The role of cancer metabolism in defining the success of oncolytic viro-immunotherapy
[Display omitted] •Each oncolytic virus type has essential nutrients required for optimal oncolysis.•In vitro work often uses conditions that do not reflect conditions within tumours in vivo.•Reducing nutrients can trigger the differential stress response leaving tumour cells vulnerable to treatment...
Saved in:
Published in | Cytokine & growth factor reviews Vol. 56; pp. 115 - 123 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-6101 1879-0305 |
DOI | 10.1016/j.cytogfr.2020.07.006 |
Cover
Loading…
Abstract | [Display omitted]
•Each oncolytic virus type has essential nutrients required for optimal oncolysis.•In vitro work often uses conditions that do not reflect conditions within tumours in vivo.•Reducing nutrients can trigger the differential stress response leaving tumour cells vulnerable to treatment while protecting non-tumour cells.•Understanding the metabolic requirements of an oncolytic virus can permit improved treatment strategies.
Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies. |
---|---|
AbstractList | Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies. Graphical abstract [Display omitted] •Each oncolytic virus type has essential nutrients required for optimal oncolysis.•In vitro work often uses conditions that do not reflect conditions within tumours in vivo.•Reducing nutrients can trigger the differential stress response leaving tumour cells vulnerable to treatment while protecting non-tumour cells.•Understanding the metabolic requirements of an oncolytic virus can permit improved treatment strategies. Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic virotherapy is an exciting interdisciplinary field that provides insights into virology, oncology, and immunotherapy. Recent years have seen greater focus on rational design of cancer-selective viruses together with strategies to exploit their immunostimulatory capabilities, ultimately to develop powerful oncolytic cancer vaccines. However, despite great interest in the field, many important experiments are still conducted under optimum conditions in vitro, with many nutrients present in excess and with cellular stress kept to a minimum. Whilst this provides a convenient platform for cell culture, it bears little relation to the typical conditions found within a tumour in vivo, where cells are often subject to a range of metabolic and environmental stresses. Viral infection and cancer will both lead to production of metabolites that are also not present in media in vitro. Understanding how oncolytic viruses interact with cells exposed to more representative metabolic conditions in vitro represents an under-explored area of study that could provide valuable insight into the intelligent design of superior oncolytic viruses and help bridge the gap between bench and bedside. This review summarises the major metabolic pathways altered in cancer cells, during viral infection and highlights possible targets for future studies. |
Author | Fisher, Kerry D. Seymour, Len W. Dyer, Arthur Frost, Sally |
Author_xml | – sequence: 1 givenname: Arthur surname: Dyer fullname: Dyer, Arthur organization: Department of Oncology, University of Oxford, Oxford, UK – sequence: 2 givenname: Sally surname: Frost fullname: Frost, Sally organization: Department of Oncology, University of Oxford, Oxford, UK – sequence: 3 givenname: Kerry D. surname: Fisher fullname: Fisher, Kerry D. organization: Department of Oncology, University of Oxford, Oxford, UK – sequence: 4 givenname: Len W. surname: Seymour fullname: Seymour, Len W. email: len.seymour@oncology.ox.ac.uk organization: Department of Oncology, University of Oxford, Oxford, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32921554$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1O3DAUha0KVGDaRyjKCyTYSZwfIVpVqAUkJBYMa8u-uaYeEntke5Dy9nU0sEFCsLG9OOf43u-ckAPrLBLyg9GCUdacbQqYo3vUvihpSQvaFpQ2X8gx69o-pxXlB-ld8T5vkvyInISwoZTWFadfyVFV9iXjvD4mD-t_mHk3YuZ0BtIC-mzCKJUbTZgyY7MBtbHGPmYxKcMOAENYxM6CG-doIHs23uVmmnbWJY2X2_kbOdRyDPj95V6R9d8_68vr_Pbu6uby920OdVvHXGEtO9bzWks-VG0HDW2rsgE1YKlqlJxxKVWnFNegOl0Pje6HvmdKYrJW1Yqc7mO3OzXhILbeTNLP4nW9JDjfC8C7EDxqASbKaJyNXppRMCoWmGIjXmCKBaagrUgwk5u_cb9-8JHv196HafVng14EMJjQDsYjRDE482HCzzcJMKYSQI5POGPYuJ23iatgIpSCivul6KXnMhXPeDpX5OL9gE8M8B-KDL2W |
CitedBy_id | crossref_primary_10_3390_cancers15215291 crossref_primary_10_1002_mog2_23 crossref_primary_10_1016_j_virusres_2023_199285 crossref_primary_10_1016_j_omton_2024_200826 crossref_primary_10_1142_S1793524523500705 crossref_primary_10_3390_cancers15102721 crossref_primary_10_3390_cancers13061260 |
Cites_doi | 10.1371/journal.ppat.1004021 10.1016/0042-6822(73)90340-1 10.1038/nbt.2287 10.1073/pnas.0709747104 10.1038/ijo.2010.171 10.1371/journal.ppat.1000719 10.1016/j.cell.2016.07.026 10.3181/00379727-95-23113 10.1099/jgv.0.000980 10.1073/pnas.0708100105 10.3892/or.2015.4522 10.1038/sj.ijo.0801319 10.1016/j.cmet.2014.03.009 10.4142/jvs.2014.15.4.511 10.1186/s12916-017-0873-x 10.7554/eLife.03342 10.1016/j.immuni.2019.07.003 10.3390/v11070614 10.1371/journal.ppat.1005052 10.1139/m57-113 10.1016/S0092-8674(00)81683-9 10.1038/bjc.2015.481 10.1158/2326-6066.CIR-14-0015 10.1038/onc.2009.358 10.1038/ncomms9873 10.3390/v11020141 10.1016/j.biochi.2014.11.005 10.1158/0008-5472.CAN-09-3228 10.1038/1781230a0 10.1093/toxsci/kfm052 10.1172/JCI88990 10.1371/journal.pone.0023394 10.1128/JVI.00814-09 10.1186/s13046-019-1189-9 10.1371/journal.ppat.0020132 10.1084/jem.104.2.271 10.1128/JB.83.3.475-482.1962 10.1099/vir.0.069591-0 10.1016/j.cell.2011.02.013 10.1093/jn/131.10.3155 10.1073/pnas.1800525115 10.1016/j.ccell.2016.02.018 10.1128/JVI.16.2.217-221.1975 10.1097/01.COT.0000475724.97729.9e 10.1186/s13058-016-0714-4 10.1099/0022-1317-65-7-1229 10.1212/WNL.34.3.276 10.1152/ajpendo.00703.2010 10.3389/fmolb.2019.00090 10.1038/sj.ijo.0802830 10.1126/science.124.3215.269 10.1158/0008-5472.CAN-08-4806 10.1126/scitranslmed.3003293 10.1371/journal.pone.0060651 10.1016/j.cmet.2016.08.011 10.1371/journal.ppat.1002866 10.1371/journal.ppat.1002124 10.1038/183271b0 10.2337/dc12-1089 10.1093/infdis/100.2.109 10.1016/j.virol.2011.04.007 10.1371/journal.pone.0047813 10.1016/j.actatropica.2018.04.007 10.1021/pr100727m 10.1002/jmv.24362 10.1038/s41598-017-14071-y 10.1038/nbt.1606 10.1128/JVI.03134-13 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
DOI | 10.1016/j.cytogfr.2020.07.006 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1879-0305 |
EndPage | 123 |
ExternalDocumentID | 32921554 10_1016_j_cytogfr_2020_07_006 S1359610120301520 1_s2_0_S1359610120301520 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Cancer Research UK grantid: 29106 – fundername: Medical Research Council grantid: MR/N013468/1 – fundername: Cancer Research UK grantid: C557/A17720 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4CK 4G. 53G 5GY 5VS 7-5 71M 8P~ AAAJQ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CJTIS CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM LUGTX M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SEL SES SEW SPCBC SSH SSI SSU SSZ T5K Z5R ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU DOVZS EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM |
ID | FETCH-LOGICAL-c474t-be4a81954fa5d378c607326cbde2b4ea515aab8bb5fcb8f4d6f9d991baebe433 |
IEDL.DBID | .~1 |
ISSN | 1359-6101 |
IngestDate | Sat May 31 02:11:27 EDT 2025 Thu Apr 24 23:44:03 EDT 2025 Tue Jul 01 02:57:32 EDT 2025 Fri Feb 23 02:46:18 EST 2024 Tue Feb 25 20:00:33 EST 2025 Tue Aug 26 19:42:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oncolytic virotherapy Oncolytic virus Cancer metabolism Metabolism Immunotherapy |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-be4a81954fa5d378c607326cbde2b4ea515aab8bb5fcb8f4d6f9d991baebe433 |
PMID | 32921554 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_32921554 crossref_citationtrail_10_1016_j_cytogfr_2020_07_006 crossref_primary_10_1016_j_cytogfr_2020_07_006 elsevier_sciencedirect_doi_10_1016_j_cytogfr_2020_07_006 elsevier_clinicalkeyesjournals_1_s2_0_S1359610120301520 elsevier_clinicalkey_doi_10_1016_j_cytogfr_2020_07_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Cytokine & growth factor reviews |
PublicationTitleAlternate | Cytokine Growth Factor Rev |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yu, Bian, Gu, He (bib0090) 2016 Krishnapuram, Dhurandhar, Dubuisson, Hegde, Dhurandhar (bib0225) 2013; 8 Meng, Li, Chen, Zheng, Xu, Zhang, Dong, Wu, Yu, Wei (bib0370) 2019 (bib0025) 2015; 37 Harvie, Sims, Pegington, Spence, Mitchell, Vaughan, Allwood, Xu, Rattray, Goodacre, Evans, Mitchell, McMullen, Clarke, Howell (bib0325) 2016; 18 Delgado, Sanchez, Camarda, Lagunoff (bib0055) 2012; 8 Bil-Lula, Krzywonos-Zawadzka, Sawicki, Woźniak (bib0195) 2016; 88 Ritter, Wahl, Freund, Genzel, Reichl (bib0250) 2010; 4 Potter, Newport, Morten (bib0390) 2016 Fisher, Ginsberg (bib0155) 1957; 95 Gohil, Sheth, Nilsson, Wojtovich, Lee, Perocchi, Chen, Clish, Ayata, Brookes, Mootha, Author (bib0385) 2010; 28 Birungi, Chen, Loy, Ng, Li (bib0075) 2010; 9 Lee, Safdie, Raffaghello, Wei, Madia, Parrella, Hwang, Cohen, Bianchi, Longo (bib0310) 2010; 70 Dhurandhar, Israel, Kolesar, Mayhew, Cook, Atkinson (bib0180) 2000; 24 Wang, Huen, Luan, Yu, Zhang, Gallezot, Booth, Medzhitov (bib0260) 2016; 166 Hirayama, Kami, Sugimoto, Sugawara, Toki, Onozuka, Kinoshita, Saito, Ochiai, Tomita, Esumi, Soga (bib0080) 2009; 69 LEWIS, SCOTT (bib0115) 1962; 83 Al-Shammari, Abdullah, Allami, Yaseen (bib0365) 2019; 6 Lee, Raffaghello, Brandhorst, Safdie, Bianchi, Martin-Montalvo, Pistoia, Wei, Hwang, Merlino, Emionite, de Cabo, Longo (bib0350) 2012; 4 Esaki, Rabkin, Martuza, Wakimoto (bib0355) 2016; 6 Wang, Hoshino, Dowdell, Bosch-Marce, Myers, Sarmiento, Pesnicak, Krause, Cohen (bib0240) 2017; 127 Diamond, Syder, Jacobs, Sorensen, Walters, Proll, McDermott, Gritsenko, Zhang, Zhao, Metz, Camp, Waters, Smith, Rice, Katze (bib0065) 2010; 6 Seymour, Fisher (bib0045) 2016; 114 Most, Tosti, Redman, Fontana (bib0335) 2017; 39 Courtney, Steiner, Benyesh-Melnick (bib0120) 1973; 52 Thai, Thaker, Feng, Du, Hu, Ting Wu, Graeber, Braas, Christofk (bib0175) 2015; 6 Thai, Graham, Braas, Nehil, Komisopoulou, Kurdistani, McCormick, Graeber, Christofk (bib0170) 2014; 19 Vastag, Koyuncu, Grady, Shenk, Rabinowitz (bib0060) 2011; 7 Li, Meng, Su, Chen, Xia, Xu, Yu, Jiang, Wei (bib0290) 2014 Raffaghello, Lee, Safdie, Wei, Madia, Bianchi, Longo (bib0345) 2008; 105 Kilbourne (bib0255) 1959; 183 Warburg (bib0015) 1956; 124 D. Berrigan, J.A. Lavigne, S.N. Perkins, T.R. Nagy, J.C. Barrett, S.D. Hursting, Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention., In Vivo. 19 (n.d.) 667–674. Brand, Singer, Koehl, Kolitzus, Schoenhammer, Thiel, Matos, Bruss, Klobuch, Peter, Kastenberger, Bogdan, Schleicher, Mackensen, Ullrich, Fichtner-Feigl, Kesselring, Mack, Ritter, Schmid, Blank, Dettmer, Oefner, Hoffmann, Walenta, Geissler, Pouyssegur, Villunger, Steven, Seliger, Schreml, Haferkamp, Kohl, Karrer, Berneburg, Herr, Mueller-Klieser, Renner, Kreutz (bib0085) 2016; 24 Felt, Grdzelishvili (bib0270) 2017; 98 de Groot, Pijl, van der Hoeven, Kroep (bib0340) 2019; 38 Hollenbaugh, Munger, Kim (bib0070) 2011; 415 Atkinson, Dhurandhar, Allison, Bowen, Israel, Albu, Augustus (bib0190) 2005; 29 Ludwig, Rott (bib0125) 1975; 16 Saito, Price (bib0135) 1984; 34 Zhou, Wen, Zhang, Tang, Li (bib0275) 2016; 35 EAGLE, HABEL (bib0100) 1956; 104 Levy, Baron (bib0110) 1957; 100 Deng, Cong, Yin, Yang, Ding, Yu, Liu, Wang, Ding (bib0280) 2014; 15 Harvie, Pegington, Mattson, Frystyk, Dillon, Evans, Cuzick, Jebb, Martin, Cutler, Son, Maudsley, Carlson, Egan, Flyvbjerg, Howell (bib0330) 2011; 35 Shestov, Liu, Ser, Cluntun, Hung, Huang, Kim, Le, Yellen, Albeck, Locasale (bib0020) 2014; 3 Hanahan, Weinberg, Hanahan, Weinberg (bib0010) 2011; 144 Chiocca, Rabkin (bib0040) 2014; 2 Dyer, Schoeps, Frost, Jakeman, Scott, Freedman, Seymour (bib0165) 2018 Dhurandhar, Dubuisson, Mashtalir, Krishnapuram, Hegde, Dhurandhar (bib0215) 2011; 6 Dhurandhar, Whigham, Abbott, Schultz-Darken, Israel, Bradley, Kemnitz, Allison, Atkinson (bib0185) 2002; 132 Hanahan, Weinberg (bib0005) 2000; 100 Landini (bib0130) 1984; 65 Dhurandhar, Krishnapuram, Hegde, Dubuisson, Tao, Dong, Ye, Dhurandhar (bib0220) 2012; 7 O’Flanagan, Smith, McDonell, Hursting (bib0315) 2017; 15 Dyer, Baugh, Chia, Frost, Jacobus, Iris, Khalique, Pokrovska, Scott, Taverner, Seymour, Lei (bib0030) 2018 Kalyanasundram, Hamid, Yusoff, Chia (bib0285) 2018; 183 L.D. Marroquin, J. Hynes, J.A. Dykens, J.D. Jamieson, Y. Will, Circumventing the Crabtree Effect: Replacing Media Glucose with Galactose Increases Susceptibility of HepG2 Cells to Mitochondrial Toxicants, (n.d.). https://doi.org/10.1093/toxsci/kfm052. Fontaine, Camarda, Lagunoff (bib0140) 2014; 88 Na, Dubuisson, Hegde, Nam, Dhurandhar (bib0200) 2016; 124 Lin, Dubuisson, Rubicz, Liu, Allison, Curran, Comuzzie, Blangero, Leach, Göring, Dhurandhar (bib0210) 2013; 36 Scheubeck, Berchtold, Smirnow, Schenk, Beil, Lauer (bib0360) 2019; 11 Mazzon, Castro, Roberts, Griffin, Smith (bib0150) 2015; 96 Munger, Bajad, Coller, Shenk, Rabinowitz (bib0050) 2006; 2 Pusapati, Daemen, Wilson, Sandoval, Gao, Haley, Baudy, Hatzivassiliou, Evangelista, Settleman (bib0095) 2016; 29 Krishnapuram, Dhurandhar, Dubuisson, Kirk-Ballard, Bajpeyi, Butte, Sothern, Larsen-Meyer, Chalew, Bennett, Gupta, Greenway, Johnson, Brashear, Reinhart, Rankinen, Bouchard, Cefalu, Ye, Javier, Zuberi, Dhurandhar (bib0205) 2011; 300 (accessed September 12, 2019). Russell, Peng, Bell (bib0035) 2012; 30 Sanchez, Carroll, Thalhofer, Lagunoff (bib0245) 2015; 11 Rozee, Ottey, van Rooyen (bib0160) 1957; 3 Greseth, Traktman (bib0145) 2014; 10 Fernandez-de-Cossio-Diaz, Vazquez (bib0295) 2017; 7 DeBerardinis, Cheng (bib0305) 2010; 29 Prusinkiewicz, Mymryk (bib0230) 2019; 11 Pusapati, Daemen, Wilson, Sandoval, Gao, Haley, Baudy, Hatzivassiliou, Evangelista, Settleman (bib0375) 2016; 29 Chan, Sutton, Jacobs, Bondarenko, Smith, Katze (bib0235) 2009; 83 Gualdoni, Mayer, Kapsch, Kreuzberg, Puck, Kienzl, Oberndorfer, Frühwirth, Winkler, Blaas, Zlabinger, Stöckl (bib0265) 2018; 115 DeBerardinis, Mancuso, Daikhin, Nissim, Yudkoff, Wehrli, Thompson (bib0300) 2007; 104 Rivadeneira, DePeaux, Wang, Kulkarni, Tabib, Menk, Sampath, Lafyatis, Ferris, Sarkar, Thorne, Delgoffe (bib0395) 2019; 51 BARON, LEVY (bib0105) 1956; 178 Diamond (10.1016/j.cytogfr.2020.07.006_bib0065) 2010; 6 Ludwig (10.1016/j.cytogfr.2020.07.006_bib0125) 1975; 16 Potter (10.1016/j.cytogfr.2020.07.006_bib0390) 2016 Lin (10.1016/j.cytogfr.2020.07.006_bib0210) 2013; 36 Scheubeck (10.1016/j.cytogfr.2020.07.006_bib0360) 2019; 11 Dhurandhar (10.1016/j.cytogfr.2020.07.006_bib0180) 2000; 24 (10.1016/j.cytogfr.2020.07.006_bib0025) 2015; 37 Brand (10.1016/j.cytogfr.2020.07.006_bib0085) 2016; 24 Lee (10.1016/j.cytogfr.2020.07.006_bib0350) 2012; 4 Harvie (10.1016/j.cytogfr.2020.07.006_bib0330) 2011; 35 Hanahan (10.1016/j.cytogfr.2020.07.006_bib0005) 2000; 100 Esaki (10.1016/j.cytogfr.2020.07.006_bib0355) 2016; 6 Hirayama (10.1016/j.cytogfr.2020.07.006_bib0080) 2009; 69 Pusapati (10.1016/j.cytogfr.2020.07.006_bib0095) 2016; 29 Landini (10.1016/j.cytogfr.2020.07.006_bib0130) 1984; 65 Fontaine (10.1016/j.cytogfr.2020.07.006_bib0140) 2014; 88 Zhou (10.1016/j.cytogfr.2020.07.006_bib0275) 2016; 35 Fernandez-de-Cossio-Diaz (10.1016/j.cytogfr.2020.07.006_bib0295) 2017; 7 Chiocca (10.1016/j.cytogfr.2020.07.006_bib0040) 2014; 2 Krishnapuram (10.1016/j.cytogfr.2020.07.006_bib0225) 2013; 8 Prusinkiewicz (10.1016/j.cytogfr.2020.07.006_bib0230) 2019; 11 Dyer (10.1016/j.cytogfr.2020.07.006_bib0165) 2018 Russell (10.1016/j.cytogfr.2020.07.006_bib0035) 2012; 30 Yu (10.1016/j.cytogfr.2020.07.006_bib0090) 2016 Sanchez (10.1016/j.cytogfr.2020.07.006_bib0245) 2015; 11 LEWIS (10.1016/j.cytogfr.2020.07.006_bib0115) 1962; 83 Hollenbaugh (10.1016/j.cytogfr.2020.07.006_bib0070) 2011; 415 DeBerardinis (10.1016/j.cytogfr.2020.07.006_bib0305) 2010; 29 Li (10.1016/j.cytogfr.2020.07.006_bib0290) 2014 Shestov (10.1016/j.cytogfr.2020.07.006_bib0020) 2014; 3 10.1016/j.cytogfr.2020.07.006_bib0380 de Groot (10.1016/j.cytogfr.2020.07.006_bib0340) 2019; 38 Chan (10.1016/j.cytogfr.2020.07.006_bib0235) 2009; 83 Saito (10.1016/j.cytogfr.2020.07.006_bib0135) 1984; 34 Dhurandhar (10.1016/j.cytogfr.2020.07.006_bib0220) 2012; 7 Bil-Lula (10.1016/j.cytogfr.2020.07.006_bib0195) 2016; 88 Rozee (10.1016/j.cytogfr.2020.07.006_bib0160) 1957; 3 Pusapati (10.1016/j.cytogfr.2020.07.006_bib0375) 2016; 29 Dhurandhar (10.1016/j.cytogfr.2020.07.006_bib0215) 2011; 6 Hanahan (10.1016/j.cytogfr.2020.07.006_bib0010) 2011; 144 Courtney (10.1016/j.cytogfr.2020.07.006_bib0120) 1973; 52 Kilbourne (10.1016/j.cytogfr.2020.07.006_bib0255) 1959; 183 BARON (10.1016/j.cytogfr.2020.07.006_bib0105) 1956; 178 Mazzon (10.1016/j.cytogfr.2020.07.006_bib0150) 2015; 96 Wang (10.1016/j.cytogfr.2020.07.006_bib0240) 2017; 127 Gualdoni (10.1016/j.cytogfr.2020.07.006_bib0265) 2018; 115 Meng (10.1016/j.cytogfr.2020.07.006_bib0370) 2019 Levy (10.1016/j.cytogfr.2020.07.006_bib0110) 1957; 100 Kalyanasundram (10.1016/j.cytogfr.2020.07.006_bib0285) 2018; 183 EAGLE (10.1016/j.cytogfr.2020.07.006_bib0100) 1956; 104 DeBerardinis (10.1016/j.cytogfr.2020.07.006_bib0300) 2007; 104 Krishnapuram (10.1016/j.cytogfr.2020.07.006_bib0205) 2011; 300 Birungi (10.1016/j.cytogfr.2020.07.006_bib0075) 2010; 9 Most (10.1016/j.cytogfr.2020.07.006_bib0335) 2017; 39 Dhurandhar (10.1016/j.cytogfr.2020.07.006_bib0185) 2002; 132 Felt (10.1016/j.cytogfr.2020.07.006_bib0270) 2017; 98 Vastag (10.1016/j.cytogfr.2020.07.006_bib0060) 2011; 7 Thai (10.1016/j.cytogfr.2020.07.006_bib0175) 2015; 6 Wang (10.1016/j.cytogfr.2020.07.006_bib0260) 2016; 166 Al-Shammari (10.1016/j.cytogfr.2020.07.006_bib0365) 2019; 6 Dyer (10.1016/j.cytogfr.2020.07.006_bib0030) 2018 Raffaghello (10.1016/j.cytogfr.2020.07.006_bib0345) 2008; 105 Rivadeneira (10.1016/j.cytogfr.2020.07.006_bib0395) 2019; 51 Lee (10.1016/j.cytogfr.2020.07.006_bib0310) 2010; 70 Thai (10.1016/j.cytogfr.2020.07.006_bib0170) 2014; 19 Harvie (10.1016/j.cytogfr.2020.07.006_bib0325) 2016; 18 Seymour (10.1016/j.cytogfr.2020.07.006_bib0045) 2016; 114 Delgado (10.1016/j.cytogfr.2020.07.006_bib0055) 2012; 8 Deng (10.1016/j.cytogfr.2020.07.006_bib0280) 2014; 15 10.1016/j.cytogfr.2020.07.006_bib0320 Greseth (10.1016/j.cytogfr.2020.07.006_bib0145) 2014; 10 Atkinson (10.1016/j.cytogfr.2020.07.006_bib0190) 2005; 29 Na (10.1016/j.cytogfr.2020.07.006_bib0200) 2016; 124 O’Flanagan (10.1016/j.cytogfr.2020.07.006_bib0315) 2017; 15 Munger (10.1016/j.cytogfr.2020.07.006_bib0050) 2006; 2 Ritter (10.1016/j.cytogfr.2020.07.006_bib0250) 2010; 4 Fisher (10.1016/j.cytogfr.2020.07.006_bib0155) 1957; 95 Warburg (10.1016/j.cytogfr.2020.07.006_bib0015) 1956; 124 Gohil (10.1016/j.cytogfr.2020.07.006_bib0385) 2010; 28 |
References_xml | – volume: 36 start-page: 701 year: 2013 end-page: 707 ident: bib0210 article-title: Long-term changes in adiposity and glycemic control are associated with past adenovirus infection publication-title: Diabetes Care – volume: 183 start-page: 271 year: 1959 end-page: 272 ident: bib0255 article-title: Inhibition of influenza virus multiplication with a glucose antimetabolite (2-deoxy-D-glucose) publication-title: Nature. – volume: 24 start-page: 989 year: 2000 end-page: 996 ident: bib0180 article-title: Increased adiposity in animals due to a human virus publication-title: Int. J. Obes. Relat. Metab. Disord. – volume: 7 start-page: e1002124 year: 2011 ident: bib0060 article-title: Divergent effects of human cytomegalovirus and herpes simplex Virus-1 on cellular metabolism publication-title: PLoS Pathog. – volume: 2 start-page: e132 year: 2006 ident: bib0050 article-title: Dynamics of the cellular metabolome during human cytomegalovirus infection publication-title: PLoS Pathog. – volume: 30 start-page: 658 year: 2012 end-page: 670 ident: bib0035 article-title: Oncolytic virotherapy publication-title: Nat. Biotechnol. – volume: 29 start-page: 281 year: 2005 end-page: 286 ident: bib0190 article-title: Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids publication-title: Int. J. Obes. – volume: 8 start-page: e1002866 year: 2012 ident: bib0055 article-title: Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection publication-title: PLoS Pathog. – volume: 88 start-page: 4366 year: 2014 end-page: 4374 ident: bib0140 article-title: Vaccinia virus requires glutamine but not glucose for efficient replication publication-title: J. Virol. – volume: 15 start-page: 511 year: 2014 end-page: 517 ident: bib0280 article-title: Proteomic analysis of chicken peripheral blood mononuclear cells after infection by Newcastle disease virus publication-title: J. Vet. Sci. – year: 2018 ident: bib0165 article-title: Antagonism of glycolysis and reductive carboxylation of glutamine potentiates activity of oncolytic adenoviruses in cancer cells publication-title: Cancer Res. – volume: 83 start-page: 9283 year: 2009 end-page: 9295 ident: bib0235 article-title: Dynamic host energetics and cytoskeletal proteomes in human immunodeficiency virus type 1-infected human primary CD4 cells: analysis by multiplexed label-free mass spectrometry publication-title: J. Virol. – volume: 65 start-page: 1229 year: 1984 end-page: 1232 ident: bib0130 article-title: Early enhanced glucose uptake in human cytomegalovirus-infected cells publication-title: J. Gen. Virol. – volume: 7 year: 2012 ident: bib0220 article-title: E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia publication-title: PLoS One – volume: 183 start-page: 126 year: 2018 end-page: 133 ident: bib0285 article-title: Newcastle disease virus strain AF2240 as an oncolytic virus: a review publication-title: Acta Trop. – volume: 3 start-page: 1015 year: 1957 end-page: 1020 ident: bib0160 article-title: Some metabolic effects of ADENOVIRUS INFECTION IN HELA CELLS publication-title: Can. J. Microbiol. – volume: 6 year: 2011 ident: bib0215 article-title: E4orf1: A novel ligand that improves glucose disposal in cell culture publication-title: PLoS One – volume: 35 start-page: 714 year: 2011 end-page: 727 ident: bib0330 article-title: The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women publication-title: Int. J. Obes. – volume: 4 start-page: 61 year: 2010 ident: bib0250 article-title: Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling, BMC Syst publication-title: Biol. – reference: D. Berrigan, J.A. Lavigne, S.N. Perkins, T.R. Nagy, J.C. Barrett, S.D. Hursting, Phenotypic effects of calorie restriction and insulin-like growth factor-1 treatment on body composition and bone mineral density of C57BL/6 mice: implications for cancer prevention., In Vivo. 19 (n.d.) 667–674. – volume: 100 start-page: 57 year: 2000 end-page: 70 ident: bib0005 article-title: The hallmarks of cancer publication-title: Cell. – volume: 88 start-page: 400 year: 2016 end-page: 407 ident: bib0195 article-title: An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation publication-title: J. Med. Virol. – volume: 16 start-page: 217 year: 1975 end-page: 221 ident: bib0125 article-title: Effect of 2-deoxy-D-glucose on herpesvirus-induced inhibition of cellular DNA synthesis publication-title: J. Virol. – year: 2019 ident: bib0370 article-title: Targeting aerobic glycolysis by dichloroacetate improves Newcastle disease virus-mediated viro-immunotherapy in hepatocellular carcinoma publication-title: Br. J. Cancer – volume: 52 start-page: 447 year: 1973 end-page: 455 ident: bib0120 article-title: Effects of 2-deoxy-d-glucose on herpes simplex virus replication publication-title: Virology. – volume: 83 start-page: 475 year: 1962 end-page: 482 ident: bib0115 article-title: Nutritional requirements for the production of herpes simplex virus. I. Influence of glucose and glutamine of herpes simplex virus production by HeLa cells publication-title: J. Bacteriol. – volume: 29 start-page: 313 year: 2010 end-page: 324 ident: bib0305 article-title: Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer publication-title: Oncogene. – volume: 105 start-page: 8215 year: 2008 end-page: 8220 ident: bib0345 article-title: Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy publication-title: Proc. Natl. Acad. Sci. – volume: 178 start-page: 1230 year: 1956 end-page: 1231 ident: bib0105 article-title: Some metabolic effects of poliomyelitis virus on tissue culture publication-title: Nature – volume: 39 start-page: 36 year: 2017 end-page: 45 ident: bib0335 article-title: Calorie restriction in humans: an update, Ageing Res publication-title: Rev. – volume: 6 start-page: 300 year: 2016 end-page: 311 ident: bib0355 article-title: Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma publication-title: Am. J. Cancer Res. – volume: 70 start-page: 1564 year: 2010 end-page: 1572 ident: bib0310 article-title: Reduced levels of IGF-I mediate differential protection of normal and Cancer cells in response to fasting and improve chemotherapeutic index publication-title: Cancer Res. – year: 2016 ident: bib0390 article-title: The Warburg Effect: 80 Years on – volume: 124 start-page: 3 year: 2016 end-page: 10 ident: bib0200 article-title: Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines publication-title: Biochimie – year: 2016 ident: bib0090 article-title: Metformin Synergistically Enhances Cisplatin-induced Cytotoxicity in Esophageal Squamous Cancer cells Under Glucose-deprivation Conditions – volume: 98 start-page: 2895 year: 2017 end-page: 2911 ident: bib0270 article-title: Ecent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update publication-title: J. Gen. Virol. – volume: 19 start-page: 694 year: 2014 end-page: 701 ident: bib0170 article-title: Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication publication-title: Cell Metab. – volume: 24 start-page: 657 year: 2016 end-page: 671 ident: bib0085 article-title: LDHA-associated lactic acid production blunts tumor immunosurveillance by t and NK cells publication-title: Cell Metab. – volume: 35 start-page: 1573 year: 2016 end-page: 1581 ident: bib0275 article-title: Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites publication-title: Oncol. Rep. – volume: 3 start-page: 1 year: 2014 end-page: 18 ident: bib0020 article-title: Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step publication-title: Elife. – volume: 8 year: 2013 ident: bib0225 article-title: Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal publication-title: PLoS One – volume: 104 start-page: 19345 year: 2007 end-page: 19350 ident: bib0300 article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc. Natl. Acad. Sci. – volume: 114 start-page: 357 year: 2016 end-page: 361 ident: bib0045 article-title: Oncolytic viruses: finally delivering publication-title: Br. J. Cancer – volume: 127 start-page: 2626 year: 2017 end-page: 2630 ident: bib0240 article-title: Glutamine supplementation suppresses herpes simplex virus reactivation publication-title: J. Clin. Invest. – volume: 124 start-page: 269 year: 1956 end-page: 270 ident: bib0015 article-title: On respiratory impairment in Cancer cells publication-title: Science (80-.) – volume: 95 start-page: 47 year: 1957 end-page: 51 ident: bib0155 article-title: Accumulation of organic acids by HeLa cells infected with type 4 adenovirus publication-title: Exp. Biol. Med. – volume: 11 start-page: e1005052 year: 2015 ident: bib0245 article-title: Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival publication-title: PLoS Pathog. – volume: 37 start-page: 36 year: 2015 ident: bib0025 article-title: FDA approves first oncolytic virus therapy publication-title: Oncol. Times Uk – volume: 51 start-page: 548 year: 2019 end-page: 560 ident: bib0395 article-title: Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating t cell metabolism and promote tumor clearance publication-title: Immunity. – volume: 166 start-page: 1512 year: 2016 end-page: 1525 ident: bib0260 article-title: Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation publication-title: Cell. – volume: 38 start-page: 209 year: 2019 ident: bib0340 article-title: Effects of short-term fasting on cancer treatment publication-title: J. Exp. Clin. Cancer Res. – volume: 69 start-page: 4918 year: 2009 end-page: 4925 ident: bib0080 article-title: Quantitative metabolome profiling of Colon and stomach Cancer microenvironment by capillary electrophoresis time-of-Flight mass spectrometry publication-title: Cancer Res. – volume: 11 start-page: 614 year: 2019 ident: bib0360 article-title: Starvation-induced differential virotherapy using an oncolytic measles vaccine virus publication-title: Viruses. – volume: 6 start-page: 8873 year: 2015 ident: bib0175 article-title: MYC-induced reprogramming of glutamine catabolism supports optimal virus replication publication-title: Nat. Commun. – reference: (accessed September 12, 2019). – start-page: 1 year: 2018 ident: bib0030 article-title: Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference publication-title: Cancer Gene Ther. – volume: 7 start-page: 13488 year: 2017 ident: bib0295 article-title: Limits of aerobic metabolism in cancer cells publication-title: Sci. Rep. – volume: 29 start-page: 548 year: 2016 end-page: 562 ident: bib0095 article-title: mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells publication-title: Cancer Cell – volume: 300 year: 2011 ident: bib0205 article-title: Template to improve glycemic control without reducing adiposity or dietary fat publication-title: Am. J. Physiol. - Endocrinol. Metab. – volume: 132 start-page: 3155 year: 2002 end-page: 3160 ident: bib0185 article-title: Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys publication-title: J. Nutr. – volume: 29 start-page: 548 year: 2016 end-page: 562 ident: bib0375 article-title: MTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells publication-title: Cancer Cell – volume: 11 start-page: 141 year: 2019 ident: bib0230 article-title: Metabolic reprogramming of the host cell by human adenovirus infection publication-title: Viruses. – volume: 6 start-page: e1000719 year: 2010 ident: bib0065 article-title: Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics publication-title: PLoS Pathog. – volume: 18 start-page: 57 year: 2016 ident: bib0325 article-title: Intermittent energy restriction induces changes in breast gene expression and systemic metabolism publication-title: Breast Cancer Res. – reference: L.D. Marroquin, J. Hynes, J.A. Dykens, J.D. Jamieson, Y. Will, Circumventing the Crabtree Effect: Replacing Media Glucose with Galactose Increases Susceptibility of HepG2 Cells to Mitochondrial Toxicants, (n.d.). https://doi.org/10.1093/toxsci/kfm052. – volume: 415 start-page: 153 year: 2011 end-page: 159 ident: bib0070 article-title: Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC–MS/MS analysis publication-title: Virology. – volume: 34 start-page: 276 year: 1984 end-page: 284 ident: bib0135 article-title: Enhanced regional uptake of 2-deoxy-D-[14C]glucose in focal herpes simplex type 1 encephalitis: autoradiographic study in the rat publication-title: Neurology – volume: 96 start-page: 395 year: 2015 end-page: 407 ident: bib0150 article-title: A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism publication-title: J. Gen. Virol. – volume: 10 start-page: e1004021 year: 2014 ident: bib0145 article-title: De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection publication-title: PLoS Pathog. – volume: 6 start-page: 90 year: 2019 ident: bib0365 article-title: 2-deoxyglucose and newcastle disease virus synergize to kill breast Cancer cells by inhibition of glycolysis pathway through Glyceraldehyde3-Phosphate downregulation publication-title: Front. Mol. Biosci. – volume: 104 start-page: 271 year: 1956 end-page: 287 ident: bib0100 article-title: The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell publication-title: J. Exp. Med. – year: 2014 ident: bib0290 article-title: Dichloroacetate Blocks Aerobic Glycolytic Adaptation to Attenuated Measles Virus and Promotes Viral Replication Leading to Enhanced Oncolysis in Glioblastoma – volume: 100 start-page: 109 year: 1957 end-page: 118 ident: bib0110 article-title: The effect of animal viruses on host cell metabolism II. Effect of poliomyelitis virus on GLycolysis and uptake of Glycine by monkey kidney tissue cultures publication-title: J. Infect. Dis. – volume: 4 year: 2012 ident: bib0350 article-title: Fasting cycles retard growth of tumors and sensitize a range of Cancer cell types to chemotherapy publication-title: Sci. Transl. Med. – volume: 28 start-page: 249 year: 2010 end-page: 255 ident: bib0385 article-title: Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis HHS Public Access Author manuscript publication-title: Nat. Biotechnol. – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib0010 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 15 start-page: 106 year: 2017 ident: bib0315 article-title: When less may be more: calorie restriction and response to cancer therapy publication-title: BMC Med. – volume: 2 start-page: 295 year: 2014 end-page: 300 ident: bib0040 article-title: Oncolytic viruses and their application to Cancer immunotherapy publication-title: Cancer Immunol. Res. – volume: 9 start-page: 6523 year: 2010 end-page: 6534 ident: bib0075 article-title: Metabolomics approach for investigation of effects of dengue virus infection using the EA.hy926 cell line publication-title: J. Proteome Res. – volume: 115 start-page: E7158 year: 2018 end-page: E7165 ident: bib0265 article-title: Rhinovirus induces an anabolic reprogramming in host cell metabolism essential for viral replication publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: e1004021 year: 2014 ident: 10.1016/j.cytogfr.2020.07.006_bib0145 article-title: De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004021 – year: 2018 ident: 10.1016/j.cytogfr.2020.07.006_bib0165 article-title: Antagonism of glycolysis and reductive carboxylation of glutamine potentiates activity of oncolytic adenoviruses in cancer cells publication-title: Cancer Res. – volume: 52 start-page: 447 year: 1973 ident: 10.1016/j.cytogfr.2020.07.006_bib0120 article-title: Effects of 2-deoxy-d-glucose on herpes simplex virus replication publication-title: Virology. doi: 10.1016/0042-6822(73)90340-1 – volume: 30 start-page: 658 year: 2012 ident: 10.1016/j.cytogfr.2020.07.006_bib0035 article-title: Oncolytic virotherapy publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2287 – volume: 104 start-page: 19345 year: 2007 ident: 10.1016/j.cytogfr.2020.07.006_bib0300 article-title: Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0709747104 – volume: 35 start-page: 714 year: 2011 ident: 10.1016/j.cytogfr.2020.07.006_bib0330 article-title: The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women publication-title: Int. J. Obes. doi: 10.1038/ijo.2010.171 – volume: 6 start-page: e1000719 year: 2010 ident: 10.1016/j.cytogfr.2020.07.006_bib0065 article-title: Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000719 – volume: 4 start-page: 61 year: 2010 ident: 10.1016/j.cytogfr.2020.07.006_bib0250 article-title: Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling, BMC Syst publication-title: Biol. – volume: 166 start-page: 1512 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0260 article-title: Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation publication-title: Cell. doi: 10.1016/j.cell.2016.07.026 – start-page: 1 year: 2018 ident: 10.1016/j.cytogfr.2020.07.006_bib0030 article-title: Turning cold tumours hot: oncolytic virotherapy gets up close and personal with other therapeutics at the 11th Oncolytic Virus Conference publication-title: Cancer Gene Ther. – volume: 95 start-page: 47 year: 1957 ident: 10.1016/j.cytogfr.2020.07.006_bib0155 article-title: Accumulation of organic acids by HeLa cells infected with type 4 adenovirus publication-title: Exp. Biol. Med. doi: 10.3181/00379727-95-23113 – volume: 98 start-page: 2895 year: 2017 ident: 10.1016/j.cytogfr.2020.07.006_bib0270 article-title: Ecent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update publication-title: J. Gen. Virol. doi: 10.1099/jgv.0.000980 – volume: 105 start-page: 8215 year: 2008 ident: 10.1016/j.cytogfr.2020.07.006_bib0345 article-title: Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0708100105 – volume: 35 start-page: 1573 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0275 article-title: Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites publication-title: Oncol. Rep. doi: 10.3892/or.2015.4522 – year: 2019 ident: 10.1016/j.cytogfr.2020.07.006_bib0370 article-title: Targeting aerobic glycolysis by dichloroacetate improves Newcastle disease virus-mediated viro-immunotherapy in hepatocellular carcinoma publication-title: Br. J. Cancer – volume: 24 start-page: 989 year: 2000 ident: 10.1016/j.cytogfr.2020.07.006_bib0180 article-title: Increased adiposity in animals due to a human virus publication-title: Int. J. Obes. Relat. Metab. Disord. doi: 10.1038/sj.ijo.0801319 – volume: 19 start-page: 694 year: 2014 ident: 10.1016/j.cytogfr.2020.07.006_bib0170 article-title: Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.03.009 – volume: 15 start-page: 511 year: 2014 ident: 10.1016/j.cytogfr.2020.07.006_bib0280 article-title: Proteomic analysis of chicken peripheral blood mononuclear cells after infection by Newcastle disease virus publication-title: J. Vet. Sci. doi: 10.4142/jvs.2014.15.4.511 – volume: 15 start-page: 106 year: 2017 ident: 10.1016/j.cytogfr.2020.07.006_bib0315 article-title: When less may be more: calorie restriction and response to cancer therapy publication-title: BMC Med. doi: 10.1186/s12916-017-0873-x – volume: 3 start-page: 1 year: 2014 ident: 10.1016/j.cytogfr.2020.07.006_bib0020 article-title: Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step publication-title: Elife. doi: 10.7554/eLife.03342 – volume: 51 start-page: 548 year: 2019 ident: 10.1016/j.cytogfr.2020.07.006_bib0395 article-title: Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating t cell metabolism and promote tumor clearance publication-title: Immunity. doi: 10.1016/j.immuni.2019.07.003 – volume: 11 start-page: 614 year: 2019 ident: 10.1016/j.cytogfr.2020.07.006_bib0360 article-title: Starvation-induced differential virotherapy using an oncolytic measles vaccine virus publication-title: Viruses. doi: 10.3390/v11070614 – volume: 11 start-page: e1005052 year: 2015 ident: 10.1016/j.cytogfr.2020.07.006_bib0245 article-title: Latent KSHV infected endothelial cells are glutamine addicted and require glutaminolysis for survival publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005052 – volume: 3 start-page: 1015 year: 1957 ident: 10.1016/j.cytogfr.2020.07.006_bib0160 article-title: Some metabolic effects of ADENOVIRUS INFECTION IN HELA CELLS publication-title: Can. J. Microbiol. doi: 10.1139/m57-113 – volume: 100 start-page: 57 year: 2000 ident: 10.1016/j.cytogfr.2020.07.006_bib0005 article-title: The hallmarks of cancer publication-title: Cell. doi: 10.1016/S0092-8674(00)81683-9 – volume: 114 start-page: 357 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0045 article-title: Oncolytic viruses: finally delivering publication-title: Br. J. Cancer doi: 10.1038/bjc.2015.481 – volume: 2 start-page: 295 year: 2014 ident: 10.1016/j.cytogfr.2020.07.006_bib0040 article-title: Oncolytic viruses and their application to Cancer immunotherapy publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-14-0015 – volume: 29 start-page: 313 year: 2010 ident: 10.1016/j.cytogfr.2020.07.006_bib0305 article-title: Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer publication-title: Oncogene. doi: 10.1038/onc.2009.358 – volume: 6 start-page: 8873 year: 2015 ident: 10.1016/j.cytogfr.2020.07.006_bib0175 article-title: MYC-induced reprogramming of glutamine catabolism supports optimal virus replication publication-title: Nat. Commun. doi: 10.1038/ncomms9873 – volume: 11 start-page: 141 year: 2019 ident: 10.1016/j.cytogfr.2020.07.006_bib0230 article-title: Metabolic reprogramming of the host cell by human adenovirus infection publication-title: Viruses. doi: 10.3390/v11020141 – volume: 124 start-page: 3 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0200 article-title: Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines publication-title: Biochimie doi: 10.1016/j.biochi.2014.11.005 – volume: 70 start-page: 1564 year: 2010 ident: 10.1016/j.cytogfr.2020.07.006_bib0310 article-title: Reduced levels of IGF-I mediate differential protection of normal and Cancer cells in response to fasting and improve chemotherapeutic index publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-3228 – volume: 178 start-page: 1230 year: 1956 ident: 10.1016/j.cytogfr.2020.07.006_bib0105 article-title: Some metabolic effects of poliomyelitis virus on tissue culture publication-title: Nature doi: 10.1038/1781230a0 – ident: 10.1016/j.cytogfr.2020.07.006_bib0380 doi: 10.1093/toxsci/kfm052 – volume: 127 start-page: 2626 year: 2017 ident: 10.1016/j.cytogfr.2020.07.006_bib0240 article-title: Glutamine supplementation suppresses herpes simplex virus reactivation publication-title: J. Clin. Invest. doi: 10.1172/JCI88990 – volume: 6 year: 2011 ident: 10.1016/j.cytogfr.2020.07.006_bib0215 article-title: E4orf1: A novel ligand that improves glucose disposal in cell culture publication-title: PLoS One doi: 10.1371/journal.pone.0023394 – volume: 83 start-page: 9283 year: 2009 ident: 10.1016/j.cytogfr.2020.07.006_bib0235 article-title: Dynamic host energetics and cytoskeletal proteomes in human immunodeficiency virus type 1-infected human primary CD4 cells: analysis by multiplexed label-free mass spectrometry publication-title: J. Virol. doi: 10.1128/JVI.00814-09 – volume: 38 start-page: 209 year: 2019 ident: 10.1016/j.cytogfr.2020.07.006_bib0340 article-title: Effects of short-term fasting on cancer treatment publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-019-1189-9 – volume: 2 start-page: e132 year: 2006 ident: 10.1016/j.cytogfr.2020.07.006_bib0050 article-title: Dynamics of the cellular metabolome during human cytomegalovirus infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.0020132 – volume: 104 start-page: 271 year: 1956 ident: 10.1016/j.cytogfr.2020.07.006_bib0100 article-title: The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell publication-title: J. Exp. Med. doi: 10.1084/jem.104.2.271 – volume: 83 start-page: 475 year: 1962 ident: 10.1016/j.cytogfr.2020.07.006_bib0115 article-title: Nutritional requirements for the production of herpes simplex virus. I. Influence of glucose and glutamine of herpes simplex virus production by HeLa cells publication-title: J. Bacteriol. doi: 10.1128/JB.83.3.475-482.1962 – volume: 96 start-page: 395 year: 2015 ident: 10.1016/j.cytogfr.2020.07.006_bib0150 article-title: A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism publication-title: J. Gen. Virol. doi: 10.1099/vir.0.069591-0 – volume: 144 start-page: 646 year: 2011 ident: 10.1016/j.cytogfr.2020.07.006_bib0010 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – ident: 10.1016/j.cytogfr.2020.07.006_bib0320 – volume: 132 start-page: 3155 year: 2002 ident: 10.1016/j.cytogfr.2020.07.006_bib0185 article-title: Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys publication-title: J. Nutr. doi: 10.1093/jn/131.10.3155 – volume: 115 start-page: E7158 year: 2018 ident: 10.1016/j.cytogfr.2020.07.006_bib0265 article-title: Rhinovirus induces an anabolic reprogramming in host cell metabolism essential for viral replication publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800525115 – volume: 29 start-page: 548 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0095 article-title: mTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.02.018 – volume: 16 start-page: 217 year: 1975 ident: 10.1016/j.cytogfr.2020.07.006_bib0125 article-title: Effect of 2-deoxy-D-glucose on herpesvirus-induced inhibition of cellular DNA synthesis publication-title: J. Virol. doi: 10.1128/JVI.16.2.217-221.1975 – volume: 37 start-page: 36 year: 2015 ident: 10.1016/j.cytogfr.2020.07.006_bib0025 article-title: FDA approves first oncolytic virus therapy publication-title: Oncol. Times Uk doi: 10.1097/01.COT.0000475724.97729.9e – volume: 18 start-page: 57 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0325 article-title: Intermittent energy restriction induces changes in breast gene expression and systemic metabolism publication-title: Breast Cancer Res. doi: 10.1186/s13058-016-0714-4 – volume: 65 start-page: 1229 year: 1984 ident: 10.1016/j.cytogfr.2020.07.006_bib0130 article-title: Early enhanced glucose uptake in human cytomegalovirus-infected cells publication-title: J. Gen. Virol. doi: 10.1099/0022-1317-65-7-1229 – volume: 34 start-page: 276 year: 1984 ident: 10.1016/j.cytogfr.2020.07.006_bib0135 article-title: Enhanced regional uptake of 2-deoxy-D-[14C]glucose in focal herpes simplex type 1 encephalitis: autoradiographic study in the rat publication-title: Neurology doi: 10.1212/WNL.34.3.276 – volume: 300 year: 2011 ident: 10.1016/j.cytogfr.2020.07.006_bib0205 article-title: Template to improve glycemic control without reducing adiposity or dietary fat publication-title: Am. J. Physiol. - Endocrinol. Metab. doi: 10.1152/ajpendo.00703.2010 – year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0090 – volume: 6 start-page: 90 year: 2019 ident: 10.1016/j.cytogfr.2020.07.006_bib0365 article-title: 2-deoxyglucose and newcastle disease virus synergize to kill breast Cancer cells by inhibition of glycolysis pathway through Glyceraldehyde3-Phosphate downregulation publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2019.00090 – volume: 29 start-page: 281 year: 2005 ident: 10.1016/j.cytogfr.2020.07.006_bib0190 article-title: Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids publication-title: Int. J. Obes. doi: 10.1038/sj.ijo.0802830 – volume: 124 start-page: 269 year: 1956 ident: 10.1016/j.cytogfr.2020.07.006_bib0015 article-title: On respiratory impairment in Cancer cells publication-title: Science (80-.) doi: 10.1126/science.124.3215.269 – volume: 69 start-page: 4918 year: 2009 ident: 10.1016/j.cytogfr.2020.07.006_bib0080 article-title: Quantitative metabolome profiling of Colon and stomach Cancer microenvironment by capillary electrophoresis time-of-Flight mass spectrometry publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-4806 – volume: 4 year: 2012 ident: 10.1016/j.cytogfr.2020.07.006_bib0350 article-title: Fasting cycles retard growth of tumors and sensitize a range of Cancer cell types to chemotherapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3003293 – volume: 8 year: 2013 ident: 10.1016/j.cytogfr.2020.07.006_bib0225 article-title: Doxycycline-regulated 3T3-L1 preadipocyte cell line with inducible, stable expression of adenoviral E4orf1 gene: a cell model to study insulin-independent glucose disposal publication-title: PLoS One doi: 10.1371/journal.pone.0060651 – volume: 29 start-page: 548 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0375 article-title: MTORC1-Dependent Metabolic Reprogramming Underlies Escape from Glycolysis Addiction in Cancer Cells publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.02.018 – volume: 24 start-page: 657 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0085 article-title: LDHA-associated lactic acid production blunts tumor immunosurveillance by t and NK cells publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.08.011 – volume: 8 start-page: e1002866 year: 2012 ident: 10.1016/j.cytogfr.2020.07.006_bib0055 article-title: Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002866 – year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0390 – volume: 7 start-page: e1002124 year: 2011 ident: 10.1016/j.cytogfr.2020.07.006_bib0060 article-title: Divergent effects of human cytomegalovirus and herpes simplex Virus-1 on cellular metabolism publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002124 – volume: 6 start-page: 300 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0355 article-title: Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma publication-title: Am. J. Cancer Res. – volume: 183 start-page: 271 year: 1959 ident: 10.1016/j.cytogfr.2020.07.006_bib0255 article-title: Inhibition of influenza virus multiplication with a glucose antimetabolite (2-deoxy-D-glucose) publication-title: Nature. doi: 10.1038/183271b0 – volume: 36 start-page: 701 year: 2013 ident: 10.1016/j.cytogfr.2020.07.006_bib0210 article-title: Long-term changes in adiposity and glycemic control are associated with past adenovirus infection publication-title: Diabetes Care doi: 10.2337/dc12-1089 – volume: 100 start-page: 109 year: 1957 ident: 10.1016/j.cytogfr.2020.07.006_bib0110 article-title: The effect of animal viruses on host cell metabolism II. Effect of poliomyelitis virus on GLycolysis and uptake of Glycine by monkey kidney tissue cultures publication-title: J. Infect. Dis. doi: 10.1093/infdis/100.2.109 – volume: 39 start-page: 36 year: 2017 ident: 10.1016/j.cytogfr.2020.07.006_bib0335 article-title: Calorie restriction in humans: an update, Ageing Res publication-title: Rev. – volume: 415 start-page: 153 year: 2011 ident: 10.1016/j.cytogfr.2020.07.006_bib0070 article-title: Metabolite profiles of human immunodeficiency virus infected CD4+ T cells and macrophages using LC–MS/MS analysis publication-title: Virology. doi: 10.1016/j.virol.2011.04.007 – volume: 7 year: 2012 ident: 10.1016/j.cytogfr.2020.07.006_bib0220 article-title: E4orf1 improves lipid and glucose metabolism in hepatocytes: a template to improve steatosis & hyperglycemia publication-title: PLoS One doi: 10.1371/journal.pone.0047813 – volume: 183 start-page: 126 year: 2018 ident: 10.1016/j.cytogfr.2020.07.006_bib0285 article-title: Newcastle disease virus strain AF2240 as an oncolytic virus: a review publication-title: Acta Trop. doi: 10.1016/j.actatropica.2018.04.007 – volume: 9 start-page: 6523 year: 2010 ident: 10.1016/j.cytogfr.2020.07.006_bib0075 article-title: Metabolomics approach for investigation of effects of dengue virus infection using the EA.hy926 cell line publication-title: J. Proteome Res. doi: 10.1021/pr100727m – volume: 88 start-page: 400 year: 2016 ident: 10.1016/j.cytogfr.2020.07.006_bib0195 article-title: An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation publication-title: J. Med. Virol. doi: 10.1002/jmv.24362 – volume: 7 start-page: 13488 year: 2017 ident: 10.1016/j.cytogfr.2020.07.006_bib0295 article-title: Limits of aerobic metabolism in cancer cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-14071-y – volume: 28 start-page: 249 year: 2010 ident: 10.1016/j.cytogfr.2020.07.006_bib0385 article-title: Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis HHS Public Access Author manuscript publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1606 – year: 2014 ident: 10.1016/j.cytogfr.2020.07.006_bib0290 – volume: 88 start-page: 4366 year: 2014 ident: 10.1016/j.cytogfr.2020.07.006_bib0140 article-title: Vaccinia virus requires glutamine but not glucose for efficient replication publication-title: J. Virol. doi: 10.1128/JVI.03134-13 |
SSID | ssj0004350 |
Score | 2.3752334 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Each oncolytic virus type has essential nutrients required for optimal oncolysis.•In vitro work often uses conditions that do not reflect... Graphical abstract Oncolytic viruses infect, replicate in, and kill cancer cells selectively without harming normal cells. The rapidly expanding clinical development of oncolytic... |
SourceID | pubmed crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 115 |
SubjectTerms | Advanced Basic Science Cancer metabolism Cancer Vaccines Humans Immunotherapy Metabolism Neoplasms - therapy Oncolytic Virotherapy Oncolytic virus Oncolytic Viruses - immunology |
Title | The role of cancer metabolism in defining the success of oncolytic viro-immunotherapy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1359610120301520 https://www.clinicalkey.es/playcontent/1-s2.0-S1359610120301520 https://dx.doi.org/10.1016/j.cytogfr.2020.07.006 https://www.ncbi.nlm.nih.gov/pubmed/32921554 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHNpLVaCP5SUfqt6yj8Sxk-NqBVqgrFALEjfLzyqIzSISDnvpb2cmcRYQVUGVIkWxPHEyM7Y_2_Mg5JtydmRZgsateRoxIVyU6xGPcpUYLQT3WbPfcTbj00t2cpVerZFJ5wuDZpVh7G_H9Ga0DiWDwM3BbVEMfo2SNOcYngpRfRrjup0xgVre__No5gFwoPUUTvMIaz968Qyu-2ZZL357DAsaD5sYnpj46J_z05PJ5-gj-RBQIx23H7ZJ1ly5RbbHJayY50v6nTZ2nM0G-RZ5N-lyuG2TS9ACigaEdOGpQQHf0bmrQfA3RTWnRUmt802KCApAkFb3TfpErLwoQUOW0BxFR7ioQDeS4Ky1_EQujg4vJtMoJFKIDBOsjrRjCs_LmFepTURmOHTsmBttXayZU4BplNKZ1qk3OvPMcp9bAI5agYhZknwm6-WidF8J1UKnOou9sYlhyrBcAZ7kLLNwacBWPcI67kkTgoxjrosb2VmTXcvAdIlMl0M8_uY90l-R3bZRNl4j4J1oZOdCCoOehHngNULxN0JXha5byZGsYjmUL9SrR7IV5TMNfUujX1rtWf1cEucxIrmd_3_pLnmPT61pzR5Zr-_u3T4ApFofND3ggGyMJz9_nOP9-HQ6g9LZ-dkDInoUFQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcKCXqoU-Ulq6h6o3k8T7sH2MoqJQIJcGidtqn5URcRA2h_x7dux1aNUKqko-2R4_ZmZ3v92dbwbgi3J2YhnF4NaCJyzLXFLoiUgKRY3OMuHzdr3jYiHml-z7Fb_agVnPhcGwytj3d31621vHM6OozdFtWY5-TCgvBKanQlTP0zBv38XsVHwAu9PTs_nikR5JeUcW5kWCAo9EntH1sdk0658eM4Om4zaNJ9Y-enKI-mX8OXkFLyNwJNPu217Djqv24WBahUnzakO-kjaUs10j34e9WV_G7QAugyMQjCEka08M2viOrFwTbH9T1itSVsQ631aJIAELkvq-raCIN6-r4CSb8DqCXLikRCZJ5Gtt3sDy5NtyNk9iLYXEsIw1iXZM4ZYZ84pbmuVGhLadCqOtSzVzKsAapXSuNfdG555Z4QsbsKNWwcqM0rcwqNaVew9EZ5rrPPXGUsOUYYUKkFKw3IZDB3g1BNZrT5qYZxzLXdzIPqDsWkalS1S6HOMOuBjC8Vbstku08ZyA6E0jexZp6PdkGAqeE8z-Jujq2HprOZF1KsfyDw8bQr6V_M1J_-Wl7zrv2f4cTYsUwdyH_3_oZ9ibLy_O5fnp4uwQXuCVLtLmIwyau3v3KeClRh_F9vAAaTAUJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+cancer+metabolism+in+defining+the+success+of+oncolytic+viro-immunotherapy&rft.jtitle=Cytokine+%26+growth+factor+reviews&rft.au=Dyer%2C+Arthur&rft.au=Frost%2C+Sally&rft.au=Fisher%2C+Kerry+D.&rft.au=Seymour%2C+Len+W.&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-6101&rft.volume=56&rft.spage=115&rft.epage=123&rft_id=info:doi/10.1016%2Fj.cytogfr.2020.07.006&rft.externalDocID=S1359610120301520 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6101&client=summon |