FakeBERT: Fake news detection in social media with a BERT-based deep learning approach
In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researc...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 8; pp. 11765 - 11788 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researches, many useful methods for fake news detection employ sequential neural networks to encode news content and social context-level information where the text sequence was analyzed in a unidirectional way. Therefore, a bidirectional training approach is a priority for modelling the relevant information of fake news that is capable of improving the classification performance with the ability to capture semantic and long-distance dependencies in sentences. In this paper, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning approach (FakeBERT) by combining different parallel blocks of the single-layer deep Convolutional Neural Network (CNN) having different kernel sizes and filters with the BERT. Such a combination is useful to handle ambiguity, which is the greatest challenge to natural language understanding. Classification results demonstrate that our proposed model (FakeBERT) outperforms the existing models with an accuracy of 98.90%. |
---|---|
AbstractList | In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researches, many useful methods for fake news detection employ sequential neural networks to encode news content and social context-level information where the text sequence was analyzed in a unidirectional way. Therefore, a bidirectional training approach is a priority for modelling the relevant information of fake news that is capable of improving the classification performance with the ability to capture semantic and long-distance dependencies in sentences. In this paper, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning approach (FakeBERT) by combining different parallel blocks of the single-layer deep Convolutional Neural Network (CNN) having different kernel sizes and filters with the BERT. Such a combination is useful to handle ambiguity, which is the greatest challenge to natural language understanding. Classification results demonstrate that our proposed model (FakeBERT) outperforms the existing models with an accuracy of 98.90%. In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researches, many useful methods for fake news detection employ sequential neural networks to encode news content and social context-level information where the text sequence was analyzed in a unidirectional way. Therefore, a bidirectional training approach is a priority for modelling the relevant information of fake news that is capable of improving the classification performance with the ability to capture semantic and long-distance dependencies in sentences. In this paper, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning approach (FakeBERT) by combining different parallel blocks of the single-layer deep Convolutional Neural Network (CNN) having different kernel sizes and filters with the BERT. Such a combination is useful to handle ambiguity, which is the greatest challenge to natural language understanding. Classification results demonstrate that our proposed model (FakeBERT) outperforms the existing models with an accuracy of 98.90%.In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to consume news much faster, with less restricted editing results in the spread of fake news at an incredible pace and scale. In recent researches, many useful methods for fake news detection employ sequential neural networks to encode news content and social context-level information where the text sequence was analyzed in a unidirectional way. Therefore, a bidirectional training approach is a priority for modelling the relevant information of fake news that is capable of improving the classification performance with the ability to capture semantic and long-distance dependencies in sentences. In this paper, we propose a BERT-based (Bidirectional Encoder Representations from Transformers) deep learning approach (FakeBERT) by combining different parallel blocks of the single-layer deep Convolutional Neural Network (CNN) having different kernel sizes and filters with the BERT. Such a combination is useful to handle ambiguity, which is the greatest challenge to natural language understanding. Classification results demonstrate that our proposed model (FakeBERT) outperforms the existing models with an accuracy of 98.90%. |
Author | Narang, Pratik Kaliyar, Rohit Kumar Goswami, Anurag |
Author_xml | – sequence: 1 givenname: Rohit Kumar surname: Kaliyar fullname: Kaliyar, Rohit Kumar organization: Departement of Computer Science Engineering, Bennett University – sequence: 2 givenname: Anurag surname: Goswami fullname: Goswami, Anurag organization: Departement of Computer Science Engineering, Bennett University – sequence: 3 givenname: Pratik orcidid: 0000-0003-1865-3512 surname: Narang fullname: Narang, Pratik email: pratik.narang@pilani.bits-pilani.ac.in organization: Departement of CSIS, BITS Pilani |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33432264$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAQtVAR_aB_gAOyxIVLwJ9xwgGpVG2pVAkJlV6tiTPZdcnawc5S8e_r7ZYWeqgvHtnvvXkzb5_shBiQkDecfeCMmY-Zc6ZExQSrOOONrMQLsse1kZUxgu-UWjasMprxXbKf8zVjvNZCvSK7UiopRK32yNUp_MQvJ98vP9FNRQPeZNrjjG72MVAfaI7Ow0hX2HugN35eUqAbQtVBxr5gcaIjQgo-LChMU4rglq_JywHGjIf39wH5cXpyefy1uvh2dn58dFE5ZdRc9bzrBt22zaA6g9CqGrQYGt234JyR5UBnNEeGyLTrBHNcY6-N6WR5BCMPyOet7rTuikOHYU4w2in5FaQ_NoK3__8Ev7SL-Nsa0zRa8yLw_l4gxV9rzLNd-exwHCFgXGcrVNllrTVrCvTdE-h1XKdQxrOiKCne1neot_86erDyd-UFILYAl2LOCYcHCGd2k6vd5mpLrvYuVysKqXlCcn6GTURlKj8-T5Vbai59wgLTo-1nWLfwd7W5 |
CitedBy_id | crossref_primary_10_3390_fi13070163 crossref_primary_10_1007_s13278_023_01065_0 crossref_primary_10_1002_acs_3645 crossref_primary_10_3390_biomimetics8060449 crossref_primary_10_1016_j_knosys_2024_111625 crossref_primary_10_1016_j_eswa_2021_115824 crossref_primary_10_1007_s10115_023_01902_w crossref_primary_10_3390_info15030122 crossref_primary_10_1109_ACCESS_2022_3212367 crossref_primary_10_1016_j_engappai_2024_109240 crossref_primary_10_1109_ACCESS_2023_3339621 crossref_primary_10_1007_s00146_024_01893_4 crossref_primary_10_1007_s13042_021_01503_5 crossref_primary_10_1109_ACCESS_2021_3129329 crossref_primary_10_1007_s13278_022_00986_6 crossref_primary_10_1145_3589184 crossref_primary_10_1007_s13278_024_01290_1 crossref_primary_10_1109_TBDATA_2023_3325746 crossref_primary_10_1145_3716498 crossref_primary_10_3390_data7040044 crossref_primary_10_3390_e26010005 crossref_primary_10_1177_14727978251322656 crossref_primary_10_1080_1528008X_2024_2416536 crossref_primary_10_1155_2022_3498123 crossref_primary_10_1016_j_procs_2022_11_314 crossref_primary_10_55859_ijiss_1231423 crossref_primary_10_1007_s13278_023_01185_7 crossref_primary_10_1007_s11042_021_11782_3 crossref_primary_10_1109_ACCESS_2025_3537168 crossref_primary_10_3390_app13148209 crossref_primary_10_1145_3661485 crossref_primary_10_1016_j_eswa_2024_123997 crossref_primary_10_3390_ijgi12060240 crossref_primary_10_4018_JOEUC_340038 crossref_primary_10_1007_s11042_024_20526_y crossref_primary_10_1007_s11042_023_16285_x crossref_primary_10_3390_app13106054 crossref_primary_10_3390_electronics12153250 crossref_primary_10_1051_itmconf_20235401015 crossref_primary_10_1109_ACCESS_2022_3195030 crossref_primary_10_3390_math9222988 crossref_primary_10_1007_s10489_023_04455_1 crossref_primary_10_1007_s11042_023_16588_z crossref_primary_10_1016_j_ipm_2025_104089 crossref_primary_10_1016_j_heliyon_2024_e36049 crossref_primary_10_1111_coin_12552 crossref_primary_10_3390_app11199292 crossref_primary_10_1016_j_neucom_2023_02_005 crossref_primary_10_1016_j_nlp_2024_100053 crossref_primary_10_36548_jtcsst_2024_2_004 crossref_primary_10_1089_big_2022_0050 crossref_primary_10_4000_ijcol_1250 crossref_primary_10_1142_S0219649224500758 crossref_primary_10_1080_0952813X_2023_2196986 crossref_primary_10_1016_j_iot_2024_101409 crossref_primary_10_3390_electronics13234784 crossref_primary_10_1007_s11042_022_12668_8 crossref_primary_10_1109_ACCESS_2022_3187406 crossref_primary_10_12720_jait_15_2_202_211 crossref_primary_10_3390_data7050065 crossref_primary_10_1007_s00521_024_09491_7 crossref_primary_10_1057_s41599_024_03083_5 crossref_primary_10_1007_s10458_023_09619_4 crossref_primary_10_1007_s13278_023_01140_6 crossref_primary_10_1007_s40747_023_01098_0 crossref_primary_10_48084_etasr_9192 crossref_primary_10_1016_j_jksuci_2023_101571 crossref_primary_10_1142_S0219622023500347 crossref_primary_10_1007_s10207_023_00726_7 crossref_primary_10_1109_TVCG_2023_3236380 crossref_primary_10_1155_2022_8393736 crossref_primary_10_1007_s11042_023_16198_9 crossref_primary_10_1007_s11042_023_16538_9 crossref_primary_10_1007_s41870_023_01559_2 crossref_primary_10_1080_08839514_2024_2389502 crossref_primary_10_1016_j_jksuci_2024_102160 crossref_primary_10_3390_s24186062 crossref_primary_10_1007_s10489_022_03627_9 crossref_primary_10_1016_j_procs_2024_04_205 crossref_primary_10_1007_s13278_022_00995_5 crossref_primary_10_1007_s42979_023_02117_0 crossref_primary_10_1007_s00354_023_00209_2 crossref_primary_10_1016_j_dss_2022_113911 crossref_primary_10_5194_nhess_24_3991_2024 crossref_primary_10_1007_s12652_023_04562_4 crossref_primary_10_1007_s11277_023_10582_2 crossref_primary_10_3390_sym15020296 crossref_primary_10_3390_systems11090458 crossref_primary_10_3390_healthcare10061119 crossref_primary_10_1016_j_procs_2023_10_324 crossref_primary_10_1007_s13278_024_01383_x crossref_primary_10_1080_0952813X_2024_2440665 crossref_primary_10_1109_ACCESS_2024_3354165 crossref_primary_10_1007_s13278_024_01344_4 crossref_primary_10_1038_s41598_024_56567_4 crossref_primary_10_1109_ACCESS_2024_3435497 crossref_primary_10_1007_s00500_022_07080_1 crossref_primary_10_1016_j_heliyon_2024_e37760 crossref_primary_10_1109_ACCESS_2024_3478790 crossref_primary_10_1007_s11257_024_09413_1 crossref_primary_10_1016_j_eswa_2022_118290 crossref_primary_10_1038_s41598_021_03100_6 crossref_primary_10_3233_WEB_220046 crossref_primary_10_3390_app12178398 crossref_primary_10_1007_s41060_023_00387_8 crossref_primary_10_1007_s10115_024_02321_1 crossref_primary_10_1093_jssam_smad015 crossref_primary_10_1007_s00500_023_07897_4 crossref_primary_10_1016_j_neunet_2025_107377 crossref_primary_10_3390_fi17020061 crossref_primary_10_36930_40320612 crossref_primary_10_1007_s11042_023_14810_6 crossref_primary_10_1016_j_neucom_2024_128078 crossref_primary_10_1145_3623379 crossref_primary_10_1108_IJICC_04_2024_0184 crossref_primary_10_2339_politeknik_1307037 crossref_primary_10_1109_TCSS_2023_3276764 crossref_primary_10_2478_acss_2023_0018 crossref_primary_10_1145_3689372 crossref_primary_10_3390_math10040569 crossref_primary_10_1007_s13198_023_01891_7 crossref_primary_10_3934_era_2023362 crossref_primary_10_1016_j_engappai_2025_110284 crossref_primary_10_1371_journal_pone_0311238 crossref_primary_10_1007_s11042_022_12761_y crossref_primary_10_3390_info13030151 crossref_primary_10_1080_0144929X_2023_2285949 crossref_primary_10_3390_app13053345 crossref_primary_10_3390_math11030508 crossref_primary_10_1109_TCE_2023_3324661 crossref_primary_10_1016_j_ijcce_2022_03_003 crossref_primary_10_2298_CSIS210501053K crossref_primary_10_3390_math11153278 crossref_primary_10_1007_s13278_025_01412_3 crossref_primary_10_7717_peerj_cs_467 crossref_primary_10_1155_int_5920142 crossref_primary_10_3390_electronics11081255 crossref_primary_10_1109_TCSS_2022_3221811 crossref_primary_10_1007_s10791_025_09502_8 crossref_primary_10_1007_s11042_022_12428_8 crossref_primary_10_3390_info13110527 crossref_primary_10_1016_j_eswa_2024_124302 crossref_primary_10_1371_journal_pone_0294701 crossref_primary_10_1007_s11227_023_05726_x crossref_primary_10_4018_IJSSCI_316972 crossref_primary_10_1109_TCSS_2024_3404921 crossref_primary_10_2196_31358 crossref_primary_10_1007_s10207_023_00796_7 crossref_primary_10_1109_ACCESS_2025_3529357 crossref_primary_10_1016_j_datak_2021_101960 crossref_primary_10_32628_IJSRST2184111 crossref_primary_10_1007_s10994_024_06727_4 crossref_primary_10_1109_TCSS_2024_3355300 crossref_primary_10_1007_s11042_024_18499_z crossref_primary_10_1016_j_procs_2021_12_254 crossref_primary_10_1109_TKDE_2024_3390431 crossref_primary_10_3390_e24091242 crossref_primary_10_3390_electronics13204057 crossref_primary_10_1007_s11042_024_18706_x crossref_primary_10_1016_j_ijdrr_2024_104680 crossref_primary_10_1007_s11042_023_17115_w crossref_primary_10_1109_TCSS_2023_3269595 crossref_primary_10_3389_fpubh_2024_1330801 crossref_primary_10_1007_s10796_025_10589_z crossref_primary_10_1007_s13369_021_05780_8 crossref_primary_10_3390_bdcc8100129 crossref_primary_10_1016_j_eswa_2024_124650 crossref_primary_10_26599_BDMA_2024_9020015 crossref_primary_10_1016_j_procs_2024_03_265 crossref_primary_10_1007_s11042_024_19249_x crossref_primary_10_17671_gazibtd_1521520 crossref_primary_10_1109_ACCESS_2023_3278323 crossref_primary_10_1007_s11042_024_19225_5 crossref_primary_10_1142_S0219649222500368 crossref_primary_10_1155_2022_9561831 crossref_primary_10_1007_s10489_022_03910_9 crossref_primary_10_1155_2023_8836476 crossref_primary_10_1016_j_asoc_2025_112796 crossref_primary_10_1007_s42979_024_02943_w crossref_primary_10_1016_j_aei_2023_102293 crossref_primary_10_3390_math13061011 crossref_primary_10_1007_s13369_025_09975_1 crossref_primary_10_3390_fi17030129 crossref_primary_10_1007_s13042_024_02128_0 crossref_primary_10_1016_j_jretconser_2023_103545 crossref_primary_10_1016_j_jjimei_2021_100051 crossref_primary_10_20473_jisebi_9_2_253_263 crossref_primary_10_3390_bdcc8080093 crossref_primary_10_1016_j_cosrev_2022_100531 crossref_primary_10_1145_3548458 crossref_primary_10_1016_j_procs_2023_09_062 crossref_primary_10_1007_s40747_021_00552_1 crossref_primary_10_1007_s00521_025_11101_z crossref_primary_10_48175_IJARSCT_22154 crossref_primary_10_1016_j_actpsy_2025_104691 crossref_primary_10_1109_ACCESS_2022_3206963 crossref_primary_10_1016_j_engappai_2023_106088 crossref_primary_10_1016_j_neucom_2024_128450 crossref_primary_10_1109_ACCESS_2024_3476432 crossref_primary_10_3390_computers13110292 crossref_primary_10_1007_s10489_022_03185_0 crossref_primary_10_3390_s23041748 crossref_primary_10_48175_IJARSCT_1362 crossref_primary_10_3390_electronics13152958 crossref_primary_10_32604_cmc_2022_028981 crossref_primary_10_1007_s11042_023_17377_4 crossref_primary_10_1016_j_compeleceng_2023_108866 crossref_primary_10_48175_IJARSCT_5608 crossref_primary_10_1016_j_aej_2024_10_073 crossref_primary_10_1016_j_eti_2024_103655 crossref_primary_10_1007_s10479_024_06388_5 crossref_primary_10_1016_j_heliyon_2024_e25244 crossref_primary_10_3390_electronics13214322 crossref_primary_10_1007_s11042_023_15193_4 crossref_primary_10_34248_bsengineering_1527551 crossref_primary_10_1016_j_neunet_2025_107302 crossref_primary_10_1109_ACCESS_2024_3414431 crossref_primary_10_1007_s13278_024_01280_3 crossref_primary_10_3390_app132413070 crossref_primary_10_1002_aaai_12188 crossref_primary_10_1016_j_neucom_2023_126548 crossref_primary_10_1109_ACCESS_2022_3216892 crossref_primary_10_3390_technologies12110222 crossref_primary_10_1016_j_asoc_2025_112794 crossref_primary_10_14500_aro_11519 crossref_primary_10_1371_journal_pone_0275382 crossref_primary_10_1016_j_ejor_2024_03_008 crossref_primary_10_52704_bssocialscience_1383503 crossref_primary_10_32604_csse_2023_029953 crossref_primary_10_3390_app13074207 crossref_primary_10_1186_s40537_024_01028_y crossref_primary_10_1109_TCSS_2022_3220420 crossref_primary_10_1109_ACCESS_2025_3530688 crossref_primary_10_1007_s13278_024_01376_w crossref_primary_10_1109_TCSS_2024_3403937 crossref_primary_10_3390_app11177940 crossref_primary_10_1016_j_gltp_2021_08_038 crossref_primary_10_1007_s11042_023_14730_5 crossref_primary_10_3389_fpubh_2021_755808 crossref_primary_10_3233_JIFS_223980 crossref_primary_10_32628_CSEIT23903146 crossref_primary_10_1007_s41870_023_01288_6 crossref_primary_10_1109_ACCESS_2022_3194269 crossref_primary_10_1109_ACCESS_2024_3482868 crossref_primary_10_48084_etasr_8170 crossref_primary_10_1007_s11704_024_40674_6 crossref_primary_10_1007_s10489_022_04283_9 crossref_primary_10_1109_ACCESS_2024_3520187 crossref_primary_10_3390_su15010133 crossref_primary_10_1109_ACCESS_2024_3451128 crossref_primary_10_32604_cmc_2022_021449 crossref_primary_10_1007_s12652_022_04338_2 crossref_primary_10_1080_01969722_2022_2130248 crossref_primary_10_1146_annurev_statistics_040622_033806 crossref_primary_10_1007_s00500_022_07095_8 crossref_primary_10_1111_exsy_13008 crossref_primary_10_32604_cmc_2023_030551 crossref_primary_10_1177_21582440231217724 crossref_primary_10_3390_a17020070 crossref_primary_10_1016_j_cose_2023_103318 crossref_primary_10_1016_j_eij_2024_100563 crossref_primary_10_3390_asi5020043 crossref_primary_10_1016_j_jretconser_2024_104172 crossref_primary_10_1155_2022_6329014 crossref_primary_10_1007_s13278_024_01390_y crossref_primary_10_1108_JARHE_04_2024_0157 crossref_primary_10_3390_info16030189 crossref_primary_10_3390_math12203294 crossref_primary_10_1155_2022_1390672 crossref_primary_10_1007_s11760_023_02938_9 crossref_primary_10_24857_rgsa_v18n12_039 crossref_primary_10_1007_s11227_024_06216_4 crossref_primary_10_1080_02522667_2022_2038933 crossref_primary_10_1109_ACCESS_2022_3181184 |
Cites_doi | 10.1109/TNNLS.2016.2582924 10.18653/v1/N18-1202 10.1609/aaai.v32i1.11268 10.1257/jep.31.2.211 10.3390/app9194062 10.1089/big.2020.0062 10.18653/v1/P19-1452 10.1007/978-3-319-69155-8_9 10.1007/978-3-319-99722-3_33 10.1007/s40979-019-0049-x 10.1145/1963405.1963500 10.1145/3161603 10.1145/3289600.3290994 10.18653/v1/P17-2067 10.1109/MCI.2018.2840738 10.18653/v1/N18-2084 10.18653/v1/D17-1317 10.1016/j.patrec.2017.10.014 10.1109/TIFS.2018.2825958 10.1145/2350190.2350203 10.1137/1.9781611972825.14 10.18653/v1/S19-2147 10.1109/IC3INA.2018.8629522 10.1002/pra2.2018.14505501125 10.1016/j.chb.2018.02.008 10.1016/j.aei.2019.02.009 10.1145/3132847.3132877 10.1007/978-3-030-51310-8_17 10.1073/pnas.1517441113 10.1016/j.ins.2019.05.035 10.1007/s10796-017-9805-8 10.1109/ICSIPA.2011.6144164 10.1109/ASRU.2011.6163899 10.1109/43.62793 10.1145/3292500.3330935 10.1016/j.cogsys.2019.12.005 10.18653/v1/W18-5510 10.1145/3070644 10.1016/j.csl.2017.07.009 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 Springer Science+Business Media, LLC, part of Springer Nature 2021. Copyright Springer Nature B.V. Mar 2021 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. – notice: Copyright Springer Nature B.V. Mar 2021 |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s11042-020-10183-2 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 11788 |
ExternalDocumentID | PMC7788551 33432264 10_1007_s11042_020_10183_2 |
Genre | News |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM PQGLB NPM 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 ACMFV 5PM |
ID | FETCH-LOGICAL-c474t-d1bbf5998f4b7ea946a52f85d9acc73333ab751e0ee05cb20c15ed577b31e0a73 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 18:42:44 EDT 2025 Thu Jul 10 23:37:15 EDT 2025 Fri Jul 25 20:50:17 EDT 2025 Mon Jul 21 05:46:54 EDT 2025 Thu Apr 24 23:11:16 EDT 2025 Tue Aug 05 12:05:24 EDT 2025 Thu Apr 10 07:12:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Deep learning BERT Neural network Fake news Social media |
Language | English |
License | Springer Science+Business Media, LLC, part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-d1bbf5998f4b7ea946a52f85d9acc73333ab751e0ee05cb20c15ed577b31e0a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-News-1 |
ORCID | 0000-0003-1865-3512 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7788551 |
PMID | 33432264 |
PQID | 2513419608 |
PQPubID | 54626 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7788551 proquest_miscellaneous_2477265508 proquest_journals_2513419608 pubmed_primary_33432264 crossref_primary_10_1007_s11042_020_10183_2 crossref_citationtrail_10_1007_s11042_020_10183_2 springer_journals_10_1007_s11042_020_10183_2 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | M Del Vicario (10183_CR10) 2016; 113 10183_CR42 10183_CR40 S Ghosh (10183_CR14) 2018; 55 A Bondielli (10183_CR4) 2019; 497 10183_CR35 B Zhong (10183_CR52) 2019; 40 10183_CR34 10183_CR32 10183_CR38 10183_CR36 H Allcott (10183_CR2) 2017; 31 10183_CR31 10183_CR30 A Zubiaga (10183_CR54) 2018; 51 P Sibi (10183_CR41) 2013; 47 10183_CR29 T Young (10183_CR50) 2018; 13 10183_CR9 A Reema (10183_CR33) 2018; 20 10183_CR5 10183_CR23 10183_CR8 10183_CR22 10183_CR21 H Jwa (10183_CR18) 2019; 9 10183_CR28 AP Weiss (10183_CR48) 2020; 16 10183_CR1 10183_CR27 10183_CR26 10183_CR3 10183_CR25 10183_CR20 J Shin (10183_CR37) 2018; 8 K Greff (10183_CR15) 2016; 28 C Cerisara (10183_CR6) 2018; 47 M Fazil (10183_CR12) 2018; 13 S Malik (10183_CR24) 1991; 10 10183_CR13 10183_CR11 10183_CR17 10183_CR16 K Shu (10183_CR39) 2020; 8 10183_CR53 10183_CR51 W Chen (10183_CR7) 2018; 105 S Vosoughi (10183_CR46) 2017; 11 RK Kaliyar (10183_CR19) 2020; 61 10183_CR45 10183_CR44 10183_CR43 10183_CR49 10183_CR47 |
References_xml | – volume: 28 start-page: 2222 issue: 10 year: 2016 ident: 10183_CR15 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2582924 – ident: 10183_CR30 doi: 10.18653/v1/N18-1202 – ident: 10183_CR45 – ident: 10183_CR51 – ident: 10183_CR23 doi: 10.1609/aaai.v32i1.11268 – volume: 31 start-page: 211 issue: 2 year: 2017 ident: 10183_CR2 publication-title: J Econ Perspect doi: 10.1257/jep.31.2.211 – volume: 9 start-page: 4062 issue: 19 year: 2019 ident: 10183_CR18 publication-title: Appl Sci doi: 10.3390/app9194062 – volume: 47 start-page: 1264 issue: 3 year: 2013 ident: 10183_CR41 publication-title: J Theor Appl Inf Technol – volume: 8 start-page: 171 issue: 3 year: 2020 ident: 10183_CR39 publication-title: Big Data doi: 10.1089/big.2020.0062 – ident: 10183_CR44 doi: 10.18653/v1/P19-1452 – ident: 10183_CR22 – ident: 10183_CR1 doi: 10.1007/978-3-319-69155-8_9 – ident: 10183_CR25 doi: 10.1007/978-3-319-99722-3_33 – volume: 16 start-page: 1 issue: 1 year: 2020 ident: 10183_CR48 publication-title: Int J Educ Integr doi: 10.1007/s40979-019-0049-x – ident: 10183_CR5 doi: 10.1145/1963405.1963500 – ident: 10183_CR42 – volume: 51 start-page: 1 issue: 2 year: 2018 ident: 10183_CR54 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3161603 – ident: 10183_CR40 doi: 10.1145/3289600.3290994 – ident: 10183_CR47 doi: 10.18653/v1/P17-2067 – volume: 13 start-page: 55 issue: 3 year: 2018 ident: 10183_CR50 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2018.2840738 – ident: 10183_CR11 – ident: 10183_CR9 – ident: 10183_CR31 doi: 10.18653/v1/N18-2084 – ident: 10183_CR29 – ident: 10183_CR32 doi: 10.18653/v1/D17-1317 – ident: 10183_CR21 – volume: 105 start-page: 226 year: 2018 ident: 10183_CR7 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2017.10.014 – ident: 10183_CR43 – ident: 10183_CR20 – volume: 13 start-page: 2707 issue: 11 year: 2018 ident: 10183_CR12 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2018.2825958 – ident: 10183_CR3 – ident: 10183_CR49 doi: 10.1145/2350190.2350203 – ident: 10183_CR17 doi: 10.1137/1.9781611972825.14 – ident: 10183_CR16 doi: 10.18653/v1/S19-2147 – ident: 10183_CR34 – ident: 10183_CR26 doi: 10.1109/IC3INA.2018.8629522 – ident: 10183_CR28 – ident: 10183_CR53 – volume: 55 start-page: 805 issue: 1 year: 2018 ident: 10183_CR14 publication-title: Proc Assoc Inf Sci Technol doi: 10.1002/pra2.2018.14505501125 – volume: 8 start-page: 278 year: 2018 ident: 10183_CR37 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2018.02.008 – volume: 40 start-page: 46 year: 2019 ident: 10183_CR52 publication-title: Adv Eng Inform doi: 10.1016/j.aei.2019.02.009 – ident: 10183_CR35 doi: 10.1145/3132847.3132877 – ident: 10183_CR8 doi: 10.1007/978-3-030-51310-8_17 – volume: 113 start-page: 554 issue: 3 year: 2016 ident: 10183_CR10 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1517441113 – volume: 497 start-page: 38 year: 2019 ident: 10183_CR4 publication-title: Inform Sci doi: 10.1016/j.ins.2019.05.035 – volume: 20 start-page: 515 issue: 3 year: 2018 ident: 10183_CR33 publication-title: Information Systems Frontiers doi: 10.1007/s10796-017-9805-8 – ident: 10183_CR27 doi: 10.1109/ICSIPA.2011.6144164 – ident: 10183_CR36 doi: 10.1109/ASRU.2011.6163899 – volume: 10 start-page: 74 issue: 1 year: 1991 ident: 10183_CR24 publication-title: IEEE Trans Comput-Aided Design Integr Circuits Syst doi: 10.1109/43.62793 – ident: 10183_CR38 doi: 10.1145/3292500.3330935 – volume: 61 start-page: 32 year: 2020 ident: 10183_CR19 publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2019.12.005 – ident: 10183_CR13 doi: 10.18653/v1/W18-5510 – volume: 11 start-page: 1 issue: 4 year: 2017 ident: 10183_CR46 publication-title: ACM Trans Knowl Discov Data (TKDD) doi: 10.1145/3070644 – volume: 47 start-page: 175 year: 2018 ident: 10183_CR6 publication-title: Comput Speech Lang doi: 10.1016/j.csl.2017.07.009 |
SSID | ssj0016524 |
Score | 2.672433 |
Snippet | In the modern era of computing, the news ecosystem has transformed from old traditional print media to social media outlets. Social media platforms allow us to... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11765 |
SubjectTerms | Artificial neural networks Classification Coders Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Digital media Machine learning Model accuracy Model testing Multimedia Information Systems Neural networks News Sentences Social networks Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcQXNgBGNtYgaEgcdsi9SMfLTeYeEKTtsPEm7hVaepuiKkgePz_2HlpH29sk-ipapx-xEltx_bPAEfem5bksJGNzb1UzrTSVeikRuuQGnwX8ta-fjPnU_XlUl_GpLD7Idp9cEmGP_Ui2S3jVBI2dxhlqpD0413TbLvTLJ7mJ6PvwOhYyrZMJcnDLKbK_P0ey-LomY75PFTyD39pEEOTLdiI-qM4mTP8Naxgvw2bQ20GEZfqNrx6AjT4Bn5M3DWenn2_OBZ8JliXFi3OQhxWL656Md87FyGRRPDmrHCCO0gWcy3R4q2IFSZ-igGI_C1MJ2cXn89lrKggvbJqJtusaTpNFlanGouuUsbpvCt1WznvbUGHa6zOMEVMtW_y1GcaW21tU9BFZ4t3sNrf9PgeRFdUXed8qdBZ1TJqWoEaDQ0wllhWJoFsGNjaR7hxrnrxu14AJTMzamJGHZhR5wl8HPvczsE2_ku9P_CrjgvvviZ1jRHqTFomcDg205JhP4jr8eaBaBSZFIZMM6LZmbN3fFzBibakJCZglxg_EjAc93JLf_UrwHJbW5akfybwaZgii9f691fsvox8D9ZzjqoJUXD7sDq7e8APpBbNmoOwCh4B3MMCNA priority: 102 providerName: Springer Nature |
Title | FakeBERT: Fake news detection in social media with a BERT-based deep learning approach |
URI | https://link.springer.com/article/10.1007/s11042-020-10183-2 https://www.ncbi.nlm.nih.gov/pubmed/33432264 https://www.proquest.com/docview/2513419608 https://www.proquest.com/docview/2477265508 https://pubmed.ncbi.nlm.nih.gov/PMC7788551 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9QUe-BgwAqMyEm9g0Xw4dnhBLWo2gajQtKLxFDnOBSZQWlj3_3OXOCllYnlJFJ-V2Gf77uy73wG8dC6tSA6nstSRk4lNK2kztFKhtkgFrm7j1j4t0pNl8uFcnfsNt0vvVtmvie1CXa0c75G_ITnM0GPpxLxb_5KcNYpPV30KjT0Y0RJsyPgazeaLz6fDOUKqfFpbM5EkG0MfNtMFz4UcmsLmE6NWxTLaFU3X9M3rbpP_nJ22Iim_D3e9LimmHfMfwC1sDuBen6dB-Gl7AHf-Ah18CF9y-wNn89Ozt4KfBOvVosJN65PViItGdPvoog0qEbxRK6zgCpJFXkW0uBY-28Q30YOSP4JlPj97fyJ9dgXpEp1sZBWWZa3I2qqTUqPNktSqqDaqyqxzOqbLllqFOEGcKFdGExcqrJTWZUwvrY4fw36zavAJiDrO6to6k6DVScUIajEqTKmD0aDJ0gDCvmML56HHOQPGz2ILmszMKIgZRcuMIgrg1VBn3QFv3Eh91POr8JPwstgOmQBeDMU0ffhMxDa4uiKahMyLlMw0ojns2Dt8LuagW1IYA9A7jB8IGJp7t6S5-N5CdGttDOmiAbzuh8j2t_7fiqc3t-IZ3I7Yo6b1gDuC_c3vK3xOKtGmHMOeyY_HMJrms9mC78dfP87HfjZQ6TKa_gHD3Quw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9RADLZKeYA-cBQogQKDBE8wIsccCRJCHF229HhAW9S3MJk4UIGyC90K8af4jdi5lqWib81TlHGu8Xhsz9ifAR55b0rSw0YWNvZSOVNKl6GTGq1DavBVk7e2t2_GB-r9oT5cgd99LgyHVfZzYjNRl1PPa-TPSA8z9JgJ05ez75KrRvHual9Cox0WO_jrJ7lsxy-23xJ_H8fxaGvyZiy7qgLSK6vmsoyKotLkZVSqsOgyZZyOq1SXmfPeJnS4wuoIQ8RQ-yIOfaSx1NYWCV10NqHnXoCLKkkylqh09G7YtTC6K6KbhpI0cdQl6bSpehEnwrCzxhhZiYyXFeEp6_Z0kOY_O7WNAhxdgyud5SpetUPtOqxgvQ5X-6oQopsk1mHtL4jDG_Bx5L7i660Pk-eCzwRb8aLEeRMBVoujWrSr9qJJYRG8LCyc4BskK9iSaHEmutoWn0UPgX4TDs6l12_Baj2t8TaIKsmqyvlUobOqZLy2BDUa6mBMMc1MAFHfsbnvgM653sa3fAHRzMzIiRl5w4w8DuDJcM-shfk4k3qz51feifxxvhigATwcmklYeQfG1Tg9IRpFzowhp5BoNlr2Dq9LOMWXzNMA7BLjBwIGAl9uqY--NIDg1qYpWb4BPO2HyOKz_v8Xd87-iwdwaTzZ2813t_d37sLlmGN5mti7TVid_zjBe2SMzYv7jQQI-HTeIvcHZItDMQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTULwwMf4KgwIEjxBtH4laZEQYuxOG4PTNG1obyVNXZhAvYPdhPjX-Ouw2_SOY2Jv61PVOG0TJ7Gd2D8DPHVOVySHtSxN7GRqdSVtjlYqNBapwNVt3NqHsd4-TN8dqaMV-N3HwrBbZb8mtgt1NXG8R75Bcpihx3SYbdTeLWJva_R6-l1yBik-ae3TaXRDZBd__STz7eTVzhbx-lkcj4YHb7elzzAgXWrSmayisqwVWRx1Whq0eaqtiutMVbl1ziR02dKoCEPEULkyDl2ksFLGlAk9tCah916CVUNWUTiA1c3heG9_foahlU-pm4WS5HLkQ3a6wL2Iw2LYdGPErETGy2LxjK571mXzn3PbVhyObsA1r8eKN93Auwkr2KzB9T5HhPBLxhpc_Qvw8BZ8HNmvuDncP3gp-E6wTi8qnLX-YI04bkS3hy_agBbBm8TCCq4gWdxWRItT4TNdfBY9IPptOLyQfr8Dg2bS4D0QdZLXtXVZitakFaO3JahQUwdjhlmuA4j6ji2chz3n7BvfigVgMzOjIGYULTOKOIDn8zrTDvTjXOr1nl-FXwBOisVwDeDJvJimLp_H2AYnp0STkmmjyUQkmrsde-efSzjgl5TVAMwS4-cEDAu-XNIcf2nhwY3JMtKDA3jRD5HFb_2_FffPb8VjuEzTrXi_M959AFdiduxpHfHWYTD7cYoPSTOblY_8FBDw6aJn3R8MkUjD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FakeBERT%3A+Fake+news+detection+in+social+media+with+a+BERT-based+deep+learning+approach&rft.jtitle=Multimedia+tools+and+applications&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=8&rft.spage=11765&rft.epage=11788&rft_id=info:doi/10.1007%2Fs11042-020-10183-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |