Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots

Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) ph...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 209; p. 111793
Main Authors Ghorbani, Abazar, Tafteh, Mahdi, Roudbari, Nasim, Pishkar, Leila, Zhang, Wenying, Wu, Chu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.02.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture. [Display omitted] •P. indica improved photosynthetic pigments and the efficiency of photosynthetic apparatus of rice plants under As toxicity.•P. indica reduced MDA and MG levels by modulating AsA-GSH homeostasis, as well as the glyoxalase system.•P. indica reduced As accumulation in shoot by downregulating the expression of Lsi2, Lsi6, Nramp1 and Nramp5.•P. indica increased Fe translocation to shoots by modulating the expression of IRO2, FRDL1 and YSL1 genes.•P. indica sequestrated As in the roots by upregulating the expression of PCS1 and PCS2 genes.
AbstractList Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture.
Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture.Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture.
Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic fungus, is involved in the plant tolerance to stressful conditions. Here, the biochemical and molecular responses of rice plants to As (50 μM) phytotoxicity and P. indica inoculation as well as the role of P. indica in improving rice adaptation to As stress were evaluated. The results showed that As stress reduced chlorophylls content, chlorophyll fluorescence yield (Fv/Fm), electron transport rate (ETR) and growth. However, P. indica restored chlorophyll content and growth. P. indica decreased the contents of methylglyoxal and malondialdehyde by improving the activity of enzymes involved in the glyoxalase pathway and modulating the redox state of the ascorbic acid-glutathione cycle, and consequently, increased the plant tolerance to As toxicity. P. indica, by downregulating Lsi2 expression (involved in As translocation to the shoot) and upregulating PCS1 and PCS2 expression (involved in As sequestration in vacuoles), immobilized As in the roots and reduced damage to photosynthetic organs. P. indica increased iron (Fe) accumulation in the shoot under As toxicity by upregulating the expression of IRO2, YSL2 and FRDL1 genes. The results of the present study augmented our knowledge in using P. indica symbiosis in improving the tolerance of rice plants against As toxicity for sustainable agriculture. [Display omitted] •P. indica improved photosynthetic pigments and the efficiency of photosynthetic apparatus of rice plants under As toxicity.•P. indica reduced MDA and MG levels by modulating AsA-GSH homeostasis, as well as the glyoxalase system.•P. indica reduced As accumulation in shoot by downregulating the expression of Lsi2, Lsi6, Nramp1 and Nramp5.•P. indica increased Fe translocation to shoots by modulating the expression of IRO2, FRDL1 and YSL1 genes.•P. indica sequestrated As in the roots by upregulating the expression of PCS1 and PCS2 genes.
ArticleNumber 111793
Author Ghorbani, Abazar
Tafteh, Mahdi
Zhang, Wenying
Roudbari, Nasim
Wu, Chu
Pishkar, Leila
Author_xml – sequence: 1
  givenname: Abazar
  orcidid: 0000-0001-9286-2959
  surname: Ghorbani
  fullname: Ghorbani, Abazar
  email: Ghorbani62a@gmail.com
  organization: Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China
– sequence: 2
  givenname: Mahdi
  surname: Tafteh
  fullname: Tafteh, Mahdi
  organization: Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
– sequence: 3
  givenname: Nasim
  surname: Roudbari
  fullname: Roudbari, Nasim
  organization: Faculty of Biology, Islamic Azad University, Kahnouj Branch, Kerman, Iran
– sequence: 4
  givenname: Leila
  surname: Pishkar
  fullname: Pishkar, Leila
  organization: Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
– sequence: 5
  givenname: Wenying
  surname: Zhang
  fullname: Zhang, Wenying
  organization: Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education/Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China
– sequence: 6
  givenname: Chu
  surname: Wu
  fullname: Wu, Chu
  email: wuchu08@yangtzeu.edu.cn
  organization: College of Horticulture and Gardening, Yangtze University, Jingzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33360287$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFN0Aoy7LIcO04TsICqar4qVSpLGBt-S_DHSX2YGdGmr4GL4zTlFmwgNWVr79zLJ9zQc588I6Q1xTWFKh4t107E5w_rBmwvKK06apnZEWhg5Jxys_ICihvSlHT6pxcpLQFgArq-gU5r6pKAGubFfn1FSP2IY4h7UJUBXqLRhVqvxmdn1KhYnIeTTGFwUXljctEETHPq_t4fFBFUhMe1NtCHwscx6BxwAf0m5NwxkOYnbzNxC6Gw3yNMfhiyo5pCCZbzKdQpB8z-pI879WQ3KuneUm-f_r47eZLeXf_-fbm-q40vOFTqZkRtVKiVdzVTlDR533DOshbQ0Fo3dueAVjdCtN1jAvbVrzqGmu47rWqLsnt4muD2spdxFHFowwK5eMixI1UcUIzONlZAK0AOAjKW922Fgy3vWO2pTZnmr2uFq_8wZ97lyY5YjJuGJR3YZ8k402VSwFGM_rmCd3r0dnTw39KyQBfABNDStH1J4SCnLuXW7l0L-fu5dJ9lr3_S2Zweow254zD_8QfFrHLgR_QRZkMuty3xejMlBPBfxv8BqG_zvU
CitedBy_id crossref_primary_10_3390_plants12081628
crossref_primary_10_1007_s10534_022_00381_w
crossref_primary_10_1007_s11356_021_17927_z
crossref_primary_10_1007_s12298_021_00993_5
crossref_primary_10_1016_j_scitotenv_2024_174274
crossref_primary_10_1016_j_stress_2024_100473
crossref_primary_10_1007_s12298_022_01213_4
crossref_primary_10_3390_ijms241311031
crossref_primary_10_1016_j_stress_2022_100076
crossref_primary_10_1007_s42729_021_00589_8
crossref_primary_10_1134_S1062359021150115
crossref_primary_10_1007_s00299_024_03189_9
crossref_primary_10_1016_j_chemosphere_2022_136678
crossref_primary_10_3390_jof7080675
crossref_primary_10_1016_j_jhazmat_2023_131752
crossref_primary_10_1007_s11356_024_35695_4
crossref_primary_10_1007_s11270_023_06336_2
crossref_primary_10_1016_j_ecoenv_2021_112390
crossref_primary_10_1080_01140671_2024_2406924
crossref_primary_10_3389_fmicb_2022_1091036
crossref_primary_10_3390_agriculture13020401
crossref_primary_10_1134_S1062359022150055
crossref_primary_10_1007_s11756_022_01088_6
crossref_primary_10_1016_j_plaphy_2021_08_019
crossref_primary_10_1007_s11356_022_23913_w
crossref_primary_10_1016_j_envpol_2022_118940
crossref_primary_10_3389_fmicb_2023_1301743
crossref_primary_10_1002_jobm_202200349
crossref_primary_10_1016_j_bcab_2021_102207
crossref_primary_10_1016_j_plaphy_2024_108848
crossref_primary_10_1016_j_sajb_2023_08_043
crossref_primary_10_1016_j_sajb_2023_12_005
crossref_primary_10_1016_j_pmpp_2021_101691
crossref_primary_10_1016_j_ecoenv_2023_115170
crossref_primary_10_3390_microorganisms12020405
crossref_primary_10_3390_plants11243417
crossref_primary_10_1186_s12951_024_02371_1
crossref_primary_10_1007_s00284_025_04148_7
crossref_primary_10_1007_s11356_023_30549_x
crossref_primary_10_3390_jof9100965
crossref_primary_10_1016_j_hazadv_2022_100055
crossref_primary_10_1007_s10646_022_02533_7
crossref_primary_10_1007_s11356_024_33380_0
crossref_primary_10_1007_s00344_022_10616_2
crossref_primary_10_32615_ps_2022_020
crossref_primary_10_1007_s41742_022_00439_0
crossref_primary_10_3390_plants14040606
crossref_primary_10_1007_s11756_022_01068_w
crossref_primary_10_17221_119_2023_PPS
crossref_primary_10_1007_s10653_024_02231_9
crossref_primary_10_1007_s42976_023_00488_x
crossref_primary_10_1007_s00299_024_03165_3
crossref_primary_10_1007_s11356_021_18106_w
crossref_primary_10_1007_s12298_021_00946_y
crossref_primary_10_1016_j_chemosphere_2023_139566
crossref_primary_10_4103_ijehe_ijehe_7_21
crossref_primary_10_1007_s11756_021_00919_2
crossref_primary_10_1007_s11627_021_10161_9
crossref_primary_10_1080_15320383_2023_2204956
crossref_primary_10_1016_j_envpol_2023_122040
crossref_primary_10_3390_stresses2020013
crossref_primary_10_1186_s12284_023_00645_0
crossref_primary_10_1016_j_freeradbiomed_2023_01_015
crossref_primary_10_3389_fpls_2022_982668
crossref_primary_10_3389_fpls_2024_1516990
crossref_primary_10_1016_j_pmpp_2021_101708
crossref_primary_10_1016_j_envpol_2024_123952
crossref_primary_10_2139_ssrn_4199998
crossref_primary_10_1134_S1062359022602634
crossref_primary_10_1007_s42729_022_00961_2
crossref_primary_10_1016_j_ecoenv_2023_114819
crossref_primary_10_3389_fpls_2022_1029836
crossref_primary_10_3389_fpls_2023_1135943
crossref_primary_10_1134_S1062359022050107
crossref_primary_10_3389_fpls_2024_1406542
crossref_primary_10_1007_s11356_022_19201_2
crossref_primary_10_3389_fpls_2021_751731
crossref_primary_10_1016_j_crbiot_2022_09_005
crossref_primary_10_1007_s11356_024_33306_w
crossref_primary_10_3390_microbiolres15020064
crossref_primary_10_1007_s10123_023_00339_z
crossref_primary_10_1016_j_plaphy_2022_07_013
crossref_primary_10_1186_s42269_023_01142_6
crossref_primary_10_3389_fmicb_2024_1294833
crossref_primary_10_1007_s13562_021_00748_z
crossref_primary_10_1016_j_envpol_2021_118029
crossref_primary_10_12677_PI_2022_112010
crossref_primary_10_1007_s11356_023_29382_z
crossref_primary_10_1007_s12223_021_00939_0
crossref_primary_10_1016_j_envexpbot_2023_105312
Cites_doi 10.3389/fpls.2015.00340
10.1186/s12870-020-2325-6
10.3389/fpls.2015.00069
10.1016/j.jplph.2008.12.016
10.1104/pp.011155
10.1016/j.ecoenv.2020.110735
10.1016/j.ecoenv.2015.10.002
10.3389/fpls.2018.01726
10.1016/j.envexpbot.2016.02.001
10.1016/j.ecoenv.2014.04.030
10.3389/fpls.2017.00906
10.1078/0176-1617-00879
10.1016/0003-9861(68)90654-1
10.1038/srep36765
10.1080/01904168409363238
10.1007/s11738-012-1159-8
10.1007/s11103-011-9752-6
10.1016/S0003-2670(98)00649-7
10.1134/S1021443718060079
10.1007/s11270-016-3187-2
10.1007/s00299-019-02434-w
10.1006/meth.2001.1262
10.1515/DMDI.2008.23.1-2.51
10.3389/fpls.2019.01089
10.1111/pce.12138
10.1039/C8MT00320C
10.1073/pnas.0802361105
10.1016/j.ecoenv.2017.07.064
10.1007/s10646-013-1050-4
10.1038/srep00286
10.1002/pld3.34
10.1007/s00299-020-02547-7
10.1016/j.ecoenv.2020.111202
10.1016/j.jhazmat.2012.06.049
10.1016/0076-6879(87)48036-1
10.1155/2011/431287
10.1111/plb.12717
10.1080/00275514.1998.12026983
10.3389/fmicb.2019.01087
10.1016/j.plaphy.2015.06.001
10.1016/j.plgene.2017.03.004
10.1016/j.ecoenv.2018.03.056
10.1186/s12896-020-00613-2
10.1146/annurev-arplant-042809-112152
10.1371/journal.pone.0211441
10.1080/00380768.2004.10408586
10.1007/s00216-012-6086-4
10.1080/15592324.2020.1722447
10.1016/j.tplants.2017.09.015
10.1007/s11816-011-0189-9
10.1016/S0883-2927(99)00039-6
10.1016/j.ecoenv.2018.03.073
10.3389/fmicb.2017.00754
10.4161/psb.26301
10.1104/pp.123.3.825
10.3389/fphys.2012.00182
ContentType Journal Article
Copyright 2020 The Authors
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.ecoenv.2020.111793
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_9d00ba00406148b88d0c4dfe2d81d055
33360287
10_1016_j_ecoenv_2020_111793
S0147651320316298
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F3I
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMC
HVGLF
HZ~
H~9
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
VH1
WUQ
XPP
ZMT
ZU3
ZXP
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c474t-b2c65aa68a4e5e616fc47729065ac106bbfdf200db86c99246d834397dc4bfba3
IEDL.DBID .~1
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:32:09 EDT 2025
Mon Jul 21 10:16:10 EDT 2025
Wed Feb 19 02:29:08 EST 2025
Tue Jul 01 04:00:22 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Fri Feb 23 02:46:23 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Phytochelatins
Arsenic
Fe transporters
Glyoxalase pathway
Piriformospora indica
Arsenic transporters
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-b2c65aa68a4e5e616fc47729065ac106bbfdf200db86c99246d834397dc4bfba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9286-2959
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0147651320316298
PMID 33360287
PQID 2473414021
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_9d00ba00406148b88d0c4dfe2d81d055
proquest_miscellaneous_2473414021
pubmed_primary_33360287
crossref_primary_10_1016_j_ecoenv_2020_111793
crossref_citationtrail_10_1016_j_ecoenv_2020_111793
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2020_111793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
2021-Feb
20210201
2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Matschullat, Borba, Deschamps, Figueiredo, Gabrio, Schwenk (bib59) 2000; 15
Dave, Tripathi, Dwivedi, Tripathi, Dixit, Sharma, Trivedi, Corpas, Barroso, Chakrabarty (bib5) 2013; 15
Jain, Gadre (bib20) 2004; 161
Jogawat, Vadassery, Verma, Oelmüller, Dua, Nevo, Johri (bib21) 2016; 6
Ghorbani, Razavi, Ghasemi Omran, Pirdashti (bib11) 2018; 65
Bertolazi, de Souza, Ruas, Campostrini, de Rezende, Cruz, Melo, Colodete, Varma, Ramos (bib3) 2019; 10
Principato, Rosi, Talesa, Govannini, Uolila (bib37) 1987; 911
Wild, Ooi, Srikanth, Münch (bib52) 2012; 403
Livak, Schmittgen (bib27) 2001; 25
Mousavi, Niknejad, Fallah, Barari-Tari (bib30) 2020; 39
Stoeva, Berova, Zlatev (bib45) 2004; 47
Verma, Srivastava, Narayan, Shirke, Chakrabarty (bib50) 2020; 201
Sharma, Anand, Singh, Kapoor (bib42) 2017; 8
Ghorbani, Zarinkamar, Fallah (bib8) 2009; 1
Finnegan, Chen (bib7) 2012; 3
Ishimaru, Takahashi, Bashir, Shimo, Senoura, Sugimoto (bib19) 2012; 2
Ogo, Itai, Kobayashi, Aung, Nakanishi, Nishizawa (bib32) 2011; 75
Yamazaki, Ueda, Mukai, Ochiai, Matoh (bib54) 2018; 2
Singh, Dixit, Mishra, Dwivedi, Tiwari, Mallick, Pandey, Trivedi, Chakrabarty, Tripathi (bib44) 2015; 6
Vahabi, Camehl, Sherameti, Oelmüller (bib49) 2013; 8
Gill, Ali, Islam, Farooq, Gill, Mwamba, Zhou (bib12) 2015; 94
Heath, Packer (bib17) 1968; 125
Gusman, Oliveira, Farnese, Cambraia (bib14) 2013; 35
Anjum, Tanveer, Hussain, Ashraf, Khan, Wang (bib2) 2017; 228
Lichtenthaler (bib25) 1987; 148
Martinez, Vucic, Becker-Santos, Gil, Lam (bib56) 2011; 2011
Alam, Hoque, Ahammed, Carpenter-Boggs (bib1) 2019; 14
Yadav, Singla-Pareek, Sopory (bib53) 2008; 23
Zhao, McGrath, Meharg (bib55) 2010; 61
Mohd, Shukla, Kushwaha, Mandrah, Shankar, Arjaria, Saxena, Narayan, Roy, Kumar (bib29) 2017; 8
Hasanuzzaman, Hossain, Fujita (bib16) 2011; 5
Gupta, Ahmad (bib13) 2014; 107
Shri, Singh, Kidwai, Gautam, Dubey, Verma, Chakrabarty (bib43) 2019; 11
Vadassery, Tripathi, Prasad, Varma, Oelmüller (bib48) 2009; 166
Hasanuzzaman, Fujita (bib15) 2013; 22
Ghorbani, Ghasemi Omran, Razavi, Pirdashti, Ranjbar (bib9) 2019; 38
Sabra, Aboulnasr, Franken, Perreca, Wright, Camehl (bib40) 2018; 9
Tsai, Shao, Chan, Cheng, Yeh, Oelmüller, Wang (bib47) 2020; 15
Pushnik, Miller, Manwaring (bib38) 1984; 7
Shahabivand, Parvaneh, Aliloob (bib41) 2017; 145
Cobbett (bib4) 2000; 123
Jung, Kong, Lee, Kim, Chae, Lee, Jung, Lee, Sung, Kim (bib22) 2019; 10
Lindsay, Maathuis (bib26) 2017; 22
Eisler (bib57) 2000; vol 3
Ghorbani, Razavi, Ghasemi Omran, Pirdashti (bib10) 2018; 20
Patel, Tiwari, Prasad (bib34) 2018; 157
Petrov, Hille, Mueller-Roeber, Gechev (bib35) 2015; 6
Inoue, Suzuki, Takahashi, Nakanishi, Mori, Nishizawa (bib18) 2004; 50
Zemanová, Popov, Pavlíková, Kotrba, Hnilička, Česká, Pavlík (bib61) 2020; 20
Nanda, Agrawal (bib31) 2016; 125
Li, Sun, Jiang, Chen, Zhang (bib23) 2018; 157
Tiwari, Sharma, Dwivedi, Singh, Tripathi, Trivedi (bib46) 2014; 37
Dutilleul, Driscoll, Cornic, De Paepe, Foyer, Noctor (bib6) 2003; 131
Poonam, Srivastava, Pathare, Suprasanna (bib36) 2017; 11
Upadhyay, Singh, Singh, Rai (bib62) 2016; 124
Ma, Yamaji, Mitani, Xu, Su, McGrath, Zhao (bib28) 2008; 105
Verma, Varma, Rexer, Hassel, Kost, Sarbhoy, Bisen, Bütehorn, Franken (bib51) 1998; 90
Rahman, Khalid, Kayani, Tang (bib60) 2020; 206
Li, Zhu, Wang, Zhang (bib24) 2020; 20
Huang, Dasgupta (bib58) 1999; 380
Pandey, Rai, Rai (bib33) 2015
Rahman, Mostofa, Alam, Nahar, Hasanuzzaman, Fujita (bib39) 2015; 2015
Finnegan (10.1016/j.ecoenv.2020.111793_bib7) 2012; 3
Singh (10.1016/j.ecoenv.2020.111793_bib44) 2015; 6
Poonam (10.1016/j.ecoenv.2020.111793_bib36) 2017; 11
Patel (10.1016/j.ecoenv.2020.111793_bib34) 2018; 157
Matschullat (10.1016/j.ecoenv.2020.111793_bib59) 2000; 15
Rahman (10.1016/j.ecoenv.2020.111793_bib60) 2020; 206
Ma (10.1016/j.ecoenv.2020.111793_bib28) 2008; 105
Huang (10.1016/j.ecoenv.2020.111793_bib58) 1999; 380
Gusman (10.1016/j.ecoenv.2020.111793_bib14) 2013; 35
Hasanuzzaman (10.1016/j.ecoenv.2020.111793_bib16) 2011; 5
Principato (10.1016/j.ecoenv.2020.111793_bib37) 1987; 911
Nanda (10.1016/j.ecoenv.2020.111793_bib31) 2016; 125
Sabra (10.1016/j.ecoenv.2020.111793_bib40) 2018; 9
Bertolazi (10.1016/j.ecoenv.2020.111793_bib3) 2019; 10
Ghorbani (10.1016/j.ecoenv.2020.111793_bib10) 2018; 20
Lichtenthaler (10.1016/j.ecoenv.2020.111793_bib25) 1987; 148
Mousavi (10.1016/j.ecoenv.2020.111793_bib30) 2020; 39
Petrov (10.1016/j.ecoenv.2020.111793_bib35) 2015; 6
Verma (10.1016/j.ecoenv.2020.111793_bib51) 1998; 90
Vadassery (10.1016/j.ecoenv.2020.111793_bib48) 2009; 166
Gill (10.1016/j.ecoenv.2020.111793_bib12) 2015; 94
Jain (10.1016/j.ecoenv.2020.111793_bib20) 2004; 161
Lindsay (10.1016/j.ecoenv.2020.111793_bib26) 2017; 22
Li (10.1016/j.ecoenv.2020.111793_bib24) 2020; 20
Pandey (10.1016/j.ecoenv.2020.111793_bib33) 2015
Li (10.1016/j.ecoenv.2020.111793_bib23) 2018; 157
Cobbett (10.1016/j.ecoenv.2020.111793_bib4) 2000; 123
Mohd (10.1016/j.ecoenv.2020.111793_bib29) 2017; 8
Yadav (10.1016/j.ecoenv.2020.111793_bib53) 2008; 23
Gupta (10.1016/j.ecoenv.2020.111793_bib13) 2014; 107
Tsai (10.1016/j.ecoenv.2020.111793_bib47) 2020; 15
Eisler (10.1016/j.ecoenv.2020.111793_bib57) 2000; vol 3
Pushnik (10.1016/j.ecoenv.2020.111793_bib38) 1984; 7
Rahman (10.1016/j.ecoenv.2020.111793_bib39) 2015; 2015
Dave (10.1016/j.ecoenv.2020.111793_bib5) 2013; 15
Ghorbani (10.1016/j.ecoenv.2020.111793_bib9) 2019; 38
Wild (10.1016/j.ecoenv.2020.111793_bib52) 2012; 403
Livak (10.1016/j.ecoenv.2020.111793_bib27) 2001; 25
Tiwari (10.1016/j.ecoenv.2020.111793_bib46) 2014; 37
Ghorbani (10.1016/j.ecoenv.2020.111793_bib11) 2018; 65
Shri (10.1016/j.ecoenv.2020.111793_bib43) 2019; 11
Hasanuzzaman (10.1016/j.ecoenv.2020.111793_bib15) 2013; 22
Jogawat (10.1016/j.ecoenv.2020.111793_bib21) 2016; 6
Sharma (10.1016/j.ecoenv.2020.111793_bib42) 2017; 8
Ghorbani (10.1016/j.ecoenv.2020.111793_bib8) 2009; 1
Ishimaru (10.1016/j.ecoenv.2020.111793_bib19) 2012; 2
Vahabi (10.1016/j.ecoenv.2020.111793_bib49) 2013; 8
Anjum (10.1016/j.ecoenv.2020.111793_bib2) 2017; 228
Stoeva (10.1016/j.ecoenv.2020.111793_bib45) 2004; 47
Zemanová (10.1016/j.ecoenv.2020.111793_bib61) 2020; 20
Heath (10.1016/j.ecoenv.2020.111793_bib17) 1968; 125
Verma (10.1016/j.ecoenv.2020.111793_bib50) 2020; 201
Martinez (10.1016/j.ecoenv.2020.111793_bib56) 2011; 2011
Alam (10.1016/j.ecoenv.2020.111793_bib1) 2019; 14
Dutilleul (10.1016/j.ecoenv.2020.111793_bib6) 2003; 131
Yamazaki (10.1016/j.ecoenv.2020.111793_bib54) 2018; 2
Zhao (10.1016/j.ecoenv.2020.111793_bib55) 2010; 61
Upadhyay (10.1016/j.ecoenv.2020.111793_bib62) 2016; 124
Inoue (10.1016/j.ecoenv.2020.111793_bib18) 2004; 50
Ogo (10.1016/j.ecoenv.2020.111793_bib32) 2011; 75
Jung (10.1016/j.ecoenv.2020.111793_bib22) 2019; 10
Shahabivand (10.1016/j.ecoenv.2020.111793_bib41) 2017; 145
References_xml – volume: 125
  start-page: 189
  year: 1968
  end-page: 198
  ident: bib17
  article-title: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation
  publication-title: Arch. Biochem. Biophys.
– volume: 65
  start-page: 898
  year: 2018
  end-page: 907
  ident: bib11
  article-title: alleviates salinity by boosting redox poise and antioxidative potential of tomato
  publication-title: Russ. J. Plant Physiol.
– volume: 8
  start-page: 906
  year: 2017
  ident: bib42
  article-title: Arbuscular mycorrhiza augments arsenic tolerance in wheat (
  publication-title: Front. Plant Sci.
– volume: 6
  start-page: 36765
  year: 2016
  ident: bib21
  article-title: PiHOG1, a stress regulator MAP kinase from the root endophyte fungus
  publication-title: Sci. Rep.
– volume: 15
  start-page: 181
  year: 2000
  end-page: 190
  ident: bib59
  article-title: Human and environmental contamination in the iron quadrangle, Brazil
  publication-title: Appl. Geochem.
– volume: 11
  start-page: 232
  year: 2017
  end-page: 237
  ident: bib36
  article-title: Physiological and molecular insights into rice-arbuscular mycorrhizal interactions under arsenic stress
  publication-title: Plant Gene
– volume: 7
  start-page: 733
  year: 1984
  end-page: 758
  ident: bib38
  article-title: The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis
  publication-title: J. Plant Nutr.
– volume: 1
  start-page: 50
  year: 2009
  end-page: 66
  ident: bib8
  article-title: The effect of cold stress on the morphologic and physiologic characters of tow rice varieties in seedling stage
  publication-title: J. Crop Breed.
– volume: 125
  start-page: 31
  year: 2016
  end-page: 41
  ident: bib31
  article-title: Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in
  publication-title: Environ. Exp. Bot.
– volume: 3
  start-page: 182
  year: 2012
  ident: bib7
  article-title: Arsenic toxicity: the effects on plant metabolism
  publication-title: Front. Physiol.
– volume: 2
  start-page: 286
  year: 2012
  ident: bib19
  article-title: Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport
  publication-title: Sci. Rep.
– volume: 8
  year: 2013
  ident: bib49
  article-title: Growth of Arabidopsis seedlings on high fungal doses of
  publication-title: Plant Signal. Behav.
– volume: 5
  start-page: 353
  year: 2011
  end-page: 365
  ident: bib16
  article-title: Nitric oxide modulates antioxidant defense and methylglyoxal detoxification system and reduces salinity induced damage in wheat seedling
  publication-title: Plant Biotechnol. Rep.
– volume: 6
  start-page: 69
  year: 2015
  ident: bib35
  article-title: ROS-mediated abiotic stress-induced programmed cell death in plants
  publication-title: Front. Plant Sci.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 13
  ident: bib56
  article-title: Arsenic exposure and the induction of human cancers
  publication-title: J. Toxicol.
– volume: 50
  start-page: 1133
  year: 2004
  end-page: 1140
  ident: bib18
  article-title: A rice FRD3-like (
  publication-title: Soil Sci. Plant Nutr.
– volume: 105
  start-page: 9931
  year: 2008
  end-page: 9935
  ident: bib28
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 47
  start-page: 449
  year: 2004
  end-page: 452
  ident: bib45
  article-title: Physiological response of maize to arsenic contamination
  publication-title: Biol. Plant.
– volume: 380
  start-page: 27
  year: 1999
  end-page: 37
  ident: bib58
  article-title: A field-deployable instrument for the measurement and speciation of arsenic in potable water
  publication-title: Anal. Chim. Acta
– volume: 206
  year: 2020
  ident: bib60
  article-title: The ameliorative effects of exogenous inoculation of
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 10
  start-page: 1089
  year: 2019
  ident: bib22
  article-title: Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate–glutathione homeostasis in rice seedlings
  publication-title: Front. Plant Sci.
– volume: 61
  start-page: 535
  year: 2010
  end-page: 559
  ident: bib55
  article-title: Arsenic as a food chain contaminant mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annu. Rev. Plant Biol.
– volume: 35
  start-page: 1201
  year: 2013
  end-page: 1209
  ident: bib14
  article-title: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants
  publication-title: Acta Physiol. Plant.
– volume: 15
  start-page: 1123
  year: 2013
  end-page: 1131
  ident: bib5
  article-title: Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (
  publication-title: J. Hazard Mater.
– volume: 403
  start-page: 2577
  year: 2012
  end-page: 2581
  ident: bib52
  article-title: A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-
  publication-title: Anal. Bioanal. Chem.
– volume: 11
  start-page: 519
  year: 2019
  end-page: 532
  ident: bib43
  article-title: Recent advances in arsenic metabolism in plants: current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice
  publication-title: Metallomics
– volume: 107
  start-page: 46
  year: 2014
  end-page: 54
  ident: bib13
  article-title: Arsenate induced differential response in rice genotypes
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 9
  start-page: 1726
  year: 2018
  ident: bib40
  article-title: Beneficial root endophytic fungi increase growth and quality parameters of sweet basil in heavy metal contaminated soil
  publication-title: Front. Plant Sci.
– volume: 166
  start-page: 1263
  year: 2009
  end-page: 1274
  ident: bib48
  article-title: Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between
  publication-title: J. Plant Physiol.
– volume: 15
  year: 2020
  ident: bib47
  article-title: symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems
  publication-title: Plant Signal. Behav.
– volume: 38
  start-page: 1151
  year: 2019
  end-page: 1163
  ident: bib9
  article-title: confers salinity tolerance on tomato (
  publication-title: Plant Cell. Rep.
– volume: 2
  year: 2018
  ident: bib54
  article-title: Rice phytochelatin synthases
  publication-title: Plant Direct
– volume: 911
  start-page: 349
  year: 1987
  end-page: 355
  ident: bib37
  article-title: Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats
  publication-title: Biochem. Biophys. Acta
– volume: 90
  start-page: 896
  year: 1998
  end-page: 903
  ident: bib51
  article-title: , gen. et sp. nov., a new root-colonizing fungus
  publication-title: Mycologia
– volume: 228
  start-page: 13
  year: 2017
  ident: bib2
  article-title: Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress
  publication-title: Water Air Soil Pollut.
– volume: 94
  start-page: 130
  year: 2015
  end-page: 143
  ident: bib12
  article-title: Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress
  publication-title: Plant Physiol. Biochem.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 12
  ident: bib39
  article-title: Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers
  publication-title: BioMed Res. Int.
– volume: 37
  start-page: 140
  year: 2014
  end-page: 152
  ident: bib46
  article-title: Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP,
  publication-title: Plant Cell Environ.
– volume: 25
  start-page: 402
  year: 2001
  end-page: 408
  ident: bib27
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2
  publication-title: Methods
– volume: 161
  start-page: 251
  year: 2004
  end-page: 255
  ident: bib20
  article-title: Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening
  publication-title: J. Plant Physiol.
– volume: 8
  start-page: 754
  year: 2017
  ident: bib29
  article-title: Endophytic fungi
  publication-title: Front. Microbiol.
– volume: vol 3
  start-page: 1501
  year: 2000
  end-page: 1566
  ident: bib57
  article-title: Arsenic
  publication-title: Handbook of Chemical Risk Assessment: Health Hazards to Humans, Plants, and Animals
– volume: 14
  year: 2019
  ident: bib1
  article-title: Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in
  publication-title: PLoS One
– volume: 23
  start-page: 51
  year: 2008
  end-page: 68
  ident: bib53
  article-title: An overview on the role of methylglyoxal and glyoxalases in plants
  publication-title: Drug Metabol. Drug Interact.
– volume: 124
  start-page: 68
  year: 2016
  end-page: 73
  ident: bib62
  article-title: Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 39
  start-page: 1041
  year: 2020
  end-page: 1060
  ident: bib30
  article-title: Methyl jasmonate alleviates arsenic toxicity in rice
  publication-title: Plant Cell. Rep.
– volume: 201
  year: 2020
  ident: bib50
  article-title: Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 20
  start-page: 130
  year: 2020
  ident: bib61
  article-title: Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator
  publication-title: BMC Plant Biol.
– volume: 20
  start-page: 20
  year: 2020
  ident: bib24
  article-title: Phytoremediation effect of
  publication-title: BMC Biotechnol.
– volume: 145
  start-page: 496
  year: 2017
  end-page: 502
  ident: bib41
  article-title: Root endophytic fungus
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 10
  start-page: 1087
  year: 2019
  ident: bib3
  article-title: Inoculation with
  publication-title: Front. Microbiol.
– start-page: 627
  year: 2015
  end-page: 674
  ident: bib33
  article-title: Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants.
  publication-title: Handbook of Arsenic Toxicology
– volume: 22
  start-page: 584
  year: 2013
  end-page: 596
  ident: bib15
  article-title: Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (
  publication-title: Ecotoxicology
– volume: 6
  start-page: 340
  year: 2015
  ident: bib44
  article-title: Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (
  publication-title: Front. Plant Sci.
– volume: 22
  start-page: 1016
  year: 2017
  end-page: 1026
  ident: bib26
  article-title: New molecular mechanisms to reduce arsenic in crops
  publication-title: Trends Plant Sci.
– volume: 75
  start-page: 593
  year: 2011
  end-page: 605
  ident: bib32
  article-title: is responsible for iron utilization in rice and improves growth and yield in calcareous soil
  publication-title: Plant Mol. Biol.
– volume: 131
  start-page: 264
  year: 2003
  end-page: 275
  ident: bib6
  article-title: Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients
  publication-title: Plant Physiol.
– volume: 123
  start-page: 825
  year: 2000
  end-page: 832
  ident: bib4
  article-title: Phytochelatins and their roles in heavy metal detoxification
  publication-title: Plant Physiol.
– volume: 157
  start-page: 369
  year: 2018
  end-page: 379
  ident: bib34
  article-title: Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 157
  start-page: 235
  year: 2018
  end-page: 243
  ident: bib23
  article-title: Arbuscular mycorrhizal fungi alleviate arsenic toxicity to
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 148
  start-page: 350
  year: 1987
  end-page: 382
  ident: bib25
  article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes
  publication-title: Method. Enzymol.
– volume: 20
  start-page: 729
  year: 2018
  end-page: 736
  ident: bib10
  article-title: inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (
  publication-title: Plant Biol.
– volume: 6
  start-page: 340
  year: 2015
  ident: 10.1016/j.ecoenv.2020.111793_bib44
  article-title: Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00340
– volume: 20
  start-page: 130
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111793_bib61
  article-title: Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica (L.) var. Albo-lineata
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-2325-6
– volume: 6
  start-page: 69
  year: 2015
  ident: 10.1016/j.ecoenv.2020.111793_bib35
  article-title: ROS-mediated abiotic stress-induced programmed cell death in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00069
– volume: 166
  start-page: 1263
  year: 2009
  ident: 10.1016/j.ecoenv.2020.111793_bib48
  article-title: Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2008.12.016
– volume: 131
  start-page: 264
  year: 2003
  ident: 10.1016/j.ecoenv.2020.111793_bib6
  article-title: Functional mitochondrial complex I is required by tobacco leaves for optimal photosynthetic performance in photorespiratory conditions and during transients
  publication-title: Plant Physiol.
  doi: 10.1104/pp.011155
– volume: 201
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111793_bib50
  article-title: Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.)
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110735
– volume: 124
  start-page: 68
  year: 2016
  ident: 10.1016/j.ecoenv.2020.111793_bib62
  article-title: Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.10.002
– volume: 9
  start-page: 1726
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111793_bib40
  article-title: Beneficial root endophytic fungi increase growth and quality parameters of sweet basil in heavy metal contaminated soil
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01726
– volume: 125
  start-page: 31
  year: 2016
  ident: 10.1016/j.ecoenv.2020.111793_bib31
  article-title: Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.02.001
– volume: 107
  start-page: 46
  year: 2014
  ident: 10.1016/j.ecoenv.2020.111793_bib13
  article-title: Arsenate induced differential response in rice genotypes
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2014.04.030
– volume: vol 3
  start-page: 1501
  year: 2000
  ident: 10.1016/j.ecoenv.2020.111793_bib57
  article-title: Arsenic
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.ecoenv.2020.111793_bib39
  article-title: Calcium mitigates arsenic toxicity in rice seedlings by reducing arsenic uptake and modulating the antioxidant defense and glyoxalase systems and stress markers
  publication-title: BioMed Res. Int.
– volume: 8
  start-page: 906
  year: 2017
  ident: 10.1016/j.ecoenv.2020.111793_bib42
  article-title: Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00906
– volume: 161
  start-page: 251
  year: 2004
  ident: 10.1016/j.ecoenv.2020.111793_bib20
  article-title: Inhibition of 5-amino levulinic acid dehydratase activity by arsenic in excised etiolated maize leaf segments during greening
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-00879
– volume: 125
  start-page: 189
  year: 1968
  ident: 10.1016/j.ecoenv.2020.111793_bib17
  article-title: Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90654-1
– volume: 6
  start-page: 36765
  year: 2016
  ident: 10.1016/j.ecoenv.2020.111793_bib21
  article-title: PiHOG1, a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica, confers salinity stress tolerance in rice plants
  publication-title: Sci. Rep.
  doi: 10.1038/srep36765
– volume: 7
  start-page: 733
  year: 1984
  ident: 10.1016/j.ecoenv.2020.111793_bib38
  article-title: The role of iron in higher plant chlorophyll biosynthesis, maintenance and chloroplast biogenesis
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904168409363238
– volume: 35
  start-page: 1201
  year: 2013
  ident: 10.1016/j.ecoenv.2020.111793_bib14
  article-title: Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-012-1159-8
– volume: 75
  start-page: 593
  year: 2011
  ident: 10.1016/j.ecoenv.2020.111793_bib32
  article-title: OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9752-6
– volume: 380
  start-page: 27
  year: 1999
  ident: 10.1016/j.ecoenv.2020.111793_bib58
  article-title: A field-deployable instrument for the measurement and speciation of arsenic in potable water
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(98)00649-7
– volume: 65
  start-page: 898
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111793_bib11
  article-title: Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443718060079
– volume: 228
  start-page: 13
  year: 2017
  ident: 10.1016/j.ecoenv.2020.111793_bib2
  article-title: Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-016-3187-2
– volume: 911
  start-page: 349
  year: 1987
  ident: 10.1016/j.ecoenv.2020.111793_bib37
  article-title: Purification and characterization of two forms of glyoxalase II from rat liver and brain of Wistar rats
  publication-title: Biochem. Biophys. Acta
– volume: 38
  start-page: 1151
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111793_bib9
  article-title: Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status
  publication-title: Plant Cell. Rep.
  doi: 10.1007/s00299-019-02434-w
– volume: 25
  start-page: 402
  year: 2001
  ident: 10.1016/j.ecoenv.2020.111793_bib27
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 23
  start-page: 51
  year: 2008
  ident: 10.1016/j.ecoenv.2020.111793_bib53
  article-title: An overview on the role of methylglyoxal and glyoxalases in plants
  publication-title: Drug Metabol. Drug Interact.
  doi: 10.1515/DMDI.2008.23.1-2.51
– volume: 10
  start-page: 1089
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111793_bib22
  article-title: Exogenous glutathione increases arsenic translocation into shoots and alleviates arsenic-induced oxidative stress by sustaining ascorbate–glutathione homeostasis in rice seedlings
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01089
– volume: 37
  start-page: 140
  year: 2014
  ident: 10.1016/j.ecoenv.2020.111793_bib46
  article-title: Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12138
– volume: 11
  start-page: 519
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111793_bib43
  article-title: Recent advances in arsenic metabolism in plants: current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice
  publication-title: Metallomics
  doi: 10.1039/C8MT00320C
– volume: 105
  start-page: 9931
  year: 2008
  ident: 10.1016/j.ecoenv.2020.111793_bib28
  article-title: Transporters of arsenite in rice and their role in arsenic accumulation in rice grain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0802361105
– volume: 145
  start-page: 496
  year: 2017
  ident: 10.1016/j.ecoenv.2020.111793_bib41
  article-title: Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.07.064
– volume: 22
  start-page: 584
  year: 2013
  ident: 10.1016/j.ecoenv.2020.111793_bib15
  article-title: Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-013-1050-4
– volume: 2
  start-page: 286
  year: 2012
  ident: 10.1016/j.ecoenv.2020.111793_bib19
  article-title: Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport
  publication-title: Sci. Rep.
  doi: 10.1038/srep00286
– volume: 2
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111793_bib54
  article-title: Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance
  publication-title: Plant Direct
  doi: 10.1002/pld3.34
– volume: 39
  start-page: 1041
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111793_bib30
  article-title: Methyl jasmonate alleviates arsenic toxicity in rice
  publication-title: Plant Cell. Rep.
  doi: 10.1007/s00299-020-02547-7
– volume: 206
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111793_bib60
  article-title: The ameliorative effects of exogenous inoculation of Piriformospora indica on molecular, biochemical and physiological parameters of Artemisia annua L. under arsenic stress condition
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111202
– volume: 15
  start-page: 1123
  year: 2013
  ident: 10.1016/j.ecoenv.2020.111793_bib5
  article-title: Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice (Oryzasativa L.) genotypes
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2012.06.049
– volume: 148
  start-page: 350
  year: 1987
  ident: 10.1016/j.ecoenv.2020.111793_bib25
  article-title: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes
  publication-title: Method. Enzymol.
  doi: 10.1016/0076-6879(87)48036-1
– volume: 2011
  start-page: 1
  year: 2011
  ident: 10.1016/j.ecoenv.2020.111793_bib56
  article-title: Arsenic exposure and the induction of human cancers
  publication-title: J. Toxicol.
  doi: 10.1155/2011/431287
– volume: 1
  start-page: 50
  year: 2009
  ident: 10.1016/j.ecoenv.2020.111793_bib8
  article-title: The effect of cold stress on the morphologic and physiologic characters of tow rice varieties in seedling stage
  publication-title: J. Crop Breed.
– volume: 20
  start-page: 729
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111793_bib10
  article-title: Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.)
  publication-title: Plant Biol.
  doi: 10.1111/plb.12717
– volume: 90
  start-page: 896
  year: 1998
  ident: 10.1016/j.ecoenv.2020.111793_bib51
  article-title: Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus
  publication-title: Mycologia
  doi: 10.1080/00275514.1998.12026983
– start-page: 627
  year: 2015
  ident: 10.1016/j.ecoenv.2020.111793_bib33
  article-title: Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants.
– volume: 10
  start-page: 1087
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111793_bib3
  article-title: Inoculation with Piriformospora indica is more efficient in wild-type rice than in transgenic rice over-expressing the vacuolar H+-PPase
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.01087
– volume: 94
  start-page: 130
  year: 2015
  ident: 10.1016/j.ecoenv.2020.111793_bib12
  article-title: Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.06.001
– volume: 11
  start-page: 232
  year: 2017
  ident: 10.1016/j.ecoenv.2020.111793_bib36
  article-title: Physiological and molecular insights into rice-arbuscular mycorrhizal interactions under arsenic stress
  publication-title: Plant Gene
  doi: 10.1016/j.plgene.2017.03.004
– volume: 47
  start-page: 449
  year: 2004
  ident: 10.1016/j.ecoenv.2020.111793_bib45
  article-title: Physiological response of maize to arsenic contamination
  publication-title: Biol. Plant.
– volume: 157
  start-page: 369
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111793_bib34
  article-title: Toxicity assessment of arsenate and arsenite on growth, chlorophyll a fluorescence and antioxidant machinery in Nostoc muscorum
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.03.056
– volume: 20
  start-page: 20
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111793_bib24
  article-title: Phytoremediation effect of Medicago sativa colonized by Piriformospora indica in the phenanthrene and cadmium co-contaminated soil
  publication-title: BMC Biotechnol.
  doi: 10.1186/s12896-020-00613-2
– volume: 61
  start-page: 535
  year: 2010
  ident: 10.1016/j.ecoenv.2020.111793_bib55
  article-title: Arsenic as a food chain contaminant mechanisms of plant uptake and metabolism and mitigation strategies
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112152
– volume: 14
  year: 2019
  ident: 10.1016/j.ecoenv.2020.111793_bib1
  article-title: Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in Lens culinaris
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0211441
– volume: 50
  start-page: 1133
  year: 2004
  ident: 10.1016/j.ecoenv.2020.111793_bib18
  article-title: A rice FRD3-like (OsFRDL1) gene is expressed in the cells involved in long-distance transport
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2004.10408586
– volume: 403
  start-page: 2577
  year: 2012
  ident: 10.1016/j.ecoenv.2020.111793_bib52
  article-title: A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: the N-acetyl-L-cysteine assay
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-6086-4
– volume: 15
  issue: 2
  year: 2020
  ident: 10.1016/j.ecoenv.2020.111793_bib47
  article-title: Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2020.1722447
– volume: 22
  start-page: 1016
  year: 2017
  ident: 10.1016/j.ecoenv.2020.111793_bib26
  article-title: New molecular mechanisms to reduce arsenic in crops
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.09.015
– volume: 5
  start-page: 353
  year: 2011
  ident: 10.1016/j.ecoenv.2020.111793_bib16
  article-title: Nitric oxide modulates antioxidant defense and methylglyoxal detoxification system and reduces salinity induced damage in wheat seedling
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-011-0189-9
– volume: 15
  start-page: 181
  year: 2000
  ident: 10.1016/j.ecoenv.2020.111793_bib59
  article-title: Human and environmental contamination in the iron quadrangle, Brazil
  publication-title: Appl. Geochem.
  doi: 10.1016/S0883-2927(99)00039-6
– volume: 157
  start-page: 235
  year: 2018
  ident: 10.1016/j.ecoenv.2020.111793_bib23
  article-title: Arbuscular mycorrhizal fungi alleviate arsenic toxicity to Medicago sativa by influencing arsenic speciation and partitioning
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.03.073
– volume: 8
  start-page: 754
  year: 2017
  ident: 10.1016/j.ecoenv.2020.111793_bib29
  article-title: Endophytic fungi Piriformospora indica mediated protection of host from arsenic toxicity
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00754
– volume: 8
  year: 2013
  ident: 10.1016/j.ecoenv.2020.111793_bib49
  article-title: Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid isoleucine levels in the roots
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.26301
– volume: 123
  start-page: 825
  year: 2000
  ident: 10.1016/j.ecoenv.2020.111793_bib4
  article-title: Phytochelatins and their roles in heavy metal detoxification
  publication-title: Plant Physiol.
  doi: 10.1104/pp.123.3.825
– volume: 3
  start-page: 182
  year: 2012
  ident: 10.1016/j.ecoenv.2020.111793_bib7
  article-title: Arsenic toxicity: the effects on plant metabolism
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2012.00182
SSID ssj0003055
Score 2.5827591
Snippet Arsenic (As) toxicity can be a hazardous threat to sustainable agriculture and human health. Piriformospora indica (P. indica), as a beneficial endophytic...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111793
SubjectTerms Adaptation, Physiological - physiology
Arsenic
Arsenic - metabolism
Arsenic - toxicity
Arsenic transporters
Basidiomycota - metabolism
Basidiomycota - physiology
Chlorophyll - metabolism
Fe transporters
Glyoxalase pathway
Humans
Iron - metabolism
Malondialdehyde - metabolism
Oryza - metabolism
Oryza - microbiology
Oryza - physiology
Photosynthesis
Phytochelatins
Piriformospora indica
Plant Roots - metabolism
Plant Roots - microbiology
Soil Pollutants - metabolism
Soil Pollutants - toxicity
Symbiosis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlECiU0qZf2zZFhR7ag6htybL2mISEUOjHoYHchEaS2y2JXTbewOZv9A9nRrKX5lD20qsZW8Iz0rxnzzwx9q4ItVaulaJSwQjVqlJA67WAAFKW4GWM1OD8-Ys-PVOfzuvzv476opqwLA-cX9zHeSgKcBRrJFkJxoTCq9DGKiDSKuqkXoo5byJT4x5MOla5eLERui7l1DSXKruQ18XuGrlhlXaMZi7vJKWk3X8nN_0Le6YcdPKIPRzBIz_Ik37M7sVuj-0eJ-Hp9R57kL_B8dxa9IT9-bZYUuPVZU_c1XH6Pe0dd6sfqa-NI6eNHdoP_UWk8zUiWnASGeLvvy7XN45Tpc-1-8BhzRcYr1RHe4OpbnMjmfc9PakLaDF-nuDUOccHSoKUKcnzOAS_-kmmT9nZyfH3o1MxHsIgvGrUIKDyunZOG6diHXWpW7zekEh87TzySYA2tLjUAhjt58jmdDCSUE7wClpw8hnb6fouvmBcO-OhTKSpUKU3BmoIqo4ODBTR-BmTkxesHxXK6aCMCzuVov2y2XeWfGez72ZMbO76nRU6ttgfkoM3tqSvnS5g1Nkx6uy2qJuxZgoPO0KVDEHwUYstw7-dosniSqbfM66L_erKVqpBSIF8vpyx5znMNpOUUmpEgs3L_zH5V-x-RZU5qfb8NdsZlqu4j9BqgDdpFd0CZN0h7g
  priority: 102
  providerName: Directory of Open Access Journals
Title Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots
URI https://dx.doi.org/10.1016/j.ecoenv.2020.111793
https://www.ncbi.nlm.nih.gov/pubmed/33360287
https://www.proquest.com/docview/2473414021
https://doaj.org/article/9d00ba00406148b88d0c4dfe2d81d055
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiQkhKC8lsfKSBzgEDaJHcd7LFWrBUThQKXeLI_tlKCSVNtspe2BP8EfZsZJFu0BVeJqTeIo83ke9jdjxl6nvlDSViLJpdeJrGSWQOVUAh6EyMCJEKjA-fOxWpzIj6fF6Q47GGthiFY52P7epkdrPYzMhr85u6jrGdGSSlVQCbDIVD6ngl-JI4jpd7_-0jyoo1VPYywTkh7L5yLHCzO80FxhlphH21HOxZZ7il38t7zUv6LQ6I2O7rN7QxjJ9_svfcB2QrPHbh_GFtTrPXa3343jfZHRQ_b7a72kEqyfLWWxltNBtbPcrs5ihRvH7DY0KN-154Fu2ggowandEH_zZbm-tpw4P1f2LYc1rxG5xKi9Rqe3eZDE25be1HiUGDYqONXQ8Y7cIflMwgBOwS-_k-gjdnJ0-O1gkQzXMSROlrJLIHeqsFZpK0MRVKYqHC-pXXxhHWaWAJWvcNF50MrNMa9TXguKd7yTUIEVj9lu0zbhKePKagdZTJ9SmTmtoQAvi2BBQxq0mzAxasG4oVc5XZlxbkZS2g_T686Q7kyvuwlLNk9d9L06bpB_TwreyFKn7TjQLs_MADUz92kKlmwdtUwFrX3qpK9C7jHSR2xNWDnCw2wBF19V3zD9qxFNBtc0HdTYJrSrS5PLEoMLzOyzCXvSw2zzkUIIhTFh-ey_533O7uREzInU8xdst1uuwkuMrDqYxqUzZbf2P3xaHE_j_sQffrkl6Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaWFUtr0tX2q0EN7MGtbsqw9piFh0yTbHhLITejl1CW1w2Y3sPkb_cOd8Qv2UAK9ipFlPKN5WN98AvgU-0wKU_AoFV5FohBJZAsnI-st54l1PARqcD6Zy9mZ-HaenW_BXt8LQ7DKzve3Pr3x1t3IpPuak6uynBAsKZcZtQDzRKZTdQ-2iZ0qG8H27uHRbD44ZCK1apGMeUQT-g66BuaFRV6obrBQTBv3kU_5RoRqiPw3AtW_EtEmIB08gcddJsl225d9Cluh2oH7-w0L9XoHHrU_5FjbZ_QM_vwoF9SF9bumQtYwOqt2hpnVRdPkxrDADRXKL-vLQJdtBJRgxDjEPn9frG8NI9jPjfnC7JqVaLwEqr3FuDdMJPG6pidVHiW6fxWM2ujYkiIihU0yA1yCXf8k0edwdrB_ujeLuhsZIidysYxs6mRmjFRGhCzIRBY4nhNjfGYcFpfWFr7Afeetkm6KpZ30ilPK452whTX8BYyqugqvgEmjnE2aCioWiVPKZtaLLBirbByUGwPvtaBdR1dOt2Zc6h6X9ku3utOkO93qbgzRMOuqpeu4Q_4rKXiQJbLtZqBeXOjO2vTUx7E15O6INdUq5WMnfBFSj8k-2tYY8t489Ibt4qPKO5b_2FuTxm1NZzWmCvXqWqcix_wCi_tkDC9bMxteknMuMS3MX__3uh_gwez05FgfH86P3sDDlHA6DRL9LYyWi1V4h4nW0r7vNtJfj2UnpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piriformospora+indica+augments+arsenic+tolerance+in+rice+%28Oryza+sativa%29+by+immobilizing+arsenic+in+roots+and+improving+iron+translocation+to+shoots&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Ghorbani%2C+Abazar&rft.au=Tafteh%2C+Mahdi&rft.au=Roudbari%2C+Nasim&rft.au=Pishkar%2C+Leila&rft.date=2021-02-01&rft.issn=0147-6513&rft.volume=209&rft.spage=111793&rft_id=info:doi/10.1016%2Fj.ecoenv.2020.111793&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoenv_2020_111793
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon