Automatic Detection of Welding Defects using Deep Neural Network
In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray imag...
Saved in:
Published in | Journal of physics. Conference series Vol. 933; no. 1; pp. 12006 - 12015 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
03.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality. |
---|---|
AbstractList | In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the image is implemented to locate the weld region; Then a classification model which is trained and tested by the patches cropped from x-ray images is constructed based on deep neural network. And this model can learn the intrinsic feature of images without extra calculation; Finally, the sliding-window approach is utilized to detect the whole images based on the trained model. In order to evaluate the performance of the model, we carry out several experiments. The results demonstrate that the classification model we proposed is effective in the detection of welded joints quality. |
Author | Wei, Ye Zhu, Chang'an Hou, Wenhui Guo, Jie Jin, Yi |
Author_xml | – sequence: 1 givenname: Wenhui surname: Hou fullname: Hou, Wenhui email: hwh303@mail.ustc.edu.cn organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China – sequence: 2 givenname: Ye surname: Wei fullname: Wei, Ye organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China – sequence: 3 givenname: Jie surname: Guo fullname: Guo, Jie organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China – sequence: 4 givenname: Yi surname: Jin fullname: Jin, Yi email: jinyi08@ustc.edu.cn organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China – sequence: 5 givenname: Chang'an surname: Zhu fullname: Zhu, Chang'an organization: School of Engineering Science, University of Science and Technology of China , People"s Republic of China |
BookMark | eNqFkFtLwzAYhoNMcJv-BSl45UVtTm1a8MIxzwwVVLwMWZpIZ9fUJEX896ZUJoqw3HzJl_fJ4ZmAUWMaBcAhgicI5nmCGMVxlhZZUhCSoAQiDGG2A8abjdFmnud7YOLcCkISBhuDs1nnzVr4SkbnyivpK9NERkcvqi6r5jU0dWi6qHPDSrXRneqsqEPxH8a-7YNdLWqnDr7rFDxfXjzNr-PF_dXNfLaIJWXUx7JcCiIIFDClWpaEKsLwEuESYioRKnWuJFNFmsGM4oxIVWJFJdRCE51LxsgUHA3ntta8d8p5vjKdbcKVHKcMFZDmRRZSp0NKWuOcVZrLyov-U96KquYI8t4Z73XwXg0Pzjjig7OAZ3_w1lZrYT-3g3gAK9P-PGwrdPwPdPswf_yV422pyRd3AY0Y |
CitedBy_id | crossref_primary_10_3390_jmmp7040123 crossref_primary_10_1007_s10845_020_01581_2 crossref_primary_10_1155_2022_4637939 crossref_primary_10_1109_ACCESS_2022_3193676 crossref_primary_10_1007_s12008_023_01327_3 crossref_primary_10_1109_TII_2019_2937563 crossref_primary_10_1007_s10845_021_01892_y crossref_primary_10_3390_app9163312 crossref_primary_10_1007_s00170_022_10719_w crossref_primary_10_1109_TIM_2021_3099566 crossref_primary_10_32604_cmes_2022_020811 crossref_primary_10_3390_electronics13183693 crossref_primary_10_1016_j_compstruct_2021_115136 crossref_primary_10_3390_mca30020024 crossref_primary_10_1111_jfpe_14034 crossref_primary_10_3390_met12111963 crossref_primary_10_1016_j_jmapro_2023_05_058 crossref_primary_10_3390_met11020290 crossref_primary_10_1109_ACCESS_2023_3268525 crossref_primary_10_1140_epjp_s13360_021_01733_0 crossref_primary_10_1038_s41529_018_0058_x crossref_primary_10_3390_met12122009 crossref_primary_10_1007_s10921_020_00719_9 crossref_primary_10_3390_coatings13071140 crossref_primary_10_1016_j_ndteint_2024_103305 crossref_primary_10_1016_j_procir_2021_11_021 crossref_primary_10_1016_j_ijmecsci_2025_110170 crossref_primary_10_1038_s41598_025_89558_0 crossref_primary_10_1049_iet_ipr_2018_5840 crossref_primary_10_1007_s10921_021_00801_w crossref_primary_10_1109_ACCESS_2023_3234187 crossref_primary_10_2207_jjws_90_551 crossref_primary_10_1016_j_measurement_2021_110569 crossref_primary_10_1016_j_jmapro_2024_01_041 crossref_primary_10_1088_2631_8695_acdf3f crossref_primary_10_1177_13621718241295855 crossref_primary_10_1016_j_ymssp_2022_109508 crossref_primary_10_1155_2020_1574350 crossref_primary_10_1016_j_aej_2021_02_052 crossref_primary_10_3390_batteries8030021 crossref_primary_10_1007_s42979_024_03356_5 crossref_primary_10_18698_0236_3933_2021_2_23_36 crossref_primary_10_1007_s00170_020_06467_4 crossref_primary_10_1007_s00170_024_13800_8 crossref_primary_10_1109_ACCESS_2019_2927258 |
Cites_doi | 10.1784/insi.45.10.676.52952 10.1016/j.ndteint.2009.02.004 10.1016/S0963-8695(02)00025-7 10.1038/nature14539 10.1016/j.ndteint.2009.11.002 10.1016/j.engappai.2016.01.032 10.1109/TSMC.1979.4310076 10.1007/s10921-015-0315-7 10.1016/j.patcog.2017.03.033 10.1016/j.ndteint.2003.12.004 10.1016/j.eswa.2010.04.082 10.1109/TNNLS.2015.2479223 |
ContentType | Journal Article |
Copyright | Published under licence by IOP Publishing Ltd 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Published under licence by IOP Publishing Ltd – notice: 2018. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1088/1742-6596/933/1/012006 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Journals Open Access url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Automatic Detection of Welding Defects using Deep Neural Network |
EISSN | 1742-6596 |
ExternalDocumentID | 10_1088_1742_6596_933_1_012006 JPCS_933_1_012006 |
GroupedDBID | 1JI 29L 2WC 4.4 5B3 5GY 5PX 5VS 7.Q AAJIO AAJKP AALHV ABHWH ACAFW ACHIP AEFHF AEJGL AFKRA AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EJD EQZZN F5P FRP GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XSB ~02 AAYXX CITATION OVT PHGZM PHGZT 8FD 8FE 8FG ABUWG AZQEC DWQXO H8D L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c474t-cdba3a30a054fcd34e372b12d024c11df8ec7e956064263ced2e4c0faf3f8c773 |
IEDL.DBID | IOP |
ISSN | 1742-6588 |
IngestDate | Mon Jul 14 07:33:12 EDT 2025 Tue Jul 01 02:16:11 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Thu Jan 07 13:52:03 EST 2021 Wed Aug 21 03:33:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. http://iopscience.iop.org/info/page/text-and-data-mining http://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-cdba3a30a054fcd34e372b12d024c11df8ec7e956064263ced2e4c0faf3f8c773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1742-6596/933/1/012006 |
PQID | 2571904896 |
PQPubID | 4998668 |
PageCount | 10 |
ParticipantIDs | iop_journals_10_1088_1742_6596_933_1_012006 crossref_primary_10_1088_1742_6596_933_1_012006 crossref_citationtrail_10_1088_1742_6596_933_1_012006 proquest_journals_2571904896 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-03 |
PublicationDateYYYYMMDD | 2018-01-03 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Journal of physics. Conference series |
PublicationTitleAlternate | J. Phys.: Conf. Ser |
PublicationYear | 2018 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 11 12 13 14 15 Carrasco M A (9) 2004; 62 1 2 3 4 5 6 7 8 10 |
References_xml | – ident: 2 doi: 10.1784/insi.45.10.676.52952 – ident: 1 doi: 10.1016/j.ndteint.2009.02.004 – ident: 6 doi: 10.1016/S0963-8695(02)00025-7 – ident: 10 doi: 10.1038/nature14539 – ident: 5 – ident: 4 – ident: 7 doi: 10.1016/j.ndteint.2009.11.002 – ident: 13 doi: 10.1016/j.engappai.2016.01.032 – volume: 62 start-page: 1142 issn: 0025-5327 year: 2004 ident: 9 publication-title: Materials Evaluation – ident: 15 doi: 10.1109/TSMC.1979.4310076 – ident: 14 doi: 10.1007/s10921-015-0315-7 – ident: 11 doi: 10.1016/j.patcog.2017.03.033 – ident: 3 doi: 10.1016/j.ndteint.2003.12.004 – ident: 8 doi: 10.1016/j.eswa.2010.04.082 – ident: 12 doi: 10.1109/TNNLS.2015.2479223 |
SSID | ssj0033337 |
Score | 2.4565413 |
Snippet | In this paper, we propose an automatic detection schema including three stages for weld defects in x-ray images. Firstly, the preprocessing procedure for the... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12006 |
SubjectTerms | Artificial neural networks Automatic welding Image classification Neural networks Physics Weld defects Welded joints |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA-6IfgifuL8oohvUro2aZo96ZyOMXCIOtxbyFdBkLW67v_3kqbqELRvTS-l_C69u-S-ELqQPdUzOmEhBYaHJE1xKKgNAqAsFVLjLElt7vD9hI6mZDxLZ_7AbeHDKhuZ6AS1LpQ9I49gaYHuIqxHr8r30HaNst5V30JjHbVBBDPWQu2bu8nDYyOLMVxZnRKZwNcw1uQIw7bPj_VoBHv6KI5sFqnte_RDPa2_FuUvGe0Uz3AbbXmLMejXLN5Ba2a-izZc5KZa7KHr_rIqXN3V4NZULrBqHhR58GKcWwkGXcBGYAPc7Z0pA1uQA944qSPA99F0ePc8GIW-LUKoSEaqUGkpsMBdAdZWrjQmBhCVcaJB3ao41jkzKjN230NtNXYFrDBEdXOR45ypLMMHqDUv5uYQBYnCGCSlTKy3VEkhiSAqizU1ucKS0g5KGzS48jXDbeuKN-5814xxiyK3KHJAkce8RrGDoq95ZV01498ZlwA29z_Q4l_q8xXq8cPgaYWAlzrvoJOGc9-U38vo6O_Hx2gTbCPmTlvwCWpVH0tzCvZHJc_8IvsEDmLQTQ priority: 102 providerName: ProQuest |
Title | Automatic Detection of Welding Defects using Deep Neural Network |
URI | https://iopscience.iop.org/article/10.1088/1742-6596/933/1/012006 https://www.proquest.com/docview/2571904896 |
Volume | 933 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT4MwEL_ojIkvfhuncyHGN8MQWkp5c06nMXFb_Ii-NbSUF81YHHvxr_daQDONMUYeCJC7Uu7g7kp_dwU4krGKdRpwl6HCXRqGxE2YAQEwHiYyJVEQmtzhmwG7eqDXT2GNJrS5MPmkMv0dPCwLBZcirABx3MMYOsCmY-bhYNzzPZP-aYpuLxGO7tPk8A1HtTEmuEVlTqTh4bxOEv6xnTn_tIh9-Gakrefpr4Gs-1wCTp47s0J21NuXco7_eqh1WK3iUqdbMmzAgh5vwrLFh6rpFpx2Z0Vuq7s657qw8K2xk2fOo7aTV3jRwkIcA6M3Z3rimLIf2OKgxJlvw0P_4r535VaLL7iKRrRwVSoTkpCTBGO6TKWEatSb9IMUnbry_TTjWkXajK6YqfmuUOGaqpMsyUjGVRSRHWiM87HeBSdQhKA9loGZk1UykTShKvJTpjNFJGNNCGuRC1VVJjcLZLwIO0POuTDSEUY6AqUjfFFKpwneB9-krM3xK8cxKkBUn-n0V-rDOerrUe9ujkBM0qwJrfr1-KREO4iBFuUx2_vTHfdhBQMybn_xkBY0iteZPsCgp5BtWOT9yzYsnV0MRrdt-5Ljfkge3wE9_vH5 |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LTtwwcARbVXCp-gCxLaURak8oCokdxzlUFEGX5bWqBAhuJn5EQqo2aTcI8VP9RmacpIAqlRO5xRlb9ngyM_a8AD7r3OTOJjIUuOEhT1MWFoKcAIRMC21ZlqQUO3w8EeMzfnCRXszBnz4Whtwqe57oGbWtDN2RR0haKLu4zMVW_SukqlFkXe1LaLRkcehub_DINvu6v4v7-yVJRt9Pd8ZhV1UgNDzjTWisLljBNgtUVkpjGXc4IR0nFqWViWNbSmcyR8cGQcnMDa7EcbNZFiUrpckyhuPOwwvOUJJTZPpor-f8DJ-sDcBMcO1S9hHJeMjs2nIR5YxFcUQxq1Rl6YEwnL-q6n8kghdzo9fwqtNPg-2WoN7AnJu-hZfeT9TM3sG37eum8lleg13XeDeuaVCVwbnzRixs9O4hAbnT05urA0r_gSNOWn_zJTh7FnQtw2BaTd0KBIlhDPmyTsg2a3ShecFNFlvhSsO0EENIe2wo02Uop0IZP5W3lEupCIuKsKgQiypWLRaHEP3tV7c5Op7ssYHIVt3vOnsSev0R9MGPnZNHAKq25RBW-527h7wn2vf___wJFsanx0fqaH9y-AEWUSuT_p6HrcKg-X3tPqLm0-g1T24BXD43fd8BDXcM9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFD7oRPFFvOJ0ahF9ktq1SdPsQXA4x-ZlCjr0LTZp-iTbcB3iD_P_eZJ2yhAZPqxPbTlJky-Xc9J85wTgSNZUTScBdxk2uEvDkLgxMyQAxsNYJiQKQuM7fNthrS69eg6f5-Dz2xemPyim_lO8zQMF5xAWhDjuoQ0dYNY15uFi3PM94_5ZZd4gSQtu5bX-eMeV2_Cs3cBmPg6C5uXjRcstDhdwFY1o5qpExiQm1RhtllQlhGosl_SDBJWW8v0k5VpF2qwemIlprrBCmqpqGqck5SqKCOY7DwshQQWHw-iOPI0VAMEryv0wTTk5Hzsm_1n2CZ04j_X-pRistmuuwkphpjr1HJQ1mNO9dVi0dFE13IDz-ijr22CvTkNnls3Vc_qp86TtXha-tCwRx7DqzZMeOCYKCObYyWnnm9CdCVxbUOr1e3obnEARgtOzDMwWrZKxpDFVkZ8wnSoiGStDOEZDqCJQuTkv41XYDXPOhUFRGBQFoih8kaNYBu873SAP1TE1xQmCLYpRO5wqfTghfXV_8TAhILALlqEybrkfSZwW0e6ivMZ2_vXFA1i6bzTFTbtzvQvLaKpx-_OHVKCUvY30HppDmdy3nc-Bl1n39i9uxg3a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Detection+of+Welding+Defects+using+Deep+Neural+Network&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Hou%2C+Wenhui&rft.au=Wei%2C+Ye&rft.au=Guo%2C+Jie&rft.au=Jin%2C+Yi&rft.date=2018-01-03&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=933&rft.spage=12006&rft_id=info:doi/10.1088%2F1742-6596%2F933%2F1%2F012006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1742_6596_933_1_012006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon |