Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse Unmixing of Hyperspectral Images

The low spatial resolution of hyperspectral images leads to the coexistence of multiple ground objects in a single pixel (called mixed pixels). A large number of mixed pixels in a hyperspectral image hinders the subsequent analysis and application of the image. In order to solve this problem, a nove...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 13; pp. 1174 - 1188
Main Authors Sun, Le, Wu, Feiyang, Zhan, Tianming, Liu, Wei, Wang, Jin, Jeon, Byeungwoo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The low spatial resolution of hyperspectral images leads to the coexistence of multiple ground objects in a single pixel (called mixed pixels). A large number of mixed pixels in a hyperspectral image hinders the subsequent analysis and application of the image. In order to solve this problem, a novel sparse unmixing method, which considers highly similar patches in nonlocal regions of a hyperspectral image, is proposed in this article. This method exploits spectral correlation by using collaborative sparsity regularization and spatial information by employing total variation and weighted nonlocal low-rank tensor regularization. To effectively utilize the tensor decomposition, nonlocal similar patches are first grouped together. Then, these nonlocal patches are stacked to form a patch group tensor. Finally, weighted low-rank tensor regularization is enforced to constrain the patch group to obtain an estimated low-rank abundance image. Experiments on simulated and real hyperspectral datasets validated the superiority of the proposed method in better maintaining fine details and obtaining better unmixing results.
AbstractList The low spatial resolution of hyperspectral images leads to the coexistence of multiple ground objects in a single pixel (called mixed pixels). A large number of mixed pixels in a hyperspectral image hinders the subsequent analysis and application of the image. In order to solve this problem, a novel sparse unmixing method, which considers highly similar patches in nonlocal regions of a hyperspectral image, is proposed in this article. This method exploits spectral correlation by using collaborative sparsity regularization and spatial information by employing total variation and weighted nonlocal low-rank tensor regularization. To effectively utilize the tensor decomposition, nonlocal similar patches are first grouped together. Then, these nonlocal patches are stacked to form a patch group tensor. Finally, weighted low-rank tensor regularization is enforced to constrain the patch group to obtain an estimated low-rank abundance image. Experiments on simulated and real hyperspectral datasets validated the superiority of the proposed method in better maintaining fine details and obtaining better unmixing results.
Author Wang, Jin
Zhan, Tianming
Liu, Wei
Jeon, Byeungwoo
Wu, Feiyang
Sun, Le
Author_xml – sequence: 1
  givenname: Le
  orcidid: 0000-0001-6465-8678
  surname: Sun
  fullname: Sun, Le
  email: sunlecncom@nuist.edu.cn
  organization: School of Computer and Software, Nanjing University of Information Science and Technology (NUIST), Nanjing, China
– sequence: 2
  givenname: Feiyang
  surname: Wu
  fullname: Wu, Feiyang
  email: feiyangwu@nuist.edu.cn
  organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 3
  givenname: Tianming
  orcidid: 0000-0001-5030-3032
  surname: Zhan
  fullname: Zhan, Tianming
  email: ztm@nau.edu.cn
  organization: School of Information Engineering, Nanjing Audit University, Nanjing, China
– sequence: 4
  givenname: Wei
  orcidid: 0000-0001-8503-4063
  surname: Liu
  fullname: Liu, Wei
  email: weiliu@yzu.edu.cn
  organization: School of Information and Engineering, Yangzhou University, Yangzhou, China
– sequence: 5
  givenname: Jin
  orcidid: 0000-0001-5473-8738
  surname: Wang
  fullname: Wang, Jin
  email: jinwang@csust.edu.cn
  organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China
– sequence: 6
  givenname: Byeungwoo
  orcidid: 0000-0002-5650-2881
  surname: Jeon
  fullname: Jeon, Byeungwoo
  email: bjeon@skku.edu
  organization: School of Electric and Electronic Engineering, Sungkyunkwan University, Seoul, South Korea
BookMark eNqFkU9v1DAQxS1UJLaFT9BLJM5Z_DeOj1WBdqstSN2tOFqOM956ydrBTgX99nibqgcunEby-PfezLxTdBJiAITOCV4SgtWnm8324m6zpJjiJVUtFrJ5gxaUCFITwcQJWhDFVE045u_Qac57jBsqFVug7gf43cMEffUthiFaM1Tr-Lu-M-FntYWQY6o-g42HMWY_-RiqW5geYl-50tiMJmWo7sPB__FhV0VXXT-NkPIIdkpFaXUwO8jv0VtnhgwfXuoZuv_6ZXt5Xa-_X60uL9a15ZJPdVemtk2rZO_6VjR97xTBjgpiHeO0FY6zFmhjGtNTyiXj0lFpe5BN1xJZ9jtDq1m3j2avx-QPJj3paLx-fohpp02avB1AUwZc8E5xhTHHkilFTdd2jhHFmcC8aH2ctcYUfz1CnvQ-PqZQxi9sq1hD6bMjm3_ZFHNO4F5dCdbHYPQcjD4Go1-CKZT6h7J-MsfjlqP54T_s-cx6AHh1U5gJphj7C8ZOnMg
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1080_01431161_2023_2295836
crossref_primary_10_1109_JSTARS_2020_3020541
crossref_primary_10_1016_j_cam_2022_114843
crossref_primary_10_1109_JSTARS_2025_3546630
crossref_primary_10_1109_TGRS_2023_3243831
crossref_primary_10_1080_00051144_2020_1821535
crossref_primary_10_1016_j_knosys_2024_112712
crossref_primary_10_1109_LGRS_2020_3019427
crossref_primary_10_3390_rs16224202
crossref_primary_10_1109_JSTARS_2021_3108049
crossref_primary_10_1007_s11042_020_10218_8
crossref_primary_10_1016_j_sigpro_2020_107738
crossref_primary_10_1109_JSTARS_2024_3392497
crossref_primary_10_1038_s41598_024_68382_y
crossref_primary_10_1109_TGRS_2021_3069845
crossref_primary_10_1109_JSEN_2023_3340150
crossref_primary_10_3390_rs13061101
crossref_primary_10_1016_j_sigpro_2021_108060
crossref_primary_10_1109_LGRS_2021_3127075
crossref_primary_10_1109_JSTARS_2020_3011992
crossref_primary_10_1109_JSTARS_2020_3039844
crossref_primary_10_1007_s11042_020_10187_y
crossref_primary_10_1109_TGRS_2020_3030233
crossref_primary_10_3390_rs12213541
crossref_primary_10_1109_JSTARS_2020_3002885
crossref_primary_10_1109_JSTARS_2020_3008949
crossref_primary_10_3390_rs13081473
crossref_primary_10_1109_TCYB_2021_3069790
crossref_primary_10_1109_TGRS_2022_3183096
crossref_primary_10_1109_JSTARS_2020_3021520
crossref_primary_10_1109_TGRS_2024_3393570
crossref_primary_10_1109_TGRS_2025_3534790
crossref_primary_10_1007_s11042_022_13275_3
crossref_primary_10_1109_TGRS_2022_3168932
crossref_primary_10_1155_2021_9374908
crossref_primary_10_1007_s10489_022_04018_w
crossref_primary_10_3390_rs14194866
crossref_primary_10_1007_s11042_020_10426_2
crossref_primary_10_1007_s11042_021_10672_y
crossref_primary_10_3390_computers10060078
crossref_primary_10_1109_JSTARS_2021_3086631
crossref_primary_10_1109_TGRS_2022_3207933
crossref_primary_10_1088_1742_6596_1624_5_052017
crossref_primary_10_1080_01431161_2021_1933245
crossref_primary_10_1080_13658816_2022_2092116
crossref_primary_10_1007_s10851_024_01208_8
crossref_primary_10_1109_TGRS_2022_3144158
crossref_primary_10_1109_JSTARS_2021_3064243
crossref_primary_10_3390_rs14020383
crossref_primary_10_1109_TGRS_2023_3314616
crossref_primary_10_3390_rs13163196
crossref_primary_10_1080_01431161_2021_1996653
crossref_primary_10_1007_s12652_020_02778_2
crossref_primary_10_1109_TGRS_2021_3054008
crossref_primary_10_1007_s10489_020_01971_2
crossref_primary_10_3390_rs15184592
crossref_primary_10_1007_s11042_021_10774_7
crossref_primary_10_1109_JSTARS_2021_3054926
crossref_primary_10_1109_TIP_2023_3245323
crossref_primary_10_1080_01431161_2024_2398820
crossref_primary_10_1038_s41598_024_70395_6
crossref_primary_10_1016_j_jfranklin_2023_08_027
crossref_primary_10_3390_rs16183412
crossref_primary_10_1109_TGRS_2021_3095488
crossref_primary_10_1364_OE_507960
crossref_primary_10_1109_LGRS_2023_3256481
crossref_primary_10_1109_TGRS_2022_3208165
crossref_primary_10_3390_rs12182979
crossref_primary_10_1007_s11042_021_11223_1
crossref_primary_10_1109_JSTARS_2021_3115172
crossref_primary_10_1109_TGRS_2023_3235819
crossref_primary_10_1109_JSEN_2024_3373477
crossref_primary_10_1016_j_xplc_2022_100344
crossref_primary_10_1109_JSTARS_2020_3014492
Cites_doi 10.1007/s11042-016-3599-4
10.1007/s12555-015-0258-x
10.1016/j.jvcir.2019.01.029
10.1109/TIP.2019.2893530
10.1109/TGRS.2017.2747624
10.1007/s11554-014-0479-x
10.1109/LGRS.2014.2367028
10.1109/LGRS.2017.2710219
10.1016/j.acha.2012.07.010
10.1016/j.infrared.2014.08.004
10.1016/j.patcog.2011.08.022
10.1016/j.isprsjprs.2018.10.006
10.1109/JSTARS.2017.2651063
10.1137/07070111X
10.1016/j.ins.2019.02.008
10.1080/01431161.2018.1492175
10.1109/MGRS.2013.2244672
10.1109/TGRS.2010.2098413
10.3133/ds231
10.1007/s10586-018-2368-8
10.1109/TSP.2019.2922157
10.1109/TCSVT.2019.2946723
10.1109/TGRS.2011.2160950
10.1109/JSTARS.2015.2441699
10.1109/TSP.2009.2016892
10.1109/TSP.2009.2025797
10.1109/TGRS.2018.2890705
10.1007/s11042-015-2965-y
10.1109/CSNT.2015.147
10.1109/LGRS.2018.2856406
10.3390/rs9121224
10.1109/JSTARS.2019.2915842
10.1109/JSTARS.2013.2280063
10.32604/cmc.2020.06130
10.1109/TGRS.2014.2328336
10.1109/TNNLS.2019.2957527
10.1109/JSTARS.2017.2755639
10.1109/TGRS.2017.2761912
10.1007/s10586-018-1772-4
10.1109/TIP.2007.901238
10.1109/JSTARS.2019.2915588
10.1109/TNNLS.2013.2249088
10.2991/ijcis.d.191209.001
10.1007/s11227-018-2297-6
10.3390/rs10121956
10.1016/j.jvcir.2017.07.006
10.1016/j.knosys.2018.12.021
10.1109/TGRS.2013.2240001
10.1109/TGRS.2013.2281981
10.1109/TIP.2018.2878958
10.3390/rs10020339
10.1109/JSTARS.2016.2542193
10.1080/01431161.2013.804225
10.1109/CVPR.2017.625
10.1109/JSTARS.2014.2320576
10.1137/050626090
10.3233/JIFS-169958
10.3390/rs10040509
10.1109/TGRS.2018.2866439
10.3390/rs11242897
10.1109/TGRS.2016.2633279
10.1007/s11063-018-9892-7
10.1109/TGRS.2017.2693366
10.1109/JSTARS.2017.2771482
10.1109/LGRS.2016.2527782
10.1016/j.neucom.2014.06.052
10.1109/LGRS.2016.2584660
10.1109/TGRS.2016.2582824
10.1109/TGRS.2017.2724944
10.1109/TGRS.2017.2786718
10.1109/JSTSP.2018.2877497
10.32604/cmc.2019.04378
10.1007/BF01581204
10.1109/TGRS.2012.2191590
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2020.2980576
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1188
ExternalDocumentID oai_doaj_org_article_23e454b949004073992ab8bf31943504
10_1109_JSTARS_2020_2980576
9035393
Genre orig-research
GrantInformation_xml – fundername: Engineering Research Center of Digital Forensics, Ministry of Education
– fundername: PAPD fund
– fundername: National Natural Science Foundation of China; Natural Science Foundation of China
  grantid: 61971233; 61672291; 61972206; 61672293
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c474t-b057c6897dfd856ddf910f251cf34285f438e26a6ad2247347f27cde76b817193
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:30:35 EDT 2025
Fri Jul 25 10:47:28 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Tue Jul 01 03:16:13 EDT 2025
Wed Aug 27 02:50:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-b057c6897dfd856ddf910f251cf34285f438e26a6ad2247347f27cde76b817193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5650-2881
0000-0001-6465-8678
0000-0001-8503-4063
0000-0001-5473-8738
0000-0001-5030-3032
OpenAccessLink https://doaj.org/article/23e454b949004073992ab8bf31943504
PQID 2389362219
PQPubID 75722
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_23e454b949004073992ab8bf31943504
proquest_journals_2389362219
crossref_citationtrail_10_1109_JSTARS_2020_2980576
ieee_primary_9035393
crossref_primary_10_1109_JSTARS_2020_2980576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200000
2020-00-00
20200101
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 20200000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
meng (ref24) 2018; 55
ref58
ref14
ref53
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
gu (ref9) 2005; 14
ref51
ref50
qu (ref68) 2014; 52
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref4
ref3
ref6
ref5
ref40
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
wang (ref26) 2019; 12
ref2
ref1
ref39
ref38
yuan (ref8) 2018; 37
ref71
ref70
ref73
ref72
ref67
ref23
ref69
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
tu (ref25) 2018; 55
ref60
ref62
ref61
xu (ref7) 2016; 35
References_xml – ident: ref34
  doi: 10.1007/s11042-016-3599-4
– ident: ref16
  doi: 10.1007/s12555-015-0258-x
– ident: ref29
  doi: 10.1016/j.jvcir.2019.01.029
– ident: ref56
  doi: 10.1109/TIP.2019.2893530
– ident: ref5
  doi: 10.1109/TGRS.2017.2747624
– ident: ref32
  doi: 10.1007/s11554-014-0479-x
– ident: ref50
  doi: 10.1109/LGRS.2014.2367028
– ident: ref15
  doi: 10.1109/LGRS.2017.2710219
– volume: 55
  start-page: 243
  year: 2018
  ident: ref25
  article-title: Semi-supervised learning with generative adversarial networks on digital signal modulation classification
  publication-title: Comput Mater Continua
– ident: ref67
  doi: 10.1016/j.acha.2012.07.010
– ident: ref41
  doi: 10.1016/j.infrared.2014.08.004
– ident: ref58
  doi: 10.1016/j.patcog.2011.08.022
– ident: ref64
  doi: 10.1016/j.isprsjprs.2018.10.006
– ident: ref48
  doi: 10.1109/JSTARS.2017.2651063
– ident: ref65
  doi: 10.1137/07070111X
– ident: ref3
  doi: 10.1016/j.ins.2019.02.008
– ident: ref74
  doi: 10.1080/01431161.2018.1492175
– volume: 14
  start-page: 130
  year: 2005
  ident: ref9
  article-title: Hyperspectral small target detection by combining kernel PCA with linear mixture model
  publication-title: Chin J Electron
– ident: ref1
  doi: 10.1109/MGRS.2013.2244672
– ident: ref39
  doi: 10.1109/TGRS.2010.2098413
– ident: ref76
  doi: 10.3133/ds231
– ident: ref19
  doi: 10.1007/s10586-018-2368-8
– ident: ref4
  doi: 10.1109/TSP.2019.2922157
– ident: ref51
  doi: 10.1109/TCSVT.2019.2946723
– ident: ref21
  doi: 10.1109/TGRS.2011.2160950
– ident: ref17
  doi: 10.1109/JSTARS.2015.2441699
– ident: ref71
  doi: 10.1109/TSP.2009.2016892
– volume: 55
  start-page: 1
  year: 2018
  ident: ref24
  article-title: A fusion steganographic algorithm based on faster R-CNN
  publication-title: Comput Mater Continua
– ident: ref66
  doi: 10.1109/TSP.2009.2025797
– ident: ref63
  doi: 10.1109/TGRS.2018.2890705
– ident: ref54
  doi: 10.1007/s11042-015-2965-y
– ident: ref72
  doi: 10.1109/CSNT.2015.147
– ident: ref14
  doi: 10.1109/LGRS.2018.2856406
– ident: ref60
  doi: 10.3390/rs9121224
– ident: ref55
  doi: 10.1109/JSTARS.2019.2915842
– ident: ref49
  doi: 10.1109/JSTARS.2013.2280063
– ident: ref33
  doi: 10.32604/cmc.2020.06130
– ident: ref37
  doi: 10.1109/TGRS.2014.2328336
– ident: ref57
  doi: 10.1109/TNNLS.2019.2957527
– ident: ref78
  doi: 10.1109/JSTARS.2017.2755639
– ident: ref36
  doi: 10.1109/TGRS.2017.2761912
– ident: ref20
  doi: 10.1007/s10586-018-1772-4
– ident: ref69
  doi: 10.1109/TIP.2007.901238
– ident: ref43
  doi: 10.1109/JSTARS.2019.2915588
– ident: ref59
  doi: 10.1109/TNNLS.2013.2249088
– volume: 12
  start-page: 1592
  year: 2019
  ident: ref26
  article-title: An advanced deep residual dense network (DRDN) approach for image super-resolution
  publication-title: Int J Computat Intell Syst
  doi: 10.2991/ijcis.d.191209.001
– ident: ref77
  doi: 10.1007/s11227-018-2297-6
– ident: ref52
  doi: 10.3390/rs10121956
– ident: ref44
  doi: 10.1016/j.jvcir.2017.07.006
– ident: ref28
  doi: 10.1016/j.knosys.2018.12.021
– ident: ref40
  doi: 10.1109/TGRS.2013.2240001
– volume: 52
  start-page: 4404
  year: 2014
  ident: ref68
  article-title: Abundance estimation for bilinear mixture models via joint sparse and low-rank representation
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2013.2281981
– ident: ref10
  doi: 10.1109/TIP.2018.2878958
– ident: ref61
  doi: 10.3390/rs10020339
– volume: 35
  start-page: 592
  year: 2016
  ident: ref7
  article-title: A fully constrained linear unmixing method: Simplex regularization for hyperspectral imagery
  publication-title: J Infrared Millim Waves
– ident: ref79
  doi: 10.1109/JSTARS.2016.2542193
– ident: ref42
  doi: 10.1080/01431161.2013.804225
– ident: ref53
  doi: 10.1109/CVPR.2017.625
– ident: ref11
  doi: 10.1109/JSTARS.2014.2320576
– ident: ref73
  doi: 10.1137/050626090
– ident: ref23
  doi: 10.3233/JIFS-169958
– ident: ref6
  doi: 10.3390/rs10040509
– ident: ref46
  doi: 10.1109/TGRS.2018.2866439
– ident: ref75
  doi: 10.3390/rs11242897
– ident: ref30
  doi: 10.1109/TGRS.2016.2633279
– ident: ref27
  doi: 10.1007/s11063-018-9892-7
– ident: ref12
  doi: 10.1109/TGRS.2017.2693366
– ident: ref13
  doi: 10.1109/JSTARS.2017.2771482
– ident: ref38
  doi: 10.1109/LGRS.2016.2527782
– ident: ref2
  doi: 10.1016/j.neucom.2014.06.052
– ident: ref18
  doi: 10.1109/LGRS.2016.2584660
– volume: 37
  start-page: 553
  year: 2018
  ident: ref8
  article-title: An overview on linear hyperspectral unmixing
  publication-title: J Infrared Millim Waves
– ident: ref47
  doi: 10.1109/TGRS.2016.2582824
– ident: ref31
  doi: 10.1109/TGRS.2017.2724944
– ident: ref35
  doi: 10.1109/TGRS.2017.2786718
– ident: ref62
  doi: 10.1109/JSTSP.2018.2877497
– ident: ref22
  doi: 10.32604/cmc.2019.04378
– ident: ref70
  doi: 10.1007/BF01581204
– ident: ref45
  doi: 10.1109/TGRS.2012.2191590
SSID ssj0062793
Score 2.50805
Snippet The low spatial resolution of hyperspectral images leads to the coexistence of multiple ground objects in a single pixel (called mixed pixels). A large number...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1174
SubjectTerms Coexistence
Collaboration
Correlation
Decomposition
Hyperspectral imaging
Image processing
Libraries
Low-rank
Mathematical analysis
nonlocal similarity
Patches (structures)
Pixels
Regularization
sparse unmixing
Spatial data
Spatial resolution
Spectral correlation
tensor decomposition
Tensors
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BEhKXfgBVF2jlQ494ycaOP460hW6rLgdgVW5R_CUhIEHLrkr76zt2vCvRVlVvUZRYTp4z855jvwF4p6ywSjpLC2kd5UFw2ghtKDMOJZHFnJOslCZnYjzlX66qqzU4XO2F8d6nxWd-GA_Tv3zX2UWcKjvSBauYZuuwjsKt36u1jLqilMlgF_mIptEyJjsMjQp9hEP8-PwCtWBZDEutkKGIJ1komfXn6ip_hOSUZ06fw2TZw355yc1wMTdD-_M388b_fYQX8CwTTnLcj5CXsObbbdj8lAr6_tgB8y3NjXpHzro2JTbytftOz5v2hlyixO1m5KOP687z4i4ySSWnCXJdcnGPqtiTaXt3_YgZkHSBjFHW9rs3Z9jS5zuMVg-7MD09ufwwprnuArVc8jk1-IasUFq64FQlnAvIKQISIRsYqpUqcKZ8KRrROCQAknEZSkTaS2HUSCICr2Cj7Vr_GohRdoSKaNSgruOR7TRaaB496RhGaNcMoFziUNtsSh5rY9zWSZwUuu7BqyN4dQZvAIerm-57T45_X_4-Ary6NBpqpxMITJ2_z7pknlfcYN9iWJPRrrcxygSMUEgoCz6AnQjmqpGM4wAOlsOlzh__A7aFJFCUmAv2_n7XPmzFDvYzOQewMZ8t_BvkNnPzNg3qX3u78eU
  priority: 102
  providerName: IEEE
Title Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse Unmixing of Hyperspectral Images
URI https://ieeexplore.ieee.org/document/9035393
https://www.proquest.com/docview/2389362219
https://doaj.org/article/23e454b949004073992ab8bf31943504
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EELyIT6wv9uDR2DTZ7OPou4p6sC32FrIvEG0itaL-e2cfLYqgF69hs0lmJjPft-x-g9A-V1RxplWSMqUTYilJKipkkksNlEhBzfFSSje3tDsgV8Ni-KXVl9sTFuSBg-HaWW5IQaQgwsUbczqqleTSQuhApQ9KoFDzpmQq5GCaQdhFjaFOKtoQ5Ed3PWCDWXqYCQ4YhX6rQ16uP_ZX-ZGUfaU5X0ZLESLio_BqK2jO1Kto4cK34P1YQ_Ler2YajW-b2pcifN28JXdV_Yj7QEqbMT41bqd43I6Fb3yTaAzoFPeegccaPKhHD-9Qs3BjcReIaDhvOYaZLkeQX17W0eD8rH_STWKnhEQRRiaJhC9SlAumreYF1doCCrAAXZTNgV8UluTcZLSilYaSzXLCbAa-MYxK3mGA4TbQfN3UZhNhyVUHOEynAiZGHD6pBAXjuwOokFN11ULZ1G6lijLirpvFU-npRCrKYOzSGbuMxm6hg9lNz0FF4_fhx84hs6FOAttfgMAoY2CUfwVGC605d84mEWle5CJvoZ2pe8v4u77AXADbaAbZe-s_Hr2NFt3nhJWaHTQ_Gb-aXcAuE7nnw3TPHzP8BOXt5WI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL2qihBseBXUgQJewI5ME8ex4wWLllJm6Mws2hnRXYgfkVBpUs1DpXwLv8K_9dpxRuIhdpXYjSLH8iTX95zj2OcCvMo117kwOoqFNhGrOItKLlWUKoOSSCPmeCul8YQPZuzjaXa6AT_WZ2GstX7zme27n_5bvmn0yi2V7co4zVLZlao-sleXKNAWb4cH-DZfU3r4fvpuEIUaApFmgi0jhXxE81wKU5k848ZUiI8VgrquUmTeWcXS3FJe8tIgmImUiYriqK3gKk9E4qyWMMHfQp6R0fZ0WJfnORXe0hfbyMiZ1ARPoySWuzip9o5PUH3SuE9ljmPgv-CeLw8Q6rn8AQIe2Q7vw8_umbQbWs76q6Xq6--_2UX-rw_tAdwLlJrstXPgIWzY-hHc_uBLFl9tgfrkV3-tIZOm9tBNRs1ldFzWZ2SKIr6ZkwPrdtaH7Wtk7ItqE2Tz5OQCdb8ls_r8yzfEeNJUZIDCvT2fOseehueYjxePYXYjf_AJbNZNbbeBqFwnqPmSEpUrc3yulFwy57qXIgaZsge0e--FDrbrrvrH18LLr1gWbbAULliKECw9eLO-6aJ1Hfl3830XUOumzjLcX8BAKEIGKmhqWcYUjs0lbuEMiUuVqwpzMFLmmPVgywXPupMQNz3Y6cKzCOltgX0hzeUU0e7p3-96CXcG0_GoGA0nR8_grhtsu261A5vL-co-Rya3VC_8hCLw-aaD8Rr1yU3V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Nonlocal+Low-Rank+Tensor+Decomposition+Method+for+Sparse+Unmixing+of+Hyperspectral+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Sun%2C+Le&rft.au=Wu%2C+Feiyang&rft.au=Zhan%2C+Tianming&rft.au=Liu%2C+Wei&rft.date=2020&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=13&rft.spage=1174&rft.epage=1188&rft_id=info:doi/10.1109%2FJSTARS.2020.2980576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2020_2980576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon