Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots
Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) ph...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 209; p. 111793 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.02.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture.
[Display omitted]
•P. indica improved photosynthetic pigments and the efficiency of photosynthetic apparatus of rice plants under As toxicity.•P. indica reduced MDA and MG levels by modulating AsA-GSH homeostasis, as well as the glyoxalase system.•P. indica reduced As accumulation in shoot by downregulating the expression of Lsi2, Lsi6, Nramp1 and Nramp5.•P. indica increased Fe translocation to shoots by modulating the expression of IRO2, FRDL1 and YSL1 genes.•P. indica sequestrated As in the roots by upregulating the expression of PCS1 and PCS2 genes. |
---|---|
AbstractList | Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture. Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture.Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture. Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture. [Display omitted] •P. indica improved photosynthetic pigments and the efficiency of photosynthetic apparatus of rice plants under As toxicity.•P. indica reduced MDA and MG levels by modulating AsA-GSH homeostasis, as well as the glyoxalase system.•P. indica reduced As accumulation in shoot by downregulating the expression of Lsi2, Lsi6, Nramp1 and Nramp5.•P. indica increased Fe translocation to shoots by modulating the expression of IRO2, FRDL1 and YSL1 genes.•P. indica sequestrated As in the roots by upregulating the expression of PCS1 and PCS2 genes. |
ArticleNumber | 111793 |
Author | Ghorbani, Abazar Tafteh, Mahdi Zhang, Wenying Roudbari, Nasim Wu, Chu Pishkar, Leila |
Author_xml | – sequence: 1 givenname: Abazar orcidid: 0000-0001-9286-2959 surname: Ghorbani fullname: Ghorbani, Abazar email: Ghorbani62a@gmail.com organization: Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China – sequence: 2 givenname: Mahdi surname: Tafteh fullname: Tafteh, Mahdi organization: Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran – sequence: 3 givenname: Nasim surname: Roudbari fullname: Roudbari, Nasim organization: Faculty of Biology, Islamic Azad University, Kahnouj Branch, Kerman, Iran – sequence: 4 givenname: Leila surname: Pishkar fullname: Pishkar, Leila organization: Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran – sequence: 5 givenname: Wenying surname: Zhang fullname: Zhang, Wenying organization: Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China – sequence: 6 givenname: Chu surname: Wu fullname: Wu, Chu email: wuchu08@yangtzeu.edu.cn organization: College of Horticulture and Gardening, Yangtze University, Jingzhou, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33360287$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFN0Aoy7LIcO04TsICqar4qVSpLGBt-S_DHSX2YGdGmr4GL4zTlFmwgNWVr79zLJ9zQc588I6Q1xTWFKh4t107E5w_rBmwvKK06apnZEWhg5Jxys_ICihvSlHT6pxcpLQFgArq-gU5r6pKAGubFfn1FSP2IY4h7UJUBXqLRhVqvxmdn1KhYnIeTTGFwUXljctEETHPq_t4fFBFUhMe1NtCHwscx6BxwAf0m5NwxkOYnbzNxC6Gw3yNMfhiyo5pCCZbzKdQpB8z-pI879WQ3KuneUm-f_r47eZLeXf_-fbm-q40vOFTqZkRtVKiVdzVTlDR533DOshbQ0Fo3dueAVjdCtN1jAvbVrzqGmu47rWqLsnt4muD2spdxFHFowwK5eMixI1UcUIzONlZAK0AOAjKW922Fgy3vWO2pTZnmr2uFq_8wZ97lyY5YjJuGJR3YZ8k402VSwFGM_rmCd3r0dnTw39KyQBfABNDStH1J4SCnLuXW7l0L-fu5dJ9lr3_S2Zweow254zD_8QfFrHLgR_QRZkMuty3xejMlBPBfxv8BqG_zvU |
CitedBy_id | crossref_primary_10_3390_plants12081628 crossref_primary_10_1007_s10534_022_00381_w crossref_primary_10_1007_s11356_021_17927_z crossref_primary_10_1007_s12298_021_00993_5 crossref_primary_10_1016_j_scitotenv_2024_174274 crossref_primary_10_1016_j_stress_2024_100473 crossref_primary_10_1007_s12298_022_01213_4 crossref_primary_10_3390_ijms241311031 crossref_primary_10_1016_j_stress_2022_100076 crossref_primary_10_1007_s42729_021_00589_8 crossref_primary_10_1134_S1062359021150115 crossref_primary_10_1007_s00299_024_03189_9 crossref_primary_10_1016_j_chemosphere_2022_136678 crossref_primary_10_3390_jof7080675 crossref_primary_10_1016_j_jhazmat_2023_131752 crossref_primary_10_1007_s11356_024_35695_4 crossref_primary_10_1007_s11270_023_06336_2 crossref_primary_10_1016_j_ecoenv_2021_112390 crossref_primary_10_1080_01140671_2024_2406924 crossref_primary_10_3389_fmicb_2022_1091036 crossref_primary_10_3390_agriculture13020401 crossref_primary_10_1134_S1062359022150055 crossref_primary_10_1007_s11756_022_01088_6 crossref_primary_10_1016_j_plaphy_2021_08_019 crossref_primary_10_1007_s11356_022_23913_w crossref_primary_10_1016_j_envpol_2022_118940 crossref_primary_10_3389_fmicb_2023_1301743 crossref_primary_10_1002_jobm_202200349 crossref_primary_10_1016_j_bcab_2021_102207 crossref_primary_10_1016_j_plaphy_2024_108848 crossref_primary_10_1016_j_sajb_2023_08_043 crossref_primary_10_1016_j_sajb_2023_12_005 crossref_primary_10_1016_j_pmpp_2021_101691 crossref_primary_10_1016_j_ecoenv_2023_115170 crossref_primary_10_3390_microorganisms12020405 crossref_primary_10_3390_plants11243417 crossref_primary_10_1186_s12951_024_02371_1 crossref_primary_10_1007_s00284_025_04148_7 crossref_primary_10_1007_s11356_023_30549_x crossref_primary_10_3390_jof9100965 crossref_primary_10_1016_j_hazadv_2022_100055 crossref_primary_10_1007_s10646_022_02533_7 crossref_primary_10_1007_s11356_024_33380_0 crossref_primary_10_1007_s00344_022_10616_2 crossref_primary_10_32615_ps_2022_020 crossref_primary_10_1007_s41742_022_00439_0 crossref_primary_10_3390_plants14040606 crossref_primary_10_1007_s11756_022_01068_w crossref_primary_10_17221_119_2023_PPS crossref_primary_10_1007_s10653_024_02231_9 crossref_primary_10_1007_s42976_023_00488_x crossref_primary_10_1007_s00299_024_03165_3 crossref_primary_10_1007_s11356_021_18106_w crossref_primary_10_1007_s12298_021_00946_y crossref_primary_10_1016_j_chemosphere_2023_139566 crossref_primary_10_4103_ijehe_ijehe_7_21 crossref_primary_10_1007_s11756_021_00919_2 crossref_primary_10_1007_s11627_021_10161_9 crossref_primary_10_1080_15320383_2023_2204956 crossref_primary_10_1016_j_envpol_2023_122040 crossref_primary_10_3390_stresses2020013 crossref_primary_10_1186_s12284_023_00645_0 crossref_primary_10_1016_j_freeradbiomed_2023_01_015 crossref_primary_10_3389_fpls_2022_982668 crossref_primary_10_3389_fpls_2024_1516990 crossref_primary_10_1016_j_pmpp_2021_101708 crossref_primary_10_1016_j_envpol_2024_123952 crossref_primary_10_2139_ssrn_4199998 crossref_primary_10_1134_S1062359022602634 crossref_primary_10_1007_s42729_022_00961_2 crossref_primary_10_1016_j_ecoenv_2023_114819 crossref_primary_10_3389_fpls_2022_1029836 crossref_primary_10_3389_fpls_2023_1135943 crossref_primary_10_1134_S1062359022050107 crossref_primary_10_3389_fpls_2024_1406542 crossref_primary_10_1007_s11356_022_19201_2 crossref_primary_10_3389_fpls_2021_751731 crossref_primary_10_1016_j_crbiot_2022_09_005 crossref_primary_10_1007_s11356_024_33306_w crossref_primary_10_3390_microbiolres15020064 crossref_primary_10_1007_s10123_023_00339_z crossref_primary_10_1016_j_plaphy_2022_07_013 crossref_primary_10_1186_s42269_023_01142_6 crossref_primary_10_3389_fmicb_2024_1294833 crossref_primary_10_1007_s13562_021_00748_z crossref_primary_10_1016_j_envpol_2021_118029 crossref_primary_10_12677_PI_2022_112010 crossref_primary_10_1007_s11356_023_29382_z crossref_primary_10_1007_s12223_021_00939_0 crossref_primary_10_1016_j_envexpbot_2023_105312 |
Cites_doi | 10.3389/fpls.2015.00340 10.1186/s12870-020-2325-6 10.3389/fpls.2015.00069 10.1016/j.jplph.2008.12.016 10.1104/pp.011155 10.1016/j.ecoenv.2020.110735 10.1016/j.ecoenv.2015.10.002 10.3389/fpls.2018.01726 10.1016/j.envexpbot.2016.02.001 10.1016/j.ecoenv.2014.04.030 10.3389/fpls.2017.00906 10.1078/0176-1617-00879 10.1016/0003-9861(68)90654-1 10.1038/srep36765 10.1080/01904168409363238 10.1007/s11738-012-1159-8 10.1007/s11103-011-9752-6 10.1016/S0003-2670(98)00649-7 10.1134/S1021443718060079 10.1007/s11270-016-3187-2 10.1007/s00299-019-02434-w 10.1006/meth.2001.1262 10.1515/DMDI.2008.23.1-2.51 10.3389/fpls.2019.01089 10.1111/pce.12138 10.1039/C8MT00320C 10.1073/pnas.0802361105 10.1016/j.ecoenv.2017.07.064 10.1007/s10646-013-1050-4 10.1038/srep00286 10.1002/pld3.34 10.1007/s00299-020-02547-7 10.1016/j.ecoenv.2020.111202 10.1016/j.jhazmat.2012.06.049 10.1016/0076-6879(87)48036-1 10.1155/2011/431287 10.1111/plb.12717 10.1080/00275514.1998.12026983 10.3389/fmicb.2019.01087 10.1016/j.plaphy.2015.06.001 10.1016/j.plgene.2017.03.004 10.1016/j.ecoenv.2018.03.056 10.1186/s12896-020-00613-2 10.1146/annurev-arplant-042809-112152 10.1371/journal.pone.0211441 10.1080/00380768.2004.10408586 10.1007/s00216-012-6086-4 10.1080/15592324.2020.1722447 10.1016/j.tplants.2017.09.015 10.1007/s11816-011-0189-9 10.1016/S0883-2927(99)00039-6 10.1016/j.ecoenv.2018.03.073 10.3389/fmicb.2017.00754 10.4161/psb.26301 10.1104/pp.123.3.825 10.3389/fphys.2012.00182 |
ContentType | Journal Article |
Copyright | 2020 The Authors Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.ecoenv.2020.111793 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
ExternalDocumentID | oai_doaj_org_article_9d00ba00406148b88d0c4dfe2d81d055 33360287 10_1016_j_ecoenv_2020_111793 S0147651320316298 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ H~9 IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K VH1 WUQ XPP ZMT ZU3 ZXP ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c474t-b2c65aa68a4e5e616fc47729065ac106bbfdf200db86c99246d834397dc4bfba3 |
IEDL.DBID | .~1 |
ISSN | 0147-6513 1090-2414 |
IngestDate | Wed Aug 27 01:32:09 EDT 2025 Mon Jul 21 10:16:10 EDT 2025 Wed Feb 19 02:29:08 EST 2025 Tue Jul 01 04:00:22 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Fri Feb 23 02:46:23 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phytochelatins Arsenic Fe transporters Glyoxalase pathway Piriformospora indica Arsenic transporters |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-b2c65aa68a4e5e616fc47729065ac106bbfdf200db86c99246d834397dc4bfba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9286-2959 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651320316298 |
PMID | 33360287 |
PQID | 2473414021 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9d00ba00406148b88d0c4dfe2d81d055 proquest_miscellaneous_2473414021 pubmed_primary_33360287 crossref_primary_10_1016_j_ecoenv_2020_111793 crossref_citationtrail_10_1016_j_ecoenv_2020_111793 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2020_111793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2021 2021-02-00 2021-Feb 20210201 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Matschullat, Borba, Deschamps, Figueiredo, Gabrio, Schwenk (bib59) 2000; 15 Dave, Tripathi, Dwivedi, Tripathi, Dixit, Sharma, Trivedi, Corpas, Barroso, Chakrabarty (bib5) 2013; 15 Jain, Gadre (bib20) 2004; 161 Jogawat, Vadassery, Verma, Oelmüller, Dua, Nevo, Johri (bib21) 2016; 6 Ghorbani, Razavi, Ghasemi Omran, Pirdashti (bib11) 2018; 65 Bertolazi, de Souza, Ruas, Campostrini, de Rezende, Cruz, Melo, Colodete, Varma, Ramos (bib3) 2019; 10 Principato, Rosi, Talesa, Govannini, Uolila (bib37) 1987; 911 Wild, Ooi, Srikanth, Münch (bib52) 2012; 403 Livak, Schmittgen (bib27) 2001; 25 Mousavi, Niknejad, Fallah, Barari-Tari (bib30) 2020; 39 Stoeva, Berova, Zlatev (bib45) 2004; 47 Verma, Srivastava, Narayan, Shirke, Chakrabarty (bib50) 2020; 201 Sharma, Anand, Singh, Kapoor (bib42) 2017; 8 Ghorbani, Zarinkamar, Fallah (bib8) 2009; 1 Finnegan, Chen (bib7) 2012; 3 Ishimaru, Takahashi, Bashir, Shimo, Senoura, Sugimoto (bib19) 2012; 2 Ogo, Itai, Kobayashi, Aung, Nakanishi, Nishizawa (bib32) 2011; 75 Yamazaki, Ueda, Mukai, Ochiai, Matoh (bib54) 2018; 2 Singh, Dixit, Mishra, Dwivedi, Tiwari, Mallick, Pandey, Trivedi, Chakrabarty, Tripathi (bib44) 2015; 6 Vahabi, Camehl, Sherameti, Oelmüller (bib49) 2013; 8 Gill, Ali, Islam, Farooq, Gill, Mwamba, Zhou (bib12) 2015; 94 Heath, Packer (bib17) 1968; 125 Gusman, Oliveira, Farnese, Cambraia (bib14) 2013; 35 Anjum, Tanveer, Hussain, Ashraf, Khan, Wang (bib2) 2017; 228 Lichtenthaler (bib25) 1987; 148 Martinez, Vucic, Becker-Santos, Gil, Lam (bib56) 2011; 2011 Alam, Hoque, Ahammed, Carpenter-Boggs (bib1) 2019; 14 Yadav, Singla-Pareek, Sopory (bib53) 2008; 23 Zhao, McGrath, Meharg (bib55) 2010; 61 Mohd, Shukla, Kushwaha, Mandrah, Shankar, Arjaria, Saxena, Narayan, Roy, Kumar (bib29) 2017; 8 Hasanuzzaman, Hossain, Fujita (bib16) 2011; 5 Gupta, Ahmad (bib13) 2014; 107 Shri, Singh, Kidwai, Gautam, Dubey, Verma, Chakrabarty (bib43) 2019; 11 Vadassery, Tripathi, Prasad, Varma, Oelmüller (bib48) 2009; 166 Hasanuzzaman, Fujita (bib15) 2013; 22 Ghorbani, Ghasemi Omran, Razavi, Pirdashti, Ranjbar (bib9) 2019; 38 Sabra, Aboulnasr, Franken, Perreca, Wright, Camehl (bib40) 2018; 9 Tsai, Shao, Chan, Cheng, Yeh, Oelmüller, Wang (bib47) 2020; 15 Pushnik, Miller, Manwaring (bib38) 1984; 7 Shahabivand, Parvaneh, Aliloob (bib41) 2017; 145 Cobbett (bib4) 2000; 123 Jung, Kong, Lee, Kim, Chae, Lee, Jung, Lee, Sung, Kim (bib22) 2019; 10 Lindsay, Maathuis (bib26) 2017; 22 Eisler (bib57) 2000; vol 3 Ghorbani, Razavi, Ghasemi Omran, Pirdashti (bib10) 2018; 20 Patel, Tiwari, Prasad (bib34) 2018; 157 Petrov, Hille, Mueller-Roeber, Gechev (bib35) 2015; 6 Inoue, Suzuki, Takahashi, Nakanishi, Mori, Nishizawa (bib18) 2004; 50 Zemanová, Popov, Pavlíková, Kotrba, Hnilička, Česká, Pavlík (bib61) 2020; 20 Nanda, Agrawal (bib31) 2016; 125 Li, Sun, Jiang, Chen, Zhang (bib23) 2018; 157 Tiwari, Sharma, Dwivedi, Singh, Tripathi, Trivedi (bib46) 2014; 37 Dutilleul, Driscoll, Cornic, De Paepe, Foyer, Noctor (bib6) 2003; 131 Poonam, Srivastava, Pathare, Suprasanna (bib36) 2017; 11 Upadhyay, Singh, Singh, Rai (bib62) 2016; 124 Ma, Yamaji, Mitani, Xu, Su, McGrath, Zhao (bib28) 2008; 105 Verma, Varma, Rexer, Hassel, Kost, Sarbhoy, Bisen, Bütehorn, Franken (bib51) 1998; 90 Rahman, Khalid, Kayani, Tang (bib60) 2020; 206 Li, Zhu, Wang, Zhang (bib24) 2020; 20 Huang, Dasgupta (bib58) 1999; 380 Pandey, Rai, Rai (bib33) 2015 Rahman, Mostofa, Alam, Nahar, Hasanuzzaman, Fujita (bib39) 2015; 2015 Finnegan (10.1016/j.ecoenv.2020.111793_bib7) 2012; 3 Singh (10.1016/j.ecoenv.2020.111793_bib44) 2015; 6 Poonam (10.1016/j.ecoenv.2020.111793_bib36) 2017; 11 Patel (10.1016/j.ecoenv.2020.111793_bib34) 2018; 157 Matschullat (10.1016/j.ecoenv.2020.111793_bib59) 2000; 15 Rahman (10.1016/j.ecoenv.2020.111793_bib60) 2020; 206 Ma (10.1016/j.ecoenv.2020.111793_bib28) 2008; 105 Huang (10.1016/j.ecoenv.2020.111793_bib58) 1999; 380 Gusman (10.1016/j.ecoenv.2020.111793_bib14) 2013; 35 Hasanuzzaman (10.1016/j.ecoenv.2020.111793_bib16) 2011; 5 Principato (10.1016/j.ecoenv.2020.111793_bib37) 1987; 911 Nanda (10.1016/j.ecoenv.2020.111793_bib31) 2016; 125 Sabra (10.1016/j.ecoenv.2020.111793_bib40) 2018; 9 Bertolazi (10.1016/j.ecoenv.2020.111793_bib3) 2019; 10 Ghorbani (10.1016/j.ecoenv.2020.111793_bib10) 2018; 20 Lichtenthaler (10.1016/j.ecoenv.2020.111793_bib25) 1987; 148 Mousavi (10.1016/j.ecoenv.2020.111793_bib30) 2020; 39 Petrov (10.1016/j.ecoenv.2020.111793_bib35) 2015; 6 Verma (10.1016/j.ecoenv.2020.111793_bib51) 1998; 90 Vadassery (10.1016/j.ecoenv.2020.111793_bib48) 2009; 166 Gill (10.1016/j.ecoenv.2020.111793_bib12) 2015; 94 Jain (10.1016/j.ecoenv.2020.111793_bib20) 2004; 161 Lindsay (10.1016/j.ecoenv.2020.111793_bib26) 2017; 22 Li (10.1016/j.ecoenv.2020.111793_bib24) 2020; 20 Pandey (10.1016/j.ecoenv.2020.111793_bib33) 2015 Li (10.1016/j.ecoenv.2020.111793_bib23) 2018; 157 Cobbett (10.1016/j.ecoenv.2020.111793_bib4) 2000; 123 Mohd (10.1016/j.ecoenv.2020.111793_bib29) 2017; 8 Yadav (10.1016/j.ecoenv.2020.111793_bib53) 2008; 23 Gupta (10.1016/j.ecoenv.2020.111793_bib13) 2014; 107 Tsai (10.1016/j.ecoenv.2020.111793_bib47) 2020; 15 Eisler (10.1016/j.ecoenv.2020.111793_bib57) 2000; vol 3 Pushnik (10.1016/j.ecoenv.2020.111793_bib38) 1984; 7 Rahman (10.1016/j.ecoenv.2020.111793_bib39) 2015; 2015 Dave (10.1016/j.ecoenv.2020.111793_bib5) 2013; 15 Ghorbani (10.1016/j.ecoenv.2020.111793_bib9) 2019; 38 Wild (10.1016/j.ecoenv.2020.111793_bib52) 2012; 403 Livak (10.1016/j.ecoenv.2020.111793_bib27) 2001; 25 Tiwari (10.1016/j.ecoenv.2020.111793_bib46) 2014; 37 Ghorbani (10.1016/j.ecoenv.2020.111793_bib11) 2018; 65 Shri (10.1016/j.ecoenv.2020.111793_bib43) 2019; 11 Hasanuzzaman (10.1016/j.ecoenv.2020.111793_bib15) 2013; 22 Jogawat (10.1016/j.ecoenv.2020.111793_bib21) 2016; 6 Sharma (10.1016/j.ecoenv.2020.111793_bib42) 2017; 8 Ghorbani (10.1016/j.ecoenv.2020.111793_bib8) 2009; 1 Ishimaru (10.1016/j.ecoenv.2020.111793_bib19) 2012; 2 Vahabi (10.1016/j.ecoenv.2020.111793_bib49) 2013; 8 Anjum (10.1016/j.ecoenv.2020.111793_bib2) 2017; 228 Stoeva (10.1016/j.ecoenv.2020.111793_bib45) 2004; 47 Zemanová (10.1016/j.ecoenv.2020.111793_bib61) 2020; 20 Heath (10.1016/j.ecoenv.2020.111793_bib17) 1968; 125 Verma (10.1016/j.ecoenv.2020.111793_bib50) 2020; 201 Martinez (10.1016/j.ecoenv.2020.111793_bib56) 2011; 2011 Alam (10.1016/j.ecoenv.2020.111793_bib1) 2019; 14 Dutilleul (10.1016/j.ecoenv.2020.111793_bib6) 2003; 131 Yamazaki (10.1016/j.ecoenv.2020.111793_bib54) 2018; 2 Zhao (10.1016/j.ecoenv.2020.111793_bib55) 2010; 61 Upadhyay (10.1016/j.ecoenv.2020.111793_bib62) 2016; 124 Inoue (10.1016/j.ecoenv.2020.111793_bib18) 2004; 50 Ogo (10.1016/j.ecoenv.2020.111793_bib32) 2011; 75 Jung (10.1016/j.ecoenv.2020.111793_bib22) 2019; 10 Shahabivand (10.1016/j.ecoenv.2020.111793_bib41) 2017; 145 |
References_xml | – volume: 125 start-page: 189 year: 1968 end-page: 198 ident: bib17 article-title: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation publication-title: Arch. Biochem. Biophys. – volume: 65 start-page: 898 year: 2018 end-page: 907 ident: bib11 article-title: alleviates salinity by boosting redox poise and antioxidative potential of tomato publication-title: Russ. J. Plant Physiol. – volume: 8 start-page: 906 year: 2017 ident: bib42 article-title: Arbuscular mycorrhiza augments arsenic tolerance in wheat ( publication-title: Front. Plant Sci. – volume: 6 start-page: 36765 year: 2016 ident: bib21 article-title: PiHOG1, a stress regulator MAP kinase from the root endophyte fungus publication-title: Sci. Rep. – volume: 15 start-page: 181 year: 2000 end-page: 190 ident: bib59 article-title: Human and environmental contamination in the iron quadrangle, Brazil publication-title: Appl. Geochem. – volume: 11 start-page: 232 year: 2017 end-page: 237 ident: bib36 article-title: Physiological and molecular insights into rice-arbuscular mycorrhizal interactions under arsenic stress publication-title: Plant Gene – volume: 7 start-page: 733 year: 1984 end-page: 758 ident: bib38 article-title: The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis publication-title: J. Plant Nutr. – volume: 1 start-page: 50 year: 2009 end-page: 66 ident: bib8 article-title: The effect of cold stress on the morphologic and physiologic characters of tow rice varieties in seedling stage publication-title: J. Crop Breed. – volume: 125 start-page: 31 year: 2016 end-page: 41 ident: bib31 article-title: Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in publication-title: Environ. Exp. Bot. – volume: 3 start-page: 182 year: 2012 ident: bib7 article-title: Arsenic toxicity: the effects on plant metabolism publication-title: Front. Physiol. – volume: 2 start-page: 286 year: 2012 ident: bib19 article-title: Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport publication-title: Sci. Rep. – volume: 8 year: 2013 ident: bib49 article-title: Growth of Arabidopsis seedlings on high fungal doses of publication-title: Plant Signal. Behav. – volume: 5 start-page: 353 year: 2011 end-page: 365 ident: bib16 article-title: Nitric oxide modulates antioxidant defense and methylglyoxal detoxification system and reduces salinity induced damage in wheat seedling publication-title: Plant Biotechnol. Rep. – volume: 6 start-page: 69 year: 2015 ident: bib35 article-title: ROS-mediated abiotic stress-induced programmed cell death in plants publication-title: Front. Plant Sci. – volume: 2011 start-page: 1 year: 2011 end-page: 13 ident: bib56 article-title: Arsenic exposure and the induction of human cancers publication-title: J. Toxicol. – volume: 50 start-page: 1133 year: 2004 end-page: 1140 ident: bib18 article-title: A rice FRD3-like ( publication-title: Soil Sci. Plant Nutr. – volume: 105 start-page: 9931 year: 2008 end-page: 9935 ident: bib28 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proc. Natl. Acad. Sci. USA – volume: 47 start-page: 449 year: 2004 end-page: 452 ident: bib45 article-title: Physiological response of maize to arsenic contamination publication-title: Biol. Plant. – volume: 380 start-page: 27 year: 1999 end-page: 37 ident: bib58 article-title: A field-deployable instrument for the measurement and speciation of arsenic in potable water publication-title: Anal. Chim. Acta – volume: 206 year: 2020 ident: bib60 article-title: The ameliorative effects of exogenous inoculation of publication-title: Ecotoxicol. Environ. Saf. – volume: 10 start-page: 1089 year: 2019 ident: bib22 article-title: Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate–glutathione homeostasis in rice seedlings publication-title: Front. Plant Sci. – volume: 61 start-page: 535 year: 2010 end-page: 559 ident: bib55 article-title: Arsenic as a food chain contaminant mechanisms of plant uptake and metabolism and mitigation strategies publication-title: Annu. Rev. Plant Biol. – volume: 35 start-page: 1201 year: 2013 end-page: 1209 ident: bib14 article-title: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants publication-title: Acta Physiol. Plant. – volume: 15 start-page: 1123 year: 2013 end-page: 1131 ident: bib5 article-title: Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice ( publication-title: J. Hazard Mater. – volume: 403 start-page: 2577 year: 2012 end-page: 2581 ident: bib52 article-title: A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl- publication-title: Anal. Bioanal. Chem. – volume: 11 start-page: 519 year: 2019 end-page: 532 ident: bib43 article-title: Recent advances in arsenic metabolism in plants: current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice publication-title: Metallomics – volume: 107 start-page: 46 year: 2014 end-page: 54 ident: bib13 article-title: Arsenate induced differential response in rice genotypes publication-title: Ecotoxicol. Environ. Saf. – volume: 9 start-page: 1726 year: 2018 ident: bib40 article-title: Beneficial root endophytic fungi increase growth and quality parameters of sweet basil in heavy metal contaminated soil publication-title: Front. Plant Sci. – volume: 166 start-page: 1263 year: 2009 end-page: 1274 ident: bib48 article-title: Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between publication-title: J. Plant Physiol. – volume: 15 year: 2020 ident: bib47 article-title: symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems publication-title: Plant Signal. Behav. – volume: 38 start-page: 1151 year: 2019 end-page: 1163 ident: bib9 article-title: confers salinity tolerance on tomato ( publication-title: Plant Cell. Rep. – volume: 2 year: 2018 ident: bib54 article-title: Rice phytochelatin synthases publication-title: Plant Direct – volume: 911 start-page: 349 year: 1987 end-page: 355 ident: bib37 article-title: Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats publication-title: Biochem. Biophys. Acta – volume: 90 start-page: 896 year: 1998 end-page: 903 ident: bib51 article-title: , gen. et sp. nov., a new root-colonizing fungus publication-title: Mycologia – volume: 228 start-page: 13 year: 2017 ident: bib2 article-title: Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress publication-title: Water Air Soil Pollut. – volume: 94 start-page: 130 year: 2015 end-page: 143 ident: bib12 article-title: Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress publication-title: Plant Physiol. Biochem. – volume: 2015 start-page: 1 year: 2015 end-page: 12 ident: bib39 article-title: Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers publication-title: BioMed Res. Int. – volume: 37 start-page: 140 year: 2014 end-page: 152 ident: bib46 article-title: Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, publication-title: Plant Cell Environ. – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: bib27 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2 publication-title: Methods – volume: 161 start-page: 251 year: 2004 end-page: 255 ident: bib20 article-title: Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening publication-title: J. Plant Physiol. – volume: 8 start-page: 754 year: 2017 ident: bib29 article-title: Endophytic fungi publication-title: Front. Microbiol. – volume: vol 3 start-page: 1501 year: 2000 end-page: 1566 ident: bib57 article-title: Arsenic publication-title: Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals – volume: 14 year: 2019 ident: bib1 article-title: Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in publication-title: PLoS One – volume: 23 start-page: 51 year: 2008 end-page: 68 ident: bib53 article-title: An overview on the role of methylglyoxal and glyoxalases in plants publication-title: Drug Metabol. Drug Interact. – volume: 124 start-page: 68 year: 2016 end-page: 73 ident: bib62 article-title: Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of publication-title: Ecotoxicol. Environ. Saf. – volume: 39 start-page: 1041 year: 2020 end-page: 1060 ident: bib30 article-title: Methyl jasmonate alleviates arsenic toxicity in rice publication-title: Plant Cell. Rep. – volume: 201 year: 2020 ident: bib50 article-title: Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice ( publication-title: Ecotoxicol. Environ. Saf. – volume: 20 start-page: 130 year: 2020 ident: bib61 article-title: Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator publication-title: BMC Plant Biol. – volume: 20 start-page: 20 year: 2020 ident: bib24 article-title: Phytoremediation effect of publication-title: BMC Biotechnol. – volume: 145 start-page: 496 year: 2017 end-page: 502 ident: bib41 article-title: Root endophytic fungus publication-title: Ecotoxicol. Environ. Saf. – volume: 10 start-page: 1087 year: 2019 ident: bib3 article-title: Inoculation with publication-title: Front. Microbiol. – start-page: 627 year: 2015 end-page: 674 ident: bib33 article-title: Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants. publication-title: Handbook of Arsenic Toxicology – volume: 22 start-page: 584 year: 2013 end-page: 596 ident: bib15 article-title: Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat ( publication-title: Ecotoxicology – volume: 6 start-page: 340 year: 2015 ident: bib44 article-title: Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice ( publication-title: Front. Plant Sci. – volume: 22 start-page: 1016 year: 2017 end-page: 1026 ident: bib26 article-title: New molecular mechanisms to reduce arsenic in crops publication-title: Trends Plant Sci. – volume: 75 start-page: 593 year: 2011 end-page: 605 ident: bib32 article-title: is responsible for iron utilization in rice and improves growth and yield in calcareous soil publication-title: Plant Mol. Biol. – volume: 131 start-page: 264 year: 2003 end-page: 275 ident: bib6 article-title: Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients publication-title: Plant Physiol. – volume: 123 start-page: 825 year: 2000 end-page: 832 ident: bib4 article-title: Phytochelatins and their roles in heavy metal detoxification publication-title: Plant Physiol. – volume: 157 start-page: 369 year: 2018 end-page: 379 ident: bib34 article-title: Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in publication-title: Ecotoxicol. Environ. Saf. – volume: 157 start-page: 235 year: 2018 end-page: 243 ident: bib23 article-title: Arbuscular mycorrhizal fungi alleviate arsenic toxicity to publication-title: Ecotoxicol. Environ. Saf. – volume: 148 start-page: 350 year: 1987 end-page: 382 ident: bib25 article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes publication-title: Method. Enzymol. – volume: 20 start-page: 729 year: 2018 end-page: 736 ident: bib10 article-title: inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato ( publication-title: Plant Biol. – volume: 6 start-page: 340 year: 2015 ident: 10.1016/j.ecoenv.2020.111793_bib44 article-title: Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00340 – volume: 20 start-page: 130 year: 2020 ident: 10.1016/j.ecoenv.2020.111793_bib61 article-title: Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata publication-title: BMC Plant Biol. doi: 10.1186/s12870-020-2325-6 – volume: 6 start-page: 69 year: 2015 ident: 10.1016/j.ecoenv.2020.111793_bib35 article-title: ROS-mediated abiotic stress-induced programmed cell death in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00069 – volume: 166 start-page: 1263 year: 2009 ident: 10.1016/j.ecoenv.2020.111793_bib48 article-title: Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2008.12.016 – volume: 131 start-page: 264 year: 2003 ident: 10.1016/j.ecoenv.2020.111793_bib6 article-title: Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients publication-title: Plant Physiol. doi: 10.1104/pp.011155 – volume: 201 year: 2020 ident: 10.1016/j.ecoenv.2020.111793_bib50 article-title: Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.) publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110735 – volume: 124 start-page: 68 year: 2016 ident: 10.1016/j.ecoenv.2020.111793_bib62 article-title: Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.10.002 – volume: 9 start-page: 1726 year: 2018 ident: 10.1016/j.ecoenv.2020.111793_bib40 article-title: Beneficial root endophytic fungi increase growth and quality parameters of sweet basil in heavy metal contaminated soil publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01726 – volume: 125 start-page: 31 year: 2016 ident: 10.1016/j.ecoenv.2020.111793_bib31 article-title: Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.02.001 – volume: 107 start-page: 46 year: 2014 ident: 10.1016/j.ecoenv.2020.111793_bib13 article-title: Arsenate induced differential response in rice genotypes publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.04.030 – volume: vol 3 start-page: 1501 year: 2000 ident: 10.1016/j.ecoenv.2020.111793_bib57 article-title: Arsenic – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.ecoenv.2020.111793_bib39 article-title: Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers publication-title: BioMed Res. Int. – volume: 8 start-page: 906 year: 2017 ident: 10.1016/j.ecoenv.2020.111793_bib42 article-title: Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00906 – volume: 161 start-page: 251 year: 2004 ident: 10.1016/j.ecoenv.2020.111793_bib20 article-title: Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-00879 – volume: 125 start-page: 189 year: 1968 ident: 10.1016/j.ecoenv.2020.111793_bib17 article-title: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90654-1 – volume: 6 start-page: 36765 year: 2016 ident: 10.1016/j.ecoenv.2020.111793_bib21 article-title: PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants publication-title: Sci. Rep. doi: 10.1038/srep36765 – volume: 7 start-page: 733 year: 1984 ident: 10.1016/j.ecoenv.2020.111793_bib38 article-title: The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis publication-title: J. Plant Nutr. doi: 10.1080/01904168409363238 – volume: 35 start-page: 1201 year: 2013 ident: 10.1016/j.ecoenv.2020.111793_bib14 article-title: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-012-1159-8 – volume: 75 start-page: 593 year: 2011 ident: 10.1016/j.ecoenv.2020.111793_bib32 article-title: OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil publication-title: Plant Mol. Biol. doi: 10.1007/s11103-011-9752-6 – volume: 380 start-page: 27 year: 1999 ident: 10.1016/j.ecoenv.2020.111793_bib58 article-title: A field-deployable instrument for the measurement and speciation of arsenic in potable water publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(98)00649-7 – volume: 65 start-page: 898 year: 2018 ident: 10.1016/j.ecoenv.2020.111793_bib11 article-title: Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443718060079 – volume: 228 start-page: 13 year: 2017 ident: 10.1016/j.ecoenv.2020.111793_bib2 article-title: Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-016-3187-2 – volume: 911 start-page: 349 year: 1987 ident: 10.1016/j.ecoenv.2020.111793_bib37 article-title: Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats publication-title: Biochem. Biophys. Acta – volume: 38 start-page: 1151 year: 2019 ident: 10.1016/j.ecoenv.2020.111793_bib9 article-title: Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status publication-title: Plant Cell. Rep. doi: 10.1007/s00299-019-02434-w – volume: 25 start-page: 402 year: 2001 ident: 10.1016/j.ecoenv.2020.111793_bib27 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 23 start-page: 51 year: 2008 ident: 10.1016/j.ecoenv.2020.111793_bib53 article-title: An overview on the role of methylglyoxal and glyoxalases in plants publication-title: Drug Metabol. Drug Interact. doi: 10.1515/DMDI.2008.23.1-2.51 – volume: 10 start-page: 1089 year: 2019 ident: 10.1016/j.ecoenv.2020.111793_bib22 article-title: Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate–glutathione homeostasis in rice seedlings publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01089 – volume: 37 start-page: 140 year: 2014 ident: 10.1016/j.ecoenv.2020.111793_bib46 article-title: Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance publication-title: Plant Cell Environ. doi: 10.1111/pce.12138 – volume: 11 start-page: 519 year: 2019 ident: 10.1016/j.ecoenv.2020.111793_bib43 article-title: Recent advances in arsenic metabolism in plants: current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice publication-title: Metallomics doi: 10.1039/C8MT00320C – volume: 105 start-page: 9931 year: 2008 ident: 10.1016/j.ecoenv.2020.111793_bib28 article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0802361105 – volume: 145 start-page: 496 year: 2017 ident: 10.1016/j.ecoenv.2020.111793_bib41 article-title: Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.07.064 – volume: 22 start-page: 584 year: 2013 ident: 10.1016/j.ecoenv.2020.111793_bib15 article-title: Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system publication-title: Ecotoxicology doi: 10.1007/s10646-013-1050-4 – volume: 2 start-page: 286 year: 2012 ident: 10.1016/j.ecoenv.2020.111793_bib19 article-title: Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport publication-title: Sci. Rep. doi: 10.1038/srep00286 – volume: 2 year: 2018 ident: 10.1016/j.ecoenv.2020.111793_bib54 article-title: Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance publication-title: Plant Direct doi: 10.1002/pld3.34 – volume: 39 start-page: 1041 year: 2020 ident: 10.1016/j.ecoenv.2020.111793_bib30 article-title: Methyl jasmonate alleviates arsenic toxicity in rice publication-title: Plant Cell. Rep. doi: 10.1007/s00299-020-02547-7 – volume: 206 year: 2020 ident: 10.1016/j.ecoenv.2020.111793_bib60 article-title: The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111202 – volume: 15 start-page: 1123 year: 2013 ident: 10.1016/j.ecoenv.2020.111793_bib5 article-title: Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryzasativa L.) genotypes publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2012.06.049 – volume: 148 start-page: 350 year: 1987 ident: 10.1016/j.ecoenv.2020.111793_bib25 article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes publication-title: Method. Enzymol. doi: 10.1016/0076-6879(87)48036-1 – volume: 2011 start-page: 1 year: 2011 ident: 10.1016/j.ecoenv.2020.111793_bib56 article-title: Arsenic exposure and the induction of human cancers publication-title: J. Toxicol. doi: 10.1155/2011/431287 – volume: 1 start-page: 50 year: 2009 ident: 10.1016/j.ecoenv.2020.111793_bib8 article-title: The effect of cold stress on the morphologic and physiologic characters of tow rice varieties in seedling stage publication-title: J. Crop Breed. – volume: 20 start-page: 729 year: 2018 ident: 10.1016/j.ecoenv.2020.111793_bib10 article-title: Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.) publication-title: Plant Biol. doi: 10.1111/plb.12717 – volume: 90 start-page: 896 year: 1998 ident: 10.1016/j.ecoenv.2020.111793_bib51 article-title: Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus publication-title: Mycologia doi: 10.1080/00275514.1998.12026983 – start-page: 627 year: 2015 ident: 10.1016/j.ecoenv.2020.111793_bib33 article-title: Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants. – volume: 10 start-page: 1087 year: 2019 ident: 10.1016/j.ecoenv.2020.111793_bib3 article-title: Inoculation with Piriformospora indica is more efficient in wild-type rice than in transgenic rice over-expressing the vacuolar H+-PPase publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.01087 – volume: 94 start-page: 130 year: 2015 ident: 10.1016/j.ecoenv.2020.111793_bib12 article-title: Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.06.001 – volume: 11 start-page: 232 year: 2017 ident: 10.1016/j.ecoenv.2020.111793_bib36 article-title: Physiological and molecular insights into rice-arbuscular mycorrhizal interactions under arsenic stress publication-title: Plant Gene doi: 10.1016/j.plgene.2017.03.004 – volume: 47 start-page: 449 year: 2004 ident: 10.1016/j.ecoenv.2020.111793_bib45 article-title: Physiological response of maize to arsenic contamination publication-title: Biol. Plant. – volume: 157 start-page: 369 year: 2018 ident: 10.1016/j.ecoenv.2020.111793_bib34 article-title: Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.03.056 – volume: 20 start-page: 20 year: 2020 ident: 10.1016/j.ecoenv.2020.111793_bib24 article-title: Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil publication-title: BMC Biotechnol. doi: 10.1186/s12896-020-00613-2 – volume: 61 start-page: 535 year: 2010 ident: 10.1016/j.ecoenv.2020.111793_bib55 article-title: Arsenic as a food chain contaminant mechanisms of plant uptake and metabolism and mitigation strategies publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112152 – volume: 14 year: 2019 ident: 10.1016/j.ecoenv.2020.111793_bib1 article-title: Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in Lens culinaris publication-title: PLoS One doi: 10.1371/journal.pone.0211441 – volume: 50 start-page: 1133 year: 2004 ident: 10.1016/j.ecoenv.2020.111793_bib18 article-title: A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2004.10408586 – volume: 403 start-page: 2577 year: 2012 ident: 10.1016/j.ecoenv.2020.111793_bib52 article-title: A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-L-cysteine assay publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6086-4 – volume: 15 issue: 2 year: 2020 ident: 10.1016/j.ecoenv.2020.111793_bib47 article-title: Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2020.1722447 – volume: 22 start-page: 1016 year: 2017 ident: 10.1016/j.ecoenv.2020.111793_bib26 article-title: New molecular mechanisms to reduce arsenic in crops publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.09.015 – volume: 5 start-page: 353 year: 2011 ident: 10.1016/j.ecoenv.2020.111793_bib16 article-title: Nitric oxide modulates antioxidant defense and methylglyoxal detoxification system and reduces salinity induced damage in wheat seedling publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-011-0189-9 – volume: 15 start-page: 181 year: 2000 ident: 10.1016/j.ecoenv.2020.111793_bib59 article-title: Human and environmental contamination in the iron quadrangle, Brazil publication-title: Appl. Geochem. doi: 10.1016/S0883-2927(99)00039-6 – volume: 157 start-page: 235 year: 2018 ident: 10.1016/j.ecoenv.2020.111793_bib23 article-title: Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.03.073 – volume: 8 start-page: 754 year: 2017 ident: 10.1016/j.ecoenv.2020.111793_bib29 article-title: Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00754 – volume: 8 year: 2013 ident: 10.1016/j.ecoenv.2020.111793_bib49 article-title: Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid isoleucine levels in the roots publication-title: Plant Signal. Behav. doi: 10.4161/psb.26301 – volume: 123 start-page: 825 year: 2000 ident: 10.1016/j.ecoenv.2020.111793_bib4 article-title: Phytochelatins and their roles in heavy metal detoxification publication-title: Plant Physiol. doi: 10.1104/pp.123.3.825 – volume: 3 start-page: 182 year: 2012 ident: 10.1016/j.ecoenv.2020.111793_bib7 article-title: Arsenic toxicity: the effects on plant metabolism publication-title: Front. Physiol. doi: 10.3389/fphys.2012.00182 |
SSID | ssj0003055 |
Score | 2.5827591 |
Snippet | Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 111793 |
SubjectTerms | Adaptation, Physiological - physiology Arsenic Arsenic - metabolism Arsenic - toxicity Arsenic transporters Basidiomycota - metabolism Basidiomycota - physiology Chlorophyll - metabolism Fe transporters Glyoxalase pathway Humans Iron - metabolism Malondialdehyde - metabolism Oryza - metabolism Oryza - microbiology Oryza - physiology Photosynthesis Phytochelatins Piriformospora indica Plant Roots - metabolism Plant Roots - microbiology Soil Pollutants - metabolism Soil Pollutants - toxicity Symbiosis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlECiU0qZf2zZFhR7ag6htybL2mISEUOjHoYHchEaS2y2JXTbewOZv9A9nRrKX5lD20qsZW8Iz0rxnzzwx9q4ItVaulaJSwQjVqlJA67WAAFKW4GWM1OD8-Ys-PVOfzuvzv476opqwLA-cX9zHeSgKcBRrJFkJxoTCq9DGKiDSKuqkXoo5byJT4x5MOla5eLERui7l1DSXKruQ18XuGrlhlXaMZi7vJKWk3X8nN_0Le6YcdPKIPRzBIz_Ik37M7sVuj-0eJ-Hp9R57kL_B8dxa9IT9-bZYUuPVZU_c1XH6Pe0dd6sfqa-NI6eNHdoP_UWk8zUiWnASGeLvvy7XN45Tpc-1-8BhzRcYr1RHe4OpbnMjmfc9PakLaDF-nuDUOccHSoKUKcnzOAS_-kmmT9nZyfH3o1MxHsIgvGrUIKDyunZOG6diHXWpW7zekEh87TzySYA2tLjUAhjt58jmdDCSUE7wClpw8hnb6fouvmBcO-OhTKSpUKU3BmoIqo4ODBTR-BmTkxesHxXK6aCMCzuVov2y2XeWfGez72ZMbO76nRU6ttgfkoM3tqSvnS5g1Nkx6uy2qJuxZgoPO0KVDEHwUYstw7-dosniSqbfM66L_erKVqpBSIF8vpyx5znMNpOUUmpEgs3L_zH5V-x-RZU5qfb8NdsZlqu4j9BqgDdpFd0CZN0h7g priority: 102 providerName: Directory of Open Access Journals |
Title | Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots |
URI | https://dx.doi.org/10.1016/j.ecoenv.2020.111793 https://www.ncbi.nlm.nih.gov/pubmed/33360287 https://www.proquest.com/docview/2473414021 https://doaj.org/article/9d00ba00406148b88d0c4dfe2d81d055 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQkhKC8lsfKSBzgEDaJHcd7LFWrBUThQKXeLI_tlKCSVNtspe2BP8EfZsZJFu0BVeJqTeIo83ke9jdjxl6nvlDSViLJpdeJrGSWQOVUAh6EyMCJEKjA-fOxWpzIj6fF6Q47GGthiFY52P7epkdrPYzMhr85u6jrGdGSSlVQCbDIVD6ngl-JI4jpd7_-0jyoo1VPYywTkh7L5yLHCzO80FxhlphH21HOxZZ7il38t7zUv6LQ6I2O7rN7QxjJ9_svfcB2QrPHbh_GFtTrPXa3343jfZHRQ_b7a72kEqyfLWWxltNBtbPcrs5ihRvH7DY0KN-154Fu2ggowandEH_zZbm-tpw4P1f2LYc1rxG5xKi9Rqe3eZDE25be1HiUGDYqONXQ8Y7cIflMwgBOwS-_k-gjdnJ0-O1gkQzXMSROlrJLIHeqsFZpK0MRVKYqHC-pXXxhHWaWAJWvcNF50MrNMa9TXguKd7yTUIEVj9lu0zbhKePKagdZTJ9SmTmtoQAvi2BBQxq0mzAxasG4oVc5XZlxbkZS2g_T686Q7kyvuwlLNk9d9L06bpB_TwreyFKn7TjQLs_MADUz92kKlmwdtUwFrX3qpK9C7jHSR2xNWDnCw2wBF19V3zD9qxFNBtc0HdTYJrSrS5PLEoMLzOyzCXvSw2zzkUIIhTFh-ey_533O7uREzInU8xdst1uuwkuMrDqYxqUzZbf2P3xaHE_j_sQffrkl6Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaWFUtr0tX2q0EN7MGtbsqw9piFh0yTbHhLITejl1CW1w2Y3sPkb_cOd8Qv2UAK9ipFlPKN5WN98AvgU-0wKU_AoFV5FohBJZAsnI-st54l1PARqcD6Zy9mZ-HaenW_BXt8LQ7DKzve3Pr3x1t3IpPuak6uynBAsKZcZtQDzRKZTdQ-2iZ0qG8H27uHRbD44ZCK1apGMeUQT-g66BuaFRV6obrBQTBv3kU_5RoRqiPw3AtW_EtEmIB08gcddJsl225d9Cluh2oH7-w0L9XoHHrU_5FjbZ_QM_vwoF9SF9bumQtYwOqt2hpnVRdPkxrDADRXKL-vLQJdtBJRgxDjEPn9frG8NI9jPjfnC7JqVaLwEqr3FuDdMJPG6pidVHiW6fxWM2ujYkiIihU0yA1yCXf8k0edwdrB_ujeLuhsZIidysYxs6mRmjFRGhCzIRBY4nhNjfGYcFpfWFr7Afeetkm6KpZ30ilPK452whTX8BYyqugqvgEmjnE2aCioWiVPKZtaLLBirbByUGwPvtaBdR1dOt2Zc6h6X9ku3utOkO93qbgzRMOuqpeu4Q_4rKXiQJbLtZqBeXOjO2vTUx7E15O6INdUq5WMnfBFSj8k-2tYY8t489Ibt4qPKO5b_2FuTxm1NZzWmCvXqWqcix_wCi_tkDC9bMxteknMuMS3MX__3uh_gwez05FgfH86P3sDDlHA6DRL9LYyWi1V4h4nW0r7vNtJfj2UnpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piriformospora+indica+augments+arsenic+tolerance+in+rice+%28Oryza+sativa%29+by+immobilizing+arsenic+in+roots+and+improving+iron+translocation+to+shoots&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Ghorbani%2C+Abazar&rft.au=Tafteh%2C+Mahdi&rft.au=Roudbari%2C+Nasim&rft.au=Pishkar%2C+Leila&rft.date=2021-02-01&rft.issn=0147-6513&rft.volume=209&rft.spage=111793&rft_id=info:doi/10.1016%2Fj.ecoenv.2020.111793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2020_111793 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |