Multi-scale and multi-parametric radiomics of gadoxetate disodium–enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm
Objectives To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm. Methods Between March 2012 and September 2019, 356 patients with pathologically confirmed solit...
Saved in:
Published in | European radiology Vol. 31; no. 7; pp. 4824 - 4838 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objectives
To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm.
Methods
Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium–enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models.
Results
Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861–0.979) using random forest and 0.879 (95% CI: 0.820–0.938) using logistic regression analysis in validation cohort (
n
= 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (
p
< 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538–0.769,
n
= 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction.
Conclusions
Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm.
Key Points
•
The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence.
•
The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far.
•
As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression. |
---|---|
AbstractList | ObjectivesTo develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm.MethodsBetween March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium–enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models.ResultsElevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861–0.979) using random forest and 0.879 (95% CI: 0.820–0.938) using logistic regression analysis in validation cohort (n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538–0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction.ConclusionsPreoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm.Key Points• The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence.• The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far.• As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression. Objectives To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm. Methods Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium–enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models. Results Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861–0.979) using random forest and 0.879 (95% CI: 0.820–0.938) using logistic regression analysis in validation cohort ( n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months ( p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538–0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction. Conclusions Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm. Key Points • The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression. To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm.OBJECTIVESTo develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm.Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium-enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models.METHODSBetween March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium-enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models.Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861-0.979) using random forest and 0.879 (95% CI: 0.820-0.938) using logistic regression analysis in validation cohort (n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538-0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction.RESULTSElevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861-0.979) using random forest and 0.879 (95% CI: 0.820-0.938) using logistic regression analysis in validation cohort (n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538-0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction.Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm.CONCLUSIONSPreoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm.• The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression.KEY POINTS• The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression. To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm. Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium-enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models. Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861-0.979) using random forest and 0.879 (95% CI: 0.820-0.938) using logistic regression analysis in validation cohort (n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538-0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction. Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm. • The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression. |
Author | Yu, Yang-Li Zeng, Meng-Su Chong, Huan-Huan Wu, Di-Jia Yang, Chun Rao, Sheng-Xiang Yang, Li Sheng, Ruo-Fan |
Author_xml | – sequence: 1 givenname: Huan-Huan surname: Chong fullname: Chong, Huan-Huan organization: Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University – sequence: 2 givenname: Li surname: Yang fullname: Yang, Li organization: Department of Radiology, Zhongshan Hospital, Fudan University – sequence: 3 givenname: Ruo-Fan surname: Sheng fullname: Sheng, Ruo-Fan organization: Department of Radiology, Zhongshan Hospital, Fudan University – sequence: 4 givenname: Yang-Li surname: Yu fullname: Yu, Yang-Li organization: Department of Radiology, Zhongshan Hospital, Fudan University – sequence: 5 givenname: Di-Jia surname: Wu fullname: Wu, Di-Jia organization: Shanghai United Imaging Intelligence Co., Ltd – sequence: 6 givenname: Sheng-Xiang surname: Rao fullname: Rao, Sheng-Xiang organization: Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University – sequence: 7 givenname: Chun surname: Yang fullname: Yang, Chun email: dryangchun@hotmail.com organization: Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University – sequence: 8 givenname: Meng-Su orcidid: 0000-0002-0299-9407 surname: Zeng fullname: Zeng, Meng-Su email: mengsu_zeng@163.com organization: Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University, Department of Medical Imaging, Shanghai Medical College, Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33447861$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UkluFDEUtVAQGeACLJAlNmwKXB66yhskFDFESoSEYG39tt3djqrsxnYlsGPLmitwCM6Tk_C7O2HIIgvL03vP7z__Q7IXU_SEPG7Z85ax7kVhTAjWMI6jm7G24ffIQSsFb1rWyz1ywLTom05ruU8OSzlnjOlWdg_IvhBSdv2sPSC_zqahhqZYGDyF6Oi43a8hw-hrDpZmcCGNwRaaFnQJLn3xFaqnLpTkwjReffvh4wqi9Y6efTih6-xdsLVQ5OR0AcVOA2QaIi5DittH0lRtGj0e0jXU4CPCL0Nd0ZKGUCF_pSuPF8n6YdiyLWQbYhqBXn3_SRW140NyfwFD8Y-u5yPy6c3rj8fvmtP3b0-OX502VnayNnOhF3MBGILl4ITrNOsxFSUVBwmWe9053zPl3Gw-09ozLbWXvFMz5piaO3FEXu5019N89M6i1wyDWecwok-TIJj_b2JYmWW6MD1vhVICBZ5dC-T0efKlmjGUTWEQfZqK4fgTqpedaBH69Bb0PE05YnmGK8mV4IJzRD3519EfKzefioB-B8D8S8l-YSyGWjF8NBgG0zKz6R-z6x-D_WO2_WM22vwW9Ub9TpLYkQqC49Lnv7bvYP0GRb3eOA |
CitedBy_id | crossref_primary_10_3389_fonc_2024_1365286 crossref_primary_10_1016_j_gassur_2024_08_001 crossref_primary_10_1016_j_acra_2024_05_022 crossref_primary_10_1007_s00330_022_09290_5 crossref_primary_10_2147_JHC_S462979 crossref_primary_10_3389_fonc_2022_831996 crossref_primary_10_1155_2022_8586943 crossref_primary_10_3390_livers4010004 crossref_primary_10_1002_jmri_28725 crossref_primary_10_1007_s00261_024_04202_1 crossref_primary_10_1007_s00330_021_08495_4 crossref_primary_10_1007_s42058_024_00146_z crossref_primary_10_3389_fphys_2023_1138239 crossref_primary_10_3389_fonc_2022_838701 crossref_primary_10_1007_s11547_024_01845_4 crossref_primary_10_3389_fonc_2024_1362737 crossref_primary_10_2147_JHC_S309570 crossref_primary_10_3389_fonc_2024_1367907 crossref_primary_10_1007_s00261_024_04278_9 crossref_primary_10_3389_fmed_2024_1334062 crossref_primary_10_3748_wjg_v30_i45_4801 crossref_primary_10_1016_j_heliyon_2024_e32940 crossref_primary_10_1007_s00261_023_04102_w crossref_primary_10_1016_j_ejso_2024_109361 crossref_primary_10_1016_j_hbpd_2023_03_010 crossref_primary_10_1007_s00261_023_04071_0 crossref_primary_10_1016_j_ejso_2022_08_036 crossref_primary_10_3748_wjg_v28_i24_2733 crossref_primary_10_1002_jmri_29523 crossref_primary_10_1148_radiol_222729 crossref_primary_10_3389_fonc_2022_1035775 crossref_primary_10_3748_wjg_v28_i42_6002 crossref_primary_10_1002_jmri_28157 crossref_primary_10_1002_jmri_28553 crossref_primary_10_1016_j_ejrad_2024_111348 crossref_primary_10_3389_fonc_2024_1348678 crossref_primary_10_3390_cancers13225864 crossref_primary_10_1186_s13244_024_01623_w crossref_primary_10_1007_s00330_022_08679_6 crossref_primary_10_3389_fonc_2021_774800 crossref_primary_10_1186_s12880_024_01258_9 crossref_primary_10_3389_fonc_2022_960944 crossref_primary_10_3389_fonc_2022_818681 crossref_primary_10_1007_s11605_023_05762_1 crossref_primary_10_3390_cancers14071816 crossref_primary_10_1016_j_asjsur_2024_02_115 crossref_primary_10_1016_j_ultrasmedbio_2023_12_003 crossref_primary_10_1007_s00330_023_09414_5 crossref_primary_10_3389_fonc_2022_1032115 crossref_primary_10_1007_s00261_022_03496_3 crossref_primary_10_1016_j_ejrad_2024_111896 crossref_primary_10_1002_jmri_29276 crossref_primary_10_1016_j_asjsur_2021_02_023 crossref_primary_10_1016_j_clbc_2024_05_006 crossref_primary_10_2147_JHC_S424009 crossref_primary_10_3390_cancers14215201 crossref_primary_10_3390_cancers15123197 crossref_primary_10_1177_02841851211038806 crossref_primary_10_1016_j_ejso_2024_108052 crossref_primary_10_1186_s40644_023_00621_3 crossref_primary_10_3748_wjg_v30_i4_381 crossref_primary_10_3390_app13031371 crossref_primary_10_1007_s00330_023_10144_x crossref_primary_10_1002_jmri_28214 crossref_primary_10_1155_2022_3704987 crossref_primary_10_1016_j_acra_2022_04_006 crossref_primary_10_1016_j_acra_2023_12_007 crossref_primary_10_2147_IJGM_S410123 crossref_primary_10_1016_j_acra_2025_01_043 crossref_primary_10_14218_JCTH_2021_00254 crossref_primary_10_1007_s00261_022_03582_6 crossref_primary_10_1016_j_gassur_2024_02_004 crossref_primary_10_3892_ol_2024_14518 crossref_primary_10_1016_j_heliyon_2025_e41735 crossref_primary_10_3390_cancers15030743 crossref_primary_10_1186_s40644_025_00845_5 crossref_primary_10_1007_s00330_023_09852_1 crossref_primary_10_3389_fonc_2021_699290 crossref_primary_10_1007_s11547_023_01704_8 crossref_primary_10_3389_fonc_2022_831795 crossref_primary_10_1007_s00330_023_09419_0 crossref_primary_10_1016_j_acra_2024_10_007 crossref_primary_10_2147_JHC_S493044 crossref_primary_10_1016_j_acra_2023_02_005 crossref_primary_10_1016_j_ejro_2024_100608 crossref_primary_10_1016_j_crad_2023_05_007 crossref_primary_10_1016_j_acra_2025_02_006 crossref_primary_10_1093_bjr_tqae116 crossref_primary_10_3389_fonc_2023_1123141 crossref_primary_10_1016_j_mri_2022_10_011 crossref_primary_10_3389_fonc_2022_1021570 crossref_primary_10_1002_mp_16581 crossref_primary_10_1186_s12880_022_00855_w crossref_primary_10_1007_s11547_024_01799_7 crossref_primary_10_1155_2022_5292200 crossref_primary_10_12677_ACM_2023_1351040 crossref_primary_10_1007_s00330_023_09656_3 crossref_primary_10_3390_cancers15020365 crossref_primary_10_1007_s00261_024_04306_8 crossref_primary_10_7759_cureus_62570 crossref_primary_10_1007_s00330_023_09789_5 crossref_primary_10_3389_fonc_2025_1420599 crossref_primary_10_1186_s13244_024_01760_2 crossref_primary_10_1016_j_tranon_2021_101234 crossref_primary_10_2147_JHC_S410237 crossref_primary_10_3389_fonc_2022_907076 crossref_primary_10_1007_s00261_023_04033_6 crossref_primary_10_2147_JHC_S484027 crossref_primary_10_1007_s11547_023_01676_9 crossref_primary_10_3389_fonc_2024_1360936 crossref_primary_10_3748_wjg_v30_i15_2128 crossref_primary_10_3389_fonc_2021_698373 crossref_primary_10_4251_wjgo_v17_i1_96439 crossref_primary_10_1186_s12876_022_02586_2 crossref_primary_10_1159_000530495 crossref_primary_10_4251_wjgo_v13_i11_1599 crossref_primary_10_1016_j_acra_2024_11_027 crossref_primary_10_1148_rg_220087 crossref_primary_10_1002_mp_16127 crossref_primary_10_3390_jpm13030478 crossref_primary_10_1002_jmri_29063 crossref_primary_10_3389_fonc_2021_756216 crossref_primary_10_1016_j_ejrad_2023_111146 crossref_primary_10_1002_jmri_29187 crossref_primary_10_3748_wjg_v31_i5_98928 crossref_primary_10_1155_2022_8950600 crossref_primary_10_2147_JHC_S423129 crossref_primary_10_3389_fonc_2025_1510071 crossref_primary_10_3389_fonc_2022_1020349 |
Cites_doi | 10.3748/wjg.v22.i42.9279 10.1007/s00330-020-06687-y 10.1016/j.jhep.2019.02.023 10.1245/s10434-010-1540-z 10.1002/hep.31210 10.1016/j.jhep.2017.04.024 10.3348/kjr.2015.16.3.449 10.2214/AJR.18.19507 10.1038/nrclinonc.2017.141 10.1053/j.gastro.2017.09.025 10.1007/s00330-019-06585-y 10.5152/dir.2018.17467 10.1016/j.hbpd.2019.04.011 10.1159/000494099 10.1016/j.jhep.2015.07.025 10.1038/ncomms5006 10.1016/S0140-6736(18)30010-2 10.1007/s00330-018-5986-x 10.1038/s41598-017-15491-6 10.1007/s00330-018-5985-y 10.1001/jamasurg.2015.4257 10.1007/s00261-018-1768-9 10.1002/hep.27877 10.1148/radiol.2017170515 10.1016/j.ebiom.2019.10.057 10.1002/hep.29086 10.1016/j.jhep.2013.03.009 10.1016/j.hpb.2019.02.003 10.1245/s10434-012-2513-1 10.1093/annonc/mdy308 10.1245/s10434-013-3211-3 10.1142/S0129065720500537 10.1007/s00330-018-5935-8 10.3748/wjg.v23.i35.6467 10.1007/s00330-019-06088-w 10.1245/s10434-013-3376-9 10.1053/j.gastro.2009.06.003 10.1007/s11605-011-1537-3 10.21037/qims.2019.09.07 10.1056/NEJMra1713263 10.1007/s00261-018-1646-5 10.1016/j.jhep.2018.03.019 10.1111/hepr.13241 10.3748/wjg.v21.i18.5607 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s00330-020-07601-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 4838 |
ExternalDocumentID | PMC8213553 33447861 10_1007_s00330_020_07601_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Science and Technology Committee grantid: 18DZ1930102 and 19411965500 – fundername: Youth Foundation of Shanghai Municipal Health Commission grantid: 20204Y0346 – fundername: National Key Research and Development Program of China grantid: 2017YFC0108804 – fundername: Shanghai Municipal Key Clinical Specialty grantid: W2019-018 – fundername: National Natural Science Foundation of China grantid: 91859107 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Zhongshan Hospital, Fudan University grantid: 2018ZSLC22 – fundername: National Natural Science Foundation of China grantid: 91859107 – fundername: ; grantid: 2017YFC0108804 – fundername: ; grantid: W2019-018 – fundername: ; grantid: 18DZ1930102 and 19411965500 – fundername: ; grantid: 20204Y0346 – fundername: ; grantid: 91859107 – fundername: ; grantid: 2018ZSLC22 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PJZUB PPXIY PQGLB 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-b39fb3a799c2ad3d79089385452a4ac2e97de805dd6b699e0949e427560d05bd3 |
IEDL.DBID | 7X7 |
ISSN | 0938-7994 1432-1084 |
IngestDate | Thu Aug 21 18:16:32 EDT 2025 Thu Jul 10 17:38:51 EDT 2025 Fri Jul 25 18:55:31 EDT 2025 Mon Jul 21 06:02:15 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Tue Jul 01 03:08:21 EDT 2025 Fri Feb 21 02:48:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Magnetic resonance imaging Hepatocellular carcinoma Neoplasm recurrence |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-b39fb3a799c2ad3d79089385452a4ac2e97de805dd6b699e0949e427560d05bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0299-9407 |
OpenAccessLink | https://doi.org/10.1007/s00330-020-07601-2 |
PMID | 33447861 |
PQID | 2542532322 |
PQPubID | 54162 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8213553 proquest_miscellaneous_2478584731 proquest_journals_2542532322 pubmed_primary_33447861 crossref_citationtrail_10_1007_s00330_020_07601_2 crossref_primary_10_1007_s00330_020_07601_2 springer_journals_10_1007_s00330_020_07601_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Aerts, Velazquez, Leijenaar (CR24) 2014; 5 Chen, Zhang, Wang (CR10) 2019; 21 Yu, Chan, Lee (CR37) 2011; 15 Li, Fan, Qin (CR31) 2011; 18 Ma, Wei, Gu (CR15) 2019; 29 Wei, Huang, Tang (CR22) 2019; 29 Roayaie, Blume, Thung (CR19) 2009; 137 Lambin, Leijenaar, Deist (CR14) 2017; 14 CR17 Xu, Yang, Xu (CR25) 2019; 18 Ahn, Kim, Park, Kim, Han (CR33) 2019; 44 Lee, Kim, Lee, Sinn, Park (CR9) 2017; 67 Heimbach, Kulik, Finn (CR20) 2018; 67 Cho, Choi (CR26) 2015; 16 Vogel, Cervantes, Chau (CR6) 2018; 29 Peng, Zhang, Zhang, Xu, Zhou, Liu (CR16) 2018; 24 Hu, Shen, Wang (CR21) 2018; 43 Pang, Zhang, Xu (CR35) 2015; 21 Arnaoutakis, Mavros, Shen (CR36) 2014; 21 Chen, Feng, Wei (CR43) 2019; 29 Mazzaferro, Sposito, Zhou (CR2) 2018; 154 Sumie, Nakashima, Okuda (CR38) 2014; 21 Wang, Yang, Yang (CR29) 2018; 286 Wang, Wu, Cong (CR30) 2019; 49 Ji, Zhu, Xu (CR40) 2019; 50 Banerjee, Wang, Kim (CR39) 2015; 62 Feng, Jia, Liao (CR13) 2019; 29 (CR45) 2018; 69 CR4 Zhang, Xu, Wen (CR28) 2019; 9 Villanueva (CR5) 2019; 380 Cong, Bu, Chen (CR12) 2016; 22 Yang, Gu, Wei (CR11) 2019; 8 Pompili, Saviano, de Matthaeis (CR32) 2013; 59 Graña, Aguilar-Moreno, De Lope Asiain, Araquistain, Garmendia (CR44) 2020; 30 CR23 Miltiadous, Sia, Hoshida (CR3) 2015; 63 Lei, Li, Wu (CR7) 2016; 151 Xu, Zhang, Liu (CR8) 2019; 70 Hu, Zheng, Huang (CR27) 2017; 7 Wang, Gu, Wei (CR41) 2020; 30 Rodriguez-Peralvarez, Luong, Andreana, Meyer, Dhillon, Burroughs (CR18) 2013; 20 Kim, Choi, Lee, Lee, Park (CR42) 2018; 211 Forner, Reig, Bruix (CR1) 2018; 391 Zhang, Lai, Chen (CR34) 2017; 23 WM Cong (7601_CR12) 2016; 22 S Lee (7601_CR9) 2017; 67 7601_CR17 Y Wei (7601_CR22) 2019; 29 H Wang (7601_CR30) 2019; 49 L Yang (7601_CR11) 2019; 8 J Peng (7601_CR16) 2018; 24 S Chen (7601_CR43) 2019; 29 M Graña (7601_CR44) 2020; 30 X Xu (7601_CR8) 2019; 70 A Vogel (7601_CR6) 2018; 29 J Kim (7601_CR42) 2018; 211 GW Ji (7601_CR40) 2019; 50 DJ Arnaoutakis (7601_CR36) 2014; 21 P Lambin (7601_CR14) 2017; 14 European Association for the Study of the Liver (7601_CR45) 2018; 69 W Zhang (7601_CR34) 2017; 23 ZH Chen (7601_CR10) 2019; 21 MC Yu (7601_CR37) 2011; 15 A Villanueva (7601_CR5) 2019; 380 ES Cho (7601_CR26) 2015; 16 S Banerjee (7601_CR39) 2015; 62 X Ma (7601_CR15) 2019; 29 HJ Aerts (7601_CR24) 2014; 5 Q Pang (7601_CR35) 2015; 21 SJ Ahn (7601_CR33) 2019; 44 A Forner (7601_CR1) 2018; 391 ST Feng (7601_CR13) 2019; 29 JK Heimbach (7601_CR20) 2018; 67 G Xu (7601_CR25) 2019; 18 WT Wang (7601_CR29) 2018; 286 R Zhang (7601_CR28) 2019; 9 S Sumie (7601_CR38) 2014; 21 H Hu (7601_CR27) 2017; 7 M Pompili (7601_CR32) 2013; 59 M Rodriguez-Peralvarez (7601_CR18) 2013; 20 HT Hu (7601_CR21) 2018; 43 T Li (7601_CR31) 2011; 18 W Wang (7601_CR41) 2020; 30 Z Lei (7601_CR7) 2016; 151 S Roayaie (7601_CR19) 2009; 137 O Miltiadous (7601_CR3) 2015; 63 7601_CR23 V Mazzaferro (7601_CR2) 2018; 154 7601_CR4 |
References_xml | – volume: 30 start-page: 3004 year: 2020 end-page: 3014 ident: CR41 article-title: A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI publication-title: Eur Radiol – volume: 29 start-page: 4177 year: 2019 end-page: 4187 ident: CR43 article-title: Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging publication-title: Eur Radiol – volume: 50 start-page: 156 year: 2019 end-page: 165 ident: CR40 article-title: Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study publication-title: EBioMedicine – volume: 391 start-page: 1301 year: 2018 end-page: 1314 ident: CR1 article-title: Hepatocellular carcinoma publication-title: Lancet – volume: 21 start-page: 147 year: 2014 end-page: 154 ident: CR36 article-title: Recurrence patterns and prognostic factors in patients with hepatocellular carcinoma in noncirrhotic liver: a multi-institutional analysis publication-title: Ann Surg Oncol – volume: 21 start-page: 1002 year: 2014 end-page: 1009 ident: CR38 article-title: The significance of classifying microvascular invasion in patients with hepatocellular carcinoma publication-title: Ann Surg Oncol – volume: 29 start-page: 238 year: 2018 end-page: 255 ident: CR6 article-title: Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up publication-title: Ann Oncol – volume: 151 start-page: 356 year: 2016 end-page: 363 ident: CR7 article-title: Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria publication-title: JAMA Surg – ident: CR4 – volume: 18 start-page: 1955 year: 2011 end-page: 1963 ident: CR31 article-title: Risk factors, prognosis, and management of early and late intrahepatic recurrence after resection of primary clear cell carcinoma of the liver publication-title: Ann Surg Oncol – volume: 7 start-page: 15375 year: 2017 ident: CR27 article-title: A non-smooth tumor margin on preoperative imaging assesses microvascular invasion of hepatocellular carcinoma: a systematic review and meta-analysis publication-title: Sci Rep – volume: 9 start-page: 1503 year: 2019 end-page: 1515 ident: CR28 article-title: A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma publication-title: Quant Imaging Med Surg – volume: 286 start-page: 571 year: 2018 end-page: 580 ident: CR29 article-title: Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging publication-title: Radiology – volume: 63 start-page: 1368 year: 2015 end-page: 1377 ident: CR3 article-title: Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver transplantation publication-title: J Hepatol – volume: 49 start-page: 344 year: 2019 end-page: 354 ident: CR30 article-title: Microvascular invasion predicts a poor prognosis of solitary hepatocellular carcinoma up to 2 cm based on propensity score matching analysis publication-title: Hepatol Res – volume: 380 start-page: 1450 year: 2019 end-page: 1462 ident: CR5 article-title: Hepatocellular Carcinoma publication-title: N Engl J Med – volume: 67 start-page: 526 year: 2017 end-page: 534 ident: CR9 article-title: Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma publication-title: J Hepatol – ident: CR23 – volume: 5 start-page: 4006 year: 2014 ident: CR24 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat Commun – volume: 23 start-page: 6467 year: 2017 end-page: 6473 ident: CR34 article-title: Validated preoperative computed tomography risk estimation for postoperative hepatocellular carcinoma recurrence publication-title: World J Gastroenterol – volume: 18 start-page: 289 year: 2019 end-page: 290 ident: CR25 article-title: Prediction of microvascular invasion in hepatocellular carcinoma with preoperative imaging radiomic analysis: is it ready for prime time? publication-title: Hepatobiliary Pancreat Dis Int – volume: 44 start-page: 539 year: 2019 end-page: 548 ident: CR33 article-title: Hepatocellular carcinoma: preoperative gadoxetic acid-enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis publication-title: Abdom Radiol (NY) – volume: 21 start-page: 5607 year: 2015 end-page: 5621 ident: CR35 article-title: Significance of platelet count and platelet-based models for hepatocellular carcinoma recurrence publication-title: World J Gastroenterol – volume: 70 start-page: 1133 year: 2019 end-page: 1144 ident: CR8 article-title: Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma publication-title: J Hepatol – volume: 211 start-page: 1026 year: 2018 end-page: 1034 ident: CR42 article-title: Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics publication-title: AJR Am J Roentgenol – volume: 67 start-page: 358 year: 2018 end-page: 380 ident: CR20 article-title: AASLD guidelines for the treatment of hepatocellular carcinoma publication-title: Hepatology – volume: 14 start-page: 749 year: 2017 end-page: 762 ident: CR14 article-title: Radiomics: the bridge between medical imaging and personalized medicine publication-title: Nat Rev Clin Oncol – volume: 154 start-page: 128 year: 2018 end-page: 139 ident: CR2 article-title: Metroticket 2.0 Model for analysis of competing risks of death after liver transplantation for hepatocellular carcinoma publication-title: Gastroenterology – ident: CR17 – volume: 8 start-page: 373 year: 2019 end-page: 386 ident: CR11 article-title: A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma publication-title: Liver Cancer – volume: 59 start-page: 89 year: 2013 end-page: 97 ident: CR32 article-title: Long-term effectiveness of resection and radiofrequency ablation for single hepatocellular carcinoma ≤3 cm. Results of a multicenter Italian survey publication-title: J Hepatol – volume: 69 start-page: 182 year: 2018 end-page: 236 ident: CR45 article-title: EASL Clinical Practice Guidelines: management of hepatocellular carcinoma publication-title: J Hepatol – volume: 43 start-page: 3324 year: 2018 end-page: 3330 ident: CR21 article-title: Peritumoral tissue on preoperative imaging reveals microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis publication-title: Abdom Radiol (NY) – volume: 62 start-page: 792 year: 2015 end-page: 800 ident: CR39 article-title: A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma publication-title: Hepatology – volume: 22 start-page: 9279 year: 2016 end-page: 9287 ident: CR12 article-title: Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update publication-title: World J Gastroenterol – volume: 16 start-page: 449 year: 2015 end-page: 464 ident: CR26 article-title: MRI features of hepatocellular carcinoma related to biologic behavior publication-title: Korean J Radiol – volume: 29 start-page: 3595 year: 2019 end-page: 3605 ident: CR15 article-title: Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT publication-title: Eur Radiol – volume: 30 start-page: 2050053 year: 2020 ident: CR44 article-title: Improved Activity Recognition Combining Inertial Motion Sensors and Electroencephalogram Signals publication-title: Int J Neural Syst – volume: 137 start-page: 850 year: 2009 end-page: 855 ident: CR19 article-title: A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma publication-title: Gastroenterology – volume: 15 start-page: 1440 year: 2011 end-page: 1449 ident: CR37 article-title: Alkaline phosphatase: does it have a role in predicting hepatocellular carcinoma recurrence? publication-title: J Gastrointest Surg – volume: 29 start-page: 4648 year: 2019 end-page: 4659 ident: CR13 article-title: Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI publication-title: Eur Radiol – volume: 24 start-page: 121 year: 2018 end-page: 127 ident: CR16 article-title: A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma publication-title: Diagn Interv Radiol – volume: 20 start-page: 325 year: 2013 end-page: 339 ident: CR18 article-title: A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability publication-title: Ann Surg Oncol – volume: 21 start-page: 935 year: 2019 end-page: 944 ident: CR10 article-title: Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis publication-title: HPB (Oxford) – volume: 29 start-page: 5403 year: 2019 end-page: 5414 ident: CR22 article-title: IVIM improves preoperative assessment of microvascular invasion in HCC publication-title: Eur Radiol – volume: 22 start-page: 9279 year: 2016 ident: 7601_CR12 publication-title: World J Gastroenterol doi: 10.3748/wjg.v22.i42.9279 – ident: 7601_CR17 doi: 10.1007/s00330-020-06687-y – volume: 70 start-page: 1133 year: 2019 ident: 7601_CR8 publication-title: J Hepatol doi: 10.1016/j.jhep.2019.02.023 – ident: 7601_CR23 – volume: 18 start-page: 1955 year: 2011 ident: 7601_CR31 publication-title: Ann Surg Oncol doi: 10.1245/s10434-010-1540-z – ident: 7601_CR4 doi: 10.1002/hep.31210 – volume: 67 start-page: 526 year: 2017 ident: 7601_CR9 publication-title: J Hepatol doi: 10.1016/j.jhep.2017.04.024 – volume: 16 start-page: 449 year: 2015 ident: 7601_CR26 publication-title: Korean J Radiol doi: 10.3348/kjr.2015.16.3.449 – volume: 211 start-page: 1026 year: 2018 ident: 7601_CR42 publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.18.19507 – volume: 14 start-page: 749 year: 2017 ident: 7601_CR14 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.141 – volume: 154 start-page: 128 year: 2018 ident: 7601_CR2 publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.09.025 – volume: 30 start-page: 3004 year: 2020 ident: 7601_CR41 publication-title: Eur Radiol doi: 10.1007/s00330-019-06585-y – volume: 24 start-page: 121 year: 2018 ident: 7601_CR16 publication-title: Diagn Interv Radiol doi: 10.5152/dir.2018.17467 – volume: 18 start-page: 289 year: 2019 ident: 7601_CR25 publication-title: Hepatobiliary Pancreat Dis Int doi: 10.1016/j.hbpd.2019.04.011 – volume: 8 start-page: 373 year: 2019 ident: 7601_CR11 publication-title: Liver Cancer doi: 10.1159/000494099 – volume: 63 start-page: 1368 year: 2015 ident: 7601_CR3 publication-title: J Hepatol doi: 10.1016/j.jhep.2015.07.025 – volume: 5 start-page: 4006 year: 2014 ident: 7601_CR24 publication-title: Nat Commun doi: 10.1038/ncomms5006 – volume: 391 start-page: 1301 year: 2018 ident: 7601_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(18)30010-2 – volume: 29 start-page: 4177 year: 2019 ident: 7601_CR43 publication-title: Eur Radiol doi: 10.1007/s00330-018-5986-x – volume: 7 start-page: 15375 year: 2017 ident: 7601_CR27 publication-title: Sci Rep doi: 10.1038/s41598-017-15491-6 – volume: 29 start-page: 3595 year: 2019 ident: 7601_CR15 publication-title: Eur Radiol doi: 10.1007/s00330-018-5985-y – volume: 151 start-page: 356 year: 2016 ident: 7601_CR7 publication-title: JAMA Surg doi: 10.1001/jamasurg.2015.4257 – volume: 44 start-page: 539 year: 2019 ident: 7601_CR33 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-018-1768-9 – volume: 62 start-page: 792 year: 2015 ident: 7601_CR39 publication-title: Hepatology doi: 10.1002/hep.27877 – volume: 286 start-page: 571 year: 2018 ident: 7601_CR29 publication-title: Radiology doi: 10.1148/radiol.2017170515 – volume: 50 start-page: 156 year: 2019 ident: 7601_CR40 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.10.057 – volume: 67 start-page: 358 year: 2018 ident: 7601_CR20 publication-title: Hepatology doi: 10.1002/hep.29086 – volume: 59 start-page: 89 year: 2013 ident: 7601_CR32 publication-title: J Hepatol doi: 10.1016/j.jhep.2013.03.009 – volume: 21 start-page: 935 year: 2019 ident: 7601_CR10 publication-title: HPB (Oxford) doi: 10.1016/j.hpb.2019.02.003 – volume: 20 start-page: 325 year: 2013 ident: 7601_CR18 publication-title: Ann Surg Oncol doi: 10.1245/s10434-012-2513-1 – volume: 29 start-page: 238 year: 2018 ident: 7601_CR6 publication-title: Ann Oncol doi: 10.1093/annonc/mdy308 – volume: 21 start-page: 147 year: 2014 ident: 7601_CR36 publication-title: Ann Surg Oncol doi: 10.1245/s10434-013-3211-3 – volume: 30 start-page: 2050053 year: 2020 ident: 7601_CR44 publication-title: Int J Neural Syst doi: 10.1142/S0129065720500537 – volume: 29 start-page: 4648 year: 2019 ident: 7601_CR13 publication-title: Eur Radiol doi: 10.1007/s00330-018-5935-8 – volume: 23 start-page: 6467 year: 2017 ident: 7601_CR34 publication-title: World J Gastroenterol doi: 10.3748/wjg.v23.i35.6467 – volume: 29 start-page: 5403 year: 2019 ident: 7601_CR22 publication-title: Eur Radiol doi: 10.1007/s00330-019-06088-w – volume: 21 start-page: 1002 year: 2014 ident: 7601_CR38 publication-title: Ann Surg Oncol doi: 10.1245/s10434-013-3376-9 – volume: 137 start-page: 850 year: 2009 ident: 7601_CR19 publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.06.003 – volume: 15 start-page: 1440 year: 2011 ident: 7601_CR37 publication-title: J Gastrointest Surg doi: 10.1007/s11605-011-1537-3 – volume: 9 start-page: 1503 year: 2019 ident: 7601_CR28 publication-title: Quant Imaging Med Surg doi: 10.21037/qims.2019.09.07 – volume: 380 start-page: 1450 year: 2019 ident: 7601_CR5 publication-title: N Engl J Med doi: 10.1056/NEJMra1713263 – volume: 43 start-page: 3324 year: 2018 ident: 7601_CR21 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-018-1646-5 – volume: 69 start-page: 182 year: 2018 ident: 7601_CR45 publication-title: J Hepatol doi: 10.1016/j.jhep.2018.03.019 – volume: 49 start-page: 344 year: 2019 ident: 7601_CR30 publication-title: Hepatol Res doi: 10.1111/hepr.13241 – volume: 21 start-page: 5607 year: 2015 ident: 7601_CR35 publication-title: World J Gastroenterol doi: 10.3748/wjg.v21.i18.5607 |
SSID | ssj0009147 |
Score | 2.654545 |
Snippet | Objectives
To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with... To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary... ObjectivesTo develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4824 |
SubjectTerms | Alanine Alanine transaminase Alkaline phosphatase Bilirubin Biomarkers Blood vessels Diagnostic Radiology Feature extraction Hepatobiliary-Pancreas Hepatocellular carcinoma Imaging Internal Medicine Interventional Radiology Invasiveness Liver cancer Magnetic resonance imaging Medicine Medicine & Public Health Microvasculature Multivariate analysis Neuroradiology Nomograms Prediction models Radiology Radiomics Regression analysis Risk analysis Risk factors Tissue analysis Ultrasound α-Fetoprotein |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQkRAXxD8LBQ0SN7CU2E6cHNGKqiCVA6JSb5FjO-xKxKk2WQluXDn3FfoQPE-fhBlvNtW2gMQtiv9ij39mMp-_YeyVc0LXjc65xbOYK6UtL6RJeJYkDrfkhBywhLb4mB8eqw8n2clIk0N3Ya7474nsEy1uTkYO-ZBSjtvtzSyVmsI0zPP5JcFuGoOJoYFecF2Warwg8-c6dg-ha5rldYDkFS9pPHwO7rI7o9YIbzdivsdu-HCf3Toa_eIP2K94j5b3OOAeTHAQcYKceL1bCpllYWXcki4g99A18MW47hvhDD0Qmsgt1-3FjzMfFhEOAEef3sPpiiofemgJsbfFq8Iy4COKMjbSrQecrx5fwkjP2gP914WeQHVm9R0WeNgNHTkHYmlLgYtC1xq4-HkOGdj2ITs-ePd5fsjHmAwoTK0GXsuyqaXBEbbCOOk0-Q1lQZHKjTJW-FI7XySZc3mdl6VH67H0ijjmE5dktZOP2F7ogn_CwDVe5L70wjujpMLSjbGqxmoSj9uKnLF0K6TKjoTlFDfjazVRLUfBVijYKgq2EjP2eipzuqHr-Gfu_a3sq3Hp9hVazCKTqGhi8sspGRcdDZYJvltjHqUL8i_LdMYeb6bK1JwkDsUixxS9M4mmDETovZsSlotI7F2IFNU_7Pib7XS7_Ky_9-Lp_2V_xm4LwuVEyPE-2xtWa_8cFauhfhFX1G_-yx74 priority: 102 providerName: Springer Nature |
Title | Multi-scale and multi-parametric radiomics of gadoxetate disodium–enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm |
URI | https://link.springer.com/article/10.1007/s00330-020-07601-2 https://www.ncbi.nlm.nih.gov/pubmed/33447861 https://www.proquest.com/docview/2542532322 https://www.proquest.com/docview/2478584731 https://pubmed.ncbi.nlm.nih.gov/PMC8213553 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZgV0JcEP8UlpWRuIFFajtxckJt1e4C2gqtqFROkRM720okKU0qwY0rZ16Bh-B59kmYcZNUZcVekiq2k9oz9tiez98Q8tIYrpJMBSwFW8ykVCkLhfaY73kGhmQPHbCItpgGpzP5fu7Pmw23qoFVtmOiG6hNmeIe-RtYyHBfgP3nb1dfGUaNQu9qE0LjJjlE6jLUajVXO9LdvgswBov2kKkoks2hGXd0DoOYeQwXT-ib6jO-b5iuzDavgib_8Zw6gzS5S-40M0k62Ir-Hrlhi_vk1lnjK39A_riztawCIViqC0MddpAh13eOYbRSutZmiYeSK1pm9EKb8htiDy1FhJFZbvLLH79ssXAQAXp2_o6u1vjyuqI5ovhaDCtdFvATxOs-Um5qaE8LD2lD2VpR3OulFQLt9Po7XYABrEt0GLjSKQYzKspc08ufv6lP0_whmU3Gn0anrInTAAJWsmaJiLJEaGjhlGsjjEJfoggxermWOuU2UsaGnm9MkARRZGFFGVmJvPOe8fzEiEfkoCgL-4RQk1ke2Mhya7QUEkpnOpUJvMazMNSIHum3QorThsQcY2l8iTv6ZSfYGAQbO8HGvEdedWVWWwqPa3MftbKPm-5cxTvl65EXXTJ0RGwsXdhyA3mkCtHnLPo98nirKt3nBPIqhgGkqD0l6jIgyfd-SrFcOLLvkPdhSggVf92q2-5v_b8WT6-vxTNymyM2x8GOj8hBvd7Y5zC5qpNj14PgGk5OjsnhYDIcTvF-8vnDGO7D8fTjOaSOghFcZ3zwF3ElLZ0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4p-FAkaCE1hNbOfvgBACll3a7QG1Um_BsR12pSbZbrKC3rhy5hU4c-Z5-iTMeJNdLRW99RbF9iTOjGfszDczhDwzhkdZHoVMgy1mUkaaxUJ5LPA8AyrZQwcsoi32wsGB_HgYHG6Q310sDMIqO53oFLWpNP4j34aDDA8E2H_-enrMsGoUele7EhoLsdixJ1_hyFa_Gr4D_j7nvP9-_-2AtVUF4HUi2bBMJHkmVJQkmisjTISeLxFjrW0lleY2iYyNvcCYMAuTxML5J7ESs6R7xgsyI4DuJXJZCrDkGJne_7BK8uu7gmYekGNAX7ZBOi5UD4umeQwPa-gL8xlfN4RndrdnQZr_eGqdAezfINfbnSt9sxC1m2TDlrfIlVHrm79N_rhYXlYD0y1VpaEOq8gwt3iBZbs0nSkzwSDomlY5_aJM9Q2xjpYioslM5sXp95-2HDtIAh19GtLpDIk3NS0QNdhhZumkhEsQJ_eQat4A_yzcpG2K2Jriv2VaI7BPzU7oGAxuU6GDwo3WWDyprApFT3_8ogHVxR1ycCEcvEs2y6q09wk1ueWhTSy3RkkhYXSutMyAjGdBtYke8TsmpbpNmo61O47SZbpnx9gUGJs6xqa8R14sx0wXKUPO7b3V8T5t1UedroS9R54um2Hh48dSpa3m0EdGMfq4hd8j9xaisnycwDyOcQgt0ZoQLTtgUvH1lnIydsnFY-7DFhQm_rITt9Vr_X8WD86fxRNydbA_2k13h3s7D8k1jrggB3neIpvNbG4fwcauyR671UTJ54tevn8B4JxidQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVKq4IP5JKbBIcIJV7d313wEhoI0aSqOqolJvZu1dk0jYTmNH0BtXzrwCD4F4nD4JMxvbUajorbco--f1zM7seL6ZIeSZ1jxIssBnKehiJmWQslAoh3mOo0EkO-iARbTFyN87lu9PvJM18qeNhUFYZSsTraDWZYrfyLfBkOGeAP3Pt7MGFnG4M3g9PWVYQQo9rW05jQWL7Juzr2C-Va-GO0Dr55wPdj--22NNhQF4tEDWLBFRlggVRFHKlRY6QC-YCLHutpIq5SYKtAkdT2s_8aPIgC0UGYkZ0x3teIkWMO81sh6gVdQj6293R4dHy5S_ri1v5sCEDFaQTciODdzDEmoOQ9MNPWMu46tq8cJd9yJk8x-_rVWHg5vkRnOPpW8WjHeLrJniNtk4aDz1d8hvG9nLKmABQ1WhqUUuMsw0nmMRr5TOlJ5gSHRFy4x-Vrr8hshHQxHfpCfz_Pz7T1OMLUCBHhwN6XSGk9cVzRFD2CJo6aSAn8BcdpFyXgM1DfxJm4SxFcUvzbRCmJ-andExqN-6RHeFHZ1iKaWizBU9__GLejTN75LjK6HhPdIrysI8IFRnhvsmMtxoJYWE0ZlKZQLTOAYEnegTtyVSnDYp1LGSx5e4S_5sCRsDYWNL2Jj3yYtuzHSRQOTS3lst7eNGmFTxkvX75GnXDGIAX5YqTDmHPjII0eMt3D65v2CVbjmBWR1DH1qCFSbqOmCK8dWWYjK2qcZD7sKFFDb-smW35WP9fxebl-_iCdmAoxt_GI72H5LrHEFCFv-8RXr1bG4ewS2vTh43x4mST1d9gv8CKOBoBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+and+multi-parametric+radiomics+of+gadoxetate+disodium%E2%80%93enhanced+MRI+predicts+microvascular+invasion+and+outcome+in+patients+with+solitary+hepatocellular+carcinoma+%E2%89%A4+5+cm&rft.jtitle=European+radiology&rft.au=Huan-Huan%2C+Chong&rft.au=Yang%2C+Li&rft.au=Ruo-Fan%2C+Sheng&rft.au=Yang-Li%2C+Yu&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=31&rft.issue=7&rft.spage=4824&rft.epage=4838&rft_id=info:doi/10.1007%2Fs00330-020-07601-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |