Separated Channel Attention Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI Dataset
The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-cha...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 22; no. 8; p. 893 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1099-4300 1099-4300 |
DOI | 10.3390/e22080893 |
Cover
Abstract | The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a “leave-one-site-out” cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data. |
---|---|
AbstractList | The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a “leave-one-site-out” cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data. The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a "leave-one-site-out" cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data.The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a "leave-one-site-out" cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data. The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a “leave-one-site-out” cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data. |
Audience | Academic |
Author | Xu, Peng Li, Cunbo Li, Fali Jiang, Chenyang Biswal, Bharat Kang, Xiaodong Yao, Dezhong Zhu, Xuyang Li, Peiyang Peng, Yueheng Zhang, Tao |
AuthorAffiliation | 1 School of Science, Xihua University, Chengdu 610039, China; zhangtao@mail.xhu.edu.cn 2 School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China; cunboli@163.com (C.L.); yuehengp@umich.edu (Y.P.); 201821140226@std.uestc.edu.cn (C.J.); lfl_uestc@163.com (F.L.); xuyang508@163.com (X.Z.); dyao@uestc.edu.cn (D.Y.) 4 Sichuan 81 Rehabilitation Centre, Chengdu University of TCM, Chengdu 611137, China; kxd1120@163.com 3 School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; pyli@cqupt.edu.cn |
AuthorAffiliation_xml | – name: 3 School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; pyli@cqupt.edu.cn – name: 4 Sichuan 81 Rehabilitation Centre, Chengdu University of TCM, Chengdu 611137, China; kxd1120@163.com – name: 1 School of Science, Xihua University, Chengdu 610039, China; zhangtao@mail.xhu.edu.cn – name: 2 School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China; cunboli@163.com (C.L.); yuehengp@umich.edu (Y.P.); 201821140226@std.uestc.edu.cn (C.J.); lfl_uestc@163.com (F.L.); xuyang508@163.com (X.Z.); dyao@uestc.edu.cn (D.Y.) |
Author_xml | – sequence: 1 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 2 givenname: Cunbo orcidid: 0000-0002-1954-6113 surname: Li fullname: Li, Cunbo – sequence: 3 givenname: Peiyang surname: Li fullname: Li, Peiyang – sequence: 4 givenname: Yueheng surname: Peng fullname: Peng, Yueheng – sequence: 5 givenname: Xiaodong surname: Kang fullname: Kang, Xiaodong – sequence: 6 givenname: Chenyang surname: Jiang fullname: Jiang, Chenyang – sequence: 7 givenname: Fali surname: Li fullname: Li, Fali – sequence: 8 givenname: Xuyang surname: Zhu fullname: Zhu, Xuyang – sequence: 9 givenname: Dezhong surname: Yao fullname: Yao, Dezhong – sequence: 10 givenname: Bharat surname: Biswal fullname: Biswal, Bharat – sequence: 11 givenname: Peng surname: Xu fullname: Xu, Peng |
BookMark | eNptkk1vEzEQhleoiH7AgX9giUt7WOqv9doXpCgBGqkNUgNna-r1pg4bO_V6i8qvx9tUgVZIlmZsP35nxjPHxYEP3hbFe4I_MqbwuaUUSywVe1UcEaxUyRnGB__4h8Vx368xpowS8aY4ZIxKIQQ9Kn4v7RYiJNug6S14bzs0Scn65IJH0-DvQzeMPnRoYYf4aNKvEH-i0-W0nC4W5R4_QymgeTNu2gc0mV3MkPPoauiSK5cuWXTdl-3V9RzNIEFv09vidQtdb9892ZPix5fP36cX5eW3r_Pp5LI0vOapvLHMUqAKsDAgKwZUNBVrMRa04VgSRaVplWyEUKJt6qrCYEllOCYVk2ApOynmO90mwFpvo9tAfNABnH48CHGlISZnOqu5rbABQQQmkreKjEHrWsmciWhwDVnr005rO9xsbGNysflPnok-v_HuVq_Cva4rkpfKAqdPAjHcDbZPeuN6Y7sOvA1DrykXkuWO0SqjH16g6zDE3ImRYhVWvGbsL7WCXIDzbchxzSiqJ4JTJbji4x-c7SgTQ99H2-5TJliPM6T3M5TZ8xescQnGDmdl1_3nxR-iVcUM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3324670 crossref_primary_10_1016_j_artmed_2023_102630 crossref_primary_10_3390_s24144682 crossref_primary_10_1016_j_knosys_2024_112615 crossref_primary_10_3390_biom11081093 crossref_primary_10_21205_deufmd_2023257301 crossref_primary_10_1016_j_neuroimage_2023_119944 crossref_primary_10_1016_j_tics_2022_07_003 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1007_s12145_024_01308_4 crossref_primary_10_1016_j_compbiomed_2022_105525 crossref_primary_10_1007_s10278_024_01189_5 crossref_primary_10_1016_j_artmed_2021_102209 crossref_primary_10_3934_mbe_2024256 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1007_s11042_023_17962_7 crossref_primary_10_1155_2022_5766386 crossref_primary_10_1016_j_neuroscience_2025_02_019 crossref_primary_10_1016_j_compbiomed_2024_108611 crossref_primary_10_1002_nbm_5138 crossref_primary_10_1145_3654664 crossref_primary_10_1111_exsy_13788 crossref_primary_10_1016_j_ijchp_2023_100395 crossref_primary_10_1016_j_cmpb_2024_108114 crossref_primary_10_1088_1741_2552_abeddf crossref_primary_10_3390_app11083636 crossref_primary_10_1093_psyrad_kkab003 crossref_primary_10_1016_j_bspc_2023_104733 crossref_primary_10_1109_TNSRE_2023_3243992 crossref_primary_10_1007_s11571_022_09897_w crossref_primary_10_1016_j_compbiomed_2022_106320 crossref_primary_10_3389_fnagi_2022_871706 crossref_primary_10_1088_1741_2552_ad48bd crossref_primary_10_3390_app12126211 crossref_primary_10_1109_ACCESS_2024_3522397 crossref_primary_10_1186_s40537_024_00998_3 crossref_primary_10_1155_2022_3941049 crossref_primary_10_1093_cercor_bhad511 crossref_primary_10_3390_bios14050259 |
Cites_doi | 10.1038/nature14539 10.1007/978-3-319-67389-9_42 10.1007/978-3-319-67159-8_9 10.1016/j.neuroimage.2016.06.034 10.1016/j.neuroimage.2014.07.033 10.1037/0033-2909.121.1.65 10.1037/a0026582 10.1006/nimg.2001.0978 10.1371/journal.pone.0194856 10.18653/v1/D15-1166 10.3389/fnsys.2012.00069 10.1016/j.bspc.2018.12.027 10.1177/1087054719837749 10.1016/j.neuroimage.2016.10.045 10.1186/s12984-016-0119-8 10.3233/IDA-1997-1302 10.1109/ISBI.2018.8363838 10.1038/nrn3475 10.3389/fnsys.2012.00063 10.1145/3219819.3219839 10.1109/ICDSP.2018.8631658 10.1016/j.media.2017.07.005 10.1016/j.neuroimage.2007.11.029 10.1038/nrn2961 10.1109/CCBD.2014.42 10.3389/fnhum.2013.00599 10.1159/000490289 10.1016/j.nicl.2017.08.017 10.1016/j.neuroimage.2013.12.063 10.1016/j.compmedimag.2016.04.004 10.1609/aaai.v34i07.6865 10.1016/S0387-7604(02)00152-3 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 MDPI AG 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: COPYRIGHT 2020 MDPI AG – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e22080893 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_4e50ca6160184f919a067798c476d07a PMC7517519 A642964942 10_3390_e22080893 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c474t-be3e2a29a06ca853a26d53f0062d4081928cf98d6696fd7550ae15c401538ae23 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:17:39 EDT 2025 Thu Aug 21 14:08:54 EDT 2025 Fri Sep 05 06:32:22 EDT 2025 Fri Jul 25 12:04:40 EDT 2025 Tue Jun 17 21:48:11 EDT 2025 Tue Jul 01 01:57:56 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-be3e2a29a06ca853a26d53f0062d4081928cf98d6696fd7550ae15c401538ae23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1954-6113 |
OpenAccessLink | https://doaj.org/article/4e50ca6160184f919a067798c476d07a |
PMID | 33286662 |
PQID | 2435094733 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e50ca6160184f919a067798c476d07a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517519 proquest_miscellaneous_2468330025 proquest_journals_2435094733 gale_infotracmisc_A642964942 crossref_primary_10_3390_e22080893 crossref_citationtrail_10_3390_e22080893 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Barkley (ref_3) 2003; 25 Litjens (ref_11) 2017; 42 LeCun (ref_22) 2015; 521 Ma (ref_43) 2014; 90 Tenev (ref_40) 2014; 93 ref_14 ref_36 Brown (ref_8) 2012; 6 ref_13 ref_35 ref_34 Barkley (ref_1) 1997; 121 ref_33 Abraham (ref_17) 2017; 147 ref_32 Yi (ref_7) 2016; 13 Du (ref_9) 2016; 52 Dash (ref_23) 1997; 1 ref_18 ref_39 ref_38 ref_37 Deco (ref_42) 2011; 12 Margraf (ref_5) 2012; 80 Heinsfeld (ref_20) 2018; 17 ref_25 ref_24 Rovira (ref_2) 2019; 29 ref_45 Zhu (ref_31) 2019; 49 ref_44 Dai (ref_10) 2012; 6 Monti (ref_16) 2014; 103 ref_41 Zhu (ref_12) 2008; 40 Zhang (ref_15) 2018; 6 Landeau (ref_30) 2002; 15 Tang (ref_6) 2018; 40 ref_29 ref_27 Button (ref_21) 2013; 14 Bellec (ref_28) 2017; 144 ref_4 Zou (ref_26) 2017; 5 Nielsen (ref_19) 2013; 7 |
References_xml | – volume: 521 start-page: 436 year: 2015 ident: ref_22 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 93 start-page: 162 year: 2014 ident: ref_40 article-title: Machine learning approach for classification of ADHD adults publication-title: Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. – volume: 29 start-page: S758 year: 2019 ident: ref_2 article-title: Meta-Analysis of Genome-Wide Association Studies On Adult Attention-Deficit and Hyperactivity Disorder publication-title: Eur. Neuropsychopharmacol. – ident: ref_18 doi: 10.1007/978-3-319-67389-9_42 – ident: ref_24 doi: 10.1007/978-3-319-67159-8_9 – ident: ref_32 – volume: 144 start-page: 275 year: 2017 ident: ref_28 article-title: The Neuro Bureau ADHD-200 Preprocessed repository publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.06.034 – volume: 103 start-page: 427 year: 2014 ident: ref_16 article-title: Estimating time-varying brain connectivity networks from functional MRI time series publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.033 – volume: 121 start-page: 65 year: 1997 ident: ref_1 article-title: Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD publication-title: Psychol. Bull. doi: 10.1037/0033-2909.121.1.65 – volume: 80 start-page: 128 year: 2012 ident: ref_5 article-title: Is ADHD diagnosed in accord with diagnostic criteria? Overdiagnosis and influence of client gender on diagnosis publication-title: J. Consult. Clin. Psychol. doi: 10.1037/a0026582 – volume: 15 start-page: 273 year: 2002 ident: ref_30 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – ident: ref_13 doi: 10.1371/journal.pone.0194856 – ident: ref_35 doi: 10.18653/v1/D15-1166 – volume: 6 start-page: 69 year: 2012 ident: ref_8 article-title: ADHD-200 Global Competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00069 – volume: 49 start-page: 396 year: 2019 ident: ref_31 article-title: Separated channel convolutional neural network to realize the training free motor imagery BCI systems publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.12.027 – ident: ref_39 – ident: ref_14 doi: 10.1177/1087054719837749 – volume: 147 start-page: 736 year: 2017 ident: ref_17 article-title: Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.045 – ident: ref_37 – ident: ref_44 – volume: 13 start-page: 11 year: 2016 ident: ref_7 article-title: EEG oscillatory patterns and classification of sequential compound limb motor imagery publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-016-0119-8 – volume: 1 start-page: 131 year: 1997 ident: ref_23 article-title: Feature selection for classification publication-title: Intell. Data Anal. doi: 10.3233/IDA-1997-1302 – ident: ref_25 doi: 10.1109/ISBI.2018.8363838 – volume: 14 start-page: 365 year: 2013 ident: ref_21 article-title: Power failure: Why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3475 – volume: 6 start-page: 63 year: 2012 ident: ref_10 article-title: Classification of ADHD children through multimodal magnetic resonance imaging publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2012.00063 – volume: 6 start-page: 60339 year: 2018 ident: ref_15 article-title: The Time-Varying Network Patterns in Motor Imagery Revealed by Adaptive Directed Transfer Function Analysis for fMRI publication-title: IEEE Access Pract. Innov. Open Solut. – ident: ref_45 doi: 10.1145/3219819.3219839 – ident: ref_29 – ident: ref_33 – ident: ref_27 – ident: ref_41 doi: 10.1109/ICDSP.2018.8631658 – volume: 42 start-page: 60 year: 2017 ident: ref_11 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 40 start-page: 110 year: 2008 ident: ref_12 article-title: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.11.029 – volume: 12 start-page: 43 year: 2011 ident: ref_42 article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2961 – ident: ref_4 doi: 10.1109/CCBD.2014.42 – volume: 7 start-page: 599 year: 2013 ident: ref_19 article-title: Multisite functional connectivity MRI classification of autism: ABIDE results publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00599 – ident: ref_38 – ident: ref_36 – volume: 40 start-page: 246 year: 2018 ident: ref_6 article-title: Different Developmental Pattern of Brain Activities in ADHD: A Study of Resting-State fMRI publication-title: Dev. Neurosci. doi: 10.1159/000490289 – volume: 17 start-page: 16 year: 2018 ident: ref_20 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: Neuroimage. Clin. doi: 10.1016/j.nicl.2017.08.017 – volume: 90 start-page: 196 year: 2014 ident: ref_43 article-title: Dynamic changes of spatial functional network connectivity in individuals and schizophrenia patients using independent vector analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.063 – volume: 52 start-page: 82 year: 2016 ident: ref_9 article-title: Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA publication-title: Comput. Med Imaging Graph. doi: 10.1016/j.compmedimag.2016.04.004 – ident: ref_34 doi: 10.1609/aaai.v34i07.6865 – volume: 25 start-page: 77 year: 2003 ident: ref_3 article-title: Issues in the diagnosis of attention-deficit/hyperactivity disorder in children publication-title: Brain Dev. doi: 10.1016/S0387-7604(02)00152-3 – volume: 5 start-page: 23626 year: 2017 ident: ref_26 article-title: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI publication-title: IEEE Access Pract. Innov. Open Solut. |
SSID | ssj0023216 |
Score | 2.4131494 |
Snippet | The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 893 |
SubjectTerms | Accuracy ADHD Artificial neural networks attention Attention deficit hyperactivity disorder Brain Classification CNN Datasets Deep learning Feature extraction Magnetic resonance imaging Mathematical models Medical imaging Mental disorders Methods Neural networks Physiological aspects Physiology Quality control |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELZgvPCCNgEiMJBBPIwHa4vt2PHT1LWUgrQ-rEzam-XYDkxCyVizSezXc-ekgQLiqVJ8Ue3cne_7krszIW91XoEVAHIrdO6ZDApcKorAQgVoAD89KoW1w6dLtTiXny6Ki-GF23pIq9zsiWmjDq3Hd-SHHOI6UBEtxPHVd4anRuHX1eEIjfvkQQ6RBu28nH8YCZfgueq7CQmg9oeRc8BHpRFbMSi16v97Q_4zSfK3qDPfJY8GuEgnvX73yL3YPCZ3q5g6dsdAsTigiSDQdX3eIp22ze1gTnAj9t5IPynZmx6spmy6XLJR_B3tWtoX69Y_6GS2mNHLhqaqXLaCldOzNatPzz7Smesg3nVPyPn8_efpgg1nKDAvtexYFUXkjht3pLyD0Oy4CoWosXQySIQDvPS1KYNSRtVBA19xMS88sC7YCV3k4inZadomPiO0cAHwCK8iV04C7KlEEUNexiAE1yCZkYPNU7V-aDCO51x8s0A0UAF2VEBG3oyiV31XjX8JnaBqRgFshJ0utNdf7OBXVsbiyDuVA68sZW1yXKjWpoTVK5iuy8g-Ktaiu8JkPDiPtxMgXUZJIzkMbxRuB-dd21-mlpHX4zDeiQlpTWxvUEaVQiBizIjeMpSt-W6PNJdfUwNvXQBoy83z___5C_KQI7lP2Yb7ZKe7vokvAQF11atk5j8BZMgDxw priority: 102 providerName: ProQuest |
Title | Separated Channel Attention Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI Dataset |
URI | https://www.proquest.com/docview/2435094733 https://www.proquest.com/docview/2468330025 https://pubmed.ncbi.nlm.nih.gov/PMC7517519 https://doaj.org/article/4e50ca6160184f919a067798c476d07a |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBZbd9llbGxjWbuglR26g2n0w5J1TJOm2aBhJCvkJmRJZoXilNUtdH_93pMd02yDXXpxwHoG5f2wvg8_fSLkk2YlZAEgt1wzn8mgoKSiCFkoAQ3gp0elcO_w-ULNL-TXdb5-cNQX9oS18sCt445lzEfeKQbEoZCVYcah5pkpvNQqjHSCRiMz2pKpjmoJzlSrIySA1B9HzgEZFUbsrD5JpP_vV_Gf7ZEP1pvZS_KiA4p03E7wFXkS69fk1yomre4YKG4LqCMYNE3bsUgnm_quSyR4EFU30k9q86ZHq0k2WSyy3vwzbTa03aZb3dPxdD6llzVN-3GzFeBQurzJqvPlFzp1Dax0zRtyMTv9Ppln3ekJGbhGNlkZReSOo7-8g0XZcRVyUeGmySARCPDCV6YIShlVBQ1MxUWWe-Bb8A50kYu3ZK_e1PEdobkDTzNeRq6cBMBTijwGVsQgBNdgOSBHW69a30mL4wkXVxYoBgbA9gEYkMPe9LrV0_iX0QmGpjdACex0AxLDdolh_5cYA3KAgbVYqDAZD2Xj7RjollHSSA7D24DbrmxvLAfwCHxXC5jCx34Yn8RWtDpubtFGFUIgVhwQvZMoO_PdHakvfyTpbp0DXGPm_WP8wX3ynCP5T92IB2Sv-XkbPwBCasoheVrMzobk2cnp4ttymEoDrmdr9huRCQ5q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuCASI0BYMAqkcrG5sx4kPCG13W-3SboR2W6m34MQOVEJJ201B5UfxG5nJCxYQt54ixRPF8YxnvnHmQcir0E9BCgC5BaGfMWkVbCknLLMpoAH89agU5g7PYzU9le_PgrMN8qPLhcGwyk4n1oralhmeke9xsOvgioRCvLu4ZNg1Cv-udi00GrE4cjffwGVbvZ1NgL-vOT88OBlPWdtVgGUylBVLnXDccG2GKjNgrAxXNhA5JhNaiQaSR1muI6uUVrkNAcEb5wcZ-CGgG4zDQgeg8jclZrQOyOb-Qfxh0bt4gvuqqV8khB7uOc4BkUVarFm9ujnA3ybgz7DM3-zc4X1yrwWodNRI1AOy4YqH5PvS1TXCnaWYjlA4IKiqJlKSjsviayvA8CBW-6gvdXg53V2O2TiOWU_-hlYlbdKD8xs6mkwn9LygdR4wW8Ja08WK5fPFjE5MBRa2ekROb2V9H5NBURbuCaGBsYCAeOq4MhKAVioCZ_3IWSF4CJQe2e1WNcnakubYWeNLAq4NMiDpGeCRlz3pRVPH419E-8iangBLb9c3yqtPSbuTE-mCYWaUD55sJHPt44eGoY7g6xVM13hkGxmboIKAyWSwXbNkBG6eVlJLDsMdw5NWXaySX8LtkRf9MD6JIXCFK6-RRkVCIEb1SLgmKGvzXR8pzj_XJcPDAGCir5_-_-XPyZ3pyfw4OZ7FR1vkLsejhTrWcZsMqqtrtwP4q0qftUJPycfb3mc_AacuQLo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFeEAgQYQMMAmk8RG3sxI4fECoNpWWsQiuT9hYc24FJKBlrBho_jV_HOc4FCoi3PVWKT1TH5_ad5FwIeSKjAqQAkFsiIxPGVoBKOW5DWwAawE-PQmDt8MFSzI_iN8fJ8Rb50dfCYFplbxO9oba1wXfkIwZ-HUIRyfmo7NIi3mWzF6dfQpwghV9a-3EarYjsu4tvEL6tny8y4PVTxmav3k_nYTdhIDSxjJuwcNwxzZQeC6PBcWkmbMJLLCy0MTpLlppSpVYIJUorAc1rFyUGYhKwE9ph0wMw_1cklwoDv3T2egj2OItE28mIczUeOcYAm6WKb_g_Pybgb2fwZ4Lmbx5vdoNc76AqnbSydZNsueoW-b5yvlu4sxQLEyoHBE3T5kzSaV197UQZbsS-H_7HJ5rTvdU0nC6X4UD-jDY1bQuFyws6yeYZPamorwgOV3DS9HAdlgeHC5rpBnxtc5scXcrp3iHbVV25u4Qm2gIWYoVjQscAuQqeOBulznLOJFAGZK8_1dx0zc1xxsbnHIIcZEA-MCAgjwfS07ajx7-IXiJrBgJswu0v1Gcf806n89glY6NFBDFtGpcqwgeVUqXw9AK2qwOyi4zN0VTAZgworsknEPApEauYwXLP8LwzHOv8l5gH5NGwjHdiMlzl6nOkESnniFYDIjcEZWO_myvVySffPFwmABgjde__f_6QXAXtyt8ulvs75BrDdww-6XGXbDdn5-4-ALGmeOAlnpIPl61iPwEeeUOK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separated+Channel+Attention+Convolutional+Neural+Network+%28SC-CNN-Attention%29+to+Identify+ADHD+in+Multi-Site+Rs-fMRI+Dataset&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Tao&rft.au=Li%2C+Cunbo&rft.au=Li%2C+Peiyang&rft.au=Peng%2C+Yueheng&rft.date=2020-08-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=22&rft.issue=8&rft_id=info:doi/10.3390%2Fe22080893&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |