Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse Unmixing of Hyperspectral Images
The low spatial resolution of hyperspectral images leads to the coexistence of multiple ground objects in a single pixel (called mixed pixels). A large number of mixed pixels in a hyperspectral image hinders the subsequent analysis and application of the image. In order to solve this problem, a nove...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 13; pp. 1174 - 1188 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The low spatial resolution of hyperspectral images leads to the coexistence of multiple ground objects in a single pixel (called mixed pixels). A large number of mixed pixels in a hyperspectral image hinders the subsequent analysis and application of the image. In order to solve this problem, a novel sparse unmixing method, which considers highly similar patches in nonlocal regions of a hyperspectral image, is proposed in this article. This method exploits spectral correlation by using collaborative sparsity regularization and spatial information by employing total variation and weighted nonlocal low-rank tensor regularization. To effectively utilize the tensor decomposition, nonlocal similar patches are first grouped together. Then, these nonlocal patches are stacked to form a patch group tensor. Finally, weighted low-rank tensor regularization is enforced to constrain the patch group to obtain an estimated low-rank abundance image. Experiments on simulated and real hyperspectral datasets validated the superiority of the proposed method in better maintaining fine details and obtaining better unmixing results. |
---|---|
AbstractList | The low spatial resolution of hyperspectral images leads to the coexistence of multiple ground objects in a single pixel (called mixed pixels). A large number of mixed pixels in a hyperspectral image hinders the subsequent analysis and application of the image. In order to solve this problem, a novel sparse unmixing method, which considers highly similar patches in nonlocal regions of a hyperspectral image, is proposed in this article. This method exploits spectral correlation by using collaborative sparsity regularization and spatial information by employing total variation and weighted nonlocal low-rank tensor regularization. To effectively utilize the tensor decomposition, nonlocal similar patches are first grouped together. Then, these nonlocal patches are stacked to form a patch group tensor. Finally, weighted low-rank tensor regularization is enforced to constrain the patch group to obtain an estimated low-rank abundance image. Experiments on simulated and real hyperspectral datasets validated the superiority of the proposed method in better maintaining fine details and obtaining better unmixing results. |
Author | Wang, Jin Zhan, Tianming Liu, Wei Jeon, Byeungwoo Wu, Feiyang Sun, Le |
Author_xml | – sequence: 1 givenname: Le orcidid: 0000-0001-6465-8678 surname: Sun fullname: Sun, Le email: sunlecncom@nuist.edu.cn organization: School of Computer and Software, Nanjing University of Information Science and Technology (NUIST), Nanjing, China – sequence: 2 givenname: Feiyang surname: Wu fullname: Wu, Feiyang email: feiyangwu@nuist.edu.cn organization: School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 3 givenname: Tianming orcidid: 0000-0001-5030-3032 surname: Zhan fullname: Zhan, Tianming email: ztm@nau.edu.cn organization: School of Information Engineering, Nanjing Audit University, Nanjing, China – sequence: 4 givenname: Wei orcidid: 0000-0001-8503-4063 surname: Liu fullname: Liu, Wei email: weiliu@yzu.edu.cn organization: School of Information and Engineering, Yangzhou University, Yangzhou, China – sequence: 5 givenname: Jin orcidid: 0000-0001-5473-8738 surname: Wang fullname: Wang, Jin email: jinwang@csust.edu.cn organization: School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, China – sequence: 6 givenname: Byeungwoo orcidid: 0000-0002-5650-2881 surname: Jeon fullname: Jeon, Byeungwoo email: bjeon@skku.edu organization: School of Electric and Electronic Engineering, Sungkyunkwan University, Seoul, South Korea |
BookMark | eNqFkU9v1DAQxS1UJLaFT9BLJM5Z_DeOj1WBdqstSN2tOFqOM956ydrBTgX99nibqgcunEby-PfezLxTdBJiAITOCV4SgtWnm8324m6zpJjiJVUtFrJ5gxaUCFITwcQJWhDFVE045u_Qac57jBsqFVug7gf43cMEffUthiFaM1Tr-Lu-M-FntYWQY6o-g42HMWY_-RiqW5geYl-50tiMJmWo7sPB__FhV0VXXT-NkPIIdkpFaXUwO8jv0VtnhgwfXuoZuv_6ZXt5Xa-_X60uL9a15ZJPdVemtk2rZO_6VjR97xTBjgpiHeO0FY6zFmhjGtNTyiXj0lFpe5BN1xJZ9jtDq1m3j2avx-QPJj3paLx-fohpp02avB1AUwZc8E5xhTHHkilFTdd2jhHFmcC8aH2ctcYUfz1CnvQ-PqZQxi9sq1hD6bMjm3_ZFHNO4F5dCdbHYPQcjD4Go1-CKZT6h7J-MsfjlqP54T_s-cx6AHh1U5gJphj7C8ZOnMg |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1080_01431161_2023_2295836 crossref_primary_10_1109_JSTARS_2020_3020541 crossref_primary_10_1016_j_cam_2022_114843 crossref_primary_10_1109_JSTARS_2025_3546630 crossref_primary_10_1109_TGRS_2023_3243831 crossref_primary_10_1080_00051144_2020_1821535 crossref_primary_10_1016_j_knosys_2024_112712 crossref_primary_10_1109_LGRS_2020_3019427 crossref_primary_10_3390_rs16224202 crossref_primary_10_1109_JSTARS_2021_3108049 crossref_primary_10_1007_s11042_020_10218_8 crossref_primary_10_1016_j_sigpro_2020_107738 crossref_primary_10_1109_JSTARS_2024_3392497 crossref_primary_10_1038_s41598_024_68382_y crossref_primary_10_1109_TGRS_2021_3069845 crossref_primary_10_1109_JSEN_2023_3340150 crossref_primary_10_3390_rs13061101 crossref_primary_10_1016_j_sigpro_2021_108060 crossref_primary_10_1109_LGRS_2021_3127075 crossref_primary_10_1109_JSTARS_2020_3011992 crossref_primary_10_1109_JSTARS_2020_3039844 crossref_primary_10_1007_s11042_020_10187_y crossref_primary_10_1109_TGRS_2020_3030233 crossref_primary_10_3390_rs12213541 crossref_primary_10_1109_JSTARS_2020_3002885 crossref_primary_10_1109_JSTARS_2020_3008949 crossref_primary_10_3390_rs13081473 crossref_primary_10_1109_TCYB_2021_3069790 crossref_primary_10_1109_TGRS_2022_3183096 crossref_primary_10_1109_JSTARS_2020_3021520 crossref_primary_10_1109_TGRS_2024_3393570 crossref_primary_10_1109_TGRS_2025_3534790 crossref_primary_10_1007_s11042_022_13275_3 crossref_primary_10_1109_TGRS_2022_3168932 crossref_primary_10_1155_2021_9374908 crossref_primary_10_1007_s10489_022_04018_w crossref_primary_10_3390_rs14194866 crossref_primary_10_1007_s11042_020_10426_2 crossref_primary_10_1007_s11042_021_10672_y crossref_primary_10_3390_computers10060078 crossref_primary_10_1109_JSTARS_2021_3086631 crossref_primary_10_1109_TGRS_2022_3207933 crossref_primary_10_1088_1742_6596_1624_5_052017 crossref_primary_10_1080_01431161_2021_1933245 crossref_primary_10_1080_13658816_2022_2092116 crossref_primary_10_1007_s10851_024_01208_8 crossref_primary_10_1109_TGRS_2022_3144158 crossref_primary_10_1109_JSTARS_2021_3064243 crossref_primary_10_3390_rs14020383 crossref_primary_10_1109_TGRS_2023_3314616 crossref_primary_10_3390_rs13163196 crossref_primary_10_1080_01431161_2021_1996653 crossref_primary_10_1007_s12652_020_02778_2 crossref_primary_10_1109_TGRS_2021_3054008 crossref_primary_10_1007_s10489_020_01971_2 crossref_primary_10_3390_rs15184592 crossref_primary_10_1007_s11042_021_10774_7 crossref_primary_10_1109_JSTARS_2021_3054926 crossref_primary_10_1109_TIP_2023_3245323 crossref_primary_10_1080_01431161_2024_2398820 crossref_primary_10_1038_s41598_024_70395_6 crossref_primary_10_1016_j_jfranklin_2023_08_027 crossref_primary_10_3390_rs16183412 crossref_primary_10_1109_TGRS_2021_3095488 crossref_primary_10_1364_OE_507960 crossref_primary_10_1109_LGRS_2023_3256481 crossref_primary_10_1109_TGRS_2022_3208165 crossref_primary_10_3390_rs12182979 crossref_primary_10_1007_s11042_021_11223_1 crossref_primary_10_1109_JSTARS_2021_3115172 crossref_primary_10_1109_TGRS_2023_3235819 crossref_primary_10_1109_JSEN_2024_3373477 crossref_primary_10_1016_j_xplc_2022_100344 crossref_primary_10_1109_JSTARS_2020_3014492 |
Cites_doi | 10.1007/s11042-016-3599-4 10.1007/s12555-015-0258-x 10.1016/j.jvcir.2019.01.029 10.1109/TIP.2019.2893530 10.1109/TGRS.2017.2747624 10.1007/s11554-014-0479-x 10.1109/LGRS.2014.2367028 10.1109/LGRS.2017.2710219 10.1016/j.acha.2012.07.010 10.1016/j.infrared.2014.08.004 10.1016/j.patcog.2011.08.022 10.1016/j.isprsjprs.2018.10.006 10.1109/JSTARS.2017.2651063 10.1137/07070111X 10.1016/j.ins.2019.02.008 10.1080/01431161.2018.1492175 10.1109/MGRS.2013.2244672 10.1109/TGRS.2010.2098413 10.3133/ds231 10.1007/s10586-018-2368-8 10.1109/TSP.2019.2922157 10.1109/TCSVT.2019.2946723 10.1109/TGRS.2011.2160950 10.1109/JSTARS.2015.2441699 10.1109/TSP.2009.2016892 10.1109/TSP.2009.2025797 10.1109/TGRS.2018.2890705 10.1007/s11042-015-2965-y 10.1109/CSNT.2015.147 10.1109/LGRS.2018.2856406 10.3390/rs9121224 10.1109/JSTARS.2019.2915842 10.1109/JSTARS.2013.2280063 10.32604/cmc.2020.06130 10.1109/TGRS.2014.2328336 10.1109/TNNLS.2019.2957527 10.1109/JSTARS.2017.2755639 10.1109/TGRS.2017.2761912 10.1007/s10586-018-1772-4 10.1109/TIP.2007.901238 10.1109/JSTARS.2019.2915588 10.1109/TNNLS.2013.2249088 10.2991/ijcis.d.191209.001 10.1007/s11227-018-2297-6 10.3390/rs10121956 10.1016/j.jvcir.2017.07.006 10.1016/j.knosys.2018.12.021 10.1109/TGRS.2013.2240001 10.1109/TGRS.2013.2281981 10.1109/TIP.2018.2878958 10.3390/rs10020339 10.1109/JSTARS.2016.2542193 10.1080/01431161.2013.804225 10.1109/CVPR.2017.625 10.1109/JSTARS.2014.2320576 10.1137/050626090 10.3233/JIFS-169958 10.3390/rs10040509 10.1109/TGRS.2018.2866439 10.3390/rs11242897 10.1109/TGRS.2016.2633279 10.1007/s11063-018-9892-7 10.1109/TGRS.2017.2693366 10.1109/JSTARS.2017.2771482 10.1109/LGRS.2016.2527782 10.1016/j.neucom.2014.06.052 10.1109/LGRS.2016.2584660 10.1109/TGRS.2016.2582824 10.1109/TGRS.2017.2724944 10.1109/TGRS.2017.2786718 10.1109/JSTSP.2018.2877497 10.32604/cmc.2019.04378 10.1007/BF01581204 10.1109/TGRS.2012.2191590 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2020.2980576 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 1188 |
ExternalDocumentID | oai_doaj_org_article_23e454b949004073992ab8bf31943504 10_1109_JSTARS_2020_2980576 9035393 |
Genre | orig-research |
GrantInformation_xml | – fundername: Engineering Research Center of Digital Forensics, Ministry of Education – fundername: PAPD fund – fundername: National Natural Science Foundation of China; Natural Science Foundation of China grantid: 61971233; 61672291; 61972206; 61672293 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c474t-b057c6897dfd856ddf910f251cf34285f438e26a6ad2247347f27cde76b817193 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:30:35 EDT 2025 Fri Jul 25 10:47:28 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 03:16:13 EDT 2025 Wed Aug 27 02:50:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-b057c6897dfd856ddf910f251cf34285f438e26a6ad2247347f27cde76b817193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5650-2881 0000-0001-6465-8678 0000-0001-8503-4063 0000-0001-5473-8738 0000-0001-5030-3032 |
OpenAccessLink | https://doaj.org/article/23e454b949004073992ab8bf31943504 |
PQID | 2389362219 |
PQPubID | 75722 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_23e454b949004073992ab8bf31943504 proquest_journals_2389362219 crossref_citationtrail_10_1109_JSTARS_2020_2980576 ieee_primary_9035393 crossref_primary_10_1109_JSTARS_2020_2980576 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200000 2020-00-00 20200101 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 20200000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 meng (ref24) 2018; 55 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 gu (ref9) 2005; 14 ref51 ref50 qu (ref68) 2014; 52 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref4 ref3 ref6 ref5 ref40 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 wang (ref26) 2019; 12 ref2 ref1 ref39 ref38 yuan (ref8) 2018; 37 ref71 ref70 ref73 ref72 ref67 ref23 ref69 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 tu (ref25) 2018; 55 ref60 ref62 ref61 xu (ref7) 2016; 35 |
References_xml | – ident: ref34 doi: 10.1007/s11042-016-3599-4 – ident: ref16 doi: 10.1007/s12555-015-0258-x – ident: ref29 doi: 10.1016/j.jvcir.2019.01.029 – ident: ref56 doi: 10.1109/TIP.2019.2893530 – ident: ref5 doi: 10.1109/TGRS.2017.2747624 – ident: ref32 doi: 10.1007/s11554-014-0479-x – ident: ref50 doi: 10.1109/LGRS.2014.2367028 – ident: ref15 doi: 10.1109/LGRS.2017.2710219 – volume: 55 start-page: 243 year: 2018 ident: ref25 article-title: Semi-supervised learning with generative adversarial networks on digital signal modulation classification publication-title: Comput Mater Continua – ident: ref67 doi: 10.1016/j.acha.2012.07.010 – ident: ref41 doi: 10.1016/j.infrared.2014.08.004 – ident: ref58 doi: 10.1016/j.patcog.2011.08.022 – ident: ref64 doi: 10.1016/j.isprsjprs.2018.10.006 – ident: ref48 doi: 10.1109/JSTARS.2017.2651063 – ident: ref65 doi: 10.1137/07070111X – ident: ref3 doi: 10.1016/j.ins.2019.02.008 – ident: ref74 doi: 10.1080/01431161.2018.1492175 – volume: 14 start-page: 130 year: 2005 ident: ref9 article-title: Hyperspectral small target detection by combining kernel PCA with linear mixture model publication-title: Chin J Electron – ident: ref1 doi: 10.1109/MGRS.2013.2244672 – ident: ref39 doi: 10.1109/TGRS.2010.2098413 – ident: ref76 doi: 10.3133/ds231 – ident: ref19 doi: 10.1007/s10586-018-2368-8 – ident: ref4 doi: 10.1109/TSP.2019.2922157 – ident: ref51 doi: 10.1109/TCSVT.2019.2946723 – ident: ref21 doi: 10.1109/TGRS.2011.2160950 – ident: ref17 doi: 10.1109/JSTARS.2015.2441699 – ident: ref71 doi: 10.1109/TSP.2009.2016892 – volume: 55 start-page: 1 year: 2018 ident: ref24 article-title: A fusion steganographic algorithm based on faster R-CNN publication-title: Comput Mater Continua – ident: ref66 doi: 10.1109/TSP.2009.2025797 – ident: ref63 doi: 10.1109/TGRS.2018.2890705 – ident: ref54 doi: 10.1007/s11042-015-2965-y – ident: ref72 doi: 10.1109/CSNT.2015.147 – ident: ref14 doi: 10.1109/LGRS.2018.2856406 – ident: ref60 doi: 10.3390/rs9121224 – ident: ref55 doi: 10.1109/JSTARS.2019.2915842 – ident: ref49 doi: 10.1109/JSTARS.2013.2280063 – ident: ref33 doi: 10.32604/cmc.2020.06130 – ident: ref37 doi: 10.1109/TGRS.2014.2328336 – ident: ref57 doi: 10.1109/TNNLS.2019.2957527 – ident: ref78 doi: 10.1109/JSTARS.2017.2755639 – ident: ref36 doi: 10.1109/TGRS.2017.2761912 – ident: ref20 doi: 10.1007/s10586-018-1772-4 – ident: ref69 doi: 10.1109/TIP.2007.901238 – ident: ref43 doi: 10.1109/JSTARS.2019.2915588 – ident: ref59 doi: 10.1109/TNNLS.2013.2249088 – volume: 12 start-page: 1592 year: 2019 ident: ref26 article-title: An advanced deep residual dense network (DRDN) approach for image super-resolution publication-title: Int J Computat Intell Syst doi: 10.2991/ijcis.d.191209.001 – ident: ref77 doi: 10.1007/s11227-018-2297-6 – ident: ref52 doi: 10.3390/rs10121956 – ident: ref44 doi: 10.1016/j.jvcir.2017.07.006 – ident: ref28 doi: 10.1016/j.knosys.2018.12.021 – ident: ref40 doi: 10.1109/TGRS.2013.2240001 – volume: 52 start-page: 4404 year: 2014 ident: ref68 article-title: Abundance estimation for bilinear mixture models via joint sparse and low-rank representation publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2013.2281981 – ident: ref10 doi: 10.1109/TIP.2018.2878958 – ident: ref61 doi: 10.3390/rs10020339 – volume: 35 start-page: 592 year: 2016 ident: ref7 article-title: A fully constrained linear unmixing method: Simplex regularization for hyperspectral imagery publication-title: J Infrared Millim Waves – ident: ref79 doi: 10.1109/JSTARS.2016.2542193 – ident: ref42 doi: 10.1080/01431161.2013.804225 – ident: ref53 doi: 10.1109/CVPR.2017.625 – ident: ref11 doi: 10.1109/JSTARS.2014.2320576 – ident: ref73 doi: 10.1137/050626090 – ident: ref23 doi: 10.3233/JIFS-169958 – ident: ref6 doi: 10.3390/rs10040509 – ident: ref46 doi: 10.1109/TGRS.2018.2866439 – ident: ref75 doi: 10.3390/rs11242897 – ident: ref30 doi: 10.1109/TGRS.2016.2633279 – ident: ref27 doi: 10.1007/s11063-018-9892-7 – ident: ref12 doi: 10.1109/TGRS.2017.2693366 – ident: ref13 doi: 10.1109/JSTARS.2017.2771482 – ident: ref38 doi: 10.1109/LGRS.2016.2527782 – ident: ref2 doi: 10.1016/j.neucom.2014.06.052 – ident: ref18 doi: 10.1109/LGRS.2016.2584660 – volume: 37 start-page: 553 year: 2018 ident: ref8 article-title: An overview on linear hyperspectral unmixing publication-title: J Infrared Millim Waves – ident: ref47 doi: 10.1109/TGRS.2016.2582824 – ident: ref31 doi: 10.1109/TGRS.2017.2724944 – ident: ref35 doi: 10.1109/TGRS.2017.2786718 – ident: ref62 doi: 10.1109/JSTSP.2018.2877497 – ident: ref22 doi: 10.32604/cmc.2019.04378 – ident: ref70 doi: 10.1007/BF01581204 – ident: ref45 doi: 10.1109/TGRS.2012.2191590 |
SSID | ssj0062793 |
Score | 2.50805 |
Snippet | The low spatial resolution of hyperspectral images leads to the coexistence of multiple ground objects in a single pixel (called mixed pixels). A large number... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1174 |
SubjectTerms | Coexistence Collaboration Correlation Decomposition Hyperspectral imaging Image processing Libraries Low-rank Mathematical analysis nonlocal similarity Patches (structures) Pixels Regularization sparse unmixing Spatial data Spatial resolution Spectral correlation tensor decomposition Tensors |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BEhKXfgBVF2jlQ494ycaOP460hW6rLgdgVW5R_CUhIEHLrkr76zt2vCvRVlVvUZRYTp4z855jvwF4p6ywSjpLC2kd5UFw2ghtKDMOJZHFnJOslCZnYjzlX66qqzU4XO2F8d6nxWd-GA_Tv3zX2UWcKjvSBauYZuuwjsKt36u1jLqilMlgF_mIptEyJjsMjQp9hEP8-PwCtWBZDEutkKGIJ1komfXn6ip_hOSUZ06fw2TZw355yc1wMTdD-_M388b_fYQX8CwTTnLcj5CXsObbbdj8lAr6_tgB8y3NjXpHzro2JTbytftOz5v2hlyixO1m5KOP687z4i4ySSWnCXJdcnGPqtiTaXt3_YgZkHSBjFHW9rs3Z9jS5zuMVg-7MD09ufwwprnuArVc8jk1-IasUFq64FQlnAvIKQISIRsYqpUqcKZ8KRrROCQAknEZSkTaS2HUSCICr2Cj7Vr_GohRdoSKaNSgruOR7TRaaB496RhGaNcMoFziUNtsSh5rY9zWSZwUuu7BqyN4dQZvAIerm-57T45_X_4-Ary6NBpqpxMITJ2_z7pknlfcYN9iWJPRrrcxygSMUEgoCz6AnQjmqpGM4wAOlsOlzh__A7aFJFCUmAv2_n7XPmzFDvYzOQewMZ8t_BvkNnPzNg3qX3u78eU priority: 102 providerName: IEEE |
Title | Weighted Nonlocal Low-Rank Tensor Decomposition Method for Sparse Unmixing of Hyperspectral Images |
URI | https://ieeexplore.ieee.org/document/9035393 https://www.proquest.com/docview/2389362219 https://doaj.org/article/23e454b949004073992ab8bf31943504 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EELyIT6wv9uDR2DTZ7OPou4p6sC32FrIvEG0itaL-e2cfLYqgF69hs0lmJjPft-x-g9A-V1RxplWSMqUTYilJKipkkksNlEhBzfFSSje3tDsgV8Ni-KXVl9sTFuSBg-HaWW5IQaQgwsUbczqqleTSQuhApQ9KoFDzpmQq5GCaQdhFjaFOKtoQ5Ed3PWCDWXqYCQ4YhX6rQ16uP_ZX-ZGUfaU5X0ZLESLio_BqK2jO1Kto4cK34P1YQ_Ler2YajW-b2pcifN28JXdV_Yj7QEqbMT41bqd43I6Fb3yTaAzoFPeegccaPKhHD-9Qs3BjcReIaDhvOYaZLkeQX17W0eD8rH_STWKnhEQRRiaJhC9SlAumreYF1doCCrAAXZTNgV8UluTcZLSilYaSzXLCbAa-MYxK3mGA4TbQfN3UZhNhyVUHOEynAiZGHD6pBAXjuwOokFN11ULZ1G6lijLirpvFU-npRCrKYOzSGbuMxm6hg9lNz0FF4_fhx84hs6FOAttfgMAoY2CUfwVGC605d84mEWle5CJvoZ2pe8v4u77AXADbaAbZe-s_Hr2NFt3nhJWaHTQ_Gb-aXcAuE7nnw3TPHzP8BOXt5WI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL2qihBseBXUgQJewI5ME8ex4wWLllJm6Mws2hnRXYgfkVBpUs1DpXwLv8K_9dpxRuIhdpXYjSLH8iTX95zj2OcCvMo117kwOoqFNhGrOItKLlWUKoOSSCPmeCul8YQPZuzjaXa6AT_WZ2GstX7zme27n_5bvmn0yi2V7co4zVLZlao-sleXKNAWb4cH-DZfU3r4fvpuEIUaApFmgi0jhXxE81wKU5k848ZUiI8VgrquUmTeWcXS3FJe8tIgmImUiYriqK3gKk9E4qyWMMHfQp6R0fZ0WJfnORXe0hfbyMiZ1ARPoySWuzip9o5PUH3SuE9ljmPgv-CeLw8Q6rn8AQIe2Q7vw8_umbQbWs76q6Xq6--_2UX-rw_tAdwLlJrstXPgIWzY-hHc_uBLFl9tgfrkV3-tIZOm9tBNRs1ldFzWZ2SKIr6ZkwPrdtaH7Wtk7ItqE2Tz5OQCdb8ls_r8yzfEeNJUZIDCvT2fOseehueYjxePYXYjf_AJbNZNbbeBqFwnqPmSEpUrc3yulFwy57qXIgaZsge0e--FDrbrrvrH18LLr1gWbbAULliKECw9eLO-6aJ1Hfl3830XUOumzjLcX8BAKEIGKmhqWcYUjs0lbuEMiUuVqwpzMFLmmPVgywXPupMQNz3Y6cKzCOltgX0hzeUU0e7p3-96CXcG0_GoGA0nR8_grhtsu261A5vL-co-Rya3VC_8hCLw-aaD8Rr1yU3V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Nonlocal+Low-Rank+Tensor+Decomposition+Method+for+Sparse+Unmixing+of+Hyperspectral+Images&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Sun%2C+Le&rft.au=Wu%2C+Feiyang&rft.au=Zhan%2C+Tianming&rft.au=Liu%2C+Wei&rft.date=2020&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=13&rft.spage=1174&rft.epage=1188&rft_id=info:doi/10.1109%2FJSTARS.2020.2980576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2020_2980576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |