Separated Channel Attention Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI Dataset

The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-cha...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 22; no. 8; p. 893
Main Authors Zhang, Tao, Li, Cunbo, Li, Peiyang, Peng, Yueheng, Kang, Xiaodong, Jiang, Chenyang, Li, Fali, Zhu, Xuyang, Yao, Dezhong, Biswal, Bharat, Xu, Peng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2020
MDPI
Subjects
Online AccessGet full text
ISSN1099-4300
1099-4300
DOI10.3390/e22080893

Cover

Abstract The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a “leave-one-site-out” cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data.
AbstractList The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a “leave-one-site-out” cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data.
The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a "leave-one-site-out" cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data.The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a "leave-one-site-out" cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data.
The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-channel model and static measurements (i.e., functional connectivity, FC) in the small, homogenous single-site dataset, which is limited and may cause the loss of intrinsic information in functional MRI (fMRI). In this study, we proposed a new two-stage network structure by combing a separated channel convolutional neural network (SC-CNN) with an attention-based network (SC-CNN-attention) to discriminate ADHD and healthy controls on a large-scale multi-site database (5 sites and n = 1019). To utilize both intrinsic temporal feature and the interactions of temporal dependent in whole-brain resting-state fMRI, in the first stage of our proposed network structure, a SC- CNN is used to learn the temporal feature of each brain region, and an attention network in the second stage is adopted to capture temporal dependent features among regions and extract fusion features. Using a “leave-one-site-out” cross-validation framework, our proposed method obtained a mean classification accuracy of 68.6% on five different sites, which is higher than those reported in previous studies. The classification results demonstrate that our proposed network is robust to data variants and is also replicated across sites. The combination of the SC-CNN with the attention network is powerful to capture the intrinsic fMRI information to discriminate ADHD across multi-site resting-state fMRI data.
Audience Academic
Author Xu, Peng
Li, Cunbo
Li, Fali
Jiang, Chenyang
Biswal, Bharat
Kang, Xiaodong
Yao, Dezhong
Zhu, Xuyang
Li, Peiyang
Peng, Yueheng
Zhang, Tao
AuthorAffiliation 1 School of Science, Xihua University, Chengdu 610039, China; zhangtao@mail.xhu.edu.cn
2 School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China; cunboli@163.com (C.L.); yuehengp@umich.edu (Y.P.); 201821140226@std.uestc.edu.cn (C.J.); lfl_uestc@163.com (F.L.); xuyang508@163.com (X.Z.); dyao@uestc.edu.cn (D.Y.)
4 Sichuan 81 Rehabilitation Centre, Chengdu University of TCM, Chengdu 611137, China; kxd1120@163.com
3 School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; pyli@cqupt.edu.cn
AuthorAffiliation_xml – name: 3 School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; pyli@cqupt.edu.cn
– name: 4 Sichuan 81 Rehabilitation Centre, Chengdu University of TCM, Chengdu 611137, China; kxd1120@163.com
– name: 1 School of Science, Xihua University, Chengdu 610039, China; zhangtao@mail.xhu.edu.cn
– name: 2 School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China; cunboli@163.com (C.L.); yuehengp@umich.edu (Y.P.); 201821140226@std.uestc.edu.cn (C.J.); lfl_uestc@163.com (F.L.); xuyang508@163.com (X.Z.); dyao@uestc.edu.cn (D.Y.)
Author_xml – sequence: 1
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
– sequence: 2
  givenname: Cunbo
  orcidid: 0000-0002-1954-6113
  surname: Li
  fullname: Li, Cunbo
– sequence: 3
  givenname: Peiyang
  surname: Li
  fullname: Li, Peiyang
– sequence: 4
  givenname: Yueheng
  surname: Peng
  fullname: Peng, Yueheng
– sequence: 5
  givenname: Xiaodong
  surname: Kang
  fullname: Kang, Xiaodong
– sequence: 6
  givenname: Chenyang
  surname: Jiang
  fullname: Jiang, Chenyang
– sequence: 7
  givenname: Fali
  surname: Li
  fullname: Li, Fali
– sequence: 8
  givenname: Xuyang
  surname: Zhu
  fullname: Zhu, Xuyang
– sequence: 9
  givenname: Dezhong
  surname: Yao
  fullname: Yao, Dezhong
– sequence: 10
  givenname: Bharat
  surname: Biswal
  fullname: Biswal, Bharat
– sequence: 11
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
BookMark eNptkk1vEzEQhleoiH7AgX9giUt7WOqv9doXpCgBGqkNUgNna-r1pg4bO_V6i8qvx9tUgVZIlmZsP35nxjPHxYEP3hbFe4I_MqbwuaUUSywVe1UcEaxUyRnGB__4h8Vx368xpowS8aY4ZIxKIQQ9Kn4v7RYiJNug6S14bzs0Scn65IJH0-DvQzeMPnRoYYf4aNKvEH-i0-W0nC4W5R4_QymgeTNu2gc0mV3MkPPoauiSK5cuWXTdl-3V9RzNIEFv09vidQtdb9892ZPix5fP36cX5eW3r_Pp5LI0vOapvLHMUqAKsDAgKwZUNBVrMRa04VgSRaVplWyEUKJt6qrCYEllOCYVk2ApOynmO90mwFpvo9tAfNABnH48CHGlISZnOqu5rbABQQQmkreKjEHrWsmciWhwDVnr005rO9xsbGNysflPnok-v_HuVq_Cva4rkpfKAqdPAjHcDbZPeuN6Y7sOvA1DrykXkuWO0SqjH16g6zDE3ImRYhVWvGbsL7WCXIDzbchxzSiqJ4JTJbji4x-c7SgTQ99H2-5TJliPM6T3M5TZ8xescQnGDmdl1_3nxR-iVcUM
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3324670
crossref_primary_10_1016_j_artmed_2023_102630
crossref_primary_10_3390_s24144682
crossref_primary_10_1016_j_knosys_2024_112615
crossref_primary_10_3390_biom11081093
crossref_primary_10_21205_deufmd_2023257301
crossref_primary_10_1016_j_neuroimage_2023_119944
crossref_primary_10_1016_j_tics_2022_07_003
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1007_s12145_024_01308_4
crossref_primary_10_1016_j_compbiomed_2022_105525
crossref_primary_10_1007_s10278_024_01189_5
crossref_primary_10_1016_j_artmed_2021_102209
crossref_primary_10_3934_mbe_2024256
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1007_s11042_023_17962_7
crossref_primary_10_1155_2022_5766386
crossref_primary_10_1016_j_neuroscience_2025_02_019
crossref_primary_10_1016_j_compbiomed_2024_108611
crossref_primary_10_1002_nbm_5138
crossref_primary_10_1145_3654664
crossref_primary_10_1111_exsy_13788
crossref_primary_10_1016_j_ijchp_2023_100395
crossref_primary_10_1016_j_cmpb_2024_108114
crossref_primary_10_1088_1741_2552_abeddf
crossref_primary_10_3390_app11083636
crossref_primary_10_1093_psyrad_kkab003
crossref_primary_10_1016_j_bspc_2023_104733
crossref_primary_10_1109_TNSRE_2023_3243992
crossref_primary_10_1007_s11571_022_09897_w
crossref_primary_10_1016_j_compbiomed_2022_106320
crossref_primary_10_3389_fnagi_2022_871706
crossref_primary_10_1088_1741_2552_ad48bd
crossref_primary_10_3390_app12126211
crossref_primary_10_1109_ACCESS_2024_3522397
crossref_primary_10_1186_s40537_024_00998_3
crossref_primary_10_1155_2022_3941049
crossref_primary_10_1093_cercor_bhad511
crossref_primary_10_3390_bios14050259
Cites_doi 10.1038/nature14539
10.1007/978-3-319-67389-9_42
10.1007/978-3-319-67159-8_9
10.1016/j.neuroimage.2016.06.034
10.1016/j.neuroimage.2014.07.033
10.1037/0033-2909.121.1.65
10.1037/a0026582
10.1006/nimg.2001.0978
10.1371/journal.pone.0194856
10.18653/v1/D15-1166
10.3389/fnsys.2012.00069
10.1016/j.bspc.2018.12.027
10.1177/1087054719837749
10.1016/j.neuroimage.2016.10.045
10.1186/s12984-016-0119-8
10.3233/IDA-1997-1302
10.1109/ISBI.2018.8363838
10.1038/nrn3475
10.3389/fnsys.2012.00063
10.1145/3219819.3219839
10.1109/ICDSP.2018.8631658
10.1016/j.media.2017.07.005
10.1016/j.neuroimage.2007.11.029
10.1038/nrn2961
10.1109/CCBD.2014.42
10.3389/fnhum.2013.00599
10.1159/000490289
10.1016/j.nicl.2017.08.017
10.1016/j.neuroimage.2013.12.063
10.1016/j.compmedimag.2016.04.004
10.1609/aaai.v34i07.6865
10.1016/S0387-7604(02)00152-3
ContentType Journal Article
Copyright COPYRIGHT 2020 MDPI AG
2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e22080893
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_4e50ca6160184f919a067798c476d07a
PMC7517519
A642964942
10_3390_e22080893
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-be3e2a29a06ca853a26d53f0062d4081928cf98d6696fd7550ae15c401538ae23
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:17:39 EDT 2025
Thu Aug 21 14:08:54 EDT 2025
Fri Sep 05 06:32:22 EDT 2025
Fri Jul 25 12:04:40 EDT 2025
Tue Jun 17 21:48:11 EDT 2025
Tue Jul 01 01:57:56 EDT 2025
Thu Apr 24 22:58:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-be3e2a29a06ca853a26d53f0062d4081928cf98d6696fd7550ae15c401538ae23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1954-6113
OpenAccessLink https://doaj.org/article/4e50ca6160184f919a067798c476d07a
PMID 33286662
PQID 2435094733
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_4e50ca6160184f919a067798c476d07a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517519
proquest_miscellaneous_2468330025
proquest_journals_2435094733
gale_infotracmisc_A642964942
crossref_primary_10_3390_e22080893
crossref_citationtrail_10_3390_e22080893
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Barkley (ref_3) 2003; 25
Litjens (ref_11) 2017; 42
LeCun (ref_22) 2015; 521
Ma (ref_43) 2014; 90
Tenev (ref_40) 2014; 93
ref_14
ref_36
Brown (ref_8) 2012; 6
ref_13
ref_35
ref_34
Barkley (ref_1) 1997; 121
ref_33
Abraham (ref_17) 2017; 147
ref_32
Yi (ref_7) 2016; 13
Du (ref_9) 2016; 52
Dash (ref_23) 1997; 1
ref_18
ref_39
ref_38
ref_37
Deco (ref_42) 2011; 12
Margraf (ref_5) 2012; 80
Heinsfeld (ref_20) 2018; 17
ref_25
ref_24
Rovira (ref_2) 2019; 29
ref_45
Zhu (ref_31) 2019; 49
ref_44
Dai (ref_10) 2012; 6
Monti (ref_16) 2014; 103
ref_41
Zhu (ref_12) 2008; 40
Zhang (ref_15) 2018; 6
Landeau (ref_30) 2002; 15
Tang (ref_6) 2018; 40
ref_29
ref_27
Button (ref_21) 2013; 14
Bellec (ref_28) 2017; 144
ref_4
Zou (ref_26) 2017; 5
Nielsen (ref_19) 2013; 7
References_xml – volume: 521
  start-page: 436
  year: 2015
  ident: ref_22
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 93
  start-page: 162
  year: 2014
  ident: ref_40
  article-title: Machine learning approach for classification of ADHD adults
  publication-title: Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol.
– volume: 29
  start-page: S758
  year: 2019
  ident: ref_2
  article-title: Meta-Analysis of Genome-Wide Association Studies On Adult Attention-Deficit and Hyperactivity Disorder
  publication-title: Eur. Neuropsychopharmacol.
– ident: ref_18
  doi: 10.1007/978-3-319-67389-9_42
– ident: ref_24
  doi: 10.1007/978-3-319-67159-8_9
– ident: ref_32
– volume: 144
  start-page: 275
  year: 2017
  ident: ref_28
  article-title: The Neuro Bureau ADHD-200 Preprocessed repository
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.06.034
– volume: 103
  start-page: 427
  year: 2014
  ident: ref_16
  article-title: Estimating time-varying brain connectivity networks from functional MRI time series
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.033
– volume: 121
  start-page: 65
  year: 1997
  ident: ref_1
  article-title: Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.121.1.65
– volume: 80
  start-page: 128
  year: 2012
  ident: ref_5
  article-title: Is ADHD diagnosed in accord with diagnostic criteria? Overdiagnosis and influence of client gender on diagnosis
  publication-title: J. Consult. Clin. Psychol.
  doi: 10.1037/a0026582
– volume: 15
  start-page: 273
  year: 2002
  ident: ref_30
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– ident: ref_13
  doi: 10.1371/journal.pone.0194856
– ident: ref_35
  doi: 10.18653/v1/D15-1166
– volume: 6
  start-page: 69
  year: 2012
  ident: ref_8
  article-title: ADHD-200 Global Competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00069
– volume: 49
  start-page: 396
  year: 2019
  ident: ref_31
  article-title: Separated channel convolutional neural network to realize the training free motor imagery BCI systems
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.12.027
– ident: ref_39
– ident: ref_14
  doi: 10.1177/1087054719837749
– volume: 147
  start-page: 736
  year: 2017
  ident: ref_17
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– ident: ref_37
– ident: ref_44
– volume: 13
  start-page: 11
  year: 2016
  ident: ref_7
  article-title: EEG oscillatory patterns and classification of sequential compound limb motor imagery
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-016-0119-8
– volume: 1
  start-page: 131
  year: 1997
  ident: ref_23
  article-title: Feature selection for classification
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-1997-1302
– ident: ref_25
  doi: 10.1109/ISBI.2018.8363838
– volume: 14
  start-page: 365
  year: 2013
  ident: ref_21
  article-title: Power failure: Why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3475
– volume: 6
  start-page: 63
  year: 2012
  ident: ref_10
  article-title: Classification of ADHD children through multimodal magnetic resonance imaging
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2012.00063
– volume: 6
  start-page: 60339
  year: 2018
  ident: ref_15
  article-title: The Time-Varying Network Patterns in Motor Imagery Revealed by Adaptive Directed Transfer Function Analysis for fMRI
  publication-title: IEEE Access Pract. Innov. Open Solut.
– ident: ref_45
  doi: 10.1145/3219819.3219839
– ident: ref_29
– ident: ref_33
– ident: ref_27
– ident: ref_41
  doi: 10.1109/ICDSP.2018.8631658
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_11
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 40
  start-page: 110
  year: 2008
  ident: ref_12
  article-title: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.11.029
– volume: 12
  start-page: 43
  year: 2011
  ident: ref_42
  article-title: Emerging concepts for the dynamical organization of resting-state activity in the brain
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2961
– ident: ref_4
  doi: 10.1109/CCBD.2014.42
– volume: 7
  start-page: 599
  year: 2013
  ident: ref_19
  article-title: Multisite functional connectivity MRI classification of autism: ABIDE results
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00599
– ident: ref_38
– ident: ref_36
– volume: 40
  start-page: 246
  year: 2018
  ident: ref_6
  article-title: Different Developmental Pattern of Brain Activities in ADHD: A Study of Resting-State fMRI
  publication-title: Dev. Neurosci.
  doi: 10.1159/000490289
– volume: 17
  start-page: 16
  year: 2018
  ident: ref_20
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: Neuroimage. Clin.
  doi: 10.1016/j.nicl.2017.08.017
– volume: 90
  start-page: 196
  year: 2014
  ident: ref_43
  article-title: Dynamic changes of spatial functional network connectivity in individuals and schizophrenia patients using independent vector analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.063
– volume: 52
  start-page: 82
  year: 2016
  ident: ref_9
  article-title: Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA
  publication-title: Comput. Med Imaging Graph.
  doi: 10.1016/j.compmedimag.2016.04.004
– ident: ref_34
  doi: 10.1609/aaai.v34i07.6865
– volume: 25
  start-page: 77
  year: 2003
  ident: ref_3
  article-title: Issues in the diagnosis of attention-deficit/hyperactivity disorder in children
  publication-title: Brain Dev.
  doi: 10.1016/S0387-7604(02)00152-3
– volume: 5
  start-page: 23626
  year: 2017
  ident: ref_26
  article-title: 3D CNN based automatic diagnosis of attention deficit hyperactivity disorder using functional and structural MRI
  publication-title: IEEE Access Pract. Innov. Open Solut.
SSID ssj0023216
Score 2.4131494
Snippet The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 893
SubjectTerms Accuracy
ADHD
Artificial neural networks
attention
Attention deficit hyperactivity disorder
Brain
Classification
CNN
Datasets
Deep learning
Feature extraction
Magnetic resonance imaging
Mathematical models
Medical imaging
Mental disorders
Methods
Neural networks
Physiological aspects
Physiology
Quality control
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwELZgvPCCNgEiMJBBPIwHa4vt2PHT1LWUgrQ-rEzam-XYDkxCyVizSezXc-ekgQLiqVJ8Ue3cne_7krszIW91XoEVAHIrdO6ZDApcKorAQgVoAD89KoW1w6dLtTiXny6Ki-GF23pIq9zsiWmjDq3Hd-SHHOI6UBEtxPHVd4anRuHX1eEIjfvkQQ6RBu28nH8YCZfgueq7CQmg9oeRc8BHpRFbMSi16v97Q_4zSfK3qDPfJY8GuEgnvX73yL3YPCZ3q5g6dsdAsTigiSDQdX3eIp22ze1gTnAj9t5IPynZmx6spmy6XLJR_B3tWtoX69Y_6GS2mNHLhqaqXLaCldOzNatPzz7Smesg3nVPyPn8_efpgg1nKDAvtexYFUXkjht3pLyD0Oy4CoWosXQySIQDvPS1KYNSRtVBA19xMS88sC7YCV3k4inZadomPiO0cAHwCK8iV04C7KlEEUNexiAE1yCZkYPNU7V-aDCO51x8s0A0UAF2VEBG3oyiV31XjX8JnaBqRgFshJ0utNdf7OBXVsbiyDuVA68sZW1yXKjWpoTVK5iuy8g-Ktaiu8JkPDiPtxMgXUZJIzkMbxRuB-dd21-mlpHX4zDeiQlpTWxvUEaVQiBizIjeMpSt-W6PNJdfUwNvXQBoy83z___5C_KQI7lP2Yb7ZKe7vokvAQF11atk5j8BZMgDxw
  priority: 102
  providerName: ProQuest
Title Separated Channel Attention Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI Dataset
URI https://www.proquest.com/docview/2435094733
https://www.proquest.com/docview/2468330025
https://pubmed.ncbi.nlm.nih.gov/PMC7517519
https://doaj.org/article/4e50ca6160184f919a067798c476d07a
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFBZbd9llbGxjWbuglR26g2n0w5J1TJOm2aBhJCvkJmRJZoXilNUtdH_93pMd02yDXXpxwHoG5f2wvg8_fSLkk2YlZAEgt1wzn8mgoKSiCFkoAQ3gp0elcO_w-ULNL-TXdb5-cNQX9oS18sCt445lzEfeKQbEoZCVYcah5pkpvNQqjHSCRiMz2pKpjmoJzlSrIySA1B9HzgEZFUbsrD5JpP_vV_Gf7ZEP1pvZS_KiA4p03E7wFXkS69fk1yomre4YKG4LqCMYNE3bsUgnm_quSyR4EFU30k9q86ZHq0k2WSyy3vwzbTa03aZb3dPxdD6llzVN-3GzFeBQurzJqvPlFzp1Dax0zRtyMTv9Ppln3ekJGbhGNlkZReSOo7-8g0XZcRVyUeGmySARCPDCV6YIShlVBQ1MxUWWe-Bb8A50kYu3ZK_e1PEdobkDTzNeRq6cBMBTijwGVsQgBNdgOSBHW69a30mL4wkXVxYoBgbA9gEYkMPe9LrV0_iX0QmGpjdACex0AxLDdolh_5cYA3KAgbVYqDAZD2Xj7RjollHSSA7D24DbrmxvLAfwCHxXC5jCx34Yn8RWtDpubtFGFUIgVhwQvZMoO_PdHakvfyTpbp0DXGPm_WP8wX3ynCP5T92IB2Sv-XkbPwBCasoheVrMzobk2cnp4ttymEoDrmdr9huRCQ5q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuCASI0BYMAqkcrG5sx4kPCG13W-3SboR2W6m34MQOVEJJ201B5UfxG5nJCxYQt54ixRPF8YxnvnHmQcir0E9BCgC5BaGfMWkVbCknLLMpoAH89agU5g7PYzU9le_PgrMN8qPLhcGwyk4n1oralhmeke9xsOvgioRCvLu4ZNg1Cv-udi00GrE4cjffwGVbvZ1NgL-vOT88OBlPWdtVgGUylBVLnXDccG2GKjNgrAxXNhA5JhNaiQaSR1muI6uUVrkNAcEb5wcZ-CGgG4zDQgeg8jclZrQOyOb-Qfxh0bt4gvuqqV8khB7uOc4BkUVarFm9ujnA3ybgz7DM3-zc4X1yrwWodNRI1AOy4YqH5PvS1TXCnaWYjlA4IKiqJlKSjsviayvA8CBW-6gvdXg53V2O2TiOWU_-hlYlbdKD8xs6mkwn9LygdR4wW8Ja08WK5fPFjE5MBRa2ekROb2V9H5NBURbuCaGBsYCAeOq4MhKAVioCZ_3IWSF4CJQe2e1WNcnakubYWeNLAq4NMiDpGeCRlz3pRVPH419E-8iangBLb9c3yqtPSbuTE-mCYWaUD55sJHPt44eGoY7g6xVM13hkGxmboIKAyWSwXbNkBG6eVlJLDsMdw5NWXaySX8LtkRf9MD6JIXCFK6-RRkVCIEb1SLgmKGvzXR8pzj_XJcPDAGCir5_-_-XPyZ3pyfw4OZ7FR1vkLsejhTrWcZsMqqtrtwP4q0qftUJPycfb3mc_AacuQLo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFeEAgQYQMMAmk8RG3sxI4fECoNpWWsQiuT9hYc24FJKBlrBho_jV_HOc4FCoi3PVWKT1TH5_ad5FwIeSKjAqQAkFsiIxPGVoBKOW5DWwAawE-PQmDt8MFSzI_iN8fJ8Rb50dfCYFplbxO9oba1wXfkIwZ-HUIRyfmo7NIi3mWzF6dfQpwghV9a-3EarYjsu4tvEL6tny8y4PVTxmav3k_nYTdhIDSxjJuwcNwxzZQeC6PBcWkmbMJLLCy0MTpLlppSpVYIJUorAc1rFyUGYhKwE9ph0wMw_1cklwoDv3T2egj2OItE28mIczUeOcYAm6WKb_g_Pybgb2fwZ4Lmbx5vdoNc76AqnbSydZNsueoW-b5yvlu4sxQLEyoHBE3T5kzSaV197UQZbsS-H_7HJ5rTvdU0nC6X4UD-jDY1bQuFyws6yeYZPamorwgOV3DS9HAdlgeHC5rpBnxtc5scXcrp3iHbVV25u4Qm2gIWYoVjQscAuQqeOBulznLOJFAGZK8_1dx0zc1xxsbnHIIcZEA-MCAgjwfS07ajx7-IXiJrBgJswu0v1Gcf806n89glY6NFBDFtGpcqwgeVUqXw9AK2qwOyi4zN0VTAZgworsknEPApEauYwXLP8LwzHOv8l5gH5NGwjHdiMlzl6nOkESnniFYDIjcEZWO_myvVySffPFwmABgjde__f_6QXAXtyt8ulvs75BrDdww-6XGXbDdn5-4-ALGmeOAlnpIPl61iPwEeeUOK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Separated+Channel+Attention+Convolutional+Neural+Network+%28SC-CNN-Attention%29+to+Identify+ADHD+in+Multi-Site+Rs-fMRI+Dataset&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Tao&rft.au=Li%2C+Cunbo&rft.au=Li%2C+Peiyang&rft.au=Peng%2C+Yueheng&rft.date=2020-08-01&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=22&rft.issue=8&rft_id=info:doi/10.3390%2Fe22080893&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon