Multi-scale and multi-parametric radiomics of gadoxetate disodium–enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm

Objectives To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm. Methods Between March 2012 and September 2019, 356 patients with pathologically confirmed solit...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 31; no. 7; pp. 4824 - 4838
Main Authors Chong, Huan-Huan, Yang, Li, Sheng, Ruo-Fan, Yu, Yang-Li, Wu, Di-Jia, Rao, Sheng-Xiang, Yang, Chun, Zeng, Meng-Su
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objectives To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm. Methods Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium–enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models. Results Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861–0.979) using random forest and 0.879 (95% CI: 0.820–0.938) using logistic regression analysis in validation cohort ( n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months ( p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538–0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction. Conclusions Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm. Key Points • The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression.
AbstractList ObjectivesTo develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm.MethodsBetween March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium–enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models.ResultsElevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861–0.979) using random forest and 0.879 (95% CI: 0.820–0.938) using logistic regression analysis in validation cohort (n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538–0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction.ConclusionsPreoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm.Key Points• The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence.• The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far.• As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression.
Objectives To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm. Methods Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium–enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models. Results Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861–0.979) using random forest and 0.879 (95% CI: 0.820–0.938) using logistic regression analysis in validation cohort ( n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months ( p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538–0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction. Conclusions Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm. Key Points • The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression.
To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm.OBJECTIVESTo develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm.Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium-enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models.METHODSBetween March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium-enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models.Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861-0.979) using random forest and 0.879 (95% CI: 0.820-0.938) using logistic regression analysis in validation cohort (n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538-0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction.RESULTSElevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861-0.979) using random forest and 0.879 (95% CI: 0.820-0.938) using logistic regression analysis in validation cohort (n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538-0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction.Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm.CONCLUSIONSPreoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm.• The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression.KEY POINTS• The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression.
To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary hepatocellular carcinoma (HCC) ≤ 5 cm. Between March 2012 and September 2019, 356 patients with pathologically confirmed solitary HCC ≤ 5 cm who underwent preoperative gadoxetate disodium-enhanced MRI were retrospectively enrolled. MVI was graded as M0, M1, or M2 according to the number and distribution of invaded vessels. Radiomics features were extracted from DWI, arterial, portal venous, and hepatobiliary phase images in regions of the entire tumor, peritumoral area ≤ 10 mm, and randomly selected liver tissue. Multivariate analysis identified the independent predictors for MVI and RFS, with nomogram visualized the ultimately predictive models. Elevated alpha-fetoprotein, total bilirubin and radiomics values, peritumoral enhancement, and incomplete or absent capsule enhancement were independent risk factors for MVI. The AUCs of MVI nomogram reached 0.920 (95% CI: 0.861-0.979) using random forest and 0.879 (95% CI: 0.820-0.938) using logistic regression analysis in validation cohort (n = 106). With the 5-year RFS rate of 68.4%, the median RFS of MVI-positive (M2 and M1) and MVI-negative (M0) patients were 30.5 (11.9 and 40.9) and > 96.9 months (p < 0.001), respectively. Age, histologic MVI, alkaline phosphatase, and alanine aminotransferase independently predicted recurrence, yielding AUC of 0.654 (95% CI: 0.538-0.769, n = 99) in RFS validation cohort. Instead of histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest achieved comparable accuracy in MVI stratification and RFS prediction. Preoperative radiomics-based nomogram using random forest is a potential biomarker of MVI and RFS prediction for solitary HCC ≤ 5 cm. • The radiomics score was the predominant independent predictor of MVI which was the primary independent risk factor for postoperative recurrence. • The radiomics-based nomogram using either random forest or logistic regression analysis has obtained the best preoperative prediction of MVI in HCC patients so far. • As an excellent substitute for the invasive histologic MVI, the preoperatively predicted MVI by MVI nomogram using random forest (MVI-RF) achieved comparable accuracy in MVI stratification and outcome, reinforcing the radiologic understanding of HCC angioinvasion and progression.
Author Yu, Yang-Li
Zeng, Meng-Su
Chong, Huan-Huan
Wu, Di-Jia
Yang, Chun
Rao, Sheng-Xiang
Yang, Li
Sheng, Ruo-Fan
Author_xml – sequence: 1
  givenname: Huan-Huan
  surname: Chong
  fullname: Chong, Huan-Huan
  organization: Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University
– sequence: 2
  givenname: Li
  surname: Yang
  fullname: Yang, Li
  organization: Department of Radiology, Zhongshan Hospital, Fudan University
– sequence: 3
  givenname: Ruo-Fan
  surname: Sheng
  fullname: Sheng, Ruo-Fan
  organization: Department of Radiology, Zhongshan Hospital, Fudan University
– sequence: 4
  givenname: Yang-Li
  surname: Yu
  fullname: Yu, Yang-Li
  organization: Department of Radiology, Zhongshan Hospital, Fudan University
– sequence: 5
  givenname: Di-Jia
  surname: Wu
  fullname: Wu, Di-Jia
  organization: Shanghai United Imaging Intelligence Co., Ltd
– sequence: 6
  givenname: Sheng-Xiang
  surname: Rao
  fullname: Rao, Sheng-Xiang
  organization: Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University
– sequence: 7
  givenname: Chun
  surname: Yang
  fullname: Yang, Chun
  email: dryangchun@hotmail.com
  organization: Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University
– sequence: 8
  givenname: Meng-Su
  orcidid: 0000-0002-0299-9407
  surname: Zeng
  fullname: Zeng, Meng-Su
  email: mengsu_zeng@163.com
  organization: Shanghai Institute of Medical Imaging, Department of Radiology, Zhongshan Hospital, Fudan University, Department of Medical Imaging, Shanghai Medical College, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33447861$$D View this record in MEDLINE/PubMed
BookMark eNp9UkluFDEUtVAQGeACLJAlNmwKXB66yhskFDFESoSEYG39tt3djqrsxnYlsGPLmitwCM6Tk_C7O2HIIgvL03vP7z__Q7IXU_SEPG7Z85ax7kVhTAjWMI6jm7G24ffIQSsFb1rWyz1ywLTom05ruU8OSzlnjOlWdg_IvhBSdv2sPSC_zqahhqZYGDyF6Oi43a8hw-hrDpZmcCGNwRaaFnQJLn3xFaqnLpTkwjReffvh4wqi9Y6efTih6-xdsLVQ5OR0AcVOA2QaIi5DittH0lRtGj0e0jXU4CPCL0Nd0ZKGUCF_pSuPF8n6YdiyLWQbYhqBXn3_SRW140NyfwFD8Y-u5yPy6c3rj8fvmtP3b0-OX502VnayNnOhF3MBGILl4ITrNOsxFSUVBwmWe9053zPl3Gw-09ozLbWXvFMz5piaO3FEXu5019N89M6i1wyDWecwok-TIJj_b2JYmWW6MD1vhVICBZ5dC-T0efKlmjGUTWEQfZqK4fgTqpedaBH69Bb0PE05YnmGK8mV4IJzRD3519EfKzefioB-B8D8S8l-YSyGWjF8NBgG0zKz6R-z6x-D_WO2_WM22vwW9Ub9TpLYkQqC49Lnv7bvYP0GRb3eOA
CitedBy_id crossref_primary_10_3389_fonc_2024_1365286
crossref_primary_10_1016_j_gassur_2024_08_001
crossref_primary_10_1016_j_acra_2024_05_022
crossref_primary_10_1007_s00330_022_09290_5
crossref_primary_10_2147_JHC_S462979
crossref_primary_10_3389_fonc_2022_831996
crossref_primary_10_1155_2022_8586943
crossref_primary_10_3390_livers4010004
crossref_primary_10_1002_jmri_28725
crossref_primary_10_1007_s00261_024_04202_1
crossref_primary_10_1007_s00330_021_08495_4
crossref_primary_10_1007_s42058_024_00146_z
crossref_primary_10_3389_fphys_2023_1138239
crossref_primary_10_3389_fonc_2022_838701
crossref_primary_10_1007_s11547_024_01845_4
crossref_primary_10_3389_fonc_2024_1362737
crossref_primary_10_2147_JHC_S309570
crossref_primary_10_3389_fonc_2024_1367907
crossref_primary_10_1007_s00261_024_04278_9
crossref_primary_10_3389_fmed_2024_1334062
crossref_primary_10_3748_wjg_v30_i45_4801
crossref_primary_10_1016_j_heliyon_2024_e32940
crossref_primary_10_1007_s00261_023_04102_w
crossref_primary_10_1016_j_ejso_2024_109361
crossref_primary_10_1016_j_hbpd_2023_03_010
crossref_primary_10_1007_s00261_023_04071_0
crossref_primary_10_1016_j_ejso_2022_08_036
crossref_primary_10_3748_wjg_v28_i24_2733
crossref_primary_10_1002_jmri_29523
crossref_primary_10_1148_radiol_222729
crossref_primary_10_3389_fonc_2022_1035775
crossref_primary_10_3748_wjg_v28_i42_6002
crossref_primary_10_1002_jmri_28157
crossref_primary_10_1002_jmri_28553
crossref_primary_10_1016_j_ejrad_2024_111348
crossref_primary_10_3389_fonc_2024_1348678
crossref_primary_10_3390_cancers13225864
crossref_primary_10_1186_s13244_024_01623_w
crossref_primary_10_1007_s00330_022_08679_6
crossref_primary_10_3389_fonc_2021_774800
crossref_primary_10_1186_s12880_024_01258_9
crossref_primary_10_3389_fonc_2022_960944
crossref_primary_10_3389_fonc_2022_818681
crossref_primary_10_1007_s11605_023_05762_1
crossref_primary_10_3390_cancers14071816
crossref_primary_10_1016_j_asjsur_2024_02_115
crossref_primary_10_1016_j_ultrasmedbio_2023_12_003
crossref_primary_10_1007_s00330_023_09414_5
crossref_primary_10_3389_fonc_2022_1032115
crossref_primary_10_1007_s00261_022_03496_3
crossref_primary_10_1016_j_ejrad_2024_111896
crossref_primary_10_1002_jmri_29276
crossref_primary_10_1016_j_asjsur_2021_02_023
crossref_primary_10_1016_j_clbc_2024_05_006
crossref_primary_10_2147_JHC_S424009
crossref_primary_10_3390_cancers14215201
crossref_primary_10_3390_cancers15123197
crossref_primary_10_1177_02841851211038806
crossref_primary_10_1016_j_ejso_2024_108052
crossref_primary_10_1186_s40644_023_00621_3
crossref_primary_10_3748_wjg_v30_i4_381
crossref_primary_10_3390_app13031371
crossref_primary_10_1007_s00330_023_10144_x
crossref_primary_10_1002_jmri_28214
crossref_primary_10_1155_2022_3704987
crossref_primary_10_1016_j_acra_2022_04_006
crossref_primary_10_1016_j_acra_2023_12_007
crossref_primary_10_2147_IJGM_S410123
crossref_primary_10_1016_j_acra_2025_01_043
crossref_primary_10_14218_JCTH_2021_00254
crossref_primary_10_1007_s00261_022_03582_6
crossref_primary_10_1016_j_gassur_2024_02_004
crossref_primary_10_3892_ol_2024_14518
crossref_primary_10_1016_j_heliyon_2025_e41735
crossref_primary_10_3390_cancers15030743
crossref_primary_10_1186_s40644_025_00845_5
crossref_primary_10_1007_s00330_023_09852_1
crossref_primary_10_3389_fonc_2021_699290
crossref_primary_10_1007_s11547_023_01704_8
crossref_primary_10_3389_fonc_2022_831795
crossref_primary_10_1007_s00330_023_09419_0
crossref_primary_10_1016_j_acra_2024_10_007
crossref_primary_10_2147_JHC_S493044
crossref_primary_10_1016_j_acra_2023_02_005
crossref_primary_10_1016_j_ejro_2024_100608
crossref_primary_10_1016_j_crad_2023_05_007
crossref_primary_10_1016_j_acra_2025_02_006
crossref_primary_10_1093_bjr_tqae116
crossref_primary_10_3389_fonc_2023_1123141
crossref_primary_10_1016_j_mri_2022_10_011
crossref_primary_10_3389_fonc_2022_1021570
crossref_primary_10_1002_mp_16581
crossref_primary_10_1186_s12880_022_00855_w
crossref_primary_10_1007_s11547_024_01799_7
crossref_primary_10_1155_2022_5292200
crossref_primary_10_12677_ACM_2023_1351040
crossref_primary_10_1007_s00330_023_09656_3
crossref_primary_10_3390_cancers15020365
crossref_primary_10_1007_s00261_024_04306_8
crossref_primary_10_7759_cureus_62570
crossref_primary_10_1007_s00330_023_09789_5
crossref_primary_10_3389_fonc_2025_1420599
crossref_primary_10_1186_s13244_024_01760_2
crossref_primary_10_1016_j_tranon_2021_101234
crossref_primary_10_2147_JHC_S410237
crossref_primary_10_3389_fonc_2022_907076
crossref_primary_10_1007_s00261_023_04033_6
crossref_primary_10_2147_JHC_S484027
crossref_primary_10_1007_s11547_023_01676_9
crossref_primary_10_3389_fonc_2024_1360936
crossref_primary_10_3748_wjg_v30_i15_2128
crossref_primary_10_3389_fonc_2021_698373
crossref_primary_10_4251_wjgo_v17_i1_96439
crossref_primary_10_1186_s12876_022_02586_2
crossref_primary_10_1159_000530495
crossref_primary_10_4251_wjgo_v13_i11_1599
crossref_primary_10_1016_j_acra_2024_11_027
crossref_primary_10_1148_rg_220087
crossref_primary_10_1002_mp_16127
crossref_primary_10_3390_jpm13030478
crossref_primary_10_1002_jmri_29063
crossref_primary_10_3389_fonc_2021_756216
crossref_primary_10_1016_j_ejrad_2023_111146
crossref_primary_10_1002_jmri_29187
crossref_primary_10_3748_wjg_v31_i5_98928
crossref_primary_10_1155_2022_8950600
crossref_primary_10_2147_JHC_S423129
crossref_primary_10_3389_fonc_2025_1510071
crossref_primary_10_3389_fonc_2022_1020349
Cites_doi 10.3748/wjg.v22.i42.9279
10.1007/s00330-020-06687-y
10.1016/j.jhep.2019.02.023
10.1245/s10434-010-1540-z
10.1002/hep.31210
10.1016/j.jhep.2017.04.024
10.3348/kjr.2015.16.3.449
10.2214/AJR.18.19507
10.1038/nrclinonc.2017.141
10.1053/j.gastro.2017.09.025
10.1007/s00330-019-06585-y
10.5152/dir.2018.17467
10.1016/j.hbpd.2019.04.011
10.1159/000494099
10.1016/j.jhep.2015.07.025
10.1038/ncomms5006
10.1016/S0140-6736(18)30010-2
10.1007/s00330-018-5986-x
10.1038/s41598-017-15491-6
10.1007/s00330-018-5985-y
10.1001/jamasurg.2015.4257
10.1007/s00261-018-1768-9
10.1002/hep.27877
10.1148/radiol.2017170515
10.1016/j.ebiom.2019.10.057
10.1002/hep.29086
10.1016/j.jhep.2013.03.009
10.1016/j.hpb.2019.02.003
10.1245/s10434-012-2513-1
10.1093/annonc/mdy308
10.1245/s10434-013-3211-3
10.1142/S0129065720500537
10.1007/s00330-018-5935-8
10.3748/wjg.v23.i35.6467
10.1007/s00330-019-06088-w
10.1245/s10434-013-3376-9
10.1053/j.gastro.2009.06.003
10.1007/s11605-011-1537-3
10.21037/qims.2019.09.07
10.1056/NEJMra1713263
10.1007/s00261-018-1646-5
10.1016/j.jhep.2018.03.019
10.1111/hepr.13241
10.3748/wjg.v21.i18.5607
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QO
7RV
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s00330-020-07601-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 4838
ExternalDocumentID PMC8213553
33447861
10_1007_s00330_020_07601_2
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Science and Technology Committee
  grantid: 18DZ1930102 and 19411965500
– fundername: Youth Foundation of Shanghai Municipal Health Commission
  grantid: 20204Y0346
– fundername: National Key Research and Development Program of China
  grantid: 2017YFC0108804
– fundername: Shanghai Municipal Key Clinical Specialty
  grantid: W2019-018
– fundername: National Natural Science Foundation of China
  grantid: 91859107
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Zhongshan Hospital, Fudan University
  grantid: 2018ZSLC22
– fundername: National Natural Science Foundation of China
  grantid: 91859107
– fundername: ;
  grantid: 2017YFC0108804
– fundername: ;
  grantid: W2019-018
– fundername: ;
  grantid: 18DZ1930102 and 19411965500
– fundername: ;
  grantid: 20204Y0346
– fundername: ;
  grantid: 91859107
– fundername: ;
  grantid: 2018ZSLC22
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PJZUB
PPXIY
PQGLB
7QO
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-b39fb3a799c2ad3d79089385452a4ac2e97de805dd6b699e0949e427560d05bd3
IEDL.DBID 7X7
ISSN 0938-7994
1432-1084
IngestDate Thu Aug 21 18:16:32 EDT 2025
Thu Jul 10 17:38:51 EDT 2025
Fri Jul 25 18:55:31 EDT 2025
Mon Jul 21 06:02:15 EDT 2025
Thu Apr 24 23:02:35 EDT 2025
Tue Jul 01 03:08:21 EDT 2025
Fri Feb 21 02:48:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Magnetic resonance imaging
Hepatocellular carcinoma
Neoplasm recurrence
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-b39fb3a799c2ad3d79089385452a4ac2e97de805dd6b699e0949e427560d05bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0299-9407
OpenAccessLink https://doi.org/10.1007/s00330-020-07601-2
PMID 33447861
PQID 2542532322
PQPubID 54162
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8213553
proquest_miscellaneous_2478584731
proquest_journals_2542532322
pubmed_primary_33447861
crossref_citationtrail_10_1007_s00330_020_07601_2
crossref_primary_10_1007_s00330_020_07601_2
springer_journals_10_1007_s00330_020_07601_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Aerts, Velazquez, Leijenaar (CR24) 2014; 5
Chen, Zhang, Wang (CR10) 2019; 21
Yu, Chan, Lee (CR37) 2011; 15
Li, Fan, Qin (CR31) 2011; 18
Ma, Wei, Gu (CR15) 2019; 29
Wei, Huang, Tang (CR22) 2019; 29
Roayaie, Blume, Thung (CR19) 2009; 137
Lambin, Leijenaar, Deist (CR14) 2017; 14
CR17
Xu, Yang, Xu (CR25) 2019; 18
Ahn, Kim, Park, Kim, Han (CR33) 2019; 44
Lee, Kim, Lee, Sinn, Park (CR9) 2017; 67
Heimbach, Kulik, Finn (CR20) 2018; 67
Cho, Choi (CR26) 2015; 16
Vogel, Cervantes, Chau (CR6) 2018; 29
Peng, Zhang, Zhang, Xu, Zhou, Liu (CR16) 2018; 24
Hu, Shen, Wang (CR21) 2018; 43
Pang, Zhang, Xu (CR35) 2015; 21
Arnaoutakis, Mavros, Shen (CR36) 2014; 21
Chen, Feng, Wei (CR43) 2019; 29
Mazzaferro, Sposito, Zhou (CR2) 2018; 154
Sumie, Nakashima, Okuda (CR38) 2014; 21
Wang, Yang, Yang (CR29) 2018; 286
Wang, Wu, Cong (CR30) 2019; 49
Ji, Zhu, Xu (CR40) 2019; 50
Banerjee, Wang, Kim (CR39) 2015; 62
Feng, Jia, Liao (CR13) 2019; 29
(CR45) 2018; 69
CR4
Zhang, Xu, Wen (CR28) 2019; 9
Villanueva (CR5) 2019; 380
Cong, Bu, Chen (CR12) 2016; 22
Yang, Gu, Wei (CR11) 2019; 8
Pompili, Saviano, de Matthaeis (CR32) 2013; 59
Graña, Aguilar-Moreno, De Lope Asiain, Araquistain, Garmendia (CR44) 2020; 30
CR23
Miltiadous, Sia, Hoshida (CR3) 2015; 63
Lei, Li, Wu (CR7) 2016; 151
Xu, Zhang, Liu (CR8) 2019; 70
Hu, Zheng, Huang (CR27) 2017; 7
Wang, Gu, Wei (CR41) 2020; 30
Rodriguez-Peralvarez, Luong, Andreana, Meyer, Dhillon, Burroughs (CR18) 2013; 20
Kim, Choi, Lee, Lee, Park (CR42) 2018; 211
Forner, Reig, Bruix (CR1) 2018; 391
Zhang, Lai, Chen (CR34) 2017; 23
WM Cong (7601_CR12) 2016; 22
S Lee (7601_CR9) 2017; 67
7601_CR17
Y Wei (7601_CR22) 2019; 29
H Wang (7601_CR30) 2019; 49
L Yang (7601_CR11) 2019; 8
J Peng (7601_CR16) 2018; 24
S Chen (7601_CR43) 2019; 29
M Graña (7601_CR44) 2020; 30
X Xu (7601_CR8) 2019; 70
A Vogel (7601_CR6) 2018; 29
J Kim (7601_CR42) 2018; 211
GW Ji (7601_CR40) 2019; 50
DJ Arnaoutakis (7601_CR36) 2014; 21
P Lambin (7601_CR14) 2017; 14
European Association for the Study of the Liver (7601_CR45) 2018; 69
W Zhang (7601_CR34) 2017; 23
ZH Chen (7601_CR10) 2019; 21
MC Yu (7601_CR37) 2011; 15
A Villanueva (7601_CR5) 2019; 380
ES Cho (7601_CR26) 2015; 16
S Banerjee (7601_CR39) 2015; 62
X Ma (7601_CR15) 2019; 29
HJ Aerts (7601_CR24) 2014; 5
Q Pang (7601_CR35) 2015; 21
SJ Ahn (7601_CR33) 2019; 44
A Forner (7601_CR1) 2018; 391
ST Feng (7601_CR13) 2019; 29
JK Heimbach (7601_CR20) 2018; 67
G Xu (7601_CR25) 2019; 18
WT Wang (7601_CR29) 2018; 286
R Zhang (7601_CR28) 2019; 9
S Sumie (7601_CR38) 2014; 21
H Hu (7601_CR27) 2017; 7
M Pompili (7601_CR32) 2013; 59
M Rodriguez-Peralvarez (7601_CR18) 2013; 20
HT Hu (7601_CR21) 2018; 43
T Li (7601_CR31) 2011; 18
W Wang (7601_CR41) 2020; 30
Z Lei (7601_CR7) 2016; 151
S Roayaie (7601_CR19) 2009; 137
O Miltiadous (7601_CR3) 2015; 63
7601_CR23
V Mazzaferro (7601_CR2) 2018; 154
7601_CR4
References_xml – volume: 30
  start-page: 3004
  year: 2020
  end-page: 3014
  ident: CR41
  article-title: A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI
  publication-title: Eur Radiol
– volume: 29
  start-page: 4177
  year: 2019
  end-page: 4187
  ident: CR43
  article-title: Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging
  publication-title: Eur Radiol
– volume: 50
  start-page: 156
  year: 2019
  end-page: 165
  ident: CR40
  article-title: Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study
  publication-title: EBioMedicine
– volume: 391
  start-page: 1301
  year: 2018
  end-page: 1314
  ident: CR1
  article-title: Hepatocellular carcinoma
  publication-title: Lancet
– volume: 21
  start-page: 147
  year: 2014
  end-page: 154
  ident: CR36
  article-title: Recurrence patterns and prognostic factors in patients with hepatocellular carcinoma in noncirrhotic liver: a multi-institutional analysis
  publication-title: Ann Surg Oncol
– volume: 21
  start-page: 1002
  year: 2014
  end-page: 1009
  ident: CR38
  article-title: The significance of classifying microvascular invasion in patients with hepatocellular carcinoma
  publication-title: Ann Surg Oncol
– volume: 29
  start-page: 238
  year: 2018
  end-page: 255
  ident: CR6
  article-title: Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
  publication-title: Ann Oncol
– volume: 151
  start-page: 356
  year: 2016
  end-page: 363
  ident: CR7
  article-title: Nomogram for preoperative estimation of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within the Milan criteria
  publication-title: JAMA Surg
– ident: CR4
– volume: 18
  start-page: 1955
  year: 2011
  end-page: 1963
  ident: CR31
  article-title: Risk factors, prognosis, and management of early and late intrahepatic recurrence after resection of primary clear cell carcinoma of the liver
  publication-title: Ann Surg Oncol
– volume: 7
  start-page: 15375
  year: 2017
  ident: CR27
  article-title: A non-smooth tumor margin on preoperative imaging assesses microvascular invasion of hepatocellular carcinoma: a systematic review and meta-analysis
  publication-title: Sci Rep
– volume: 9
  start-page: 1503
  year: 2019
  end-page: 1515
  ident: CR28
  article-title: A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma
  publication-title: Quant Imaging Med Surg
– volume: 286
  start-page: 571
  year: 2018
  end-page: 580
  ident: CR29
  article-title: Assessment of microvascular invasion of hepatocellular carcinoma with diffusion kurtosis imaging
  publication-title: Radiology
– volume: 63
  start-page: 1368
  year: 2015
  end-page: 1377
  ident: CR3
  article-title: Progenitor cell markers predict outcome of patients with hepatocellular carcinoma beyond Milan criteria undergoing liver transplantation
  publication-title: J Hepatol
– volume: 49
  start-page: 344
  year: 2019
  end-page: 354
  ident: CR30
  article-title: Microvascular invasion predicts a poor prognosis of solitary hepatocellular carcinoma up to 2 cm based on propensity score matching analysis
  publication-title: Hepatol Res
– volume: 380
  start-page: 1450
  year: 2019
  end-page: 1462
  ident: CR5
  article-title: Hepatocellular Carcinoma
  publication-title: N Engl J Med
– volume: 67
  start-page: 526
  year: 2017
  end-page: 534
  ident: CR9
  article-title: Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma
  publication-title: J Hepatol
– ident: CR23
– volume: 5
  start-page: 4006
  year: 2014
  ident: CR24
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat Commun
– volume: 23
  start-page: 6467
  year: 2017
  end-page: 6473
  ident: CR34
  article-title: Validated preoperative computed tomography risk estimation for postoperative hepatocellular carcinoma recurrence
  publication-title: World J Gastroenterol
– volume: 18
  start-page: 289
  year: 2019
  end-page: 290
  ident: CR25
  article-title: Prediction of microvascular invasion in hepatocellular carcinoma with preoperative imaging radiomic analysis: is it ready for prime time?
  publication-title: Hepatobiliary Pancreat Dis Int
– volume: 44
  start-page: 539
  year: 2019
  end-page: 548
  ident: CR33
  article-title: Hepatocellular carcinoma: preoperative gadoxetic acid-enhanced MR imaging can predict early recurrence after curative resection using image features and texture analysis
  publication-title: Abdom Radiol (NY)
– volume: 21
  start-page: 5607
  year: 2015
  end-page: 5621
  ident: CR35
  article-title: Significance of platelet count and platelet-based models for hepatocellular carcinoma recurrence
  publication-title: World J Gastroenterol
– volume: 70
  start-page: 1133
  year: 2019
  end-page: 1144
  ident: CR8
  article-title: Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma
  publication-title: J Hepatol
– volume: 211
  start-page: 1026
  year: 2018
  end-page: 1034
  ident: CR42
  article-title: Predicting survival using pretreatment CT for patients with hepatocellular carcinoma treated with transarterial chemoembolization: comparison of models using radiomics
  publication-title: AJR Am J Roentgenol
– volume: 67
  start-page: 358
  year: 2018
  end-page: 380
  ident: CR20
  article-title: AASLD guidelines for the treatment of hepatocellular carcinoma
  publication-title: Hepatology
– volume: 14
  start-page: 749
  year: 2017
  end-page: 762
  ident: CR14
  article-title: Radiomics: the bridge between medical imaging and personalized medicine
  publication-title: Nat Rev Clin Oncol
– volume: 154
  start-page: 128
  year: 2018
  end-page: 139
  ident: CR2
  article-title: Metroticket 2.0 Model for analysis of competing risks of death after liver transplantation for hepatocellular carcinoma
  publication-title: Gastroenterology
– ident: CR17
– volume: 8
  start-page: 373
  year: 2019
  end-page: 386
  ident: CR11
  article-title: A radiomics nomogram for preoperative prediction of microvascular invasion in hepatocellular carcinoma
  publication-title: Liver Cancer
– volume: 59
  start-page: 89
  year: 2013
  end-page: 97
  ident: CR32
  article-title: Long-term effectiveness of resection and radiofrequency ablation for single hepatocellular carcinoma ≤3 cm. Results of a multicenter Italian survey
  publication-title: J Hepatol
– volume: 69
  start-page: 182
  year: 2018
  end-page: 236
  ident: CR45
  article-title: EASL Clinical Practice Guidelines: management of hepatocellular carcinoma
  publication-title: J Hepatol
– volume: 43
  start-page: 3324
  year: 2018
  end-page: 3330
  ident: CR21
  article-title: Peritumoral tissue on preoperative imaging reveals microvascular invasion in hepatocellular carcinoma: a systematic review and meta-analysis
  publication-title: Abdom Radiol (NY)
– volume: 62
  start-page: 792
  year: 2015
  end-page: 800
  ident: CR39
  article-title: A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma
  publication-title: Hepatology
– volume: 22
  start-page: 9279
  year: 2016
  end-page: 9287
  ident: CR12
  article-title: Practice guidelines for the pathological diagnosis of primary liver cancer: 2015 update
  publication-title: World J Gastroenterol
– volume: 16
  start-page: 449
  year: 2015
  end-page: 464
  ident: CR26
  article-title: MRI features of hepatocellular carcinoma related to biologic behavior
  publication-title: Korean J Radiol
– volume: 29
  start-page: 3595
  year: 2019
  end-page: 3605
  ident: CR15
  article-title: Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT
  publication-title: Eur Radiol
– volume: 30
  start-page: 2050053
  year: 2020
  ident: CR44
  article-title: Improved Activity Recognition Combining Inertial Motion Sensors and Electroencephalogram Signals
  publication-title: Int J Neural Syst
– volume: 137
  start-page: 850
  year: 2009
  end-page: 855
  ident: CR19
  article-title: A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma
  publication-title: Gastroenterology
– volume: 15
  start-page: 1440
  year: 2011
  end-page: 1449
  ident: CR37
  article-title: Alkaline phosphatase: does it have a role in predicting hepatocellular carcinoma recurrence?
  publication-title: J Gastrointest Surg
– volume: 29
  start-page: 4648
  year: 2019
  end-page: 4659
  ident: CR13
  article-title: Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI
  publication-title: Eur Radiol
– volume: 24
  start-page: 121
  year: 2018
  end-page: 127
  ident: CR16
  article-title: A radiomics nomogram for preoperative prediction of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma
  publication-title: Diagn Interv Radiol
– volume: 20
  start-page: 325
  year: 2013
  end-page: 339
  ident: CR18
  article-title: A systematic review of microvascular invasion in hepatocellular carcinoma: diagnostic and prognostic variability
  publication-title: Ann Surg Oncol
– volume: 21
  start-page: 935
  year: 2019
  end-page: 944
  ident: CR10
  article-title: Effect of microvascular invasion on the postoperative long-term prognosis of solitary small HCC: a systematic review and meta-analysis
  publication-title: HPB (Oxford)
– volume: 29
  start-page: 5403
  year: 2019
  end-page: 5414
  ident: CR22
  article-title: IVIM improves preoperative assessment of microvascular invasion in HCC
  publication-title: Eur Radiol
– volume: 22
  start-page: 9279
  year: 2016
  ident: 7601_CR12
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v22.i42.9279
– ident: 7601_CR17
  doi: 10.1007/s00330-020-06687-y
– volume: 70
  start-page: 1133
  year: 2019
  ident: 7601_CR8
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2019.02.023
– ident: 7601_CR23
– volume: 18
  start-page: 1955
  year: 2011
  ident: 7601_CR31
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-010-1540-z
– ident: 7601_CR4
  doi: 10.1002/hep.31210
– volume: 67
  start-page: 526
  year: 2017
  ident: 7601_CR9
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2017.04.024
– volume: 16
  start-page: 449
  year: 2015
  ident: 7601_CR26
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2015.16.3.449
– volume: 211
  start-page: 1026
  year: 2018
  ident: 7601_CR42
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.18.19507
– volume: 14
  start-page: 749
  year: 2017
  ident: 7601_CR14
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.141
– volume: 154
  start-page: 128
  year: 2018
  ident: 7601_CR2
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.09.025
– volume: 30
  start-page: 3004
  year: 2020
  ident: 7601_CR41
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06585-y
– volume: 24
  start-page: 121
  year: 2018
  ident: 7601_CR16
  publication-title: Diagn Interv Radiol
  doi: 10.5152/dir.2018.17467
– volume: 18
  start-page: 289
  year: 2019
  ident: 7601_CR25
  publication-title: Hepatobiliary Pancreat Dis Int
  doi: 10.1016/j.hbpd.2019.04.011
– volume: 8
  start-page: 373
  year: 2019
  ident: 7601_CR11
  publication-title: Liver Cancer
  doi: 10.1159/000494099
– volume: 63
  start-page: 1368
  year: 2015
  ident: 7601_CR3
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2015.07.025
– volume: 5
  start-page: 4006
  year: 2014
  ident: 7601_CR24
  publication-title: Nat Commun
  doi: 10.1038/ncomms5006
– volume: 391
  start-page: 1301
  year: 2018
  ident: 7601_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30010-2
– volume: 29
  start-page: 4177
  year: 2019
  ident: 7601_CR43
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5986-x
– volume: 7
  start-page: 15375
  year: 2017
  ident: 7601_CR27
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-15491-6
– volume: 29
  start-page: 3595
  year: 2019
  ident: 7601_CR15
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5985-y
– volume: 151
  start-page: 356
  year: 2016
  ident: 7601_CR7
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2015.4257
– volume: 44
  start-page: 539
  year: 2019
  ident: 7601_CR33
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-018-1768-9
– volume: 62
  start-page: 792
  year: 2015
  ident: 7601_CR39
  publication-title: Hepatology
  doi: 10.1002/hep.27877
– volume: 286
  start-page: 571
  year: 2018
  ident: 7601_CR29
  publication-title: Radiology
  doi: 10.1148/radiol.2017170515
– volume: 50
  start-page: 156
  year: 2019
  ident: 7601_CR40
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.10.057
– volume: 67
  start-page: 358
  year: 2018
  ident: 7601_CR20
  publication-title: Hepatology
  doi: 10.1002/hep.29086
– volume: 59
  start-page: 89
  year: 2013
  ident: 7601_CR32
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2013.03.009
– volume: 21
  start-page: 935
  year: 2019
  ident: 7601_CR10
  publication-title: HPB (Oxford)
  doi: 10.1016/j.hpb.2019.02.003
– volume: 20
  start-page: 325
  year: 2013
  ident: 7601_CR18
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-012-2513-1
– volume: 29
  start-page: 238
  year: 2018
  ident: 7601_CR6
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdy308
– volume: 21
  start-page: 147
  year: 2014
  ident: 7601_CR36
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-013-3211-3
– volume: 30
  start-page: 2050053
  year: 2020
  ident: 7601_CR44
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065720500537
– volume: 29
  start-page: 4648
  year: 2019
  ident: 7601_CR13
  publication-title: Eur Radiol
  doi: 10.1007/s00330-018-5935-8
– volume: 23
  start-page: 6467
  year: 2017
  ident: 7601_CR34
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v23.i35.6467
– volume: 29
  start-page: 5403
  year: 2019
  ident: 7601_CR22
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06088-w
– volume: 21
  start-page: 1002
  year: 2014
  ident: 7601_CR38
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-013-3376-9
– volume: 137
  start-page: 850
  year: 2009
  ident: 7601_CR19
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2009.06.003
– volume: 15
  start-page: 1440
  year: 2011
  ident: 7601_CR37
  publication-title: J Gastrointest Surg
  doi: 10.1007/s11605-011-1537-3
– volume: 9
  start-page: 1503
  year: 2019
  ident: 7601_CR28
  publication-title: Quant Imaging Med Surg
  doi: 10.21037/qims.2019.09.07
– volume: 380
  start-page: 1450
  year: 2019
  ident: 7601_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1713263
– volume: 43
  start-page: 3324
  year: 2018
  ident: 7601_CR21
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-018-1646-5
– volume: 69
  start-page: 182
  year: 2018
  ident: 7601_CR45
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2018.03.019
– volume: 49
  start-page: 344
  year: 2019
  ident: 7601_CR30
  publication-title: Hepatol Res
  doi: 10.1111/hepr.13241
– volume: 21
  start-page: 5607
  year: 2015
  ident: 7601_CR35
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v21.i18.5607
SSID ssj0009147
Score 2.654545
Snippet Objectives To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with...
To develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with solitary...
ObjectivesTo develop radiomics-based nomograms for preoperative microvascular invasion (MVI) and recurrence-free survival (RFS) prediction in patients with...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4824
SubjectTerms Alanine
Alanine transaminase
Alkaline phosphatase
Bilirubin
Biomarkers
Blood vessels
Diagnostic Radiology
Feature extraction
Hepatobiliary-Pancreas
Hepatocellular carcinoma
Imaging
Internal Medicine
Interventional Radiology
Invasiveness
Liver cancer
Magnetic resonance imaging
Medicine
Medicine & Public Health
Microvasculature
Multivariate analysis
Neuroradiology
Nomograms
Prediction models
Radiology
Radiomics
Regression analysis
Risk analysis
Risk factors
Tissue analysis
Ultrasound
α-Fetoprotein
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQkRAXxD8LBQ0SN7CU2E6cHNGKqiCVA6JSb5FjO-xKxKk2WQluXDn3FfoQPE-fhBlvNtW2gMQtiv9ij39mMp-_YeyVc0LXjc65xbOYK6UtL6RJeJYkDrfkhBywhLb4mB8eqw8n2clIk0N3Ya7474nsEy1uTkYO-ZBSjtvtzSyVmsI0zPP5JcFuGoOJoYFecF2Warwg8-c6dg-ha5rldYDkFS9pPHwO7rI7o9YIbzdivsdu-HCf3Toa_eIP2K94j5b3OOAeTHAQcYKceL1bCpllYWXcki4g99A18MW47hvhDD0Qmsgt1-3FjzMfFhEOAEef3sPpiiofemgJsbfFq8Iy4COKMjbSrQecrx5fwkjP2gP914WeQHVm9R0WeNgNHTkHYmlLgYtC1xq4-HkOGdj2ITs-ePd5fsjHmAwoTK0GXsuyqaXBEbbCOOk0-Q1lQZHKjTJW-FI7XySZc3mdl6VH67H0ijjmE5dktZOP2F7ogn_CwDVe5L70wjujpMLSjbGqxmoSj9uKnLF0K6TKjoTlFDfjazVRLUfBVijYKgq2EjP2eipzuqHr-Gfu_a3sq3Hp9hVazCKTqGhi8sspGRcdDZYJvltjHqUL8i_LdMYeb6bK1JwkDsUixxS9M4mmDETovZsSlotI7F2IFNU_7Pib7XS7_Ky_9-Lp_2V_xm4LwuVEyPE-2xtWa_8cFauhfhFX1G_-yx74
  priority: 102
  providerName: Springer Nature
Title Multi-scale and multi-parametric radiomics of gadoxetate disodium–enhanced MRI predicts microvascular invasion and outcome in patients with solitary hepatocellular carcinoma ≤ 5 cm
URI https://link.springer.com/article/10.1007/s00330-020-07601-2
https://www.ncbi.nlm.nih.gov/pubmed/33447861
https://www.proquest.com/docview/2542532322
https://www.proquest.com/docview/2478584731
https://pubmed.ncbi.nlm.nih.gov/PMC8213553
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZgV0JcEP8UlpWRuIFFajtxckJt1e4C2gqtqFROkRM720okKU0qwY0rZ16Bh-B59kmYcZNUZcVekiq2k9oz9tiez98Q8tIYrpJMBSwFW8ykVCkLhfaY73kGhmQPHbCItpgGpzP5fu7Pmw23qoFVtmOiG6hNmeIe-RtYyHBfgP3nb1dfGUaNQu9qE0LjJjlE6jLUajVXO9LdvgswBov2kKkoks2hGXd0DoOYeQwXT-ib6jO-b5iuzDavgib_8Zw6gzS5S-40M0k62Ir-Hrlhi_vk1lnjK39A_riztawCIViqC0MddpAh13eOYbRSutZmiYeSK1pm9EKb8htiDy1FhJFZbvLLH79ssXAQAXp2_o6u1vjyuqI5ovhaDCtdFvATxOs-Um5qaE8LD2lD2VpR3OulFQLt9Po7XYABrEt0GLjSKQYzKspc08ufv6lP0_whmU3Gn0anrInTAAJWsmaJiLJEaGjhlGsjjEJfoggxermWOuU2UsaGnm9MkARRZGFFGVmJvPOe8fzEiEfkoCgL-4RQk1ke2Mhya7QUEkpnOpUJvMazMNSIHum3QorThsQcY2l8iTv6ZSfYGAQbO8HGvEdedWVWWwqPa3MftbKPm-5cxTvl65EXXTJ0RGwsXdhyA3mkCtHnLPo98nirKt3nBPIqhgGkqD0l6jIgyfd-SrFcOLLvkPdhSggVf92q2-5v_b8WT6-vxTNymyM2x8GOj8hBvd7Y5zC5qpNj14PgGk5OjsnhYDIcTvF-8vnDGO7D8fTjOaSOghFcZ3zwF3ElLZ0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAL4p-FAkaCE1hNbOfvgBACll3a7QG1Um_BsR12pSbZbrKC3rhy5hU4c-Z5-iTMeJNdLRW99RbF9iTOjGfszDczhDwzhkdZHoVMgy1mUkaaxUJ5LPA8AyrZQwcsoi32wsGB_HgYHG6Q310sDMIqO53oFLWpNP4j34aDDA8E2H_-enrMsGoUele7EhoLsdixJ1_hyFa_Gr4D_j7nvP9-_-2AtVUF4HUi2bBMJHkmVJQkmisjTISeLxFjrW0lleY2iYyNvcCYMAuTxML5J7ESs6R7xgsyI4DuJXJZCrDkGJne_7BK8uu7gmYekGNAX7ZBOi5UD4umeQwPa-gL8xlfN4RndrdnQZr_eGqdAezfINfbnSt9sxC1m2TDlrfIlVHrm79N_rhYXlYD0y1VpaEOq8gwt3iBZbs0nSkzwSDomlY5_aJM9Q2xjpYioslM5sXp95-2HDtIAh19GtLpDIk3NS0QNdhhZumkhEsQJ_eQat4A_yzcpG2K2Jriv2VaI7BPzU7oGAxuU6GDwo3WWDyprApFT3_8ogHVxR1ycCEcvEs2y6q09wk1ueWhTSy3RkkhYXSutMyAjGdBtYke8TsmpbpNmo61O47SZbpnx9gUGJs6xqa8R14sx0wXKUPO7b3V8T5t1UedroS9R54um2Hh48dSpa3m0EdGMfq4hd8j9xaisnycwDyOcQgt0ZoQLTtgUvH1lnIydsnFY-7DFhQm_rITt9Vr_X8WD86fxRNydbA_2k13h3s7D8k1jrggB3neIpvNbG4fwcauyR671UTJ54tevn8B4JxidQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VVKq4IP5JKbBIcIJV7d313wEhoI0aSqOqolJvZu1dk0jYTmNH0BtXzrwCD4F4nD4JMxvbUajorbco--f1zM7seL6ZIeSZ1jxIssBnKehiJmWQslAoh3mOo0EkO-iARbTFyN87lu9PvJM18qeNhUFYZSsTraDWZYrfyLfBkOGeAP3Pt7MGFnG4M3g9PWVYQQo9rW05jQWL7Juzr2C-Va-GO0Dr55wPdj--22NNhQF4tEDWLBFRlggVRFHKlRY6QC-YCLHutpIq5SYKtAkdT2s_8aPIgC0UGYkZ0x3teIkWMO81sh6gVdQj6293R4dHy5S_ri1v5sCEDFaQTciODdzDEmoOQ9MNPWMu46tq8cJd9yJk8x-_rVWHg5vkRnOPpW8WjHeLrJniNtk4aDz1d8hvG9nLKmABQ1WhqUUuMsw0nmMRr5TOlJ5gSHRFy4x-Vrr8hshHQxHfpCfz_Pz7T1OMLUCBHhwN6XSGk9cVzRFD2CJo6aSAn8BcdpFyXgM1DfxJm4SxFcUvzbRCmJ-andExqN-6RHeFHZ1iKaWizBU9__GLejTN75LjK6HhPdIrysI8IFRnhvsmMtxoJYWE0ZlKZQLTOAYEnegTtyVSnDYp1LGSx5e4S_5sCRsDYWNL2Jj3yYtuzHSRQOTS3lst7eNGmFTxkvX75GnXDGIAX5YqTDmHPjII0eMt3D65v2CVbjmBWR1DH1qCFSbqOmCK8dWWYjK2qcZD7sKFFDb-smW35WP9fxebl-_iCdmAoxt_GI72H5LrHEFCFv-8RXr1bG4ewS2vTh43x4mST1d9gv8CKOBoBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-scale+and+multi-parametric+radiomics+of+gadoxetate+disodium%E2%80%93enhanced+MRI+predicts+microvascular+invasion+and+outcome+in+patients+with+solitary+hepatocellular+carcinoma+%E2%89%A4+5+cm&rft.jtitle=European+radiology&rft.au=Huan-Huan%2C+Chong&rft.au=Yang%2C+Li&rft.au=Ruo-Fan%2C+Sheng&rft.au=Yang-Li%2C+Yu&rft.date=2021-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=31&rft.issue=7&rft.spage=4824&rft.epage=4838&rft_id=info:doi/10.1007%2Fs00330-020-07601-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon