Quasi-spectral characterization of intracellular regions in bright-field light microscopy images

Investigation of cell structure is hardly imaginable without bright-field microscopy. Numerous modifications such as depth-wise scanning or videoenhancement make this method being state-of-the-art. This raises a question what maximal information can be extracted from ordinary (but well acquired) bri...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 18346
Main Authors Lonhus, Kirill, Rychtáriková, Renata, Platonova, Ganna, Štys, Dalibor
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.10.2020
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-020-75441-7

Cover

Loading…
Abstract Investigation of cell structure is hardly imaginable without bright-field microscopy. Numerous modifications such as depth-wise scanning or videoenhancement make this method being state-of-the-art. This raises a question what maximal information can be extracted from ordinary (but well acquired) bright-field images in a model-free way. Here we introduce a method of a physically correct extraction of features for each pixel when these features resemble a transparency spectrum. The method is compatible with existent ordinary bright-field microscopes and requires mathematically sophisticated data processing. Unsupervised clustering of the spectra yields reasonable semantic segmentation of unstained living cells without any a priori information about their structures. Despite the lack of reference data (to prove strictly that the proposed feature vectors coincide with transparency), we believe that this method is the right approach to an intracellular (semi)quantitative and qualitative chemical analysis.
AbstractList Investigation of cell structure is hardly imaginable without bright-field microscopy. Numerous modifications such as depth-wise scanning or videoenhancement make this method being state-of-the-art. This raises a question what maximal information can be extracted from ordinary (but well acquired) bright-field images in a model-free way. Here we introduce a method of a physically correct extraction of features for each pixel when these features resemble a transparency spectrum. The method is compatible with existent ordinary bright-field microscopes and requires mathematically sophisticated data processing. Unsupervised clustering of the spectra yields reasonable semantic segmentation of unstained living cells without any a priori information about their structures. Despite the lack of reference data (to prove strictly that the proposed feature vectors coincide with transparency), we believe that this method is the right approach to an intracellular (semi)quantitative and qualitative chemical analysis.
Investigation of cell structure is hardly imaginable without bright-field microscopy. Numerous modifications such as depth-wise scanning or videoenhancement make this method being state-of-the-art. This raises a question what maximal information can be extracted from ordinary (but well acquired) bright-field images in a model-free way. Here we introduce a method of a physically correct extraction of features for each pixel when these features resemble a transparency spectrum. The method is compatible with existent ordinary bright-field microscopes and requires mathematically sophisticated data processing. Unsupervised clustering of the spectra yields reasonable semantic segmentation of unstained living cells without any a priori information about their structures. Despite the lack of reference data (to prove strictly that the proposed feature vectors coincide with transparency), we believe that this method is the right approach to an intracellular (semi)quantitative and qualitative chemical analysis.Investigation of cell structure is hardly imaginable without bright-field microscopy. Numerous modifications such as depth-wise scanning or videoenhancement make this method being state-of-the-art. This raises a question what maximal information can be extracted from ordinary (but well acquired) bright-field images in a model-free way. Here we introduce a method of a physically correct extraction of features for each pixel when these features resemble a transparency spectrum. The method is compatible with existent ordinary bright-field microscopes and requires mathematically sophisticated data processing. Unsupervised clustering of the spectra yields reasonable semantic segmentation of unstained living cells without any a priori information about their structures. Despite the lack of reference data (to prove strictly that the proposed feature vectors coincide with transparency), we believe that this method is the right approach to an intracellular (semi)quantitative and qualitative chemical analysis.
ArticleNumber 18346
Author Lonhus, Kirill
Rychtáriková, Renata
Platonova, Ganna
Štys, Dalibor
Author_xml – sequence: 1
  givenname: Kirill
  surname: Lonhus
  fullname: Lonhus, Kirill
  email: lonhus@frov.jcu.cz
  organization: University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Kompetenzzentrum MechanoBiologie in Regenerativer Medizin, Institute of Complex Systems
– sequence: 2
  givenname: Renata
  surname: Rychtáriková
  fullname: Rychtáriková, Renata
  organization: University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Kompetenzzentrum MechanoBiologie in Regenerativer Medizin, Institute of Complex Systems
– sequence: 3
  givenname: Ganna
  surname: Platonova
  fullname: Platonova, Ganna
  organization: University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Kompetenzzentrum MechanoBiologie in Regenerativer Medizin, Institute of Complex Systems
– sequence: 4
  givenname: Dalibor
  surname: Štys
  fullname: Štys, Dalibor
  organization: University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Kompetenzzentrum MechanoBiologie in Regenerativer Medizin, Institute of Complex Systems
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33110166$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1TAQtFARLaV_gAOKxIWLwZ9xckFCFV9SpaoSnI2z2eS58osfdoJUfj1OX1vaHuqLrd2Z8ezOS3IwxQkJec3Ze85k8yErrtuGMsGo0Upxap6RI8GUpkIKcXDvfUhOcr5k5WjRKt6-IIdScs54XR-RXxeLy57mHcKcXKhg45KDGZP_62YfpyoOlZ9KCzCEJbhUJRxLPZdq1SU_bmY6eAx9FdZ3tfWQYoa4u6r81o2YX5HngwsZT27uY_Lzy-cfp9_o2fnX76efzigoo2YKgM6YWkFX6xZA9G2DvIe-YcDaptdKdLwRfJBaq47VLaJjpgPZFtCgBpDH5ONed7d0W-wBV9PB7lKxka5sdN4-7Ex-Y8f4xxrdcm1kEXh3I5Di7wXzbLc-r1O7CeOSrVBacyOFaQr07SPoZVzSVMYrKMPLmmu-Cr657-jOyu3yC0DsAevKcsLhDsKZXUO2-5BtCdleh2xNITWPSODn66jKVD48TZV7ai7_TCOm_7afYP0DQeW9qg
CitedBy_id crossref_primary_10_1140_epjs_s11734_021_00084_2
crossref_primary_10_3390_photonics8080333
Cites_doi 10.1109/TPAMI.1986.4767851
10.1364/OE.24.009511
10.1038/136297b0
10.1063/1.4967274
10.1038/s41598-018-29647-5
10.1111/1467-8659.1450275
10.1038/nphoton.2012.361
10.5061/dryad.w0vt4b8p6
10.1364/OE.26.023366
10.1117/1.JBO.19.5.056006
10.1109/ISDA.2012.6416657
10.1111/1467-9868.00293
10.1109/ICCVW.2017.64
10.1016/j.ultramic.2017.03.018
10.2307/30037470
10.1109/ICACI.2016.7449821
10.1364/OE.26.026495
10.1038/44565
10.1002/cyto.a.20311
10.1080/14786440109462720
10.1162/106365601750190398
10.1007/978-3-319-24574-4_28
10.1364/OE.27.005393
10.1109/ICIP.2008.4711794
10.1038/srep24624
10.1364/JOSAA.3.001673
10.1046/j.1365-2818.1996.105385.x
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-020-75441-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Proquest Health and Medical Complete
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Proquest Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7591573
33110166
10_1038_s41598_020_75441_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Grant Agency of the University of South Bohemia
  grantid: 013/2019/Z
– fundername: European Regional Development Fund
  grantid: ATCZ215; ATCZ133
  funderid: http://dx.doi.org/10.13039/501100008530
– fundername: Ministry of Education, Youth and Sports of the Czech Republic
  grantid: CENAKVA (LM2018099)
– fundername: ;
  grantid: 013/2019/Z
– fundername: ;
  grantid: ATCZ215; ATCZ133
– fundername: ;
  grantid: CENAKVA (LM2018099)
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-ccea7764cb659cc2d98e1dcd80c098d542b1821f3554b069eea07bc391dcf4fc3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 14:07:36 EDT 2025
Thu Sep 04 20:41:28 EDT 2025
Wed Aug 13 05:15:09 EDT 2025
Mon Jul 21 05:51:47 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Tue Jul 01 02:46:43 EDT 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-ccea7764cb659cc2d98e1dcd80c098d542b1821f3554b069eea07bc391dcf4fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-020-75441-7
PMID 33110166
PQID 2471529613
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7591573
proquest_miscellaneous_2455173278
proquest_journals_2471529613
pubmed_primary_33110166
crossref_primary_10_1038_s41598_020_75441_7
crossref_citationtrail_10_1038_s41598_020_75441_7
springer_journals_10_1038_s41598_020_75441_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-27
PublicationDateYYYYMMDD 2020-10-27
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References LindnerMShotanZGariniYRapid microscopy measurement of very large spectral imagesOpt. Express20162495112016OExpr..24.9511L10.1364/OE.24.009511
ZhuSGaoLZhangYLinJJinPComplete plenoptic imaging using a single detectorOpt. Express201826264952018OExpr..2626495Z1:CAS:528:DC%2BC1cXisVKmtLbL10.1364/OE.26.026495
LugagneJ-BIdentification of individual cells from z-stacks of bright-field microscopy imagesSci. Rep.20188114552018NatSR...811455L10.1038/s41598-018-29647-5
WangYYangBFengSPessinoVHuangBMulticolor fluorescent imaging by space-constrained computational spectral imagingOpt. Express20192753932019OExpr..27.5393W1:CAS:528:DC%2BC1MXhs1KltLrM10.1364/OE.27.005393
MaloneyLTEvaluation of linear models of surface spectral reflectance with small numbers of parametersJ. Opt. Soc. Am. A1986316731986OSAJ....3.1673M1:STN:280:DyaL2s%2Fjs1SqtA%3D%3D10.1364/JOSAA.3.001673
Pech-Pacheco, J., Cristobal, G., Chamorro-Martinez, J. & Fernandez-Valdivia, J. Diatom autofocusing in brightfield microscopy: a comparative study. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000 (IEEE Comput. Soc., 2002).
DahlbergPDA simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interestRev. Sci. Instrum.2016871137042016RScI...87k3704D10.1063/1.4967274
Kuzmin, Y. P. Bresenham’s line generation algorithm with built-in clipping. Comput. Graph. Forum14, 275–280 (1995).
LeeDDSeungHSLearning the parts of objects by non-negative matrix factorizationNature19994017887911999Natur.401..788L1:CAS:528:DyaK1MXntFartrg%3D10.1038/44565
HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.200191591951:STN:280:DC%2BD3M3psVGrug%3D%3D10.1162/106365601750190398
StephensonWTechnique of factor analysisNature19351362971935Natur.136..297S10.1038/136297b0
TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJ. R. Stat. Soc. B200163411423184150310.1111/1467-9868.00293
Velleman, D. J. The generalized Simpson’s rule. Am. Math. Monthly112, 342 (2005).
HeistS5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured lightOpt. Express201826233662018OExpr..2623366H10.1364/OE.26.023366
Parmar, M., Lansel, S. & Wandell, B. A. Spatio-spectral reconstruction of the multispectral datacube using sparse recovery. In 2008 15th IEEE International Conference on Image Processing (IEEE, 2008).
HansenNLozanoJLarranagaPInzaIBengoetxeaEThe CMA evolution strategy: a comparing reviewTowards a New Evolutionary Computation2007Berlin HeidelbergSpringer75102
PearsonKOn lines and planes of closest fit to systems of points in spaceLond. Edinb. Dublin Philos. Mag. J. Sci.1901255957210.1080/14786440109462720
CannyJA computational approach to edge detectionIEEE Trans. Pattern Anal. Mach. Intell.1986PAMI–867969810.1109/TPAMI.1986.4767851
WuJSnapshot hyperspectral volumetric microscopySci. Rep.20166246242016NatSR...624624W1:CAS:528:DC%2BC28Xms12qtr4%3D10.1038/srep24624
Mekaroonkamon, T. & Wongsa, S. A comparative investigation of the robustness of unsupervised clustering techniques for rotating machine fault diagnosis with poorly-separated data. In 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI) (IEEE, 2016).
RonnebergerOFischerPBroxTNavabNHorneggerJWellsWMFrangiAFU-net: convolutional networks for biomedical image segmentationMedical Image Computing and Computer-Assisted Intervention: MICCAI 20152015ChamSpringer International Publishing23424110.1007/978-3-319-24574-4_28
Hair, J., Black, W., Babin, B. & Anderson, R. Multivariate Data Analysis (Cengage Learning EMEA, 2018). https://www.ebook.de/de/product/33402106/university_of_south_alabama_joseph_hair_william_black_barry_louisiana_tech_university_babin_rolph_drexel_university_anderson_multivariate_data_analysis.html.
LichtscheidlIKFoissnerIVideo microscopy of dynamic plant cell organelles: principles of the technique and practical applicationJ. Microsc.199818111712810.1046/j.1365-2818.1996.105385.x
Rychtáriková, R. et al. Super-resolved 3-d imaging of live cells organelles’ from bright-field photon transmission micrographs. Ultramicroscopy179, 1–14 (2017).
Alvarez-Gila, A., van de Weijer, J. & Garrote, E. Adversarial networks for spatial context-aware spectral image reconstruction from RGB. In 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) (IEEE, 2017).
Lonhus, K., Rychtáriková, R., Platonova, G. & Štys, D. Supplementary to Quasi-spectral characterization of intracellular regions in bright-field light microscopy images. Dryad Dataset.https://doi.org/10.5061/dryad.w0vt4b8p6.
HooverEESquierJAAdvances in multiphoton microscopy technologyNat. Photon.20137931012013NaPho...7...93H1:CAS:528:DC%2BC3sXhs1entbw%3D10.1038/nphoton.2012.361
GariniYYoungITMcNamaraGSpectral imaging: principles and applicationsCytometry A200669A73574710.1002/cyto.a.20311
Elboher, E. & Werman, M. Efficient and accurate Gaussian image filtering using running sums. In 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA) (IEEE, 2012).
WachmanESSimultaneous imaging of cellular morphology and multiple biomarkers using an acousto-optic tunable filter–based bright field microscopeJ. Biomed. Opt.2014190560062014JBO....19e6006W10.1117/1.JBO.19.5.056006
K Pearson (75441_CR19) 1901; 2
N Hansen (75441_CR21) 2001; 9
Y Wang (75441_CR11) 2019; 27
75441_CR1
IK Lichtscheidl (75441_CR29) 1998; 181
PD Dahlberg (75441_CR6) 2016; 87
J-B Lugagne (75441_CR14) 2018; 8
R Tibshirani (75441_CR25) 2001; 63
J Wu (75441_CR4) 2016; 6
S Zhu (75441_CR7) 2018; 26
75441_CR10
75441_CR30
M Lindner (75441_CR2) 2016; 24
75441_CR15
75441_CR12
J Canny (75441_CR17) 1986; PAMI–8
DD Lee (75441_CR27) 1999; 401
O Ronneberger (75441_CR28) 2015
75441_CR18
Y Garini (75441_CR8) 2006; 69A
75441_CR16
N Hansen (75441_CR22) 2007
W Stephenson (75441_CR26) 1935; 136
S Heist (75441_CR3) 2018; 26
LT Maloney (75441_CR9) 1986; 3
EE Hoover (75441_CR13) 2013; 7
75441_CR20
75441_CR24
ES Wachman (75441_CR5) 2014; 19
75441_CR23
References_xml – reference: WangYYangBFengSPessinoVHuangBMulticolor fluorescent imaging by space-constrained computational spectral imagingOpt. Express20192753932019OExpr..27.5393W1:CAS:528:DC%2BC1MXhs1KltLrM10.1364/OE.27.005393
– reference: PearsonKOn lines and planes of closest fit to systems of points in spaceLond. Edinb. Dublin Philos. Mag. J. Sci.1901255957210.1080/14786440109462720
– reference: Pech-Pacheco, J., Cristobal, G., Chamorro-Martinez, J. & Fernandez-Valdivia, J. Diatom autofocusing in brightfield microscopy: a comparative study. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000 (IEEE Comput. Soc., 2002).
– reference: LichtscheidlIKFoissnerIVideo microscopy of dynamic plant cell organelles: principles of the technique and practical applicationJ. Microsc.199818111712810.1046/j.1365-2818.1996.105385.x
– reference: HeistS5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured lightOpt. Express201826233662018OExpr..2623366H10.1364/OE.26.023366
– reference: TibshiraniRWaltherGHastieTEstimating the number of clusters in a data set via the gap statisticJ. R. Stat. Soc. B200163411423184150310.1111/1467-9868.00293
– reference: Velleman, D. J. The generalized Simpson’s rule. Am. Math. Monthly112, 342 (2005).
– reference: StephensonWTechnique of factor analysisNature19351362971935Natur.136..297S10.1038/136297b0
– reference: CannyJA computational approach to edge detectionIEEE Trans. Pattern Anal. Mach. Intell.1986PAMI–867969810.1109/TPAMI.1986.4767851
– reference: Lonhus, K., Rychtáriková, R., Platonova, G. & Štys, D. Supplementary to Quasi-spectral characterization of intracellular regions in bright-field light microscopy images. Dryad Dataset.https://doi.org/10.5061/dryad.w0vt4b8p6.
– reference: DahlbergPDA simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interestRev. Sci. Instrum.2016871137042016RScI...87k3704D10.1063/1.4967274
– reference: GariniYYoungITMcNamaraGSpectral imaging: principles and applicationsCytometry A200669A73574710.1002/cyto.a.20311
– reference: LindnerMShotanZGariniYRapid microscopy measurement of very large spectral imagesOpt. Express20162495112016OExpr..24.9511L10.1364/OE.24.009511
– reference: Rychtáriková, R. et al. Super-resolved 3-d imaging of live cells organelles’ from bright-field photon transmission micrographs. Ultramicroscopy179, 1–14 (2017).
– reference: WachmanESSimultaneous imaging of cellular morphology and multiple biomarkers using an acousto-optic tunable filter–based bright field microscopeJ. Biomed. Opt.2014190560062014JBO....19e6006W10.1117/1.JBO.19.5.056006
– reference: HansenNLozanoJLarranagaPInzaIBengoetxeaEThe CMA evolution strategy: a comparing reviewTowards a New Evolutionary Computation2007Berlin HeidelbergSpringer75102
– reference: LugagneJ-BIdentification of individual cells from z-stacks of bright-field microscopy imagesSci. Rep.20188114552018NatSR...811455L10.1038/s41598-018-29647-5
– reference: RonnebergerOFischerPBroxTNavabNHorneggerJWellsWMFrangiAFU-net: convolutional networks for biomedical image segmentationMedical Image Computing and Computer-Assisted Intervention: MICCAI 20152015ChamSpringer International Publishing23424110.1007/978-3-319-24574-4_28
– reference: Alvarez-Gila, A., van de Weijer, J. & Garrote, E. Adversarial networks for spatial context-aware spectral image reconstruction from RGB. In 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) (IEEE, 2017).
– reference: LeeDDSeungHSLearning the parts of objects by non-negative matrix factorizationNature19994017887911999Natur.401..788L1:CAS:528:DyaK1MXntFartrg%3D10.1038/44565
– reference: MaloneyLTEvaluation of linear models of surface spectral reflectance with small numbers of parametersJ. Opt. Soc. Am. A1986316731986OSAJ....3.1673M1:STN:280:DyaL2s%2Fjs1SqtA%3D%3D10.1364/JOSAA.3.001673
– reference: Parmar, M., Lansel, S. & Wandell, B. A. Spatio-spectral reconstruction of the multispectral datacube using sparse recovery. In 2008 15th IEEE International Conference on Image Processing (IEEE, 2008).
– reference: HooverEESquierJAAdvances in multiphoton microscopy technologyNat. Photon.20137931012013NaPho...7...93H1:CAS:528:DC%2BC3sXhs1entbw%3D10.1038/nphoton.2012.361
– reference: ZhuSGaoLZhangYLinJJinPComplete plenoptic imaging using a single detectorOpt. Express201826264952018OExpr..2626495Z1:CAS:528:DC%2BC1cXisVKmtLbL10.1364/OE.26.026495
– reference: Kuzmin, Y. P. Bresenham’s line generation algorithm with built-in clipping. Comput. Graph. Forum14, 275–280 (1995).
– reference: Hair, J., Black, W., Babin, B. & Anderson, R. Multivariate Data Analysis (Cengage Learning EMEA, 2018). https://www.ebook.de/de/product/33402106/university_of_south_alabama_joseph_hair_william_black_barry_louisiana_tech_university_babin_rolph_drexel_university_anderson_multivariate_data_analysis.html.
– reference: WuJSnapshot hyperspectral volumetric microscopySci. Rep.20166246242016NatSR...624624W1:CAS:528:DC%2BC28Xms12qtr4%3D10.1038/srep24624
– reference: HansenNOstermeierACompletely derandomized self-adaptation in evolution strategiesEvol. Comput.200191591951:STN:280:DC%2BD3M3psVGrug%3D%3D10.1162/106365601750190398
– reference: Elboher, E. & Werman, M. Efficient and accurate Gaussian image filtering using running sums. In 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA) (IEEE, 2012).
– reference: Mekaroonkamon, T. & Wongsa, S. A comparative investigation of the robustness of unsupervised clustering techniques for rotating machine fault diagnosis with poorly-separated data. In 2016 Eighth International Conference on Advanced Computational Intelligence (ICACI) (IEEE, 2016).
– volume: PAMI–8
  start-page: 679
  year: 1986
  ident: 75441_CR17
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767851
– volume: 24
  start-page: 9511
  year: 2016
  ident: 75441_CR2
  publication-title: Opt. Express
  doi: 10.1364/OE.24.009511
– volume: 136
  start-page: 297
  year: 1935
  ident: 75441_CR26
  publication-title: Nature
  doi: 10.1038/136297b0
– volume: 87
  start-page: 113704
  year: 2016
  ident: 75441_CR6
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4967274
– volume: 8
  start-page: 11455
  year: 2018
  ident: 75441_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29647-5
– ident: 75441_CR16
  doi: 10.1111/1467-8659.1450275
– volume: 7
  start-page: 93
  year: 2013
  ident: 75441_CR13
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2012.361
– ident: 75441_CR23
– ident: 75441_CR30
  doi: 10.5061/dryad.w0vt4b8p6
– volume: 26
  start-page: 23366
  year: 2018
  ident: 75441_CR3
  publication-title: Opt. Express
  doi: 10.1364/OE.26.023366
– volume: 19
  start-page: 056006
  year: 2014
  ident: 75441_CR5
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.19.5.056006
– ident: 75441_CR18
  doi: 10.1109/ISDA.2012.6416657
– volume: 63
  start-page: 411
  year: 2001
  ident: 75441_CR25
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/1467-9868.00293
– ident: 75441_CR12
  doi: 10.1109/ICCVW.2017.64
– ident: 75441_CR1
  doi: 10.1016/j.ultramic.2017.03.018
– ident: 75441_CR15
  doi: 10.2307/30037470
– ident: 75441_CR20
– ident: 75441_CR24
  doi: 10.1109/ICACI.2016.7449821
– volume: 26
  start-page: 26495
  year: 2018
  ident: 75441_CR7
  publication-title: Opt. Express
  doi: 10.1364/OE.26.026495
– volume: 401
  start-page: 788
  year: 1999
  ident: 75441_CR27
  publication-title: Nature
  doi: 10.1038/44565
– volume: 69A
  start-page: 735
  year: 2006
  ident: 75441_CR8
  publication-title: Cytometry A
  doi: 10.1002/cyto.a.20311
– volume: 2
  start-page: 559
  year: 1901
  ident: 75441_CR19
  publication-title: Lond. Edinb. Dublin Philos. Mag. J. Sci.
  doi: 10.1080/14786440109462720
– volume: 9
  start-page: 159
  year: 2001
  ident: 75441_CR21
  publication-title: Evol. Comput.
  doi: 10.1162/106365601750190398
– start-page: 234
  volume-title: Medical Image Computing and Computer-Assisted Intervention: MICCAI 2015
  year: 2015
  ident: 75441_CR28
  doi: 10.1007/978-3-319-24574-4_28
– volume: 27
  start-page: 5393
  year: 2019
  ident: 75441_CR11
  publication-title: Opt. Express
  doi: 10.1364/OE.27.005393
– start-page: 75
  volume-title: Towards a New Evolutionary Computation
  year: 2007
  ident: 75441_CR22
– ident: 75441_CR10
  doi: 10.1109/ICIP.2008.4711794
– volume: 6
  start-page: 24624
  year: 2016
  ident: 75441_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/srep24624
– volume: 3
  start-page: 1673
  year: 1986
  ident: 75441_CR9
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.3.001673
– volume: 181
  start-page: 117
  year: 1998
  ident: 75441_CR29
  publication-title: J. Microsc.
  doi: 10.1046/j.1365-2818.1996.105385.x
SSID ssj0000529419
Score 2.3295345
Snippet Investigation of cell structure is hardly imaginable without bright-field microscopy. Numerous modifications such as depth-wise scanning or videoenhancement...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18346
SubjectTerms 631/57/2266
639/705/794
639/766/400
639/766/747
639/766/930
Chemical analysis
Cytology
Data processing
Humanities and Social Sciences
Intracellular
Light microscopy
Microscopes
Microscopy
multidisciplinary
Science
Science (multidisciplinary)
Segmentation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9RAcNErgi_Fb1OrrOCbLs1-ZD-epJWWIlhULPQtZj-CB22ube4e-u-dSfZSzmLfQjLJZmdnZ2bnk5APwoMYSA64n4meKac9c6k1LEhQJrgwSTtMcP52oo9P1dez6iwb3PocVrnmiQOjjouANvI9AVwUfYRcfr68Ytg1Cr2ruYXGQ7IFLNhWM7J1cHjy_edkZUE_luIuZ8uU0u71ILEwqwxOTVj7jTOzKZHuqJl3oyX_cZkOkujoCdnOKiTdH9f8KXmQumfk0dhU8uY5-f1j1fRzNqRQwodomEoyjxmXdNHSOY6BNnsMQqXYnAGID-5SPxzW2RDXRs_xml5gyB4mr9zQ-QVwn_4FOT06_PXlmOU-Ciwoo5YshNQYo1XwunIhiOhs4jFEW4bS2Vgp4eGUwVtUPXypXUpNaXyQDoBa1Qb5ksy6RZdeE5qcaxtdGhOTUjJF3yjbRitcG7QzPBWEr3FZh1xkHHtdnNeDs1vaesR_DfivB_zXpiAfp3cuxxIb90Lvrpeoztutr2-JoyDvp8ewURCTTZcWK4QB5dBIYWxBXo0rOg0ngS5B99UFMRtrPQFgEe7NJ938z1CM21SOVwbG_bSmitvf-v8sdu6fxRvyWCCFgowUZpfMlter9BaUn6V_lyn8L3aZBLc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRfBF6ve2VSL4psFNNpvZPJbDUgQFwULf1k02iwftnnh3D_3vO5P9kGtV8G3ZTDbZySQzycz8AvBWe1ID0dHqh62XxlkvXexQhoKMCaUxWscJzp-_2LNz8-mivNgDPeXCpKD9BGmZlukpOuzDmhQNJ4PRZoch25TEe3CfodsZL39hF_O5CnuujHJjfkxeVH-ouquD7hiWd-MjbzlJk-45PYBHo9EoToZuPoa92D-BB8M1ktdP4fvXbbNeypQ0SR8SYQZhHnIsxaoTS26DT-k57FTwdQwkbvRW-LQ9lymSTVzys7jiID1OV7kWyytab9bP4Pz047fFmRxvTpDBoNnIEGKDaE3wtnQh6NZVUbWhrfKQu6otjfa0r1AdGxs-ty7GJkcfCkdEnelC8Rz2-1UfX4KIznWNzRHbaEwRW9-Yqmsr7bpgHaqYgZp4WYcRVpxvt7isk3u7qOqB_zXxv078rzGDd3OdnwOoxj-pj6chqscJtq41KVV2GasigzdzMU0N5mTTx9WWacgcxEJjlcGLYUTn5gqSRLJ2bQa4M9YzAcNu75b0yx8JfhtLp0qkdt9PUvG7W3__i8P_Iz-Ch5ollrSkxmPY3_zaxldk_mz86yTvNwHDASs
  priority: 102
  providerName: Springer Nature
Title Quasi-spectral characterization of intracellular regions in bright-field light microscopy images
URI https://link.springer.com/article/10.1038/s41598-020-75441-7
https://www.ncbi.nlm.nih.gov/pubmed/33110166
https://www.proquest.com/docview/2471529613
https://www.proquest.com/docview/2455173278
https://pubmed.ncbi.nlm.nih.gov/PMC7591573
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIvIEhcRxf_IBQqTZNlTbxValvIXYcrVKXwtpK9L_n7KRBZQPxlMh2bOd89v1s3wfAS2FIDDhNqx9WhkutDNeuRm5TAhOJQKe0N3A-O1enEzmeZtM92IY76gi4vHFr5-NJTa7mb37-2LynCf-uNRnP3y5JCHlDMdoIeXduCcd9OCTJpDyXn3Vwv_X1LbQMsT68E3ZOYEJ0djQ3V7Mrq64B0Ot6lH9cpgYZdXIX7nTgkg1bbrgHe665D7facJObB_Dt07pczngwrqSKmO2dNbe2mGxRs5lvw5_me_VU5sM2EFtSKjNhG8-Dxhub-3d26ZX5vFnLhs0uaV1aPoTJyfHX0SnvIixwK1GuuLWuRFTSGpVpa0Wlc5dUtspjG-u8yqQwtP9Iag9KTKy0c2WMxqaaCtWytukjOGgWjXsCzGldlypGrJyUqatMKfO6yoWurdKYuAiSLS0L27kf91Ew5kW4Bk_zoqV_QfQvAv0LjOBV_8331vnGP0sfbYeo2PJRIUj4-qvlJI3gRZ9NU8hTsmzcYu3LEGzEVGAeweN2RPvmUuJYQsUqAtwZ676Ad8-9m9PMLoKbbsx0kiG1-3rLFb-79fe_ePof3XwGt4VnUxKhAo_gYHW1ds8JG63MAPZxigM4HA7HX8b0_HB8_vEzpY7UaBDOGwZhSvwCjewQTQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFRaIbggniVQwEhwAquJ48TxASEerba0XQFqpd7c2HHUldpsS3aF9qf4RmbyqpaK3nqLYseOx_Oy5wXwRlgUA14j91OF5VKnlmtfKu5iVCYioXyqKcB5f5yODuW3o-RoBf70sTDkVtnzxIZRF1NHd-SbArko2Qij-OP5BaeqUWRd7UtotGix6xe_8chWf9j5ivv7VojtrYMvI95VFeBOKjnjzvlcqVQ6mybaOVHozEeFK7LQhTorEiks6txRSYLYhqn2Pg-VdbHGTqUsXYzj3oI1VDM0UtHa563x95_DrQ7ZzWSku-icMM42a5SQFMWGpzTKNRdxtSwBr6i1V70z_zHRNpJv-z7c61RW9qnFsQew4quHcLstYrl4BMc_5nk94U3IJg7E3JACuo3wZNOSTWgOshGQ0yujYhCI7PiW2eZygDd-dOyUntkZuQhSsMyCTc6Q29WP4fBGIPwEVqtp5Z8C81qXeRoqVXgpY1_YXGZlkQldulSryAcQ9bA0rktqTrU1Tk1jXI8z08LfIPxNA3-jAng3fHPepvS4tvdGv0WmI-_aXCJjAK-HZiRMgmRe-emc-qAyqmKhsgDW2x0dpouRDlDXTgNQS3s9dKCk38st1eSkSf6tEh0lCud932PF5W_9fxXPrl_FK7gzOtjfM3s7493ncFcQtqJ8FmoDVme_5v4FKl4z-7LDdgbHN01gfwFuakL8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AnFBvAkUMBKcwNrEceL4gBDQrloKq4Ko1FsaO7ZYqc0Wsiu0v8bXMZNXtVT01lsUO3Y8npc9L4CXwqAYcBq5nyoNlzo1XDuvuI1RmYiEcqmmAOcv03T3UH46So424E8fC0NulT1PbBh1Obd0Rz4WyEXJRhjFY9-5RRxsT96d_eRUQYosrX05jRZF9t3qNx7f6rd727jXr4SY7Hz_uMu7CgPcSiUX3FpXKJVKa9JEWytKnbmotGUW2lBnZSKFQf078iSUTZhq54pQGRtr7OSltzGOew02FUrFbASbH3amB9-GGx6yoclId5E6YZyNa5SWFNGGJzbKOxdxtS4NL6i4Fz01_zHXNlJwchtudeore9_i2x3YcNVduN4WtFzdg-Ovy6Ke8SZ8EwdidkgH3UZ7srlnM5qD7AXkAMuoMAQiPr5lprko4I1PHTuhZ3ZK7oIUOLNis1PkfPV9OLwSCD-AUTWv3CNgTmtfpKFSpZMydqUpZObLTGhvU60iF0DUwzK3XYJzqrNxkjeG9jjLW_jnCP-8gX-uAng9fHPWpve4tPdWv0V5R-p1fo6YAbwYmpFICZJF5eZL6oOKqYqFygJ42O7oMF2MNIF6dxqAWtvroQMlAF9vqWY_mkTgKtFRonDeNz1WnP_W_1fx-PJVPIcbSFj5573p_hO4KQhZUVQLtQWjxa-le4o62MI865CdwfFV09dfJ9ZHKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-spectral+characterization+of+intracellular+regions+in+bright-field+light+microscopy+images&rft.jtitle=Scientific+reports&rft.au=Lonhus%2C+Kirill&rft.au=Rycht%C3%A1rikov%C3%A1%2C+Renata&rft.au=Platonova%2C+Ganna&rft.au=%C5%A0tys%2C+Dalibor&rft.date=2020-10-27&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft.spage=18346&rft_id=info:doi/10.1038%2Fs41598-020-75441-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon