Automatic Detection of Welding Defects using Deep Neural Network

In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray imag...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Conference series Vol. 933; no. 1; pp. 12006 - 12015
Main Authors Hou, Wenhui, Wei, Ye, Guo, Jie, Jin, Yi, Zhu, Chang'an
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 03.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality.
AbstractList In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality.
Author Wei, Ye
Zhu, Chang'an
Hou, Wenhui
Guo, Jie
Jin, Yi
Author_xml – sequence: 1
  givenname: Wenhui
  surname: Hou
  fullname: Hou, Wenhui
  email: hwh303@mail.ustc.edu.cn
  organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China
– sequence: 2
  givenname: Ye
  surname: Wei
  fullname: Wei, Ye
  organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China
– sequence: 3
  givenname: Jie
  surname: Guo
  fullname: Guo, Jie
  organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China
– sequence: 4
  givenname: Yi
  surname: Jin
  fullname: Jin, Yi
  email: jinyi08@ustc.edu.cn
  organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China
– sequence: 5
  givenname: Chang'an
  surname: Zhu
  fullname: Zhu, Chang'an
  organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China
BookMark eNqFkFtLwzAYhoNMcJv-BSl45UVtTm1a8MIxzwwVVLwMWZpIZ9fUJEX896ZUJoqw3HzJl_fJ4ZmAUWMaBcAhgicI5nmCGMVxlhZZUhCSoAQiDGG2A8abjdFmnud7YOLcCkISBhuDs1nnzVr4SkbnyivpK9NERkcvqi6r5jU0dWi6qHPDSrXRneqsqEPxH8a-7YNdLWqnDr7rFDxfXjzNr-PF_dXNfLaIJWXUx7JcCiIIFDClWpaEKsLwEuESYioRKnWuJFNFmsGM4oxIVWJFJdRCE51LxsgUHA3ntta8d8p5vjKdbcKVHKcMFZDmRRZSp0NKWuOcVZrLyov-U96KquYI8t4Z73XwXg0Pzjjig7OAZ3_w1lZrYT-3g3gAK9P-PGwrdPwPdPswf_yV422pyRd3AY0Y
CitedBy_id crossref_primary_10_3390_jmmp7040123
crossref_primary_10_1007_s10845_020_01581_2
crossref_primary_10_1155_2022_4637939
crossref_primary_10_1109_ACCESS_2022_3193676
crossref_primary_10_1007_s12008_023_01327_3
crossref_primary_10_1109_TII_2019_2937563
crossref_primary_10_1007_s10845_021_01892_y
crossref_primary_10_3390_app9163312
crossref_primary_10_1007_s00170_022_10719_w
crossref_primary_10_1109_TIM_2021_3099566
crossref_primary_10_32604_cmes_2022_020811
crossref_primary_10_3390_electronics13183693
crossref_primary_10_1016_j_compstruct_2021_115136
crossref_primary_10_3390_mca30020024
crossref_primary_10_1111_jfpe_14034
crossref_primary_10_3390_met12111963
crossref_primary_10_1016_j_jmapro_2023_05_058
crossref_primary_10_3390_met11020290
crossref_primary_10_1109_ACCESS_2023_3268525
crossref_primary_10_1140_epjp_s13360_021_01733_0
crossref_primary_10_1038_s41529_018_0058_x
crossref_primary_10_3390_met12122009
crossref_primary_10_1007_s10921_020_00719_9
crossref_primary_10_3390_coatings13071140
crossref_primary_10_1016_j_ndteint_2024_103305
crossref_primary_10_1016_j_procir_2021_11_021
crossref_primary_10_1016_j_ijmecsci_2025_110170
crossref_primary_10_1038_s41598_025_89558_0
crossref_primary_10_1049_iet_ipr_2018_5840
crossref_primary_10_1007_s10921_021_00801_w
crossref_primary_10_1109_ACCESS_2023_3234187
crossref_primary_10_2207_jjws_90_551
crossref_primary_10_1016_j_measurement_2021_110569
crossref_primary_10_1016_j_jmapro_2024_01_041
crossref_primary_10_1088_2631_8695_acdf3f
crossref_primary_10_1177_13621718241295855
crossref_primary_10_1016_j_ymssp_2022_109508
crossref_primary_10_1155_2020_1574350
crossref_primary_10_1016_j_aej_2021_02_052
crossref_primary_10_3390_batteries8030021
crossref_primary_10_1007_s42979_024_03356_5
crossref_primary_10_18698_0236_3933_2021_2_23_36
crossref_primary_10_1007_s00170_020_06467_4
crossref_primary_10_1007_s00170_024_13800_8
crossref_primary_10_1109_ACCESS_2019_2927258
Cites_doi 10.1784/insi.45.10.676.52952
10.1016/j.ndteint.2009.02.004
10.1016/S0963-8695(02)00025-7
10.1038/nature14539
10.1016/j.ndteint.2009.11.002
10.1016/j.engappai.2016.01.032
10.1109/TSMC.1979.4310076
10.1007/s10921-015-0315-7
10.1016/j.patcog.2017.03.033
10.1016/j.ndteint.2003.12.004
10.1016/j.eswa.2010.04.082
10.1109/TNNLS.2015.2479223
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/933/1/012006
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Automatic Detection of Welding Defects using Deep Neural Network
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_933_1_012006
JPCS_933_1_012006
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
AALHV
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EJD
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c474t-cdba3a30a054fcd34e372b12d024c11df8ec7e956064263ced2e4c0faf3f8c773
IEDL.DBID IOP
ISSN 1742-6588
IngestDate Mon Jul 14 07:33:12 EDT 2025
Tue Jul 01 02:16:11 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Thu Jan 07 13:52:03 EST 2021
Wed Aug 21 03:33:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
http://iopscience.iop.org/info/page/text-and-data-mining
http://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-cdba3a30a054fcd34e372b12d024c11df8ec7e956064263ced2e4c0faf3f8c773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/933/1/012006
PQID 2571904896
PQPubID 4998668
PageCount 10
ParticipantIDs iop_journals_10_1088_1742_6596_933_1_012006
crossref_primary_10_1088_1742_6596_933_1_012006
crossref_citationtrail_10_1088_1742_6596_933_1_012006
proquest_journals_2571904896
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-03
PublicationDateYYYYMMDD 2018-01-03
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-03
  day: 03
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
12
13
14
15
Carrasco M A (9) 2004; 62
1
2
3
4
5
6
7
8
10
References_xml – ident: 2
  doi: 10.1784/insi.45.10.676.52952
– ident: 1
  doi: 10.1016/j.ndteint.2009.02.004
– ident: 6
  doi: 10.1016/S0963-8695(02)00025-7
– ident: 10
  doi: 10.1038/nature14539
– ident: 5
– ident: 4
– ident: 7
  doi: 10.1016/j.ndteint.2009.11.002
– ident: 13
  doi: 10.1016/j.engappai.2016.01.032
– volume: 62
  start-page: 1142
  issn: 0025-5327
  year: 2004
  ident: 9
  publication-title: Materials Evaluation
– ident: 15
  doi: 10.1109/TSMC.1979.4310076
– ident: 14
  doi: 10.1007/s10921-015-0315-7
– ident: 11
  doi: 10.1016/j.patcog.2017.03.033
– ident: 3
  doi: 10.1016/j.ndteint.2003.12.004
– ident: 8
  doi: 10.1016/j.eswa.2010.04.082
– ident: 12
  doi: 10.1109/TNNLS.2015.2479223
SSID ssj0033337
Score 2.4565413
Snippet In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12006
SubjectTerms Artificial neural networks
Automatic welding
Image classification
Neural networks
Physics
Weld defects
Welded joints
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA-6IfgifuL8oohvUro2aZo96ZyOMXCIOtxbyFdBkLW67v_3kqbqELRvTS-l_C69u-S-ELqQPdUzOmEhBYaHJE1xKKgNAqAsFVLjLElt7vD9hI6mZDxLZ_7AbeHDKhuZ6AS1LpQ9I49gaYHuIqxHr8r30HaNst5V30JjHbVBBDPWQu2bu8nDYyOLMVxZnRKZwNcw1uQIw7bPj_VoBHv6KI5sFqnte_RDPa2_FuUvGe0Uz3AbbXmLMejXLN5Ba2a-izZc5KZa7KHr_rIqXN3V4NZULrBqHhR58GKcWwkGXcBGYAPc7Z0pA1uQA944qSPA99F0ePc8GIW-LUKoSEaqUGkpsMBdAdZWrjQmBhCVcaJB3ao41jkzKjN230NtNXYFrDBEdXOR45ypLMMHqDUv5uYQBYnCGCSlTKy3VEkhiSAqizU1ucKS0g5KGzS48jXDbeuKN-5814xxiyK3KHJAkce8RrGDoq95ZV01498ZlwA29z_Q4l_q8xXq8cPgaYWAlzrvoJOGc9-U38vo6O_Hx2gTbCPmTlvwCWpVH0tzCvZHJc_8IvsEDmLQTQ
  priority: 102
  providerName: ProQuest
Title Automatic Detection of Welding Defects using Deep Neural Network
URI https://iopscience.iop.org/article/10.1088/1742-6596/933/1/012006
https://www.proquest.com/docview/2571904896
Volume 933
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT4MwEL_ojIkvfhuncyHGN8MQWkp5c06nMXFb_Ii-NbSUF81YHHvxr_daQDONMUYeCJC7Uu7g7kp_dwU4krGKdRpwl6HCXRqGxE2YAQEwHiYyJVEQmtzhmwG7eqDXT2GNJrS5MPmkMv0dPCwLBZcirABx3MMYOsCmY-bhYNzzPZP-aYpuLxGO7tPk8A1HtTEmuEVlTqTh4bxOEv6xnTn_tIh9-Gakrefpr4Gs-1wCTp47s0J21NuXco7_eqh1WK3iUqdbMmzAgh5vwrLFh6rpFpx2Z0Vuq7s657qw8K2xk2fOo7aTV3jRwkIcA6M3Z3rimLIf2OKgxJlvw0P_4r535VaLL7iKRrRwVSoTkpCTBGO6TKWEatSb9IMUnbry_TTjWkXajK6YqfmuUOGaqpMsyUjGVRSRHWiM87HeBSdQhKA9loGZk1UykTShKvJTpjNFJGNNCGuRC1VVJjcLZLwIO0POuTDSEUY6AqUjfFFKpwneB9-krM3xK8cxKkBUn-n0V-rDOerrUe9ujkBM0qwJrfr1-KREO4iBFuUx2_vTHfdhBQMybn_xkBY0iteZPsCgp5BtWOT9yzYsnV0MRrdt-5Ljfkge3wE9_vH5
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcARbVXCp-gCxLaURak8oCokdxzlUFEGX5bWqBAhuJn5EQqo2aTcI8VP9RmacpIAqlRO5xRlb9ngyM_a8AD7r3OTOJjIUuOEhT1MWFoKcAIRMC21ZlqQUO3w8EeMzfnCRXszBnz4Whtwqe57oGbWtDN2RR0haKLu4zMVW_SukqlFkXe1LaLRkcehub_DINvu6v4v7-yVJRt9Pd8ZhV1UgNDzjTWisLljBNgtUVkpjGXc4IR0nFqWViWNbSmcyR8cGQcnMDa7EcbNZFiUrpckyhuPOwwvOUJJTZPpor-f8DJ-sDcBMcO1S9hHJeMjs2nIR5YxFcUQxq1Rl6YEwnL-q6n8kghdzo9fwqtNPg-2WoN7AnJu-hZfeT9TM3sG37eum8lleg13XeDeuaVCVwbnzRixs9O4hAbnT05urA0r_gSNOWn_zJTh7FnQtw2BaTd0KBIlhDPmyTsg2a3ShecFNFlvhSsO0EENIe2wo02Uop0IZP5W3lEupCIuKsKgQiypWLRaHEP3tV7c5Op7ssYHIVt3vOnsSev0R9MGPnZNHAKq25RBW-527h7wn2vf___wJFsanx0fqaH9y-AEWUSuT_p6HrcKg-X3tPqLm0-g1T24BXD43fd8BDXcM9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD7oRPFFvOJ0ahF9ktq1SdPsQXA4x-ZlCjr0LTZp-iTbcB3iD_P_eZJ2yhAZPqxPbTlJky-Xc9J85wTgSNZUTScBdxk2uEvDkLgxMyQAxsNYJiQKQuM7fNthrS69eg6f5-Dz2xemPyim_lO8zQMF5xAWhDjuoQ0dYNY15uFi3PM94_5ZZd4gSQtu5bX-eMeV2_Cs3cBmPg6C5uXjRcstDhdwFY1o5qpExiQm1RhtllQlhGosl_SDBJWW8v0k5VpF2qwemIlprrBCmqpqGqck5SqKCOY7DwshQQWHw-iOPI0VAMEryv0wTTk5Hzsm_1n2CZ04j_X-pRistmuuwkphpjr1HJQ1mNO9dVi0dFE13IDz-ijr22CvTkNnls3Vc_qp86TtXha-tCwRx7DqzZMeOCYKCObYyWnnm9CdCVxbUOr1e3obnEARgtOzDMwWrZKxpDFVkZ8wnSoiGStDOEZDqCJQuTkv41XYDXPOhUFRGBQFoih8kaNYBu873SAP1TE1xQmCLYpRO5wqfTghfXV_8TAhILALlqEybrkfSZwW0e6ivMZ2_vXFA1i6bzTFTbtzvQvLaKpx-_OHVKCUvY30HppDmdy3nc-Bl1n39i9uxg3a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Detection+of+Welding+Defects+using+Deep+Neural+Network&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Hou%2C+Wenhui&rft.au=Wei%2C+Ye&rft.au=Guo%2C+Jie&rft.au=Jin%2C+Yi&rft.date=2018-01-03&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=933&rft.spage=12006&rft_id=info:doi/10.1088%2F1742-6596%2F933%2F1%2F012006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_933_1_012006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon