The role of cancer metabolism in defining the success of oncolytic viro-immunotherapy

[Display omitted] •Each oncolytic virus type has essential nutrients required for optimal oncolysis.•In vitro work often uses conditions that do not reflect conditions within tumours in vivo.•Reducing nutrients can trigger the differential stress response leaving tumour cells vulnerable to treatment...

Full description

Saved in:
Bibliographic Details
Published inCytokine & growth factor reviews Vol. 56; pp. 115 - 123
Main Authors Dyer, Arthur, Frost, Sally, Fisher, Kerry D., Seymour, Len W.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.12.2020
Subjects
Online AccessGet full text
ISSN1359-6101
1879-0305
DOI10.1016/j.cytogfr.2020.07.006

Cover

Loading…
Abstract [Display omitted] •Each oncolytic virus type has essential nutrients required for optimal oncolysis.•In vitro work often uses conditions that do not reflect conditions within tumours in vivo.•Reducing nutrients can trigger the differential stress response leaving tumour cells vulnerable to treatment while protecting non-tumour cells.•Understanding the metabolic requirements of an oncolytic virus can permit improved treatment strategies. Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies.
AbstractList Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies.
Graphical abstract
[Display omitted] •Each oncolytic virus type has essential nutrients required for optimal oncolysis.•In vitro work often uses conditions that do not reflect conditions within tumours in vivo.•Reducing nutrients can trigger the differential stress response leaving tumour cells vulnerable to treatment while protecting non-tumour cells.•Understanding the metabolic requirements of an oncolytic virus can permit improved treatment strategies. Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies.
Author Fisher, Kerry D.
Seymour, Len W.
Dyer, Arthur
Frost, Sally
Author_xml – sequence: 1
  givenname: Arthur
  surname: Dyer
  fullname: Dyer, Arthur
  organization: Department of Oncology, University of Oxford, Oxford, UK
– sequence: 2
  givenname: Sally
  surname: Frost
  fullname: Frost, Sally
  organization: Department of Oncology, University of Oxford, Oxford, UK
– sequence: 3
  givenname: Kerry D.
  surname: Fisher
  fullname: Fisher, Kerry D.
  organization: Department of Oncology, University of Oxford, Oxford, UK
– sequence: 4
  givenname: Len W.
  surname: Seymour
  fullname: Seymour, Len W.
  email: len.seymour@oncology.ox.ac.uk
  organization: Department of Oncology, University of Oxford, Oxford, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32921554$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1O3DAUha0KVGDaRyjKCyTYSZwfIVpVqAUkJBYMa8u-uaYeEntke5Dy9nU0sEFCsLG9OOf43u-ckAPrLBLyg9GCUdacbQqYo3vUvihpSQvaFpQ2X8gx69o-pxXlB-ld8T5vkvyInISwoZTWFadfyVFV9iXjvD4mD-t_mHk3YuZ0BtIC-mzCKJUbTZgyY7MBtbHGPmYxKcMOAENYxM6CG-doIHs23uVmmnbWJY2X2_kbOdRyDPj95V6R9d8_68vr_Pbu6uby920OdVvHXGEtO9bzWks-VG0HDW2rsgE1YKlqlJxxKVWnFNegOl0Pje6HvmdKYrJW1Yqc7mO3OzXhILbeTNLP4nW9JDjfC8C7EDxqASbKaJyNXppRMCoWmGIjXmCKBaagrUgwk5u_cb9-8JHv196HafVng14EMJjQDsYjRDE482HCzzcJMKYSQI5POGPYuJ23iatgIpSCivul6KXnMhXPeDpX5OL9gE8M8B-KDL2W
CitedBy_id crossref_primary_10_3390_cancers15215291
crossref_primary_10_1002_mog2_23
crossref_primary_10_1016_j_virusres_2023_199285
crossref_primary_10_1016_j_omton_2024_200826
crossref_primary_10_1142_S1793524523500705
crossref_primary_10_3390_cancers15102721
crossref_primary_10_3390_cancers13061260
Cites_doi 10.1371/journal.ppat.1004021
10.1016/0042-6822(73)90340-1
10.1038/nbt.2287
10.1073/pnas.0709747104
10.1038/ijo.2010.171
10.1371/journal.ppat.1000719
10.1016/j.cell.2016.07.026
10.3181/00379727-95-23113
10.1099/jgv.0.000980
10.1073/pnas.0708100105
10.3892/or.2015.4522
10.1038/sj.ijo.0801319
10.1016/j.cmet.2014.03.009
10.4142/jvs.2014.15.4.511
10.1186/s12916-017-0873-x
10.7554/eLife.03342
10.1016/j.immuni.2019.07.003
10.3390/v11070614
10.1371/journal.ppat.1005052
10.1139/m57-113
10.1016/S0092-8674(00)81683-9
10.1038/bjc.2015.481
10.1158/2326-6066.CIR-14-0015
10.1038/onc.2009.358
10.1038/ncomms9873
10.3390/v11020141
10.1016/j.biochi.2014.11.005
10.1158/0008-5472.CAN-09-3228
10.1038/1781230a0
10.1093/toxsci/kfm052
10.1172/JCI88990
10.1371/journal.pone.0023394
10.1128/JVI.00814-09
10.1186/s13046-019-1189-9
10.1371/journal.ppat.0020132
10.1084/jem.104.2.271
10.1128/JB.83.3.475-482.1962
10.1099/vir.0.069591-0
10.1016/j.cell.2011.02.013
10.1093/jn/131.10.3155
10.1073/pnas.1800525115
10.1016/j.ccell.2016.02.018
10.1128/JVI.16.2.217-221.1975
10.1097/01.COT.0000475724.97729.9e
10.1186/s13058-016-0714-4
10.1099/0022-1317-65-7-1229
10.1212/WNL.34.3.276
10.1152/ajpendo.00703.2010
10.3389/fmolb.2019.00090
10.1038/sj.ijo.0802830
10.1126/science.124.3215.269
10.1158/0008-5472.CAN-08-4806
10.1126/scitranslmed.3003293
10.1371/journal.pone.0060651
10.1016/j.cmet.2016.08.011
10.1371/journal.ppat.1002866
10.1371/journal.ppat.1002124
10.1038/183271b0
10.2337/dc12-1089
10.1093/infdis/100.2.109
10.1016/j.virol.2011.04.007
10.1371/journal.pone.0047813
10.1016/j.actatropica.2018.04.007
10.1021/pr100727m
10.1002/jmv.24362
10.1038/s41598-017-14071-y
10.1038/nbt.1606
10.1128/JVI.03134-13
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/j.cytogfr.2020.07.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1879-0305
EndPage 123
ExternalDocumentID 32921554
10_1016_j_cytogfr_2020_07_006
S1359610120301520
1_s2_0_S1359610120301520
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 29106
– fundername: Medical Research Council
  grantid: MR/N013468/1
– fundername: Cancer Research UK
  grantid: C557/A17720
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4CK
4G.
53G
5GY
5VS
7-5
71M
8P~
AAAJQ
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SEL
SES
SEW
SPCBC
SSH
SSI
SSU
SSZ
T5K
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c474t-be4a81954fa5d378c607326cbde2b4ea515aab8bb5fcb8f4d6f9d991baebe433
IEDL.DBID .~1
ISSN 1359-6101
IngestDate Sat May 31 02:11:27 EDT 2025
Thu Apr 24 23:44:03 EDT 2025
Tue Jul 01 02:57:32 EDT 2025
Fri Feb 23 02:46:18 EST 2024
Tue Feb 25 20:00:33 EST 2025
Tue Aug 26 19:42:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Oncolytic virotherapy
Oncolytic virus
Cancer metabolism
Metabolism
Immunotherapy
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-be4a81954fa5d378c607326cbde2b4ea515aab8bb5fcb8f4d6f9d991baebe433
PMID 32921554
PageCount 9
ParticipantIDs pubmed_primary_32921554
crossref_citationtrail_10_1016_j_cytogfr_2020_07_006
crossref_primary_10_1016_j_cytogfr_2020_07_006
elsevier_sciencedirect_doi_10_1016_j_cytogfr_2020_07_006
elsevier_clinicalkeyesjournals_1_s2_0_S1359610120301520
elsevier_clinicalkey_doi_10_1016_j_cytogfr_2020_07_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Cytokine & growth factor reviews
PublicationTitleAlternate Cytokine Growth Factor Rev
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yu, Bian, Gu, He (bib0090) 2016
Krishnapuram, Dhurandhar, Dubuisson, Hegde, Dhurandhar (bib0225) 2013; 8
Meng, Li, Chen, Zheng, Xu, Zhang, Dong, Wu, Yu, Wei (bib0370) 2019
(bib0025) 2015; 37
Harvie, Sims, Pegington, Spence, Mitchell, Vaughan, Allwood, Xu, Rattray, Goodacre, Evans, Mitchell, McMullen, Clarke, Howell (bib0325) 2016; 18
Delgado, Sanchez, Camarda, Lagunoff (bib0055) 2012; 8
Bil-Lula, Krzywonos-Zawadzka, Sawicki, Woźniak (bib0195) 2016; 88
Ritter, Wahl, Freund, Genzel, Reichl (bib0250) 2010; 4
Potter, Newport, Morten (bib0390) 2016
Fisher, Ginsberg (bib0155) 1957; 95
Gohil, Sheth, Nilsson, Wojtovich, Lee, Perocchi, Chen, Clish, Ayata, Brookes, Mootha, Author (bib0385) 2010; 28
Birungi, Chen, Loy, Ng, Li (bib0075) 2010; 9
Lee, Safdie, Raffaghello, Wei, Madia, Parrella, Hwang, Cohen, Bianchi, Longo (bib0310) 2010; 70
Dhurandhar, Israel, Kolesar, Mayhew, Cook, Atkinson (bib0180) 2000; 24
Wang, Huen, Luan, Yu, Zhang, Gallezot, Booth, Medzhitov (bib0260) 2016; 166
Hirayama, Kami, Sugimoto, Sugawara, Toki, Onozuka, Kinoshita, Saito, Ochiai, Tomita, Esumi, Soga (bib0080) 2009; 69
LEWIS, SCOTT (bib0115) 1962; 83
Al-Shammari, Abdullah, Allami, Yaseen (bib0365) 2019; 6
Lee, Raffaghello, Brandhorst, Safdie, Bianchi, Martin-Montalvo, Pistoia, Wei, Hwang, Merlino, Emionite, de Cabo, Longo (bib0350) 2012; 4
Esaki, Rabkin, Martuza, Wakimoto (bib0355) 2016; 6
Wang, Hoshino, Dowdell, Bosch-Marce, Myers, Sarmiento, Pesnicak, Krause, Cohen (bib0240) 2017; 127
Diamond, Syder, Jacobs, Sorensen, Walters, Proll, McDermott, Gritsenko, Zhang, Zhao, Metz, Camp, Waters, Smith, Rice, Katze (bib0065) 2010; 6
Seymour, Fisher (bib0045) 2016; 114
Most, Tosti, Redman, Fontana (bib0335) 2017; 39
Courtney, Steiner, Benyesh-Melnick (bib0120) 1973; 52
Thai, Thaker, Feng, Du, Hu, Ting Wu, Graeber, Braas, Christofk (bib0175) 2015; 6
Thai, Graham, Braas, Nehil, Komisopoulou, Kurdistani, McCormick, Graeber, Christofk (bib0170) 2014; 19
Vastag, Koyuncu, Grady, Shenk, Rabinowitz (bib0060) 2011; 7
Li, Meng, Su, Chen, Xia, Xu, Yu, Jiang, Wei (bib0290) 2014
Raffaghello, Lee, Safdie, Wei, Madia, Bianchi, Longo (bib0345) 2008; 105
Kilbourne (bib0255) 1959; 183
Warburg (bib0015) 1956; 124
D. Berrigan, J.A. Lavigne, S.N. Perkins, T.R. Nagy, J.C. Barrett, S.D. Hursting, Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention., In Vivo. 19 (n.d.) 667–674.
Brand, Singer, Koehl, Kolitzus, Schoenhammer, Thiel, Matos, Bruss, Klobuch, Peter, Kastenberger, Bogdan, Schleicher, Mackensen, Ullrich, Fichtner-Feigl, Kesselring, Mack, Ritter, Schmid, Blank, Dettmer, Oefner, Hoffmann, Walenta, Geissler, Pouyssegur, Villunger, Steven, Seliger, Schreml, Haferkamp, Kohl, Karrer, Berneburg, Herr, Mueller-Klieser, Renner, Kreutz (bib0085) 2016; 24
Felt, Grdzelishvili (bib0270) 2017; 98
de Groot, Pijl, van der Hoeven, Kroep (bib0340) 2019; 38
Hollenbaugh, Munger, Kim (bib0070) 2011; 415
Atkinson, Dhurandhar, Allison, Bowen, Israel, Albu, Augustus (bib0190) 2005; 29
Ludwig, Rott (bib0125) 1975; 16
Saito, Price (bib0135) 1984; 34
Zhou, Wen, Zhang, Tang, Li (bib0275) 2016; 35
EAGLE, HABEL (bib0100) 1956; 104
Levy, Baron (bib0110) 1957; 100
Deng, Cong, Yin, Yang, Ding, Yu, Liu, Wang, Ding (bib0280) 2014; 15
Harvie, Pegington, Mattson, Frystyk, Dillon, Evans, Cuzick, Jebb, Martin, Cutler, Son, Maudsley, Carlson, Egan, Flyvbjerg, Howell (bib0330) 2011; 35
Shestov, Liu, Ser, Cluntun, Hung, Huang, Kim, Le, Yellen, Albeck, Locasale (bib0020) 2014; 3
Hanahan, Weinberg, Hanahan, Weinberg (bib0010) 2011; 144
Chiocca, Rabkin (bib0040) 2014; 2
Dyer, Schoeps, Frost, Jakeman, Scott, Freedman, Seymour (bib0165) 2018
Dhurandhar, Dubuisson, Mashtalir, Krishnapuram, Hegde, Dhurandhar (bib0215) 2011; 6
Dhurandhar, Whigham, Abbott, Schultz-Darken, Israel, Bradley, Kemnitz, Allison, Atkinson (bib0185) 2002; 132
Hanahan, Weinberg (bib0005) 2000; 100
Landini (bib0130) 1984; 65
Dhurandhar, Krishnapuram, Hegde, Dubuisson, Tao, Dong, Ye, Dhurandhar (bib0220) 2012; 7
O’Flanagan, Smith, McDonell, Hursting (bib0315) 2017; 15
Dyer, Baugh, Chia, Frost, Jacobus, Iris, Khalique, Pokrovska, Scott, Taverner, Seymour, Lei (bib0030) 2018
Kalyanasundram, Hamid, Yusoff, Chia (bib0285) 2018; 183
L.D. Marroquin, J. Hynes, J.A. Dykens, J.D. Jamieson, Y. Will, Circumventing the Crabtree Effect: Replacing Media Glucose with Galactose Increases Susceptibility of HepG2 Cells to Mitochondrial Toxicants, (n.d.). https://doi.org/10.1093/toxsci/kfm052.
Fontaine, Camarda, Lagunoff (bib0140) 2014; 88
Na, Dubuisson, Hegde, Nam, Dhurandhar (bib0200) 2016; 124
Lin, Dubuisson, Rubicz, Liu, Allison, Curran, Comuzzie, Blangero, Leach, Göring, Dhurandhar (bib0210) 2013; 36
Scheubeck, Berchtold, Smirnow, Schenk, Beil, Lauer (bib0360) 2019; 11
Mazzon, Castro, Roberts, Griffin, Smith (bib0150) 2015; 96
Munger, Bajad, Coller, Shenk, Rabinowitz (bib0050) 2006; 2
Pusapati, Daemen, Wilson, Sandoval, Gao, Haley, Baudy, Hatzivassiliou, Evangelista, Settleman (bib0095) 2016; 29
Krishnapuram, Dhurandhar, Dubuisson, Kirk-Ballard, Bajpeyi, Butte, Sothern, Larsen-Meyer, Chalew, Bennett, Gupta, Greenway, Johnson, Brashear, Reinhart, Rankinen, Bouchard, Cefalu, Ye, Javier, Zuberi, Dhurandhar (bib0205) 2011; 300
(accessed September 12, 2019).
Russell, Peng, Bell (bib0035) 2012; 30
Sanchez, Carroll, Thalhofer, Lagunoff (bib0245) 2015; 11
Rozee, Ottey, van Rooyen (bib0160) 1957; 3
Greseth, Traktman (bib0145) 2014; 10
Fernandez-de-Cossio-Diaz, Vazquez (bib0295) 2017; 7
DeBerardinis, Cheng (bib0305) 2010; 29
Prusinkiewicz, Mymryk (bib0230) 2019; 11
Pusapati, Daemen, Wilson, Sandoval, Gao, Haley, Baudy, Hatzivassiliou, Evangelista, Settleman (bib0375) 2016; 29
Chan, Sutton, Jacobs, Bondarenko, Smith, Katze (bib0235) 2009; 83
Gualdoni, Mayer, Kapsch, Kreuzberg, Puck, Kienzl, Oberndorfer, Frühwirth, Winkler, Blaas, Zlabinger, Stöckl (bib0265) 2018; 115
DeBerardinis, Mancuso, Daikhin, Nissim, Yudkoff, Wehrli, Thompson (bib0300) 2007; 104
Rivadeneira, DePeaux, Wang, Kulkarni, Tabib, Menk, Sampath, Lafyatis, Ferris, Sarkar, Thorne, Delgoffe (bib0395) 2019; 51
BARON, LEVY (bib0105) 1956; 178
Diamond (10.1016/j.cytogfr.2020.07.006_bib0065) 2010; 6
Ludwig (10.1016/j.cytogfr.2020.07.006_bib0125) 1975; 16
Potter (10.1016/j.cytogfr.2020.07.006_bib0390) 2016
Lin (10.1016/j.cytogfr.2020.07.006_bib0210) 2013; 36
Scheubeck (10.1016/j.cytogfr.2020.07.006_bib0360) 2019; 11
Dhurandhar (10.1016/j.cytogfr.2020.07.006_bib0180) 2000; 24
(10.1016/j.cytogfr.2020.07.006_bib0025) 2015; 37
Brand (10.1016/j.cytogfr.2020.07.006_bib0085) 2016; 24
Lee (10.1016/j.cytogfr.2020.07.006_bib0350) 2012; 4
Harvie (10.1016/j.cytogfr.2020.07.006_bib0330) 2011; 35
Hanahan (10.1016/j.cytogfr.2020.07.006_bib0005) 2000; 100
Esaki (10.1016/j.cytogfr.2020.07.006_bib0355) 2016; 6
Hirayama (10.1016/j.cytogfr.2020.07.006_bib0080) 2009; 69
Pusapati (10.1016/j.cytogfr.2020.07.006_bib0095) 2016; 29
Landini (10.1016/j.cytogfr.2020.07.006_bib0130) 1984; 65
Fontaine (10.1016/j.cytogfr.2020.07.006_bib0140) 2014; 88
Zhou (10.1016/j.cytogfr.2020.07.006_bib0275) 2016; 35
Fernandez-de-Cossio-Diaz (10.1016/j.cytogfr.2020.07.006_bib0295) 2017; 7
Chiocca (10.1016/j.cytogfr.2020.07.006_bib0040) 2014; 2
Krishnapuram (10.1016/j.cytogfr.2020.07.006_bib0225) 2013; 8
Prusinkiewicz (10.1016/j.cytogfr.2020.07.006_bib0230) 2019; 11
Dyer (10.1016/j.cytogfr.2020.07.006_bib0165) 2018
Russell (10.1016/j.cytogfr.2020.07.006_bib0035) 2012; 30
Yu (10.1016/j.cytogfr.2020.07.006_bib0090) 2016
Sanchez (10.1016/j.cytogfr.2020.07.006_bib0245) 2015; 11
LEWIS (10.1016/j.cytogfr.2020.07.006_bib0115) 1962; 83
Hollenbaugh (10.1016/j.cytogfr.2020.07.006_bib0070) 2011; 415
DeBerardinis (10.1016/j.cytogfr.2020.07.006_bib0305) 2010; 29
Li (10.1016/j.cytogfr.2020.07.006_bib0290) 2014
Shestov (10.1016/j.cytogfr.2020.07.006_bib0020) 2014; 3
10.1016/j.cytogfr.2020.07.006_bib0380
de Groot (10.1016/j.cytogfr.2020.07.006_bib0340) 2019; 38
Chan (10.1016/j.cytogfr.2020.07.006_bib0235) 2009; 83
Saito (10.1016/j.cytogfr.2020.07.006_bib0135) 1984; 34
Dhurandhar (10.1016/j.cytogfr.2020.07.006_bib0220) 2012; 7
Bil-Lula (10.1016/j.cytogfr.2020.07.006_bib0195) 2016; 88
Rozee (10.1016/j.cytogfr.2020.07.006_bib0160) 1957; 3
Pusapati (10.1016/j.cytogfr.2020.07.006_bib0375) 2016; 29
Dhurandhar (10.1016/j.cytogfr.2020.07.006_bib0215) 2011; 6
Hanahan (10.1016/j.cytogfr.2020.07.006_bib0010) 2011; 144
Courtney (10.1016/j.cytogfr.2020.07.006_bib0120) 1973; 52
Kilbourne (10.1016/j.cytogfr.2020.07.006_bib0255) 1959; 183
BARON (10.1016/j.cytogfr.2020.07.006_bib0105) 1956; 178
Mazzon (10.1016/j.cytogfr.2020.07.006_bib0150) 2015; 96
Wang (10.1016/j.cytogfr.2020.07.006_bib0240) 2017; 127
Gualdoni (10.1016/j.cytogfr.2020.07.006_bib0265) 2018; 115
Meng (10.1016/j.cytogfr.2020.07.006_bib0370) 2019
Levy (10.1016/j.cytogfr.2020.07.006_bib0110) 1957; 100
Kalyanasundram (10.1016/j.cytogfr.2020.07.006_bib0285) 2018; 183
EAGLE (10.1016/j.cytogfr.2020.07.006_bib0100) 1956; 104
DeBerardinis (10.1016/j.cytogfr.2020.07.006_bib0300) 2007; 104
Krishnapuram (10.1016/j.cytogfr.2020.07.006_bib0205) 2011; 300
Birungi (10.1016/j.cytogfr.2020.07.006_bib0075) 2010; 9
Most (10.1016/j.cytogfr.2020.07.006_bib0335) 2017; 39
Dhurandhar (10.1016/j.cytogfr.2020.07.006_bib0185) 2002; 132
Felt (10.1016/j.cytogfr.2020.07.006_bib0270) 2017; 98
Vastag (10.1016/j.cytogfr.2020.07.006_bib0060) 2011; 7
Thai (10.1016/j.cytogfr.2020.07.006_bib0175) 2015; 6
Wang (10.1016/j.cytogfr.2020.07.006_bib0260) 2016; 166
Al-Shammari (10.1016/j.cytogfr.2020.07.006_bib0365) 2019; 6
Dyer (10.1016/j.cytogfr.2020.07.006_bib0030) 2018
Raffaghello (10.1016/j.cytogfr.2020.07.006_bib0345) 2008; 105
Rivadeneira (10.1016/j.cytogfr.2020.07.006_bib0395) 2019; 51
Lee (10.1016/j.cytogfr.2020.07.006_bib0310) 2010; 70
Thai (10.1016/j.cytogfr.2020.07.006_bib0170) 2014; 19
Harvie (10.1016/j.cytogfr.2020.07.006_bib0325) 2016; 18
Seymour (10.1016/j.cytogfr.2020.07.006_bib0045) 2016; 114
Delgado (10.1016/j.cytogfr.2020.07.006_bib0055) 2012; 8
Deng (10.1016/j.cytogfr.2020.07.006_bib0280) 2014; 15
10.1016/j.cytogfr.2020.07.006_bib0320
Greseth (10.1016/j.cytogfr.2020.07.006_bib0145) 2014; 10
Atkinson (10.1016/j.cytogfr.2020.07.006_bib0190) 2005; 29
Na (10.1016/j.cytogfr.2020.07.006_bib0200) 2016; 124
O’Flanagan (10.1016/j.cytogfr.2020.07.006_bib0315) 2017; 15
Munger (10.1016/j.cytogfr.2020.07.006_bib0050) 2006; 2
Ritter (10.1016/j.cytogfr.2020.07.006_bib0250) 2010; 4
Fisher (10.1016/j.cytogfr.2020.07.006_bib0155) 1957; 95
Warburg (10.1016/j.cytogfr.2020.07.006_bib0015) 1956; 124
Gohil (10.1016/j.cytogfr.2020.07.006_bib0385) 2010; 28
References_xml – volume: 36
  start-page: 701
  year: 2013
  end-page: 707
  ident: bib0210
  article-title: Long-term changes in adiposity and glycemic control are associated with past adenovirus infection
  publication-title: Diabetes Care
– volume: 183
  start-page: 271
  year: 1959
  end-page: 272
  ident: bib0255
  article-title: Inhibition of influenza virus multiplication with a glucose antimetabolite (2-deoxy-D-glucose)
  publication-title: Nature.
– volume: 24
  start-page: 989
  year: 2000
  end-page: 996
  ident: bib0180
  article-title: Increased adiposity in animals due to a human virus
  publication-title: Int. J. Obes. Relat. Metab. Disord.
– volume: 7
  start-page: e1002124
  year: 2011
  ident: bib0060
  article-title: Divergent effects of human cytomegalovirus and herpes simplex Virus-1 on cellular metabolism
  publication-title: PLoS Pathog.
– volume: 2
  start-page: e132
  year: 2006
  ident: bib0050
  article-title: Dynamics of the cellular metabolome during human cytomegalovirus infection
  publication-title: PLoS Pathog.
– volume: 30
  start-page: 658
  year: 2012
  end-page: 670
  ident: bib0035
  article-title: Oncolytic virotherapy
  publication-title: Nat. Biotechnol.
– volume: 29
  start-page: 281
  year: 2005
  end-page: 286
  ident: bib0190
  article-title: Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids
  publication-title: Int. J. Obes.
– volume: 8
  start-page: e1002866
  year: 2012
  ident: bib0055
  article-title: Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection
  publication-title: PLoS Pathog.
– volume: 88
  start-page: 4366
  year: 2014
  end-page: 4374
  ident: bib0140
  article-title: Vaccinia virus requires glutamine but not glucose for efficient replication
  publication-title: J. Virol.
– volume: 15
  start-page: 511
  year: 2014
  end-page: 517
  ident: bib0280
  article-title: Proteomic analysis of chicken peripheral blood mononuclear cells after infection by Newcastle disease virus
  publication-title: J. Vet. Sci.
– year: 2018
  ident: bib0165
  article-title: Antagonism of glycolysis and reductive carboxylation of glutamine potentiates activity of oncolytic adenoviruses in cancer cells
  publication-title: Cancer Res.
– volume: 83
  start-page: 9283
  year: 2009
  end-page: 9295
  ident: bib0235
  article-title: Dynamic host energetics and cytoskeletal proteomes in human immunodeficiency virus type 1-infected human primary CD4 cells: analysis by multiplexed label-free mass spectrometry
  publication-title: J. Virol.
– volume: 65
  start-page: 1229
  year: 1984
  end-page: 1232
  ident: bib0130
  article-title: Early enhanced glucose uptake in human cytomegalovirus-infected cells
  publication-title: J. Gen. Virol.
– volume: 7
  year: 2012
  ident: bib0220
  article-title: E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia
  publication-title: PLoS One
– volume: 183
  start-page: 126
  year: 2018
  end-page: 133
  ident: bib0285
  article-title: Newcastle disease virus strain AF2240 as an oncolytic virus: a review
  publication-title: Acta Trop.
– volume: 3
  start-page: 1015
  year: 1957
  end-page: 1020
  ident: bib0160
  article-title: Some metabolic effects of ADENOVIRUS INFECTION IN HELA CELLS
  publication-title: Can. J. Microbiol.
– volume: 6
  year: 2011
  ident: bib0215
  article-title: E4orf1: A novel ligand that improves glucose disposal in cell culture
  publication-title: PLoS One
– volume: 35
  start-page: 714
  year: 2011
  end-page: 727
  ident: bib0330
  article-title: The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women
  publication-title: Int. J. Obes.
– volume: 4
  start-page: 61
  year: 2010
  ident: bib0250
  article-title: Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling, BMC Syst
  publication-title: Biol.
– reference: D. Berrigan, J.A. Lavigne, S.N. Perkins, T.R. Nagy, J.C. Barrett, S.D. Hursting, Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention., In Vivo. 19 (n.d.) 667–674.
– volume: 100
  start-page: 57
  year: 2000
  end-page: 70
  ident: bib0005
  article-title: The hallmarks of cancer
  publication-title: Cell.
– volume: 88
  start-page: 400
  year: 2016
  end-page: 407
  ident: bib0195
  article-title: An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation
  publication-title: J. Med. Virol.
– volume: 16
  start-page: 217
  year: 1975
  end-page: 221
  ident: bib0125
  article-title: Effect of 2-deoxy-D-glucose on herpesvirus-induced inhibition of cellular DNA synthesis
  publication-title: J. Virol.
– year: 2019
  ident: bib0370
  article-title: Targeting aerobic glycolysis by dichloroacetate improves Newcastle disease virus-mediated viro-immunotherapy in hepatocellular carcinoma
  publication-title: Br. J. Cancer
– volume: 52
  start-page: 447
  year: 1973
  end-page: 455
  ident: bib0120
  article-title: Effects of 2-deoxy-d-glucose on herpes simplex virus replication
  publication-title: Virology.
– volume: 83
  start-page: 475
  year: 1962
  end-page: 482
  ident: bib0115
  article-title: Nutritional requirements for the production of herpes simplex virus. I. Influence of glucose and glutamine of herpes simplex virus production by HeLa cells
  publication-title: J. Bacteriol.
– volume: 29
  start-page: 313
  year: 2010
  end-page: 324
  ident: bib0305
  article-title: Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer
  publication-title: Oncogene.
– volume: 105
  start-page: 8215
  year: 2008
  end-page: 8220
  ident: bib0345
  article-title: Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy
  publication-title: Proc. Natl. Acad. Sci.
– volume: 178
  start-page: 1230
  year: 1956
  end-page: 1231
  ident: bib0105
  article-title: Some metabolic effects of poliomyelitis virus on tissue culture
  publication-title: Nature
– volume: 39
  start-page: 36
  year: 2017
  end-page: 45
  ident: bib0335
  article-title: Calorie restriction in humans: an update, Ageing Res
  publication-title: Rev.
– volume: 6
  start-page: 300
  year: 2016
  end-page: 311
  ident: bib0355
  article-title: Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma
  publication-title: Am. J. Cancer Res.
– volume: 70
  start-page: 1564
  year: 2010
  end-page: 1572
  ident: bib0310
  article-title: Reduced levels of IGF-I mediate differential protection of normal and Cancer cells in response to fasting and improve chemotherapeutic index
  publication-title: Cancer Res.
– year: 2016
  ident: bib0390
  article-title: The Warburg Effect: 80 Years on
– volume: 124
  start-page: 3
  year: 2016
  end-page: 10
  ident: bib0200
  article-title: Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines
  publication-title: Biochimie
– year: 2016
  ident: bib0090
  article-title: Metformin Synergistically Enhances Cisplatin-induced Cytotoxicity in Esophageal Squamous Cancer cells Under Glucose-deprivation Conditions
– volume: 98
  start-page: 2895
  year: 2017
  end-page: 2911
  ident: bib0270
  article-title: Ecent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update
  publication-title: J. Gen. Virol.
– volume: 19
  start-page: 694
  year: 2014
  end-page: 701
  ident: bib0170
  article-title: Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication
  publication-title: Cell Metab.
– volume: 24
  start-page: 657
  year: 2016
  end-page: 671
  ident: bib0085
  article-title: LDHA-associated lactic acid production blunts tumor immunosurveillance by t and NK cells
  publication-title: Cell Metab.
– volume: 35
  start-page: 1573
  year: 2016
  end-page: 1581
  ident: bib0275
  article-title: Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites
  publication-title: Oncol. Rep.
– volume: 3
  start-page: 1
  year: 2014
  end-page: 18
  ident: bib0020
  article-title: Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
  publication-title: Elife.
– volume: 8
  year: 2013
  ident: bib0225
  article-title: Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal
  publication-title: PLoS One
– volume: 104
  start-page: 19345
  year: 2007
  end-page: 19350
  ident: bib0300
  article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
  publication-title: Proc. Natl. Acad. Sci.
– volume: 114
  start-page: 357
  year: 2016
  end-page: 361
  ident: bib0045
  article-title: Oncolytic viruses: finally delivering
  publication-title: Br. J. Cancer
– volume: 127
  start-page: 2626
  year: 2017
  end-page: 2630
  ident: bib0240
  article-title: Glutamine supplementation suppresses herpes simplex virus reactivation
  publication-title: J. Clin. Invest.
– volume: 124
  start-page: 269
  year: 1956
  end-page: 270
  ident: bib0015
  article-title: On respiratory impairment in Cancer cells
  publication-title: Science (80-.)
– volume: 95
  start-page: 47
  year: 1957
  end-page: 51
  ident: bib0155
  article-title: Accumulation of organic acids by HeLa cells infected with type 4 adenovirus
  publication-title: Exp. Biol. Med.
– volume: 11
  start-page: e1005052
  year: 2015
  ident: bib0245
  article-title: Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival
  publication-title: PLoS Pathog.
– volume: 37
  start-page: 36
  year: 2015
  ident: bib0025
  article-title: FDA approves first oncolytic virus therapy
  publication-title: Oncol. Times Uk
– volume: 51
  start-page: 548
  year: 2019
  end-page: 560
  ident: bib0395
  article-title: Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating t cell metabolism and promote tumor clearance
  publication-title: Immunity.
– volume: 166
  start-page: 1512
  year: 2016
  end-page: 1525
  ident: bib0260
  article-title: Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation
  publication-title: Cell.
– volume: 38
  start-page: 209
  year: 2019
  ident: bib0340
  article-title: Effects of short-term fasting on cancer treatment
  publication-title: J. Exp. Clin. Cancer Res.
– volume: 69
  start-page: 4918
  year: 2009
  end-page: 4925
  ident: bib0080
  article-title: Quantitative metabolome profiling of Colon and stomach Cancer microenvironment by capillary electrophoresis time-of-Flight mass spectrometry
  publication-title: Cancer Res.
– volume: 11
  start-page: 614
  year: 2019
  ident: bib0360
  article-title: Starvation-induced differential virotherapy using an oncolytic measles vaccine virus
  publication-title: Viruses.
– volume: 6
  start-page: 8873
  year: 2015
  ident: bib0175
  article-title: MYC-induced reprogramming of glutamine catabolism supports optimal virus replication
  publication-title: Nat. Commun.
– reference: (accessed September 12, 2019).
– start-page: 1
  year: 2018
  ident: bib0030
  article-title: Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference
  publication-title: Cancer Gene Ther.
– volume: 7
  start-page: 13488
  year: 2017
  ident: bib0295
  article-title: Limits of aerobic metabolism in cancer cells
  publication-title: Sci. Rep.
– volume: 29
  start-page: 548
  year: 2016
  end-page: 562
  ident: bib0095
  article-title: mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells
  publication-title: Cancer Cell
– volume: 300
  year: 2011
  ident: bib0205
  article-title: Template to improve glycemic control without reducing adiposity or dietary fat
  publication-title: Am. J. Physiol. - Endocrinol. Metab.
– volume: 132
  start-page: 3155
  year: 2002
  end-page: 3160
  ident: bib0185
  article-title: Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys
  publication-title: J. Nutr.
– volume: 29
  start-page: 548
  year: 2016
  end-page: 562
  ident: bib0375
  article-title: MTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells
  publication-title: Cancer Cell
– volume: 11
  start-page: 141
  year: 2019
  ident: bib0230
  article-title: Metabolic reprogramming of the host cell by human adenovirus infection
  publication-title: Viruses.
– volume: 6
  start-page: e1000719
  year: 2010
  ident: bib0065
  article-title: Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics
  publication-title: PLoS Pathog.
– volume: 18
  start-page: 57
  year: 2016
  ident: bib0325
  article-title: Intermittent energy restriction induces changes in breast gene expression and systemic metabolism
  publication-title: Breast Cancer Res.
– reference: L.D. Marroquin, J. Hynes, J.A. Dykens, J.D. Jamieson, Y. Will, Circumventing the Crabtree Effect: Replacing Media Glucose with Galactose Increases Susceptibility of HepG2 Cells to Mitochondrial Toxicants, (n.d.). https://doi.org/10.1093/toxsci/kfm052.
– volume: 415
  start-page: 153
  year: 2011
  end-page: 159
  ident: bib0070
  article-title: Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC–MS/MS analysis
  publication-title: Virology.
– volume: 34
  start-page: 276
  year: 1984
  end-page: 284
  ident: bib0135
  article-title: Enhanced regional uptake of 2-deoxy-D-[14C]glucose in focal herpes simplex type 1 encephalitis: autoradiographic study in the rat
  publication-title: Neurology
– volume: 96
  start-page: 395
  year: 2015
  end-page: 407
  ident: bib0150
  article-title: A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism
  publication-title: J. Gen. Virol.
– volume: 10
  start-page: e1004021
  year: 2014
  ident: bib0145
  article-title: De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection
  publication-title: PLoS Pathog.
– volume: 6
  start-page: 90
  year: 2019
  ident: bib0365
  article-title: 2-deoxyglucose and newcastle disease virus synergize to kill breast Cancer cells by inhibition of glycolysis pathway through Glyceraldehyde3-Phosphate downregulation
  publication-title: Front. Mol. Biosci.
– volume: 104
  start-page: 271
  year: 1956
  end-page: 287
  ident: bib0100
  article-title: The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell
  publication-title: J. Exp. Med.
– year: 2014
  ident: bib0290
  article-title: Dichloroacetate Blocks Aerobic Glycolytic Adaptation to Attenuated Measles Virus and Promotes Viral Replication Leading to Enhanced Oncolysis in Glioblastoma
– volume: 100
  start-page: 109
  year: 1957
  end-page: 118
  ident: bib0110
  article-title: The effect of animal viruses on host cell metabolism II. Effect of poliomyelitis virus on GLycolysis and uptake of Glycine by monkey kidney tissue cultures
  publication-title: J. Infect. Dis.
– volume: 4
  year: 2012
  ident: bib0350
  article-title: Fasting cycles retard growth of tumors and sensitize a range of Cancer cell types to chemotherapy
  publication-title: Sci. Transl. Med.
– volume: 28
  start-page: 249
  year: 2010
  end-page: 255
  ident: bib0385
  article-title: Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis HHS Public Access Author manuscript
  publication-title: Nat. Biotechnol.
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: bib0010
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 15
  start-page: 106
  year: 2017
  ident: bib0315
  article-title: When less may be more: calorie restriction and response to cancer therapy
  publication-title: BMC Med.
– volume: 2
  start-page: 295
  year: 2014
  end-page: 300
  ident: bib0040
  article-title: Oncolytic viruses and their application to Cancer immunotherapy
  publication-title: Cancer Immunol. Res.
– volume: 9
  start-page: 6523
  year: 2010
  end-page: 6534
  ident: bib0075
  article-title: Metabolomics approach for investigation of effects of dengue virus infection using the EA.hy926 cell line
  publication-title: J. Proteome Res.
– volume: 115
  start-page: E7158
  year: 2018
  end-page: E7165
  ident: bib0265
  article-title: Rhinovirus induces an anabolic reprogramming in host cell metabolism essential for viral replication
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 10
  start-page: e1004021
  year: 2014
  ident: 10.1016/j.cytogfr.2020.07.006_bib0145
  article-title: De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004021
– year: 2018
  ident: 10.1016/j.cytogfr.2020.07.006_bib0165
  article-title: Antagonism of glycolysis and reductive carboxylation of glutamine potentiates activity of oncolytic adenoviruses in cancer cells
  publication-title: Cancer Res.
– volume: 52
  start-page: 447
  year: 1973
  ident: 10.1016/j.cytogfr.2020.07.006_bib0120
  article-title: Effects of 2-deoxy-d-glucose on herpes simplex virus replication
  publication-title: Virology.
  doi: 10.1016/0042-6822(73)90340-1
– volume: 30
  start-page: 658
  year: 2012
  ident: 10.1016/j.cytogfr.2020.07.006_bib0035
  article-title: Oncolytic virotherapy
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2287
– volume: 104
  start-page: 19345
  year: 2007
  ident: 10.1016/j.cytogfr.2020.07.006_bib0300
  article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0709747104
– volume: 35
  start-page: 714
  year: 2011
  ident: 10.1016/j.cytogfr.2020.07.006_bib0330
  article-title: The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women
  publication-title: Int. J. Obes.
  doi: 10.1038/ijo.2010.171
– volume: 6
  start-page: e1000719
  year: 2010
  ident: 10.1016/j.cytogfr.2020.07.006_bib0065
  article-title: Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000719
– volume: 4
  start-page: 61
  year: 2010
  ident: 10.1016/j.cytogfr.2020.07.006_bib0250
  article-title: Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling, BMC Syst
  publication-title: Biol.
– volume: 166
  start-page: 1512
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0260
  article-title: Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.07.026
– start-page: 1
  year: 2018
  ident: 10.1016/j.cytogfr.2020.07.006_bib0030
  article-title: Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference
  publication-title: Cancer Gene Ther.
– volume: 95
  start-page: 47
  year: 1957
  ident: 10.1016/j.cytogfr.2020.07.006_bib0155
  article-title: Accumulation of organic acids by HeLa cells infected with type 4 adenovirus
  publication-title: Exp. Biol. Med.
  doi: 10.3181/00379727-95-23113
– volume: 98
  start-page: 2895
  year: 2017
  ident: 10.1016/j.cytogfr.2020.07.006_bib0270
  article-title: Ecent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.000980
– volume: 105
  start-page: 8215
  year: 2008
  ident: 10.1016/j.cytogfr.2020.07.006_bib0345
  article-title: Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0708100105
– volume: 35
  start-page: 1573
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0275
  article-title: Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2015.4522
– year: 2019
  ident: 10.1016/j.cytogfr.2020.07.006_bib0370
  article-title: Targeting aerobic glycolysis by dichloroacetate improves Newcastle disease virus-mediated viro-immunotherapy in hepatocellular carcinoma
  publication-title: Br. J. Cancer
– volume: 24
  start-page: 989
  year: 2000
  ident: 10.1016/j.cytogfr.2020.07.006_bib0180
  article-title: Increased adiposity in animals due to a human virus
  publication-title: Int. J. Obes. Relat. Metab. Disord.
  doi: 10.1038/sj.ijo.0801319
– volume: 19
  start-page: 694
  year: 2014
  ident: 10.1016/j.cytogfr.2020.07.006_bib0170
  article-title: Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.03.009
– volume: 15
  start-page: 511
  year: 2014
  ident: 10.1016/j.cytogfr.2020.07.006_bib0280
  article-title: Proteomic analysis of chicken peripheral blood mononuclear cells after infection by Newcastle disease virus
  publication-title: J. Vet. Sci.
  doi: 10.4142/jvs.2014.15.4.511
– volume: 15
  start-page: 106
  year: 2017
  ident: 10.1016/j.cytogfr.2020.07.006_bib0315
  article-title: When less may be more: calorie restriction and response to cancer therapy
  publication-title: BMC Med.
  doi: 10.1186/s12916-017-0873-x
– volume: 3
  start-page: 1
  year: 2014
  ident: 10.1016/j.cytogfr.2020.07.006_bib0020
  article-title: Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
  publication-title: Elife.
  doi: 10.7554/eLife.03342
– volume: 51
  start-page: 548
  year: 2019
  ident: 10.1016/j.cytogfr.2020.07.006_bib0395
  article-title: Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating t cell metabolism and promote tumor clearance
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2019.07.003
– volume: 11
  start-page: 614
  year: 2019
  ident: 10.1016/j.cytogfr.2020.07.006_bib0360
  article-title: Starvation-induced differential virotherapy using an oncolytic measles vaccine virus
  publication-title: Viruses.
  doi: 10.3390/v11070614
– volume: 11
  start-page: e1005052
  year: 2015
  ident: 10.1016/j.cytogfr.2020.07.006_bib0245
  article-title: Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005052
– volume: 3
  start-page: 1015
  year: 1957
  ident: 10.1016/j.cytogfr.2020.07.006_bib0160
  article-title: Some metabolic effects of ADENOVIRUS INFECTION IN HELA CELLS
  publication-title: Can. J. Microbiol.
  doi: 10.1139/m57-113
– volume: 100
  start-page: 57
  year: 2000
  ident: 10.1016/j.cytogfr.2020.07.006_bib0005
  article-title: The hallmarks of cancer
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)81683-9
– volume: 114
  start-page: 357
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0045
  article-title: Oncolytic viruses: finally delivering
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2015.481
– volume: 2
  start-page: 295
  year: 2014
  ident: 10.1016/j.cytogfr.2020.07.006_bib0040
  article-title: Oncolytic viruses and their application to Cancer immunotherapy
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-14-0015
– volume: 29
  start-page: 313
  year: 2010
  ident: 10.1016/j.cytogfr.2020.07.006_bib0305
  article-title: Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer
  publication-title: Oncogene.
  doi: 10.1038/onc.2009.358
– volume: 6
  start-page: 8873
  year: 2015
  ident: 10.1016/j.cytogfr.2020.07.006_bib0175
  article-title: MYC-induced reprogramming of glutamine catabolism supports optimal virus replication
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9873
– volume: 11
  start-page: 141
  year: 2019
  ident: 10.1016/j.cytogfr.2020.07.006_bib0230
  article-title: Metabolic reprogramming of the host cell by human adenovirus infection
  publication-title: Viruses.
  doi: 10.3390/v11020141
– volume: 124
  start-page: 3
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0200
  article-title: Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2014.11.005
– volume: 70
  start-page: 1564
  year: 2010
  ident: 10.1016/j.cytogfr.2020.07.006_bib0310
  article-title: Reduced levels of IGF-I mediate differential protection of normal and Cancer cells in response to fasting and improve chemotherapeutic index
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-3228
– volume: 178
  start-page: 1230
  year: 1956
  ident: 10.1016/j.cytogfr.2020.07.006_bib0105
  article-title: Some metabolic effects of poliomyelitis virus on tissue culture
  publication-title: Nature
  doi: 10.1038/1781230a0
– ident: 10.1016/j.cytogfr.2020.07.006_bib0380
  doi: 10.1093/toxsci/kfm052
– volume: 127
  start-page: 2626
  year: 2017
  ident: 10.1016/j.cytogfr.2020.07.006_bib0240
  article-title: Glutamine supplementation suppresses herpes simplex virus reactivation
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI88990
– volume: 6
  year: 2011
  ident: 10.1016/j.cytogfr.2020.07.006_bib0215
  article-title: E4orf1: A novel ligand that improves glucose disposal in cell culture
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023394
– volume: 83
  start-page: 9283
  year: 2009
  ident: 10.1016/j.cytogfr.2020.07.006_bib0235
  article-title: Dynamic host energetics and cytoskeletal proteomes in human immunodeficiency virus type 1-infected human primary CD4 cells: analysis by multiplexed label-free mass spectrometry
  publication-title: J. Virol.
  doi: 10.1128/JVI.00814-09
– volume: 38
  start-page: 209
  year: 2019
  ident: 10.1016/j.cytogfr.2020.07.006_bib0340
  article-title: Effects of short-term fasting on cancer treatment
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-019-1189-9
– volume: 2
  start-page: e132
  year: 2006
  ident: 10.1016/j.cytogfr.2020.07.006_bib0050
  article-title: Dynamics of the cellular metabolome during human cytomegalovirus infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0020132
– volume: 104
  start-page: 271
  year: 1956
  ident: 10.1016/j.cytogfr.2020.07.006_bib0100
  article-title: The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.104.2.271
– volume: 83
  start-page: 475
  year: 1962
  ident: 10.1016/j.cytogfr.2020.07.006_bib0115
  article-title: Nutritional requirements for the production of herpes simplex virus. I. Influence of glucose and glutamine of herpes simplex virus production by HeLa cells
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.83.3.475-482.1962
– volume: 96
  start-page: 395
  year: 2015
  ident: 10.1016/j.cytogfr.2020.07.006_bib0150
  article-title: A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.069591-0
– volume: 144
  start-page: 646
  year: 2011
  ident: 10.1016/j.cytogfr.2020.07.006_bib0010
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– ident: 10.1016/j.cytogfr.2020.07.006_bib0320
– volume: 132
  start-page: 3155
  year: 2002
  ident: 10.1016/j.cytogfr.2020.07.006_bib0185
  article-title: Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys
  publication-title: J. Nutr.
  doi: 10.1093/jn/131.10.3155
– volume: 115
  start-page: E7158
  year: 2018
  ident: 10.1016/j.cytogfr.2020.07.006_bib0265
  article-title: Rhinovirus induces an anabolic reprogramming in host cell metabolism essential for viral replication
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1800525115
– volume: 29
  start-page: 548
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0095
  article-title: mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.02.018
– volume: 16
  start-page: 217
  year: 1975
  ident: 10.1016/j.cytogfr.2020.07.006_bib0125
  article-title: Effect of 2-deoxy-D-glucose on herpesvirus-induced inhibition of cellular DNA synthesis
  publication-title: J. Virol.
  doi: 10.1128/JVI.16.2.217-221.1975
– volume: 37
  start-page: 36
  year: 2015
  ident: 10.1016/j.cytogfr.2020.07.006_bib0025
  article-title: FDA approves first oncolytic virus therapy
  publication-title: Oncol. Times Uk
  doi: 10.1097/01.COT.0000475724.97729.9e
– volume: 18
  start-page: 57
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0325
  article-title: Intermittent energy restriction induces changes in breast gene expression and systemic metabolism
  publication-title: Breast Cancer Res.
  doi: 10.1186/s13058-016-0714-4
– volume: 65
  start-page: 1229
  year: 1984
  ident: 10.1016/j.cytogfr.2020.07.006_bib0130
  article-title: Early enhanced glucose uptake in human cytomegalovirus-infected cells
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-65-7-1229
– volume: 34
  start-page: 276
  year: 1984
  ident: 10.1016/j.cytogfr.2020.07.006_bib0135
  article-title: Enhanced regional uptake of 2-deoxy-D-[14C]glucose in focal herpes simplex type 1 encephalitis: autoradiographic study in the rat
  publication-title: Neurology
  doi: 10.1212/WNL.34.3.276
– volume: 300
  year: 2011
  ident: 10.1016/j.cytogfr.2020.07.006_bib0205
  article-title: Template to improve glycemic control without reducing adiposity or dietary fat
  publication-title: Am. J. Physiol. - Endocrinol. Metab.
  doi: 10.1152/ajpendo.00703.2010
– year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0090
– volume: 6
  start-page: 90
  year: 2019
  ident: 10.1016/j.cytogfr.2020.07.006_bib0365
  article-title: 2-deoxyglucose and newcastle disease virus synergize to kill breast Cancer cells by inhibition of glycolysis pathway through Glyceraldehyde3-Phosphate downregulation
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00090
– volume: 29
  start-page: 281
  year: 2005
  ident: 10.1016/j.cytogfr.2020.07.006_bib0190
  article-title: Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids
  publication-title: Int. J. Obes.
  doi: 10.1038/sj.ijo.0802830
– volume: 124
  start-page: 269
  year: 1956
  ident: 10.1016/j.cytogfr.2020.07.006_bib0015
  article-title: On respiratory impairment in Cancer cells
  publication-title: Science (80-.)
  doi: 10.1126/science.124.3215.269
– volume: 69
  start-page: 4918
  year: 2009
  ident: 10.1016/j.cytogfr.2020.07.006_bib0080
  article-title: Quantitative metabolome profiling of Colon and stomach Cancer microenvironment by capillary electrophoresis time-of-Flight mass spectrometry
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-4806
– volume: 4
  year: 2012
  ident: 10.1016/j.cytogfr.2020.07.006_bib0350
  article-title: Fasting cycles retard growth of tumors and sensitize a range of Cancer cell types to chemotherapy
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3003293
– volume: 8
  year: 2013
  ident: 10.1016/j.cytogfr.2020.07.006_bib0225
  article-title: Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060651
– volume: 29
  start-page: 548
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0375
  article-title: MTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.02.018
– volume: 24
  start-page: 657
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0085
  article-title: LDHA-associated lactic acid production blunts tumor immunosurveillance by t and NK cells
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.011
– volume: 8
  start-page: e1002866
  year: 2012
  ident: 10.1016/j.cytogfr.2020.07.006_bib0055
  article-title: Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002866
– year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0390
– volume: 7
  start-page: e1002124
  year: 2011
  ident: 10.1016/j.cytogfr.2020.07.006_bib0060
  article-title: Divergent effects of human cytomegalovirus and herpes simplex Virus-1 on cellular metabolism
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002124
– volume: 6
  start-page: 300
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0355
  article-title: Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma
  publication-title: Am. J. Cancer Res.
– volume: 183
  start-page: 271
  year: 1959
  ident: 10.1016/j.cytogfr.2020.07.006_bib0255
  article-title: Inhibition of influenza virus multiplication with a glucose antimetabolite (2-deoxy-D-glucose)
  publication-title: Nature.
  doi: 10.1038/183271b0
– volume: 36
  start-page: 701
  year: 2013
  ident: 10.1016/j.cytogfr.2020.07.006_bib0210
  article-title: Long-term changes in adiposity and glycemic control are associated with past adenovirus infection
  publication-title: Diabetes Care
  doi: 10.2337/dc12-1089
– volume: 100
  start-page: 109
  year: 1957
  ident: 10.1016/j.cytogfr.2020.07.006_bib0110
  article-title: The effect of animal viruses on host cell metabolism II. Effect of poliomyelitis virus on GLycolysis and uptake of Glycine by monkey kidney tissue cultures
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/100.2.109
– volume: 39
  start-page: 36
  year: 2017
  ident: 10.1016/j.cytogfr.2020.07.006_bib0335
  article-title: Calorie restriction in humans: an update, Ageing Res
  publication-title: Rev.
– volume: 415
  start-page: 153
  year: 2011
  ident: 10.1016/j.cytogfr.2020.07.006_bib0070
  article-title: Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC–MS/MS analysis
  publication-title: Virology.
  doi: 10.1016/j.virol.2011.04.007
– volume: 7
  year: 2012
  ident: 10.1016/j.cytogfr.2020.07.006_bib0220
  article-title: E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047813
– volume: 183
  start-page: 126
  year: 2018
  ident: 10.1016/j.cytogfr.2020.07.006_bib0285
  article-title: Newcastle disease virus strain AF2240 as an oncolytic virus: a review
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2018.04.007
– volume: 9
  start-page: 6523
  year: 2010
  ident: 10.1016/j.cytogfr.2020.07.006_bib0075
  article-title: Metabolomics approach for investigation of effects of dengue virus infection using the EA.hy926 cell line
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100727m
– volume: 88
  start-page: 400
  year: 2016
  ident: 10.1016/j.cytogfr.2020.07.006_bib0195
  article-title: An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.24362
– volume: 7
  start-page: 13488
  year: 2017
  ident: 10.1016/j.cytogfr.2020.07.006_bib0295
  article-title: Limits of aerobic metabolism in cancer cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14071-y
– volume: 28
  start-page: 249
  year: 2010
  ident: 10.1016/j.cytogfr.2020.07.006_bib0385
  article-title: Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis HHS Public Access Author manuscript
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1606
– year: 2014
  ident: 10.1016/j.cytogfr.2020.07.006_bib0290
– volume: 88
  start-page: 4366
  year: 2014
  ident: 10.1016/j.cytogfr.2020.07.006_bib0140
  article-title: Vaccinia virus requires glutamine but not glucose for efficient replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.03134-13
SSID ssj0004350
Score 2.3752334
SecondaryResourceType review_article
Snippet [Display omitted] •Each oncolytic virus type has essential nutrients required for optimal oncolysis.•In vitro work often uses conditions that do not reflect...
Graphical abstract
Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 115
SubjectTerms Advanced Basic Science
Cancer metabolism
Cancer Vaccines
Humans
Immunotherapy
Metabolism
Neoplasms - therapy
Oncolytic Virotherapy
Oncolytic virus
Oncolytic Viruses - immunology
Title The role of cancer metabolism in defining the success of oncolytic viro-immunotherapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1359610120301520
https://www.clinicalkey.es/playcontent/1-s2.0-S1359610120301520
https://dx.doi.org/10.1016/j.cytogfr.2020.07.006
https://www.ncbi.nlm.nih.gov/pubmed/32921554
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHNpLVaCP5SUfqt6yj8Sxk-NqBVqgrFALEjfLzyqIzSISDnvpb2cmcRYQVUGVIkWxPHEyM7Y_2_Mg5JtydmRZgsateRoxIVyU6xGPcpUYLQT3WbPfcTbj00t2cpVerZFJ5wuDZpVh7G_H9Ga0DiWDwM3BbVEMfo2SNOcYngpRfRrjup0xgVre__No5gFwoPUUTvMIaz968Qyu-2ZZL357DAsaD5sYnpj46J_z05PJ5-gj-RBQIx23H7ZJ1ly5RbbHJayY50v6nTZ2nM0G-RZ5N-lyuG2TS9ACigaEdOGpQQHf0bmrQfA3RTWnRUmt802KCApAkFb3TfpErLwoQUOW0BxFR7ioQDeS4Ky1_EQujg4vJtMoJFKIDBOsjrRjCs_LmFepTURmOHTsmBttXayZU4BplNKZ1qk3OvPMcp9bAI5agYhZknwm6-WidF8J1UKnOou9sYlhyrBcAZ7kLLNwacBWPcI67kkTgoxjrosb2VmTXcvAdIlMl0M8_uY90l-R3bZRNl4j4J1oZOdCCoOehHngNULxN0JXha5byZGsYjmUL9SrR7IV5TMNfUujX1rtWf1cEucxIrmd_3_pLnmPT61pzR5Zr-_u3T4ApFofND3ggGyMJz9_nOP9-HQ6g9LZ-dkDInoUFQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcKCXqoU-Ulq6h6o3k8T7sH2MoqJQIJcGidtqn5URcRA2h_x7dux1aNUKqko-2R4_ZmZ3v92dbwbgi3J2YhnF4NaCJyzLXFLoiUgKRY3OMuHzdr3jYiHml-z7Fb_agVnPhcGwytj3d31621vHM6OozdFtWY5-TCgvBKanQlTP0zBv38XsVHwAu9PTs_nikR5JeUcW5kWCAo9EntH1sdk0658eM4Om4zaNJ9Y-enKI-mX8OXkFLyNwJNPu217Djqv24WBahUnzakO-kjaUs10j34e9WV_G7QAugyMQjCEka08M2viOrFwTbH9T1itSVsQ631aJIAELkvq-raCIN6-r4CSb8DqCXLikRCZJ5Gtt3sDy5NtyNk9iLYXEsIw1iXZM4ZYZ84pbmuVGhLadCqOtSzVzKsAapXSuNfdG555Z4QsbsKNWwcqM0rcwqNaVew9EZ5rrPPXGUsOUYYUKkFKw3IZDB3g1BNZrT5qYZxzLXdzIPqDsWkalS1S6HOMOuBjC8Vbstku08ZyA6E0jexZp6PdkGAqeE8z-Jujq2HprOZF1KsfyDw8bQr6V_M1J_-Wl7zrv2f4cTYsUwdyH_3_oZ9ibLy_O5fnp4uwQXuCVLtLmIwyau3v3KeClRh_F9vAAaTAUJQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+cancer+metabolism+in+defining+the+success+of+oncolytic+viro-immunotherapy&rft.jtitle=Cytokine+%26+growth+factor+reviews&rft.au=Dyer%2C+Arthur&rft.au=Frost%2C+Sally&rft.au=Fisher%2C+Kerry+D.&rft.au=Seymour%2C+Len+W.&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6101&rft.volume=56&rft.spage=115&rft.epage=123&rft_id=info:doi/10.1016%2Fj.cytogfr.2020.07.006&rft.externalDocID=S1359610120301520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6101&client=summon