1109_JIOT_2024_3360715
crossref_primary_10_4081_jae_2024_1641
crossref_primary_10_1109_ACCESS_2024_3357519
crossref_primary_10_1117_1_JEI_33_2_023046
crossref_primary_10_1016_j_jenvman_2024_122742
crossref_primary_10_1007_s12524_024_01909_y
crossref_primary_10_1016_j_imavis_2024_105307
crossref_primary_10_1016_j_atech_2024_100730
crossref_primary_10_3390_agronomy13122861
crossref_primary_10_3390_app14020539
crossref_primary_10_1016_j_measurement_2023_113936
crossref_primary_10_1080_09544828_2024_2360852
crossref_primary_10_3390_app13158678
crossref_primary_10_1016_j_enbuild_2024_115255
crossref_primary_10_1038_s41598_024_69701_z
crossref_primary_10_1038_s41598_025_93096_0
crossref_primary_10_3390_app14188173
crossref_primary_10_3390_rs15163992
crossref_primary_10_3390_agronomy14030618
crossref_primary_10_1016_j_compag_2023_108168
crossref_primary_10_1016_j_knosys_2024_112204
crossref_primary_10_1088_1742_6596_2596_1_012022
crossref_primary_10_3233_IDA_220449
crossref_primary_10_1109_ACCESS_2023_3332032
crossref_primary_10_3390_computers13120336
crossref_primary_10_1186_s13007_024_01244_w
crossref_primary_10_1016_j_jksuci_2024_102191
crossref_primary_10_1016_j_atech_2024_100628
crossref_primary_10_3390_ai6030061
crossref_primary_10_3390_math12020297
crossref_primary_10_48084_etasr_7879
crossref_primary_10_3390_solar5010006
crossref_primary_10_1007_s10845_024_02411_5
crossref_primary_10_1007_s11042_025_20743_z
crossref_primary_10_1016_j_engappai_2024_108536
crossref_primary_10_1016_j_autcon_2025_106068
crossref_primary_10_3390_electronics13050850
crossref_primary_10_1016_j_engappai_2024_109506
crossref_primary_10_3390_app14051850
crossref_primary_10_1007_s42979_023_02514_5
crossref_primary_10_3390_electronics12224589
crossref_primary_10_3390_su152215714
crossref_primary_10_3390_math12040558
crossref_primary_10_1016_j_compag_2024_108792
crossref_primary_10_1002_itl2_565
crossref_primary_10_3390_electronics13153058
crossref_primary_10_1016_j_compag_2024_109403
crossref_primary_10_35234_fumbd_1393959
crossref_primary_10_1109_ACCESS_2024_3378580
crossref_primary_10_1007_s44196_023_00390_8
crossref_primary_10_3390_jmse12050697
crossref_primary_10_3390_pr10112274
crossref_primary_10_1093_ijlct_ctad122
crossref_primary_10_32604_csse_2023_040475
crossref_primary_10_1051_bioconf_202414101025
crossref_primary_10_1007_s11554_024_01457_1
crossref_primary_10_3390_agriengineering6040204
crossref_primary_10_3390_fishes8100514
crossref_primary_10_7717_peerj_cs_1416
crossref_primary_10_1016_j_ecoinf_2024_102913
crossref_primary_10_1080_17538947_2024_2413889
crossref_primary_10_28925_2663_4023_2024_25_410433
crossref_primary_10_3390_app142210754
crossref_primary_10_1016_j_bioflm_2024_100240
crossref_primary_10_1016_j_ibmed_2025_100200
crossref_primary_10_37394_232015_2024_20_96
crossref_primary_10_2478_amns_2024_0029
crossref_primary_10_3390_electronics13234837
crossref_primary_10_1016_j_heliyon_2024_e38865
crossref_primary_10_1016_j_compag_2024_109317
crossref_primary_10_1109_ACCESS_2023_3321290
crossref_primary_10_21595_jme_2024_24408
crossref_primary_10_1109_ACCESS_2025_3548108
crossref_primary_10_12677_CSA_2023_1311212
crossref_primary_10_3390_rs16142598
crossref_primary_10_1007_s11042_024_19966_3
crossref_primary_10_1109_ACCESS_2025_3535151
crossref_primary_10_1007_s10489_024_05325_0
crossref_primary_10_3390_horticulturae9111213
crossref_primary_10_3390_app15020737
crossref_primary_10_1002_lary_31175
crossref_primary_10_1109_ACCESS_2025_3539081
crossref_primary_10_1016_j_aei_2024_102583
crossref_primary_10_1080_13467581_2023_2287211
crossref_primary_10_1109_JSTARS_2024_3497576
crossref_primary_10_1117_1_JEI_34_1_013007
crossref_primary_10_1016_j_microc_2024_111780
crossref_primary_10_3389_fceng_2024_1415453
crossref_primary_10_3390_rs16193697
crossref_primary_10_1007_s10278_023_00845_6
crossref_primary_10_1016_j_bios_2024_117074
crossref_primary_10_1109_ACCESS_2024_3496823
crossref_primary_10_1177_02841851241251446
crossref_primary_10_1016_j_compag_2024_109669
crossref_primary_10_3390_app14041398
crossref_primary_10_3390_diagnostics13061068
crossref_primary_10_1007_s10072_024_07641_2
crossref_primary_10_1109_ACCESS_2024_3512783
crossref_primary_10_1007_s11042_023_17817_1
crossref_primary_10_3390_app14135841
crossref_primary_10_3390_electronics13010236
crossref_primary_10_3390_jmse12101828
crossref_primary_10_1155_2023_9446956
crossref_primary_10_1109_JIOT_2024_3367415
crossref_primary_10_1016_j_sasc_2024_200140
crossref_primary_10_3390_app13127320
crossref_primary_10_3390_jimaging10080186
crossref_primary_10_3390_app15020947
crossref_primary_10_3233_JIFS_233440
crossref_primary_10_1109_ACCESS_2024_3362230
crossref_primary_10_3390_app131810170
crossref_primary_10_1016_j_eswa_2023_122205
crossref_primary_10_3390_app13020935
crossref_primary_10_1016_j_engappai_2025_110302
crossref_primary_10_56294_sctconf2024859
crossref_primary_10_1080_21642583_2023_2185916
crossref_primary_10_1007_s11760_023_02755_0
crossref_primary_10_1016_j_resconrec_2025_108218
crossref_primary_10_1109_TCSVT_2023_3326279
crossref_primary_10_3389_fpls_2022_1041514
crossref_primary_10_3390_jimaging9070131
crossref_primary_10_3390_electronics13050814
crossref_primary_10_1093_biomethods_bpae056
crossref_primary_10_1109_ACCESS_2024_3404623
crossref_primary_10_3390_s25010065
crossref_primary_10_36548_jismac_2023_4_005
crossref_primary_10_1109_TGRS_2023_3295802
crossref_primary_10_1007_s11042_024_19087_x
crossref_primary_10_1016_j_heliyon_2024_e31029
crossref_primary_10_3390_app142411829
crossref_primary_10_1007_s11042_024_19597_8
crossref_primary_10_1016_j_neucom_2024_127387
crossref_primary_10_3390_math11183839
crossref_primary_10_3390_s23104793
crossref_primary_10_1016_j_aquaculture_2024_741252
crossref_primary_10_34133_plantphenomics_0246
crossref_primary_10_1109_ACCESS_2023_3320949
crossref_primary_10_1016_j_compag_2024_108997
crossref_primary_10_1515_jisys_2023_0208
crossref_primary_10_1016_j_indcrop_2024_120241
crossref_primary_10_1016_j_artd_2024_101439
crossref_primary_10_1016_j_autcon_2025_106139
crossref_primary_10_3390_s24206697
crossref_primary_10_1007_s42979_025_03689_9
crossref_primary_10_3390_agriculture15030305
crossref_primary_10_1016_j_eng_2024_11_028
crossref_primary_10_1080_17538947_2024_2392851
crossref_primary_10_1007_s11760_025_03960_9
crossref_primary_10_1007_s13349_025_00921_1
crossref_primary_10_1038_s41598_024_78571_4
crossref_primary_10_1017_eds_2023_8
crossref_primary_10_48175_IJARSCT_18483
crossref_primary_10_1016_j_compag_2024_109871
crossref_primary_10_1016_j_egyr_2024_11_033
crossref_primary_10_3390_jmse10101503
crossref_primary_10_3389_fnbot_2024_1427786
crossref_primary_10_3390_fire7120443
crossref_primary_10_1016_j_imavis_2023_104884
crossref_primary_10_35784_iapgos_6056
crossref_primary_10_1007_s44196_024_00655_w
crossref_primary_10_1109_ACCESS_2024_3522240
crossref_primary_10_21869_2223_1536_2024_14_4_28_46
crossref_primary_10_3390_agriculture13122253
crossref_primary_10_3390_buildings14051220
crossref_primary_10_1007_s11554_024_01440_w
crossref_primary_10_1016_j_compag_2025_110117
crossref_primary_10_1007_s42423_024_00167_x
crossref_primary_10_1080_21642583_2025_2467083
crossref_primary_10_3390_s24237621
crossref_primary_10_48084_etasr_7530
crossref_primary_10_1002_rse2_352
crossref_primary_10_1016_j_eja_2024_127439
crossref_primary_10_1007_s11042_023_16770_3
crossref_primary_10_1016_j_aei_2024_102388
crossref_primary_10_1109_JPHOT_2024_3385182
crossref_primary_10_3390_electronics14020397
crossref_primary_10_1007_s42452_024_06443_7
crossref_primary_10_48130_fia_0025_0007
crossref_primary_10_1016_j_oceaneng_2025_120471
crossref_primary_10_3390_app14177454
crossref_primary_10_3390_diagnostics14242875
crossref_primary_10_3390_ijgi13120423
crossref_primary_10_3390_electronics14030505
crossref_primary_10_1016_j_eswa_2024_124594
crossref_primary_10_1016_j_osnem_2025_100312
crossref_primary_10_3390_bioengineering11100993
crossref_primary_10_3390_electronics13132473
Cites_doi 10.1109/CVPR.2015.7298958
10.1093/nar/gkw226
10.1023/B:VISI.0000013087.49260.fb
10.48550/arXiv.1612.08242
10.48550/arXiv.1312.4400
10.1109/CyberC.2018.00036
10.1109/SDPC.2018.8664773
10.48550/arXiv.1405.0312
10.1109/CVPR.2016.91
10.1109/DASA51403.2020.9317198
10.1109/BigData.2018.8621865
10.21437/Interspeech.2015-350
10.3390/s19153371
10.48550/arXiv.1809.03193
10.1109/ACCESS.2019.2941547
10.1016/j.eswa.2014.12.003
10.1109/ES.2017.35
10.48550/arXiv.1809.02165
10.1109/TCSVT.2020.2986402
10.3390/app7070730
10.1016/j.eswa.2020.113833
10.1007/s42835-019-00230-w
10.48550/arXiv.2107.04191
10.3390/rs11091117
10.1109/CVPRW50498.2020.00203
10.1007/s40747-021-00324-x
10.3390/rs13101909
10.1145/3446132.3446400
10.1109/ACCESS.2020.2979164
10.1016/j.comnet.2020.107138
10.3390/e19060242
10.1016/B978-0-12-816718-2.00013-0
10.1007/s11042-018-6428-0
10.1051/matecconf/202133603002
10.1007/s12206-019-0339-5
10.1109/CVPR.2016.90
10.1155/2018/7075814
10.1016/j.compag.2020.105742
10.3390/make1030044
10.1016/j.scs.2020.102589
10.1109/TPAMI.2017.2695539
10.1609/aaai.v29i1.9513
10.1007/s11554-020-00987-8
10.1109/TENCON.1999.818681
10.1016/j.patcog.2017.10.013
10.1109/TCSVT.2018.2867286
10.1109/CVPR.2008.4587597
10.1038/s41529-017-0021-2
10.1038/s41598-018-24271-9
10.1109/ACCESS.2019.2939201
10.48550/arXiv.1708.02002
10.1007/s11263-019-01247-4
10.1049/cje.2016.07.002
10.1007/s10462-018-9633-3
10.1145/3219819.3219861
10.48550/arXiv.1512.02325
10.3390/en10030406
10.1007/s11263-014-0733-5
10.1109/CVPR.2014.81
10.48550/arXiv.1409.4842
10.1109/ICCV.2015.169
10.1016/j.scs.2020.102600
10.1016/j.procs.2017.06.037
10.1109/SmartGridComm.2018.8587554
10.48550/arXiv.1409.1556
10.3390/app9183750
10.1109/CVPR.2017.106
10.1109/PlatCon.2016.7456805
10.1016/j.jksuci.2019.09.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2023
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s11042-022-13644-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest research library
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ABI/INFORM Global (Corporate)

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Architecture
EISSN 1573-7721
EndPage 9275
ExternalDocumentID PMC9358372
35968414
10_1007_s11042_022_13644_y
Genre Journal Article
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
NPM
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ACMFV
5PM
ID FETCH-LOGICAL-c474t-d1d69b89a4548394536c732105ea7adbc78e96687b45ce9b5281acc434ca576c3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Thu Aug 21 18:02:41 EDT 2025
Fri Jul 11 06:40:31 EDT 2025
Fri Jul 25 20:53:54 EDT 2025
Thu Apr 03 07:03:35 EDT 2025
Thu Apr 24 23:01:02 EDT 2025
Tue Aug 05 12:11:52 EDT 2025
Thu Apr 10 07:12:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords YOLO
Deep learning
Computer vision
Convolutional neural networks
Object detection
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-d1d69b89a4548394536c732105ea7adbc78e96687b45ce9b5281acc434ca576c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9358372
PMID 35968414
PQID 2778762889
PQPubID 54626
PageCount 33
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9358372
proquest_miscellaneous_2702485420
proquest_journals_2778762889
pubmed_primary_35968414
crossref_primary_10_1007_s11042_022_13644_y
crossref_citationtrail_10_1007_s11042_022_13644_y
springer_journals_10_1007_s11042_022_13644_y
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 13644_CR29
13644_CR33
L Liu (13644_CR44) 2020; 28
13644_CR34
AM Rather (13644_CR53) 2015; 42
13644_CR78
13644_CR31
13644_CR75
13644_CR32
13644_CR76
13644_CR37
13644_CR38
13644_CR35
13644_CR79
13644_CR70
S Hossain (13644_CR26) 2019; 19
13644_CR73
13644_CR30
13644_CR72
H Wei (13644_CR74) 2019; 1
J Jiang (13644_CR28) 2021; 13
13644_CR39
A Rastogi (13644_CR52) 2019; 33
Y Zhang (13644_CR82) 2016; 25
13644_CR45
J Li (13644_CR36) 2019; 9
13644_CR42
13644_CR43
QC Mao (13644_CR47) 2019; 7
13644_CR87
13644_CR48
13644_CR49
H Zhang (13644_CR81) 2019; 11
13644_CR40
13644_CR84
13644_CR41
13644_CR85
A Voulodimos (13644_CR71) 2018; 2018
W Nash (13644_CR50) 2018; 2
13644_CR11
13644_CR55
13644_CR12
13644_CR56
13644_CR10
13644_CR54
13644_CR15
13644_CR59
J Xiang (13644_CR77) 2020; 8
13644_CR16
Z Che (13644_CR8) 2018; 8
13644_CR13
13644_CR57
13644_CR58
XY Zhang (13644_CR83) 2017; 40
13644_CR51
S Albelwi (13644_CR2) 2017; 19
13644_CR19
13644_CR17
13644_CR18
MA Zaytar (13644_CR80) 2016; 143
M Everingham (13644_CR14) 2015; 111
13644_CR4
13644_CR22
13644_CR5
13644_CR23
13644_CR67
13644_CR20
13644_CR64
13644_CR3
13644_CR21
13644_CR65
13644_CR9
13644_CR27
LH Thai (13644_CR66) 2012; 4
13644_CR6
13644_CR24
13644_CR68
13644_CR7
13644_CR25
M Loey (13644_CR46) 2021; 65
13644_CR69
13644_CR62
13644_CR1
13644_CR63
13644_CR60
13644_CR61
Q Zhao (13644_CR86) 2019; 33
References_xml – ident: 13644_CR37
  doi: 10.1109/CVPR.2015.7298958
– ident: 13644_CR51
  doi: 10.1093/nar/gkw226
– ident: 13644_CR70
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: 13644_CR54
  doi: 10.48550/arXiv.1612.08242
– ident: 13644_CR39
  doi: 10.48550/arXiv.1312.4400
– ident: 13644_CR84
  doi: 10.1109/CyberC.2018.00036
– ident: 13644_CR72
  doi: 10.1109/SDPC.2018.8664773
– ident: 13644_CR40
  doi: 10.48550/arXiv.1405.0312
– ident: 13644_CR56
  doi: 10.1109/CVPR.2016.91
– ident: 13644_CR3
– ident: 13644_CR30
  doi: 10.1109/DASA51403.2020.9317198
– ident: 13644_CR27
  doi: 10.1109/BigData.2018.8621865
– ident: 13644_CR59
  doi: 10.21437/Interspeech.2015-350
– volume: 33
  start-page: 9259
  year: 2019
  ident: 13644_CR86
  publication-title: Proceed AAAI Conf Artif Intell
– volume: 19
  start-page: 3371
  issue: 15
  year: 2019
  ident: 13644_CR26
  publication-title: Sensors
  doi: 10.3390/s19153371
– ident: 13644_CR1
  doi: 10.48550/arXiv.1809.03193
– volume: 4
  start-page: 32
  issue: 5
  year: 2012
  ident: 13644_CR66
  publication-title: Int J Inform Technol Comput Sci
– volume: 7
  start-page: 133529
  year: 2019
  ident: 13644_CR47
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941547
– volume: 42
  start-page: 3234
  issue: 6
  year: 2015
  ident: 13644_CR53
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.12.003
– ident: 13644_CR63
  doi: 10.1109/ES.2017.35
– ident: 13644_CR45
  doi: 10.48550/arXiv.1809.02165
– ident: 13644_CR85
  doi: 10.1109/TCSVT.2020.2986402
– ident: 13644_CR48
  doi: 10.3390/app7070730
– ident: 13644_CR67
– ident: 13644_CR7
  doi: 10.1016/j.eswa.2020.113833
– ident: 13644_CR9
  doi: 10.1007/s42835-019-00230-w
– volume: 2018
  start-page: 1
  year: 2018
  ident: 13644_CR71
  publication-title: Comput Intell Neurosci
– ident: 13644_CR10
  doi: 10.48550/arXiv.2107.04191
– volume: 11
  start-page: 1117
  issue: 9
  year: 2019
  ident: 13644_CR81
  publication-title: Remote Sens
  doi: 10.3390/rs11091117
– ident: 13644_CR73
  doi: 10.1109/CVPRW50498.2020.00203
– ident: 13644_CR18
  doi: 10.1007/s40747-021-00324-x
– volume: 13
  start-page: 1909
  issue: 10
  year: 2021
  ident: 13644_CR28
  publication-title: Remote Sens
  doi: 10.3390/rs13101909
– ident: 13644_CR79
  doi: 10.1145/3446132.3446400
– ident: 13644_CR57
– volume: 143
  start-page: 7
  issue: 11
  year: 2016
  ident: 13644_CR80
  publication-title: Int J Comput Appl
– volume: 8
  start-page: 48299
  year: 2020
  ident: 13644_CR77
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2979164
– ident: 13644_CR69
  doi: 10.1016/j.comnet.2020.107138
– volume: 19
  start-page: 242
  issue: 6
  year: 2017
  ident: 13644_CR2
  publication-title: Entropy
  doi: 10.3390/e19060242
– ident: 13644_CR16
– ident: 13644_CR19
  doi: 10.1016/B978-0-12-816718-2.00013-0
– ident: 13644_CR24
  doi: 10.1007/s11042-018-6428-0
– ident: 13644_CR87
  doi: 10.1051/matecconf/202133603002
– volume: 33
  start-page: 1869
  issue: 4
  year: 2019
  ident: 13644_CR52
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-019-0339-5
– ident: 13644_CR25
  doi: 10.1109/CVPR.2016.90
– ident: 13644_CR68
– ident: 13644_CR22
– ident: 13644_CR35
  doi: 10.1155/2018/7075814
– ident: 13644_CR60
– ident: 13644_CR76
  doi: 10.1016/j.compag.2020.105742
– ident: 13644_CR5
– volume: 1
  start-page: 756
  issue: 3
  year: 2019
  ident: 13644_CR74
  publication-title: Mach Learn Knowl Extraction
  doi: 10.3390/make1030044
– ident: 13644_CR4
  doi: 10.1016/j.scs.2020.102589
– volume: 40
  start-page: 849
  issue: 4
  year: 2017
  ident: 13644_CR83
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2017.2695539
– ident: 13644_CR33
  doi: 10.1609/aaai.v29i1.9513
– ident: 13644_CR17
  doi: 10.1007/s11554-020-00987-8
– ident: 13644_CR34
  doi: 10.1109/TENCON.1999.818681
– ident: 13644_CR49
– ident: 13644_CR23
  doi: 10.1016/j.patcog.2017.10.013
– ident: 13644_CR78
  doi: 10.1109/TCSVT.2018.2867286
– ident: 13644_CR15
  doi: 10.1109/CVPR.2008.4587597
– volume: 2
  start-page: 1
  issue: 1
  year: 2018
  ident: 13644_CR50
  publication-title: Mater Degrad
  doi: 10.1038/s41529-017-0021-2
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 13644_CR8
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24271-9
– ident: 13644_CR29
  doi: 10.1109/ACCESS.2019.2939201
– ident: 13644_CR58
– ident: 13644_CR41
  doi: 10.48550/arXiv.1708.02002
– volume: 28
  start-page: 261
  issue: 2
  year: 2020
  ident: 13644_CR44
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-019-01247-4
– volume: 25
  start-page: 601
  issue: 4
  year: 2016
  ident: 13644_CR82
  publication-title: Chin J Electron
  doi: 10.1049/cje.2016.07.002
– ident: 13644_CR12
– ident: 13644_CR31
  doi: 10.1007/s10462-018-9633-3
– ident: 13644_CR6
  doi: 10.1145/3219819.3219861
– ident: 13644_CR43
  doi: 10.48550/arXiv.1512.02325
– ident: 13644_CR75
  doi: 10.3390/en10030406
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 13644_CR14
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0733-5
– ident: 13644_CR21
  doi: 10.1109/CVPR.2014.81
– ident: 13644_CR65
  doi: 10.48550/arXiv.1409.4842
– ident: 13644_CR20
  doi: 10.1109/ICCV.2015.169
– ident: 13644_CR61
– volume: 65
  start-page: 102600
  year: 2021
  ident: 13644_CR46
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2020.102600
– ident: 13644_CR38
  doi: 10.1016/j.procs.2017.06.037
– ident: 13644_CR11
  doi: 10.1109/SmartGridComm.2018.8587554
– ident: 13644_CR64
  doi: 10.48550/arXiv.1409.1556
– ident: 13644_CR55
– volume: 9
  start-page: 3750
  issue: 18
  year: 2019
  ident: 13644_CR36
  publication-title: Appl Sci
  doi: 10.3390/app9183750
– ident: 13644_CR42
  doi: 10.1109/CVPR.2017.106
– ident: 13644_CR32
  doi: 10.1109/PlatCon.2016.7456805
– ident: 13644_CR13
– ident: 13644_CR62
  doi: 10.1016/j.jksuci.2019.09.012
SSID ssj0016524
Score 2.7188976
Snippet Object detection is one of the predominant and challenging problems in computer vision. Over the decade, with the expeditious evolution of deep learning,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9243
SubjectTerms Accuracy
Architecture
Computer Communication Networks
Computer Science
Computer vision
Data Structures and Information Theory
Detectors
Inference
Machine learning
Multimedia Information Systems
Object recognition
Performance enhancement
Proposals
Sensors
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_o3YsKflyd1k2J4Jsr3qZJk_oy5tgYIrsiDiYIJUlTFaR3rr0P--89p01773Vsz0lJ2985yS_nE-CtV6Kyynqya8xiQSqlZVnFxmfa5kY4XnZRvqfZyZn4dC7Pg8GtCWGVw57YbdTlwpGN_D1XihRX63z_4m9MXaPIuxpaaNyFLdyCtZ7A1sej0y9fRz9CJkNbWz2L8WxMQtpMnzyXUGoKRbMnKbKC-GrzaLrGN6-HTf7nO-2OpOPH8DBwSXbQg_8E7vh6Cg8O1lwDU3g0tG1gQYuncH-tBuFT-DG3ZIphpW-7qKyaUSj8T_Z9_nn-gbmh10qzx9Z8Drhqs-xaLS4ucYTCTBvfNszUJVt3iT-Ds-Ojb4cncWi5EDuhRBuXSZnlViNIeJNJc8Quc4rSfKQ3ypTWKe3xgqSVFdL53EquE-OcSIUzeHNx6TZM6kXtXwBzlUf6YQ1HDiKQeBjkcqaqOMqAkVyWESTD3y5cqEdObTH-FKtKyoRQgQgVHULFVQTvxmcu-moct87eHUAsgmY2xUqOIngzDqNOkaPE1H6xpDldpTfBZxE87zEfl0tlnmmRiAjUhjSME6he9-ZI_ftXV7ebXM6p4hHsDXKzeq2bv-Ll7V-xA_c48q4-LG4XJu3l0r9CntTa10EZ_gEEoBBc
  priority: 102
  providerName: ProQuest
Title Object detection using YOLO: challenges, architectural successors, datasets and applications
URI https://link.springer.com/article/10.1007/s11042-022-13644-y
https://www.ncbi.nlm.nih.gov/pubmed/35968414
https://www.proquest.com/docview/2778762889
https://www.proquest.com/docview/2702485420
https://pubmed.ncbi.nlm.nih.gov/PMC9358372
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6x7QUeGIxfgVEZiTcWqUns2Nlbi9pNgFqEqLRJSJHtOGwSStGSPuy_585N0pYBEk9-sBMn-XL2ne-7O4C3TvLSSOPoXGMYchIpJYoy1C5VJtPcxoVn-c7S8wX_cCEu2qCwumO7dy5Jv1Jvgt0iCiUh9nmU4C4e3u7BgUDbnYhci3jU-w5S0ZayVcMQ98OoDZX58z12t6M7OuZdquRv_lK_DU0fwcNWf2SjNeCP4Z6rjuCwq83AWlE9ggdbiQafwLe5ofMWVrjGU68qRnz37-xy_ml-ymxXUKU-YVuOBZymXvl6issb7CEuae2amumqYNt-76ewmE6-vj8P27oKoeWSN2ERFWlmFCKB5kqSIUCplRTLI5yWujBWKodWkJKGC-syI2IVaWt5wq1G88Qmz2C_WlbuBTBbOtQxjI5R0eCoXWhU2HRZxgi0FrEoAoi6z5vbNuk41b74kW_SJRMkOUKSe0jy2wDe9df8XKfc-Ofo4w61vBW_Oo-lpFVeqSyAN303Cg55Q3Tllisa49O58XgYwPM1yP10ichSxSMegNyBvx9ASbl3e6rrK5-cm_zKiYwDOOl-lM1j_f0tXv7f8Fdwn8rer7lwx7Df3Kzca1SOGjOAPTU9G8DBaDoez6g9u_w4wXY8mX3-MvCS8gtlfwy3
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a44GLxKXcAgOMBE8sonGc2EFCaAJKx8r6skmbhBRsxwEklI4lFeqf4jdyTm5tmdjbnu3ETs7ts88N4LmTIjfSOLrXGPqCREpFWe5rFyuTaGF5Vkf57sfjQ_HpKDragD9dLgyFVXY6sVbU2czSHfkrLiUJrlLJ25NfPnWNIu9q10KjYYs9t_iNR7byze57pO8LzkcfDt6N_bargG-FFJWfBVmcGIX7QLAeJri92ErKZImcljozViqHZwAljYisS0zEVaCtFaGwGsG5DfG9l-CyCNGSU2b66GPvtYijtomuGvpoiYM2SadJ1QsoEYZi54MQMYi_WDeEZ9Dt2SDNfzy1tQEc3YIbLXJlOw2r3YYNVwzg-s6KI2IAN7smEazVGQO4tlLx8A58mRq6-GGZq-oYsIJR4P03djydTF8z23V2KbfZiocDVy3ndWPH2SmOUFBr6aqS6SJjqw74u3B4IaS4B5vFrHAPgNncIdgxmiPiEQhzNCJHneccOU5HPMo8CLq_ndq2-jk14fiZLus2E4VSpFBaUyhdePCyf-akqf1x7uytjohpqwfKdMm1Hjzrh1GCyS2jCzeb05y6rpzgQw_uNzTvlwujJFYiEB7INW7oJ1B18PWR4sf3uko4ObhDyT3Y7vhmua3_f8XD87_iKVwZH3yepJPd_b1HcJUj4msC8rZgszqdu8eI0CrzpBYLBl8vWg7_AulNSxY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEB7qFUQFX863aNUV9JMNvWw22Y0gUm2P1pa7IhYqCHF3s1FBcrXJIffX_HXO5OVeLPZbP-8mu8nM7D6788wMwAsnRW6kcXSvMfAFmZSKstzXLlYm0cLyrGb5juK9Y_HhJDpZgz9dLAzRKrs1sV6os4mlO_ItLiUZrlLJVt7SIo52hm9Pf_lUQYo8rV05jUZFDtzsNx7fyjf7Oyjrl5wPdz-93_PbCgO-FVJUfhZkcWIUzgmBe5jgVGMrKaolclrqzFipHJ4HlDQisi4xEVeBtlaEwmoE6jbE916BdUmnoh6sv9sdHX2c-zDiqC2pqwY-7stBG7LTBO4FFBZDTPogRETiz1a3xXNY9zxl8x-_bb0dDm_DzRbHsu1G8e7Amiv6cGN7yS3Rh1tdyQjWriB9uL6U__AufBkbugZimatqRljBiIb_jX0eH45fM9vVeSk32ZK_A0ctp3WZx8kZthDFtXRVyXSRsWV3_D04vhRh3IdeMSncQ2A2dwh9jOaIfwSCHo04Uuc5R_3TEY8yD4Lub6e2zYVOJTl-possziShFCWU1hJKZx68mj9z2mQCubD3RifEtF0VynShwx48nzejPZOTRhduMqU-dZY5wQcePGhkPh8ujJJYiUB4IFe0Yd6BcoWvthQ_vtc5w8ndHUruwWanN4tp_f8rHl38Fc_gKtpgerg_OngM1zjCv4adtwG96mzqniBcq8zT1i4YfL1sU_wLA35QqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+detection+using+YOLO%3A+challenges%2C+architectural+successors%2C+datasets+and+applications&rft.jtitle=Multimedia+tools+and+applications&rft.au=Diwan%2C+Tausif&rft.au=Anirudh%2C+G&rft.au=Tembhurne%2C+Jitendra+V&rft.date=2023-03-01&rft.issn=1380-7501&rft.volume=82&rft.issue=6&rft.spage=9243&rft_id=info:doi/10.1007%2Fs11042-022-13644-y&rft_id=info%3Apmid%2F35968414&rft.externalDocID=35968414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon