FakeBERT: Fake news detection in social media with a BERT-based deep learning approach

In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researc...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 80; no. 8; pp. 11765 - 11788
Main Authors Kaliyar, Rohit Kumar, Goswami, Anurag, Narang, Pratik
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researches, many useful methods for fake news detection employ sequential neural networks to encode news content and social context-level information where the text sequence was analyzed in a unidirectional way. Therefore, a bidirectional training approach is a priority for modelling the relevant information of fake news that is capable of improving the classification performance with the ability to capture semantic and long-distance dependencies in sentences. In this paper, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning approach (FakeBERT) by combining different parallel blocks of the single-layer deep Convolutional Neural Network (CNN) having different kernel sizes and filters with the BERT. Such a combination is useful to handle ambiguity, which is the greatest challenge to natural language understanding. Classification results demonstrate that our proposed model (FakeBERT) outperforms the existing models with an accuracy of 98.90%.
AbstractList In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researches, many useful methods for fake news detection employ sequential neural networks to encode news content and social context-level information where the text sequence was analyzed in a unidirectional way. Therefore, a bidirectional training approach is a priority for modelling the relevant information of fake news that is capable of improving the classification performance with the ability to capture semantic and long-distance dependencies in sentences. In this paper, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning approach (FakeBERT) by combining different parallel blocks of the single-layer deep Convolutional Neural Network (CNN) having different kernel sizes and filters with the BERT. Such a combination is useful to handle ambiguity, which is the greatest challenge to natural language understanding. Classification results demonstrate that our proposed model (FakeBERT) outperforms the existing models with an accuracy of 98.90%.
In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researches, many useful methods for fake news detection employ sequential neural networks to encode news content and social context-level information where the text sequence was analyzed in a unidirectional way. Therefore, a bidirectional training approach is a priority for modelling the relevant information of fake news that is capable of improving the classification performance with the ability to capture semantic and long-distance dependencies in sentences. In this paper, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning approach (FakeBERT) by combining different parallel blocks of the single-layer deep Convolutional Neural Network (CNN) having different kernel sizes and filters with the BERT. Such a combination is useful to handle ambiguity, which is the greatest challenge to natural language understanding. Classification results demonstrate that our proposed model (FakeBERT) outperforms the existing models with an accuracy of 98.90%.In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researches, many useful methods for fake news detection employ sequential neural networks to encode news content and social context-level information where the text sequence was analyzed in a unidirectional way. Therefore, a bidirectional training approach is a priority for modelling the relevant information of fake news that is capable of improving the classification performance with the ability to capture semantic and long-distance dependencies in sentences. In this paper, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning approach (FakeBERT) by combining different parallel blocks of the single-layer deep Convolutional Neural Network (CNN) having different kernel sizes and filters with the BERT. Such a combination is useful to handle ambiguity, which is the greatest challenge to natural language understanding. Classification results demonstrate that our proposed model (FakeBERT) outperforms the existing models with an accuracy of 98.90%.
Author Narang, Pratik
Kaliyar, Rohit Kumar
Goswami, Anurag
Author_xml – sequence: 1
  givenname: Rohit Kumar
  surname: Kaliyar
  fullname: Kaliyar, Rohit Kumar
  organization: Departement of Computer Science Engineering, Bennett University
– sequence: 2
  givenname: Anurag
  surname: Goswami
  fullname: Goswami, Anurag
  organization: Departement of Computer Science Engineering, Bennett University
– sequence: 3
  givenname: Pratik
  orcidid: 0000-0003-1865-3512
  surname: Narang
  fullname: Narang, Pratik
  email: pratik.narang@pilani.bits-pilani.ac.in
  organization: Departement of CSIS, BITS Pilani
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33432264$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAQtVAR_aB_gAOyxIVLwJ9xwgGpVG2pVAkJlV6tiTPZdcnawc5S8e_r7ZYWeqgvHtnvvXkzb5_shBiQkDecfeCMmY-Zc6ZExQSrOOONrMQLsse1kZUxgu-UWjasMprxXbKf8zVjvNZCvSK7UiopRK32yNUp_MQvJ98vP9FNRQPeZNrjjG72MVAfaI7Ow0hX2HugN35eUqAbQtVBxr5gcaIjQgo-LChMU4rglq_JywHGjIf39wH5cXpyefy1uvh2dn58dFE5ZdRc9bzrBt22zaA6g9CqGrQYGt234JyR5UBnNEeGyLTrBHNcY6-N6WR5BCMPyOet7rTuikOHYU4w2in5FaQ_NoK3__8Ev7SL-Nsa0zRa8yLw_l4gxV9rzLNd-exwHCFgXGcrVNllrTVrCvTdE-h1XKdQxrOiKCne1neot_86erDyd-UFILYAl2LOCYcHCGd2k6vd5mpLrvYuVysKqXlCcn6GTURlKj8-T5Vbai59wgLTo-1nWLfwd7W5
CitedBy_id crossref_primary_10_3390_fi13070163
crossref_primary_10_1007_s13278_023_01065_0
crossref_primary_10_1002_acs_3645
crossref_primary_10_3390_biomimetics8060449
crossref_primary_10_1016_j_knosys_2024_111625
crossref_primary_10_1016_j_eswa_2021_115824
crossref_primary_10_1007_s10115_023_01902_w
crossref_primary_10_3390_info15030122
crossref_primary_10_1109_ACCESS_2022_3212367
crossref_primary_10_1016_j_engappai_2024_109240
crossref_primary_10_1109_ACCESS_2023_3339621
crossref_primary_10_1007_s00146_024_01893_4
crossref_primary_10_1007_s13042_021_01503_5
crossref_primary_10_1109_ACCESS_2021_3129329
crossref_primary_10_1007_s13278_022_00986_6
crossref_primary_10_1145_3589184
crossref_primary_10_1007_s13278_024_01290_1
crossref_primary_10_1109_TBDATA_2023_3325746
crossref_primary_10_1145_3716498
crossref_primary_10_3390_data7040044
crossref_primary_10_3390_e26010005
crossref_primary_10_1177_14727978251322656
crossref_primary_10_1080_1528008X_2024_2416536
crossref_primary_10_1155_2022_3498123
crossref_primary_10_1016_j_procs_2022_11_314
crossref_primary_10_55859_ijiss_1231423
crossref_primary_10_1007_s13278_023_01185_7
crossref_primary_10_1007_s11042_021_11782_3
crossref_primary_10_1109_ACCESS_2025_3537168
crossref_primary_10_3390_app13148209
crossref_primary_10_1145_3661485
crossref_primary_10_1016_j_eswa_2024_123997
crossref_primary_10_3390_ijgi12060240
crossref_primary_10_4018_JOEUC_340038
crossref_primary_10_1007_s11042_024_20526_y
crossref_primary_10_1007_s11042_023_16285_x
crossref_primary_10_3390_app13106054
crossref_primary_10_3390_electronics12153250
crossref_primary_10_1051_itmconf_20235401015
crossref_primary_10_1109_ACCESS_2022_3195030
crossref_primary_10_3390_math9222988
crossref_primary_10_1007_s10489_023_04455_1
crossref_primary_10_1007_s11042_023_16588_z
crossref_primary_10_1016_j_ipm_2025_104089
crossref_primary_10_1016_j_heliyon_2024_e36049
crossref_primary_10_1111_coin_12552
crossref_primary_10_3390_app11199292
crossref_primary_10_1016_j_neucom_2023_02_005
crossref_primary_10_1016_j_nlp_2024_100053
crossref_primary_10_36548_jtcsst_2024_2_004
crossref_primary_10_1089_big_2022_0050
crossref_primary_10_4000_ijcol_1250
crossref_primary_10_1142_S0219649224500758
crossref_primary_10_1080_0952813X_2023_2196986
crossref_primary_10_1016_j_iot_2024_101409
crossref_primary_10_3390_electronics13234784
crossref_primary_10_1007_s11042_022_12668_8
crossref_primary_10_1109_ACCESS_2022_3187406
crossref_primary_10_12720_jait_15_2_202_211
crossref_primary_10_3390_data7050065
crossref_primary_10_1007_s00521_024_09491_7
crossref_primary_10_1057_s41599_024_03083_5
crossref_primary_10_1007_s10458_023_09619_4
crossref_primary_10_1007_s13278_023_01140_6
crossref_primary_10_1007_s40747_023_01098_0
crossref_primary_10_48084_etasr_9192
crossref_primary_10_1016_j_jksuci_2023_101571
crossref_primary_10_1142_S0219622023500347
crossref_primary_10_1007_s10207_023_00726_7
crossref_primary_10_1109_TVCG_2023_3236380
crossref_primary_10_1155_2022_8393736
crossref_primary_10_1007_s11042_023_16198_9
crossref_primary_10_1007_s11042_023_16538_9
crossref_primary_10_1007_s41870_023_01559_2
crossref_primary_10_1080_08839514_2024_2389502
crossref_primary_10_1016_j_jksuci_2024_102160
crossref_primary_10_3390_s24186062
crossref_primary_10_1007_s10489_022_03627_9
crossref_primary_10_1016_j_procs_2024_04_205
crossref_primary_10_1007_s13278_022_00995_5
crossref_primary_10_1007_s42979_023_02117_0
crossref_primary_10_1007_s00354_023_00209_2
crossref_primary_10_1016_j_dss_2022_113911
crossref_primary_10_5194_nhess_24_3991_2024
crossref_primary_10_1007_s12652_023_04562_4
crossref_primary_10_1007_s11277_023_10582_2
crossref_primary_10_3390_sym15020296
crossref_primary_10_3390_systems11090458
crossref_primary_10_3390_healthcare10061119
crossref_primary_10_1016_j_procs_2023_10_324
crossref_primary_10_1007_s13278_024_01383_x
crossref_primary_10_1080_0952813X_2024_2440665
crossref_primary_10_1109_ACCESS_2024_3354165
crossref_primary_10_1007_s13278_024_01344_4
crossref_primary_10_1038_s41598_024_56567_4
crossref_primary_10_1109_ACCESS_2024_3435497
crossref_primary_10_1007_s00500_022_07080_1
crossref_primary_10_1016_j_heliyon_2024_e37760
crossref_primary_10_1109_ACCESS_2024_3478790
crossref_primary_10_1007_s11257_024_09413_1
crossref_primary_10_1016_j_eswa_2022_118290
crossref_primary_10_1038_s41598_021_03100_6
crossref_primary_10_3233_WEB_220046
crossref_primary_10_3390_app12178398
crossref_primary_10_1007_s41060_023_00387_8
crossref_primary_10_1007_s10115_024_02321_1
crossref_primary_10_1093_jssam_smad015
crossref_primary_10_1007_s00500_023_07897_4
crossref_primary_10_1016_j_neunet_2025_107377
crossref_primary_10_3390_fi17020061
crossref_primary_10_36930_40320612
crossref_primary_10_1007_s11042_023_14810_6
crossref_primary_10_1016_j_neucom_2024_128078
crossref_primary_10_1145_3623379
crossref_primary_10_1108_IJICC_04_2024_0184
crossref_primary_10_2339_politeknik_1307037
crossref_primary_10_1109_TCSS_2023_3276764
crossref_primary_10_2478_acss_2023_0018
crossref_primary_10_1145_3689372
crossref_primary_10_3390_math10040569
crossref_primary_10_1007_s13198_023_01891_7
crossref_primary_10_3934_era_2023362
crossref_primary_10_1016_j_engappai_2025_110284
crossref_primary_10_1371_journal_pone_0311238
crossref_primary_10_1007_s11042_022_12761_y
crossref_primary_10_3390_info13030151
crossref_primary_10_1080_0144929X_2023_2285949
crossref_primary_10_3390_app13053345
crossref_primary_10_3390_math11030508
crossref_primary_10_1109_TCE_2023_3324661
crossref_primary_10_1016_j_ijcce_2022_03_003
crossref_primary_10_2298_CSIS210501053K
crossref_primary_10_3390_math11153278
crossref_primary_10_1007_s13278_025_01412_3
crossref_primary_10_7717_peerj_cs_467
crossref_primary_10_1155_int_5920142
crossref_primary_10_3390_electronics11081255
crossref_primary_10_1109_TCSS_2022_3221811
crossref_primary_10_1007_s10791_025_09502_8
crossref_primary_10_1007_s11042_022_12428_8
crossref_primary_10_3390_info13110527
crossref_primary_10_1016_j_eswa_2024_124302
crossref_primary_10_1371_journal_pone_0294701
crossref_primary_10_1007_s11227_023_05726_x
crossref_primary_10_4018_IJSSCI_316972
crossref_primary_10_1109_TCSS_2024_3404921
crossref_primary_10_2196_31358
crossref_primary_10_1007_s10207_023_00796_7
crossref_primary_10_1109_ACCESS_2025_3529357
crossref_primary_10_1016_j_datak_2021_101960
crossref_primary_10_32628_IJSRST2184111
crossref_primary_10_1007_s10994_024_06727_4
crossref_primary_10_1109_TCSS_2024_3355300
crossref_primary_10_1007_s11042_024_18499_z
crossref_primary_10_1016_j_procs_2021_12_254
crossref_primary_10_1109_TKDE_2024_3390431
crossref_primary_10_3390_e24091242
crossref_primary_10_3390_electronics13204057
crossref_primary_10_1007_s11042_024_18706_x
crossref_primary_10_1016_j_ijdrr_2024_104680
crossref_primary_10_1007_s11042_023_17115_w
crossref_primary_10_1109_TCSS_2023_3269595
crossref_primary_10_3389_fpubh_2024_1330801
crossref_primary_10_1007_s10796_025_10589_z
crossref_primary_10_1007_s13369_021_05780_8
crossref_primary_10_3390_bdcc8100129
crossref_primary_10_1016_j_eswa_2024_124650
crossref_primary_10_26599_BDMA_2024_9020015
crossref_primary_10_1016_j_procs_2024_03_265
crossref_primary_10_1007_s11042_024_19249_x
crossref_primary_10_17671_gazibtd_1521520
crossref_primary_10_1109_ACCESS_2023_3278323
crossref_primary_10_1007_s11042_024_19225_5
crossref_primary_10_1142_S0219649222500368
crossref_primary_10_1155_2022_9561831
crossref_primary_10_1007_s10489_022_03910_9
crossref_primary_10_1155_2023_8836476
crossref_primary_10_1016_j_asoc_2025_112796
crossref_primary_10_1007_s42979_024_02943_w
crossref_primary_10_1016_j_aei_2023_102293
crossref_primary_10_3390_math13061011
crossref_primary_10_1007_s13369_025_09975_1
crossref_primary_10_3390_fi17030129
crossref_primary_10_1007_s13042_024_02128_0
crossref_primary_10_1016_j_jretconser_2023_103545
crossref_primary_10_1016_j_jjimei_2021_100051
crossref_primary_10_20473_jisebi_9_2_253_263
crossref_primary_10_3390_bdcc8080093
crossref_primary_10_1016_j_cosrev_2022_100531
crossref_primary_10_1145_3548458
crossref_primary_10_1016_j_procs_2023_09_062
crossref_primary_10_1007_s40747_021_00552_1
crossref_primary_10_1007_s00521_025_11101_z
crossref_primary_10_48175_IJARSCT_22154
crossref_primary_10_1016_j_actpsy_2025_104691
crossref_primary_10_1109_ACCESS_2022_3206963
crossref_primary_10_1016_j_engappai_2023_106088
crossref_primary_10_1016_j_neucom_2024_128450
crossref_primary_10_1109_ACCESS_2024_3476432
crossref_primary_10_3390_computers13110292
crossref_primary_10_1007_s10489_022_03185_0
crossref_primary_10_3390_s23041748
crossref_primary_10_48175_IJARSCT_1362
crossref_primary_10_3390_electronics13152958
crossref_primary_10_32604_cmc_2022_028981
crossref_primary_10_1007_s11042_023_17377_4
crossref_primary_10_1016_j_compeleceng_2023_108866
crossref_primary_10_48175_IJARSCT_5608
crossref_primary_10_1016_j_aej_2024_10_073
crossref_primary_10_1016_j_eti_2024_103655
crossref_primary_10_1007_s10479_024_06388_5
crossref_primary_10_1016_j_heliyon_2024_e25244
crossref_primary_10_3390_electronics13214322
crossref_primary_10_1007_s11042_023_15193_4
crossref_primary_10_34248_bsengineering_1527551
crossref_primary_10_1016_j_neunet_2025_107302
crossref_primary_10_1109_ACCESS_2024_3414431
crossref_primary_10_1007_s13278_024_01280_3
crossref_primary_10_3390_app132413070
crossref_primary_10_1002_aaai_12188
crossref_primary_10_1016_j_neucom_2023_126548
crossref_primary_10_1109_ACCESS_2022_3216892
crossref_primary_10_3390_technologies12110222
crossref_primary_10_1016_j_asoc_2025_112794
crossref_primary_10_14500_aro_11519
crossref_primary_10_1371_journal_pone_0275382
crossref_primary_10_1016_j_ejor_2024_03_008
crossref_primary_10_52704_bssocialscience_1383503
crossref_primary_10_32604_csse_2023_029953
crossref_primary_10_3390_app13074207
crossref_primary_10_1186_s40537_024_01028_y
crossref_primary_10_1109_TCSS_2022_3220420
crossref_primary_10_1109_ACCESS_2025_3530688
crossref_primary_10_1007_s13278_024_01376_w
crossref_primary_10_1109_TCSS_2024_3403937
crossref_primary_10_3390_app11177940
crossref_primary_10_1016_j_gltp_2021_08_038
crossref_primary_10_1007_s11042_023_14730_5
crossref_primary_10_3389_fpubh_2021_755808
crossref_primary_10_3233_JIFS_223980
crossref_primary_10_32628_CSEIT23903146
crossref_primary_10_1007_s41870_023_01288_6
crossref_primary_10_1109_ACCESS_2022_3194269
crossref_primary_10_1109_ACCESS_2024_3482868
crossref_primary_10_48084_etasr_8170
crossref_primary_10_1007_s11704_024_40674_6
crossref_primary_10_1007_s10489_022_04283_9
crossref_primary_10_1109_ACCESS_2024_3520187
crossref_primary_10_3390_su15010133
crossref_primary_10_1109_ACCESS_2024_3451128
crossref_primary_10_32604_cmc_2022_021449
crossref_primary_10_1007_s12652_022_04338_2
crossref_primary_10_1080_01969722_2022_2130248
crossref_primary_10_1146_annurev_statistics_040622_033806
crossref_primary_10_1007_s00500_022_07095_8
crossref_primary_10_1111_exsy_13008
crossref_primary_10_32604_cmc_2023_030551
crossref_primary_10_1177_21582440231217724
crossref_primary_10_3390_a17020070
crossref_primary_10_1016_j_cose_2023_103318
crossref_primary_10_1016_j_eij_2024_100563
crossref_primary_10_3390_asi5020043
crossref_primary_10_1016_j_jretconser_2024_104172
crossref_primary_10_1155_2022_6329014
crossref_primary_10_1007_s13278_024_01390_y
crossref_primary_10_1108_JARHE_04_2024_0157
crossref_primary_10_3390_info16030189
crossref_primary_10_3390_math12203294
crossref_primary_10_1155_2022_1390672
crossref_primary_10_1007_s11760_023_02938_9
crossref_primary_10_24857_rgsa_v18n12_039
crossref_primary_10_1007_s11227_024_06216_4
crossref_primary_10_1080_02522667_2022_2038933
crossref_primary_10_1109_ACCESS_2022_3181184
Cites_doi 10.1109/TNNLS.2016.2582924
10.18653/v1/N18-1202
10.1609/aaai.v32i1.11268
10.1257/jep.31.2.211
10.3390/app9194062
10.1089/big.2020.0062
10.18653/v1/P19-1452
10.1007/978-3-319-69155-8_9
10.1007/978-3-319-99722-3_33
10.1007/s40979-019-0049-x
10.1145/1963405.1963500
10.1145/3161603
10.1145/3289600.3290994
10.18653/v1/P17-2067
10.1109/MCI.2018.2840738
10.18653/v1/N18-2084
10.18653/v1/D17-1317
10.1016/j.patrec.2017.10.014
10.1109/TIFS.2018.2825958
10.1145/2350190.2350203
10.1137/1.9781611972825.14
10.18653/v1/S19-2147
10.1109/IC3INA.2018.8629522
10.1002/pra2.2018.14505501125
10.1016/j.chb.2018.02.008
10.1016/j.aei.2019.02.009
10.1145/3132847.3132877
10.1007/978-3-030-51310-8_17
10.1073/pnas.1517441113
10.1016/j.ins.2019.05.035
10.1007/s10796-017-9805-8
10.1109/ICSIPA.2011.6144164
10.1109/ASRU.2011.6163899
10.1109/43.62793
10.1145/3292500.3330935
10.1016/j.cogsys.2019.12.005
10.18653/v1/W18-5510
10.1145/3070644
10.1016/j.csl.2017.07.009
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright Springer Nature B.V. Mar 2021
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
– notice: Copyright Springer Nature B.V. Mar 2021
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s11042-020-10183-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 11788
ExternalDocumentID PMC7788551
33432264
10_1007_s11042_020_10183_2
Genre News
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
NPM
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ACMFV
5PM
ID FETCH-LOGICAL-c474t-d1bbf5998f4b7ea946a52f85d9acc73333ab751e0ee05cb20c15ed577b31e0a73
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Thu Aug 21 18:42:44 EDT 2025
Thu Jul 10 23:37:15 EDT 2025
Fri Jul 25 20:50:17 EDT 2025
Mon Jul 21 05:46:54 EDT 2025
Thu Apr 24 23:11:16 EDT 2025
Tue Aug 05 12:05:24 EDT 2025
Thu Apr 10 07:12:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Deep learning
BERT
Neural network
Fake news
Social media
Language English
License Springer Science+Business Media, LLC, part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-d1bbf5998f4b7ea946a52f85d9acc73333ab751e0ee05cb20c15ed577b31e0a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-News-1
ORCID 0000-0003-1865-3512
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7788551
PMID 33432264
PQID 2513419608
PQPubID 54626
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7788551
proquest_miscellaneous_2477265508
proquest_journals_2513419608
pubmed_primary_33432264
crossref_primary_10_1007_s11042_020_10183_2
crossref_citationtrail_10_1007_s11042_020_10183_2
springer_journals_10_1007_s11042_020_10183_2
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Del Vicario (10183_CR10) 2016; 113
10183_CR42
10183_CR40
S Ghosh (10183_CR14) 2018; 55
A Bondielli (10183_CR4) 2019; 497
10183_CR35
B Zhong (10183_CR52) 2019; 40
10183_CR34
10183_CR32
10183_CR38
10183_CR36
H Allcott (10183_CR2) 2017; 31
10183_CR31
10183_CR30
A Zubiaga (10183_CR54) 2018; 51
P Sibi (10183_CR41) 2013; 47
10183_CR29
T Young (10183_CR50) 2018; 13
10183_CR9
A Reema (10183_CR33) 2018; 20
10183_CR5
10183_CR23
10183_CR8
10183_CR22
10183_CR21
H Jwa (10183_CR18) 2019; 9
10183_CR28
AP Weiss (10183_CR48) 2020; 16
10183_CR1
10183_CR27
10183_CR26
10183_CR3
10183_CR25
10183_CR20
J Shin (10183_CR37) 2018; 8
K Greff (10183_CR15) 2016; 28
C Cerisara (10183_CR6) 2018; 47
M Fazil (10183_CR12) 2018; 13
S Malik (10183_CR24) 1991; 10
10183_CR13
10183_CR11
10183_CR17
10183_CR16
K Shu (10183_CR39) 2020; 8
10183_CR53
10183_CR51
W Chen (10183_CR7) 2018; 105
S Vosoughi (10183_CR46) 2017; 11
RK Kaliyar (10183_CR19) 2020; 61
10183_CR45
10183_CR44
10183_CR43
10183_CR49
10183_CR47
References_xml – volume: 28
  start-page: 2222
  issue: 10
  year: 2016
  ident: 10183_CR15
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2582924
– ident: 10183_CR30
  doi: 10.18653/v1/N18-1202
– ident: 10183_CR45
– ident: 10183_CR51
– ident: 10183_CR23
  doi: 10.1609/aaai.v32i1.11268
– volume: 31
  start-page: 211
  issue: 2
  year: 2017
  ident: 10183_CR2
  publication-title: J Econ Perspect
  doi: 10.1257/jep.31.2.211
– volume: 9
  start-page: 4062
  issue: 19
  year: 2019
  ident: 10183_CR18
  publication-title: Appl Sci
  doi: 10.3390/app9194062
– volume: 47
  start-page: 1264
  issue: 3
  year: 2013
  ident: 10183_CR41
  publication-title: J Theor Appl Inf Technol
– volume: 8
  start-page: 171
  issue: 3
  year: 2020
  ident: 10183_CR39
  publication-title: Big Data
  doi: 10.1089/big.2020.0062
– ident: 10183_CR44
  doi: 10.18653/v1/P19-1452
– ident: 10183_CR22
– ident: 10183_CR1
  doi: 10.1007/978-3-319-69155-8_9
– ident: 10183_CR25
  doi: 10.1007/978-3-319-99722-3_33
– volume: 16
  start-page: 1
  issue: 1
  year: 2020
  ident: 10183_CR48
  publication-title: Int J Educ Integr
  doi: 10.1007/s40979-019-0049-x
– ident: 10183_CR5
  doi: 10.1145/1963405.1963500
– ident: 10183_CR42
– volume: 51
  start-page: 1
  issue: 2
  year: 2018
  ident: 10183_CR54
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3161603
– ident: 10183_CR40
  doi: 10.1145/3289600.3290994
– ident: 10183_CR47
  doi: 10.18653/v1/P17-2067
– volume: 13
  start-page: 55
  issue: 3
  year: 2018
  ident: 10183_CR50
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2018.2840738
– ident: 10183_CR11
– ident: 10183_CR9
– ident: 10183_CR31
  doi: 10.18653/v1/N18-2084
– ident: 10183_CR29
– ident: 10183_CR32
  doi: 10.18653/v1/D17-1317
– ident: 10183_CR21
– volume: 105
  start-page: 226
  year: 2018
  ident: 10183_CR7
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2017.10.014
– ident: 10183_CR43
– ident: 10183_CR20
– volume: 13
  start-page: 2707
  issue: 11
  year: 2018
  ident: 10183_CR12
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2018.2825958
– ident: 10183_CR3
– ident: 10183_CR49
  doi: 10.1145/2350190.2350203
– ident: 10183_CR17
  doi: 10.1137/1.9781611972825.14
– ident: 10183_CR16
  doi: 10.18653/v1/S19-2147
– ident: 10183_CR34
– ident: 10183_CR26
  doi: 10.1109/IC3INA.2018.8629522
– ident: 10183_CR28
– ident: 10183_CR53
– volume: 55
  start-page: 805
  issue: 1
  year: 2018
  ident: 10183_CR14
  publication-title: Proc Assoc Inf Sci Technol
  doi: 10.1002/pra2.2018.14505501125
– volume: 8
  start-page: 278
  year: 2018
  ident: 10183_CR37
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2018.02.008
– volume: 40
  start-page: 46
  year: 2019
  ident: 10183_CR52
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2019.02.009
– ident: 10183_CR35
  doi: 10.1145/3132847.3132877
– ident: 10183_CR8
  doi: 10.1007/978-3-030-51310-8_17
– volume: 113
  start-page: 554
  issue: 3
  year: 2016
  ident: 10183_CR10
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1517441113
– volume: 497
  start-page: 38
  year: 2019
  ident: 10183_CR4
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2019.05.035
– volume: 20
  start-page: 515
  issue: 3
  year: 2018
  ident: 10183_CR33
  publication-title: Information Systems Frontiers
  doi: 10.1007/s10796-017-9805-8
– ident: 10183_CR27
  doi: 10.1109/ICSIPA.2011.6144164
– ident: 10183_CR36
  doi: 10.1109/ASRU.2011.6163899
– volume: 10
  start-page: 74
  issue: 1
  year: 1991
  ident: 10183_CR24
  publication-title: IEEE Trans Comput-Aided Design Integr Circuits Syst
  doi: 10.1109/43.62793
– ident: 10183_CR38
  doi: 10.1145/3292500.3330935
– volume: 61
  start-page: 32
  year: 2020
  ident: 10183_CR19
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2019.12.005
– ident: 10183_CR13
  doi: 10.18653/v1/W18-5510
– volume: 11
  start-page: 1
  issue: 4
  year: 2017
  ident: 10183_CR46
  publication-title: ACM Trans Knowl Discov Data (TKDD)
  doi: 10.1145/3070644
– volume: 47
  start-page: 175
  year: 2018
  ident: 10183_CR6
  publication-title: Comput Speech Lang
  doi: 10.1016/j.csl.2017.07.009
SSID ssj0016524
Score 2.672433
Snippet In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11765
SubjectTerms Artificial neural networks
Classification
Coders
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Digital media
Machine learning
Model accuracy
Model testing
Multimedia Information Systems
Neural networks
News
Sentences
Social networks
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcQXNgBGNtYgaEgcdsi9SMfLTeYeEKTtsPEm7hVaepuiKkgePz_2HlpH29sk-ipapx-xEltx_bPAEfem5bksJGNzb1UzrTSVeikRuuQGnwX8ta-fjPnU_XlUl_GpLD7Idp9cEmGP_Ui2S3jVBI2dxhlqpD0413TbLvTLJ7mJ6PvwOhYyrZMJcnDLKbK_P0ey-LomY75PFTyD39pEEOTLdiI-qM4mTP8Naxgvw2bQ20GEZfqNrx6AjT4Bn5M3DWenn2_OBZ8JliXFi3OQhxWL656Md87FyGRRPDmrHCCO0gWcy3R4q2IFSZ-igGI_C1MJ2cXn89lrKggvbJqJtusaTpNFlanGouuUsbpvCt1WznvbUGHa6zOMEVMtW_y1GcaW21tU9BFZ4t3sNrf9PgeRFdUXed8qdBZ1TJqWoEaDQ0wllhWJoFsGNjaR7hxrnrxu14AJTMzamJGHZhR5wl8HPvczsE2_ku9P_CrjgvvviZ1jRHqTFomcDg205JhP4jr8eaBaBSZFIZMM6LZmbN3fFzBibakJCZglxg_EjAc93JLf_UrwHJbW5akfybwaZgii9f691fsvox8D9ZzjqoJUXD7sDq7e8APpBbNmoOwCh4B3MMCNA
  priority: 102
  providerName: Springer Nature
Title FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
URI https://link.springer.com/article/10.1007/s11042-020-10183-2
https://www.ncbi.nlm.nih.gov/pubmed/33432264
https://www.proquest.com/docview/2513419608
https://www.proquest.com/docview/2477265508
https://pubmed.ncbi.nlm.nih.gov/PMC7788551
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9QUe-BgwAqMyEm9g0Xw4dnhBLWo2gajQtKLxFDnOBSZQWlj3_3OXOCllYnlJFJ-V2Gf77uy73wG8dC6tSA6nstSRk4lNK2kztFKhtkgFrm7j1j4t0pNl8uFcnfsNt0vvVtmvie1CXa0c75G_ITnM0GPpxLxb_5KcNYpPV30KjT0Y0RJsyPgazeaLz6fDOUKqfFpbM5EkG0MfNtMFz4UcmsLmE6NWxTLaFU3X9M3rbpP_nJ22Iim_D3e9LimmHfMfwC1sDuBen6dB-Gl7AHf-Ah18CF9y-wNn89Ozt4KfBOvVosJN65PViItGdPvoog0qEbxRK6zgCpJFXkW0uBY-28Q30YOSP4JlPj97fyJ9dgXpEp1sZBWWZa3I2qqTUqPNktSqqDaqyqxzOqbLllqFOEGcKFdGExcqrJTWZUwvrY4fw36zavAJiDrO6to6k6DVScUIajEqTKmD0aDJ0gDCvmML56HHOQPGz2ILmszMKIgZRcuMIgrg1VBn3QFv3Eh91POr8JPwstgOmQBeDMU0ffhMxDa4uiKahMyLlMw0ojns2Dt8LuagW1IYA9A7jB8IGJp7t6S5-N5CdGttDOmiAbzuh8j2t_7fiqc3t-IZ3I7Yo6b1gDuC_c3vK3xOKtGmHMOeyY_HMJrms9mC78dfP87HfjZQ6TKa_gHD3Quw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9RADLZKeYA-cBQogQKDBE8wIsccCRJCHF229HhAW9S3MJk4UIGyC90K8af4jdi5lqWib81TlHGu8Xhsz9ifAR55b0rSw0YWNvZSOVNKl6GTGq1DavBVk7e2t2_GB-r9oT5cgd99LgyHVfZzYjNRl1PPa-TPSA8z9JgJ05ez75KrRvHual9Cox0WO_jrJ7lsxy-23xJ_H8fxaGvyZiy7qgLSK6vmsoyKotLkZVSqsOgyZZyOq1SXmfPeJnS4wuoIQ8RQ-yIOfaSx1NYWCV10NqHnXoCLKkkylqh09G7YtTC6K6KbhpI0cdQl6bSpehEnwrCzxhhZiYyXFeEp6_Z0kOY_O7WNAhxdgyud5SpetUPtOqxgvQ5X-6oQopsk1mHtL4jDG_Bx5L7i660Pk-eCzwRb8aLEeRMBVoujWrSr9qJJYRG8LCyc4BskK9iSaHEmutoWn0UPgX4TDs6l12_Baj2t8TaIKsmqyvlUobOqZLy2BDUa6mBMMc1MAFHfsbnvgM653sa3fAHRzMzIiRl5w4w8DuDJcM-shfk4k3qz51feifxxvhigATwcmklYeQfG1Tg9IRpFzowhp5BoNlr2Dq9LOMWXzNMA7BLjBwIGAl9uqY--NIDg1qYpWb4BPO2HyOKz_v8Xd87-iwdwaTzZ2813t_d37sLlmGN5mti7TVid_zjBe2SMzYv7jQQI-HTeIvcHZItDMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTULwwMf4KgwIEjxBtH4laZEQYuxOG4PTNG1obyVNXZhAvYPdhPjX-Ouw2_SOY2Jv61PVOG0TJ7Gd2D8DPHVOVySHtSxN7GRqdSVtjlYqNBapwNVt3NqHsd4-TN8dqaMV-N3HwrBbZb8mtgt1NXG8R75Bcpihx3SYbdTeLWJva_R6-l1yBik-ae3TaXRDZBd__STz7eTVzhbx-lkcj4YHb7elzzAgXWrSmayisqwVWRx1Whq0eaqtiutMVbl1ziR02dKoCEPEULkyDl2ksFLGlAk9tCah916CVUNWUTiA1c3heG9_foahlU-pm4WS5HLkQ3a6wL2Iw2LYdGPErETGy2LxjK571mXzn3PbVhyObsA1r8eKN93Auwkr2KzB9T5HhPBLxhpc_Qvw8BZ8HNmvuDncP3gp-E6wTi8qnLX-YI04bkS3hy_agBbBm8TCCq4gWdxWRItT4TNdfBY9IPptOLyQfr8Dg2bS4D0QdZLXtXVZitakFaO3JahQUwdjhlmuA4j6ji2chz3n7BvfigVgMzOjIGYULTOKOIDn8zrTDvTjXOr1nl-FXwBOisVwDeDJvJimLp_H2AYnp0STkmmjyUQkmrsde-efSzjgl5TVAMwS4-cEDAu-XNIcf2nhwY3JMtKDA3jRD5HFb_2_FffPb8VjuEzTrXi_M959AFdiduxpHfHWYTD7cYoPSTOblY_8FBDw6aJn3R8MkUjD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FakeBERT%3A+Fake+news+detection+in+social+media+with+a+BERT-based+deep+learning+approach&rft.jtitle=Multimedia+tools+and+applications&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=8&rft.spage=11765&rft.epage=11788&rft_id=info:doi/10.1007%2Fs11042-020-10183-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon