Study on effects of airborne Pb pollution on quality indicators and accumulation in tea plants using Vis-NIR spectroscopy coupled with radial basis function neural network

Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid industrialization, this pollution in tea is considered a crucial challenge due to its potential health risks. The present study proposes an innovat...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 229; p. 113056
Main Authors Sanaeifar, Alireza, Zhang, Wenkai, Chen, Haitian, Zhang, Dongyi, Li, Xiaoli, He, Yong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.01.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid industrialization, this pollution in tea is considered a crucial challenge due to its potential health risks. The present study proposes an innovative approach based on visible and near-infrared (Vis-NIR) spectroscopy coupled with chemometrics for the characterization of tea chemical indicators under airborne lead stress, which can be performed fast and in situ. The effects of lead stress on chemical indicators and accumulation in leaves of the two tea varieties at different time intervals and levels of treatment were investigated. In addition, changes in cell structure and leaf stomata were monitored during foliar uptake of aerosol particles by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The spectral variation was able to classify the tea samples into the Pb treatment groups through the linear discriminant analysis (LDA) model. Two machine learning techniques, namely, partial least squares (PLS) and radial basis function neural network (RBFNN), were evaluated and compared for building the quantitative determination models. The RBFNN models combined with correlation-based feature selection (CFS) and PLS data compression methods were used to optimize the prediction performance. The results demonstrated that the PLS–RBFNN as a non-linear model outperformed the PLS model and provided the R-value of 0.944, 0.952, 0.881, 0.937, and 0.930 for prediction of MDA, starch, sucrose, fructose, glucose, respectively. It can be concluded that the proposed approach has strong application potential in monitoring the quality and safety of plants under airborne heavy metal stress. [Display omitted] •Effects of Pb pollution on tea quality and safety were explored by Vis-NIR spectra.•Leaf microstructure changes during uptake of atmospheric aerosols were studied.•Spectral differences can distinguish samples into airborne Pb treatment groups.•PLS–RBFNN performed better than PLS in predicting the chemical indicators of tea.•The spectra coupled with nonlinear models yielded high accuracy for Pb monitoring.
AbstractList Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid industrialization, this pollution in tea is considered a crucial challenge due to its potential health risks. The present study proposes an innovative approach based on visible and near-infrared (Vis-NIR) spectroscopy coupled with chemometrics for the characterization of tea chemical indicators under airborne lead stress, which can be performed fast and in situ. The effects of lead stress on chemical indicators and accumulation in leaves of the two tea varieties at different time intervals and levels of treatment were investigated. In addition, changes in cell structure and leaf stomata were monitored during foliar uptake of aerosol particles by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The spectral variation was able to classify the tea samples into the Pb treatment groups through the linear discriminant analysis (LDA) model. Two machine learning techniques, namely, partial least squares (PLS) and radial basis function neural network (RBFNN), were evaluated and compared for building the quantitative determination models. The RBFNN models combined with correlation-based feature selection (CFS) and PLS data compression methods were used to optimize the prediction performance. The results demonstrated that the PLS-RBFNN as a non-linear model outperformed the PLS model and provided the R-value of 0.944, 0.952, 0.881, 0.937, and 0.930 for prediction of MDA, starch, sucrose, fructose, glucose, respectively. It can be concluded that the proposed approach has strong application potential in monitoring the quality and safety of plants under airborne heavy metal stress.
Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid industrialization, this pollution in tea is considered a crucial challenge due to its potential health risks. The present study proposes an innovative approach based on visible and near-infrared (Vis-NIR) spectroscopy coupled with chemometrics for the characterization of tea chemical indicators under airborne lead stress, which can be performed fast and in situ. The effects of lead stress on chemical indicators and accumulation in leaves of the two tea varieties at different time intervals and levels of treatment were investigated. In addition, changes in cell structure and leaf stomata were monitored during foliar uptake of aerosol particles by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The spectral variation was able to classify the tea samples into the Pb treatment groups through the linear discriminant analysis (LDA) model. Two machine learning techniques, namely, partial least squares (PLS) and radial basis function neural network (RBFNN), were evaluated and compared for building the quantitative determination models. The RBFNN models combined with correlation-based feature selection (CFS) and PLS data compression methods were used to optimize the prediction performance. The results demonstrated that the PLS–RBFNN as a non-linear model outperformed the PLS model and provided the R-value of 0.944, 0.952, 0.881, 0.937, and 0.930 for prediction of MDA, starch, sucrose, fructose, glucose, respectively. It can be concluded that the proposed approach has strong application potential in monitoring the quality and safety of plants under airborne heavy metal stress. [Display omitted] •Effects of Pb pollution on tea quality and safety were explored by Vis-NIR spectra.•Leaf microstructure changes during uptake of atmospheric aerosols were studied.•Spectral differences can distinguish samples into airborne Pb treatment groups.•PLS–RBFNN performed better than PLS in predicting the chemical indicators of tea.•The spectra coupled with nonlinear models yielded high accuracy for Pb monitoring.
Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid industrialization, this pollution in tea is considered a crucial challenge due to its potential health risks. The present study proposes an innovative approach based on visible and near-infrared (Vis-NIR) spectroscopy coupled with chemometrics for the characterization of tea chemical indicators under airborne lead stress, which can be performed fast and in situ. The effects of lead stress on chemical indicators and accumulation in leaves of the two tea varieties at different time intervals and levels of treatment were investigated. In addition, changes in cell structure and leaf stomata were monitored during foliar uptake of aerosol particles by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The spectral variation was able to classify the tea samples into the Pb treatment groups through the linear discriminant analysis (LDA) model. Two machine learning techniques, namely, partial least squares (PLS) and radial basis function neural network (RBFNN), were evaluated and compared for building the quantitative determination models. The RBFNN models combined with correlation-based feature selection (CFS) and PLS data compression methods were used to optimize the prediction performance. The results demonstrated that the PLS-RBFNN as a non-linear model outperformed the PLS model and provided the R-value of 0.944, 0.952, 0.881, 0.937, and 0.930 for prediction of MDA, starch, sucrose, fructose, glucose, respectively. It can be concluded that the proposed approach has strong application potential in monitoring the quality and safety of plants under airborne heavy metal stress.Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid industrialization, this pollution in tea is considered a crucial challenge due to its potential health risks. The present study proposes an innovative approach based on visible and near-infrared (Vis-NIR) spectroscopy coupled with chemometrics for the characterization of tea chemical indicators under airborne lead stress, which can be performed fast and in situ. The effects of lead stress on chemical indicators and accumulation in leaves of the two tea varieties at different time intervals and levels of treatment were investigated. In addition, changes in cell structure and leaf stomata were monitored during foliar uptake of aerosol particles by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The spectral variation was able to classify the tea samples into the Pb treatment groups through the linear discriminant analysis (LDA) model. Two machine learning techniques, namely, partial least squares (PLS) and radial basis function neural network (RBFNN), were evaluated and compared for building the quantitative determination models. The RBFNN models combined with correlation-based feature selection (CFS) and PLS data compression methods were used to optimize the prediction performance. The results demonstrated that the PLS-RBFNN as a non-linear model outperformed the PLS model and provided the R-value of 0.944, 0.952, 0.881, 0.937, and 0.930 for prediction of MDA, starch, sucrose, fructose, glucose, respectively. It can be concluded that the proposed approach has strong application potential in monitoring the quality and safety of plants under airborne heavy metal stress.
ArticleNumber 113056
Author Sanaeifar, Alireza
Zhang, Dongyi
Chen, Haitian
He, Yong
Zhang, Wenkai
Li, Xiaoli
Author_xml – sequence: 1
  givenname: Alireza
  surname: Sanaeifar
  fullname: Sanaeifar, Alireza
  email: asanaei@zju.edu.cn
– sequence: 2
  givenname: Wenkai
  surname: Zhang
  fullname: Zhang, Wenkai
  email: zwkdaai@zju.edu.cn
– sequence: 3
  givenname: Haitian
  surname: Chen
  fullname: Chen, Haitian
  email: 21913053@zju.edu.cn
– sequence: 4
  givenname: Dongyi
  surname: Zhang
  fullname: Zhang, Dongyi
  email: 1806882133@qq.com
– sequence: 5
  givenname: Xiaoli
  surname: Li
  fullname: Li, Xiaoli
  email: xiaolili@zju.edu.cn
– sequence: 6
  givenname: Yong
  surname: He
  fullname: He, Yong
  email: yhe@zju.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34883323$$D View this record in MEDLINE/PubMed
BookMark eNqFkkuLFDEUhYOMOD2j_0AkSzfVJlWpVJULQQYfDYOKr21IJTdj2uqkJo8Z-jf5J013jbNwoRAIXL5zLpx7ztCJ8w4QekrJmhLKX2zXoDy4m3VNarqmtCEtf4BWlAykqhllJ2hFKOsq3tLmFJ3FuCWEFKh9hE4b1vdNUzcr9OtLynqPvcNgDKgUsTdY2jD64AB_GvHspyknW4DyrrOcbNpj67RVMvkQsXQaS6XyLk_yiFmHE0g8T9IVtxytu8Lfbaw-bD7jOJcVwUfl5z1WPs8TaHxr0w8cpLZywqOMNmKTnTp6OcihTB2kWx9-PkYPjZwiPLn7z9G3t2--XryvLj--21y8vqwU61iqRkKJrnvesp4PUppR0XbgtGtH0GVGNe9lT2jXQMegpx1X3NC6JUMngbGONudos_hqL7diDnYnw154acVx4MOVkCFZNYGoaaNJ23eEGcK4MSNwXQ_FBUw7QHPwer54zcFfZ4hJ7GxUMJV0wOcoak76tunrrivoszs0jzvQ94v_HKsAbAFUiTAGMPcIJeLQCbEVSyfEoRNi6USRvfxLpmw63ioFaaf_iV8tYiiB31gIIioLToG2odyyJGL_bfAbU1PWEw
CitedBy_id crossref_primary_10_3389_fpls_2024_1442225
crossref_primary_10_1016_j_jhazmat_2023_131708
crossref_primary_10_1080_19393210_2024_2304233
crossref_primary_10_1016_j_ijbiomac_2024_134569
crossref_primary_10_1016_j_foodcont_2023_109968
crossref_primary_10_1016_j_compag_2022_107360
crossref_primary_10_1016_j_compag_2024_109071
crossref_primary_10_3389_fenvs_2024_1336088
crossref_primary_10_3390_rs16010187
crossref_primary_10_3390_agriengineering6030177
crossref_primary_10_1111_jfpp_17008
crossref_primary_10_34133_plantphenomics_0180
crossref_primary_10_1016_j_scitotenv_2022_160652
crossref_primary_10_3390_rs16214049
crossref_primary_10_3390_foods13030450
crossref_primary_10_3390_foods13010025
Cites_doi 10.1080/19440049.2014.958575
10.1016/j.compag.2015.01.006
10.1016/j.saa.2018.12.051
10.1016/j.compag.2017.12.035
10.3390/agronomy10060815
10.1016/j.compag.2020.105388
10.1080/10106040701204396
10.17221/2787-PSE
10.1007/s11947-013-1065-0
10.1016/j.saa.2020.118917
10.3390/s18061944
10.1016/j.trac.2019.05.022
10.1021/es902190u
10.3390/s130201872
10.3389/fpls.2018.00339
10.1111/jfpe.13293
10.3839/jksabc.2010.073
10.1016/j.foodchem.2021.129141
10.1016/j.jhazmat.2018.09.032
10.1016/j.jfoodeng.2020.110374
10.1155/2015/756120
10.1016/j.foodres.2012.12.048
10.1104/pp.003756
10.1590/S1677-04202005000100004
10.1016/j.envpol.2012.02.019
10.3389/fpls.2017.00721
10.1016/j.chemosphere.2005.03.077
10.1371/journal.pone.0257745
10.1111/jfpe.12654
10.1016/j.sjbs.2015.06.023
10.1016/j.jfoodeng.2019.01.004
10.1016/j.infrared.2018.04.012
10.1080/01431161.2019.1685721
10.3389/fpls.2016.00288
10.1016/j.foodres.2010.08.010
10.1016/j.scitotenv.2013.12.089
10.1002/fsn3.1861
10.1186/s13007-020-00704-3
10.1016/j.foodchem.2013.01.090
10.1016/j.scitotenv.2021.149824
10.1016/j.scitotenv.2012.03.051
10.1016/j.chemosphere.2005.03.053
10.1016/j.geoderma.2018.10.025
10.1021/acs.jafc.8b03556
10.1016/j.jfda.2015.04.010
10.1021/acs.jafc.7b04706
10.1016/j.jfoodeng.2020.110417
10.3390/plants8020045
10.1016/j.envpol.2019.06.027
10.1016/j.chemosphere.2014.09.060
10.1088/1612-202X/aac29f
10.1007/s12011-020-02510-3
10.15835/nbha48211909
10.1080/00022470.1976.10470298
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.ecoenv.2021.113056
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Ecology
EISSN 1090-2414
ExternalDocumentID oai_doaj_org_article_213d058704f046ffbe6d29447ef59e31
34883323
10_1016_j_ecoenv_2021_113056
S0147651321011684
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
0SF
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFPKN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
ZU3
~G-
29G
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
H~9
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
XPP
ZMT
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c474t-b010d28654869aafbc1596175bed5481d68a80173e74e8176c6f125097ae44713
IEDL.DBID DOA
ISSN 0147-6513
1090-2414
IngestDate Wed Aug 27 01:31:54 EDT 2025
Fri Jul 11 03:25:46 EDT 2025
Wed Feb 19 02:26:29 EST 2025
Thu Apr 24 23:13:28 EDT 2025
Tue Jul 01 04:00:31 EDT 2025
Fri Feb 23 02:40:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Quantitative determination model
Quality indicators
Vis-NIR spectroscopy
Airborne Pb pollution
Tea plant
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-b010d28654869aafbc1596175bed5481d68a80173e74e8176c6f125097ae44713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/213d058704f046ffbe6d29447ef59e31
PMID 34883323
PQID 2608538277
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_213d058704f046ffbe6d29447ef59e31
proquest_miscellaneous_2608538277
pubmed_primary_34883323
crossref_primary_10_1016_j_ecoenv_2021_113056
crossref_citationtrail_10_1016_j_ecoenv_2021_113056
elsevier_sciencedirect_doi_10_1016_j_ecoenv_2021_113056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
2022-Jan-01
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Ecotoxicology and environmental safety
PublicationTitleAlternate Ecotoxicol Environ Saf
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hong, Liu, Chen, Liu, Yanfang, Liu, Cheng (bib16) 2019; 337
Jin, Shi, Yu, Yamada, Sacks (bib19) 2017; 8
Láng, Szigeti, Fodor, Cseh, Zolla, Sárvári (bib25) 1998
Zimdahl (bib59) 1976; 26
He, Xi, Zhang, Gao, Tan, Cui (bib15) 2014; 117
Bertazzini, Forlani (bib4) 2016; 7
Sanaeifar, Huang, Chen, Zhao, Ji, Li, He, Zhu, Chen, Yu (bib32) 2020; 8
Schreck, Dappe, Sarret, Sobanska, Nowak, Nowak, Stefaniak, Magnin, Ranieri, Dumat (bib37) 2014; 476–477
Zeng, Ping, Sanaeifar, Xu, Luo, Sha, Huang, Huang, Liu, Zhan, Zhang, Li (bib54) 2021; 17
Kumar (bib24) 2007; 22
Farber, Mahnke, Sanchez, Kurouski (bib10) 2019; 118
Jun, Xin, Xiaohong, Bing, Chunxia, Jifeng (bib22) 2019; 212
Liu, Zhou, Li, Hu, Liu, Zhou (bib28) 2019; 362
Elmardy, Yousef, Lin, Zhang, Ali, Lamlom, Kalaji, Kowalczyk, Xu (bib8) 2021; 16
Yu, Fang, Zhao (bib52) 2021; 245
Wei, Wu, Xu, Sha, Zhao, He, Li (bib48) 2019; 248
Tomašević, Vukmirović, Rajšić, Tasić, Stevanović (bib46) 2005; 61
Feng, Zhu, Lin, Su, Yuan, Zhao, He, Zhang (bib11) 2018; 18
Frank (bib12) 2014
Shao, He (bib40) 2013; 13
Zhang, Zheng, Li, Deng, Ji (bib55) 2015; 112
Shafiee, Minaei (bib39) 2018; 91
Alzahrani, Alharby, Hakeem, Alsamadany (bib2) 2020; 48
Huang, Sanaeifar, Tian, Liu, Zhang, Wang, Ye, Li (bib18) 2021; 293
Fu, Blaney, Zhou (bib14) 2018; 66
Zhong, Ren, Zhao (bib57) 2016; 24
Xie, Chen, Sun, Mamati, Wan, Zhang, Gao, Chen, Wu, Fan, Lv, Wu (bib49) 2020; 31
Liu, Lu, Meng, Lu, Fu, Liu, Zhou, Guo, Teng (bib27) 2016; 23
Uzu, Sobanska, Sarret, Muñoz, Dumat (bib47) 2010; 44
Peng, He, Zhao, Jiang, Zhou, Liu, Shen (bib31) 2019; 252
Schreck, Foucault, Sarret, Sobanska, Cécillon, Castrec-Rouelle, Uzu, Dumat (bib38) 2012; 427–428
Dhalaria, Kumar, Kumar, Nepovimova, Kuca, Islam, Verma (bib7) 2020; 10
Ouyang, Wang, Park, Kang, Chen (bib30) 2021; 350
Abd El-Aty, Choi, Rahman, Kim, Tosun, Shim (bib1) 2014; 31
Jin, Yun, Zhang, Gen, Jian, Zheng (bib20) 2005; 61
Leal, Nogueira, Mageski, Martini, Barauna, dos Santos, de Carvalho (bib26) 2021; 199
Sanaeifar, Jafari (bib33) 2019; 6
John, Ahmad, Gadgil, Sharma (bib21) 2008; 54
Sanaeifar, Zhu, Sha, Li, He, Zhan (bib35) 2022; 802
Sheng, Zhu (bib42) 2019; 8
Choung (bib5) 2010; 53
Säumel, Kotsyuk, Hölscher, Lenkereit, Weber, Kowarik (bib36) 2012; 165
Stein, Granot (bib43) 2018; 9
Zheng, Lü, Du, Yue, Lü, Tang, Mo (bib56) 2018; 15
Sun, Wu, Hang, Lu, Wu, Chen (bib45) 2019; 42
Li, Zhang, Li, Zhang, Zhang, Ding (bib29) 2013; 53
Zhou, Sun, Tian, Lu, Hang, Chen (bib58) 2020; 41
Emamverdian, Ding, Mokhberdoran, Xie (bib9) 2015; 2015
Xiong, Ohashi, Nakano, Jiang, Takizawa, Iijima, Maniwara (bib50) 2021; 298
Karak, Bhagat (bib23) 2010; 43
Sanaeifar, Jafari, Golmakani (bib34) 2018; 145
Croft, Chen (bib6) 2017
Xu, Duan, Cai, Shi (bib51) 2018; 66
Huang, Dong, Sanaeifar, Wang, Luo, Zhan, Liu, Li, Zhang, Li (bib17) 2020; 173
Zeeman, Tiessen, Pilling, Kato, Donald, Smith (bib53) 2002; 129
Bao, Liu, Kong, Sun, He, Qiu (bib3) 2014; 7
Fudge, Wilkinson, Ristic, Cozzolino (bib13) 2013; 139
Sun, Cong, Mao, Wu, Yang (bib44) 2018; 41
Sharma, Dubey (bib41) 2005; 17
Jun (10.1016/j.ecoenv.2021.113056_bib22) 2019; 212
Sanaeifar (10.1016/j.ecoenv.2021.113056_bib34) 2018; 145
Zeeman (10.1016/j.ecoenv.2021.113056_bib53) 2002; 129
Hong (10.1016/j.ecoenv.2021.113056_bib16) 2019; 337
Yu (10.1016/j.ecoenv.2021.113056_bib52) 2021; 245
Emamverdian (10.1016/j.ecoenv.2021.113056_bib9) 2015; 2015
Zhang (10.1016/j.ecoenv.2021.113056_bib55) 2015; 112
Zimdahl (10.1016/j.ecoenv.2021.113056_bib59) 1976; 26
Xu (10.1016/j.ecoenv.2021.113056_bib51) 2018; 66
Fu (10.1016/j.ecoenv.2021.113056_bib14) 2018; 66
Wei (10.1016/j.ecoenv.2021.113056_bib48) 2019; 248
Leal (10.1016/j.ecoenv.2021.113056_bib26) 2021; 199
Sanaeifar (10.1016/j.ecoenv.2021.113056_bib33) 2019; 6
Feng (10.1016/j.ecoenv.2021.113056_bib11) 2018; 18
Jin (10.1016/j.ecoenv.2021.113056_bib19) 2017; 8
Farber (10.1016/j.ecoenv.2021.113056_bib10) 2019; 118
Karak (10.1016/j.ecoenv.2021.113056_bib23) 2010; 43
Sheng (10.1016/j.ecoenv.2021.113056_bib42) 2019; 8
Sun (10.1016/j.ecoenv.2021.113056_bib44) 2018; 41
Kumar (10.1016/j.ecoenv.2021.113056_bib24) 2007; 22
Alzahrani (10.1016/j.ecoenv.2021.113056_bib2) 2020; 48
Stein (10.1016/j.ecoenv.2021.113056_bib43) 2018; 9
Uzu (10.1016/j.ecoenv.2021.113056_bib47) 2010; 44
Bertazzini (10.1016/j.ecoenv.2021.113056_bib4) 2016; 7
Sanaeifar (10.1016/j.ecoenv.2021.113056_bib35) 2022; 802
Fudge (10.1016/j.ecoenv.2021.113056_bib13) 2013; 139
Ouyang (10.1016/j.ecoenv.2021.113056_bib30) 2021; 350
Xie (10.1016/j.ecoenv.2021.113056_bib49) 2020; 31
Zhou (10.1016/j.ecoenv.2021.113056_bib58) 2020; 41
Frank (10.1016/j.ecoenv.2021.113056_bib12) 2014
Li (10.1016/j.ecoenv.2021.113056_bib29) 2013; 53
Peng (10.1016/j.ecoenv.2021.113056_bib31) 2019; 252
Säumel (10.1016/j.ecoenv.2021.113056_bib36) 2012; 165
Bao (10.1016/j.ecoenv.2021.113056_bib3) 2014; 7
Liu (10.1016/j.ecoenv.2021.113056_bib28) 2019; 362
Shao (10.1016/j.ecoenv.2021.113056_bib40) 2013; 13
Sharma (10.1016/j.ecoenv.2021.113056_bib41) 2005; 17
Elmardy (10.1016/j.ecoenv.2021.113056_bib8) 2021; 16
Dhalaria (10.1016/j.ecoenv.2021.113056_bib7) 2020; 10
Huang (10.1016/j.ecoenv.2021.113056_bib17) 2020; 173
Láng (10.1016/j.ecoenv.2021.113056_bib25) 1998
Tomašević (10.1016/j.ecoenv.2021.113056_bib46) 2005; 61
Liu (10.1016/j.ecoenv.2021.113056_bib27) 2016; 23
Sun (10.1016/j.ecoenv.2021.113056_bib45) 2019; 42
Zhong (10.1016/j.ecoenv.2021.113056_bib57) 2016; 24
Abd El-Aty (10.1016/j.ecoenv.2021.113056_bib1) 2014; 31
He (10.1016/j.ecoenv.2021.113056_bib15) 2014; 117
Zheng (10.1016/j.ecoenv.2021.113056_bib56) 2018; 15
Jin (10.1016/j.ecoenv.2021.113056_bib20) 2005; 61
Croft (10.1016/j.ecoenv.2021.113056_bib6) 2017
Xiong (10.1016/j.ecoenv.2021.113056_bib50) 2021; 298
Schreck (10.1016/j.ecoenv.2021.113056_bib38) 2012; 427–428
Sanaeifar (10.1016/j.ecoenv.2021.113056_bib32) 2020; 8
Zeng (10.1016/j.ecoenv.2021.113056_bib54) 2021; 17
Choung (10.1016/j.ecoenv.2021.113056_bib5) 2010; 53
John (10.1016/j.ecoenv.2021.113056_bib21) 2008; 54
Huang (10.1016/j.ecoenv.2021.113056_bib18) 2021; 293
Schreck (10.1016/j.ecoenv.2021.113056_bib37) 2014; 476–477
Shafiee (10.1016/j.ecoenv.2021.113056_bib39) 2018; 91
References_xml – volume: 298
  year: 2021
  ident: bib50
  article-title: Application of the radial basis function neural networks to improve the nondestructive Vis/NIR spectrophotometric analysis of potassium in fresh lettuces
  publication-title: J. Food Eng.
– volume: 212
  start-page: 215
  year: 2019
  end-page: 221
  ident: bib22
  article-title: Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging
  publication-title: Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.
– volume: 8
  start-page: 721
  year: 2017
  ident: bib19
  article-title: Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in Miscanthus
  publication-title: Front. Plant Sci.
– volume: 337
  start-page: 758
  year: 2019
  end-page: 769
  ident: bib16
  article-title: Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy
  publication-title: Geoderma
– volume: 252
  start-page: 1125
  year: 2019
  end-page: 1132
  ident: bib31
  article-title: Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods
  publication-title: Environ. Pollut.
– volume: 10
  start-page: 815
  year: 2020
  ident: bib7
  article-title: Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants
  publication-title: Agronomy
– volume: 476–477
  start-page: 667
  year: 2014
  end-page: 676
  ident: bib37
  article-title: Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 45
  year: 2019
  ident: bib42
  article-title: Effects of nitrogen dioxide on biochemical responses in 41 garden plants
  publication-title: Plants
– volume: 9
  start-page: 339
  year: 2018
  ident: bib43
  article-title: Plant fructokinases: Evolutionary, developmental, and metabolic aspects in sink tissues
  publication-title: Front. Plant Sci.
– volume: 7
  start-page: 54
  year: 2014
  end-page: 61
  ident: bib3
  article-title: Measurement of soluble solid contents and pH of white vinegars using VIS/NIR spectroscopy and least squares support vector machine
  publication-title: Food Bioprocess Technol.
– volume: 44
  start-page: 1036
  year: 2010
  end-page: 1042
  ident: bib47
  article-title: Foliar Lead uptake by lettuce exposed to atmospheric fallouts
  publication-title: Environ. Sci. Technol.
– volume: 118
  start-page: 43
  year: 2019
  end-page: 49
  ident: bib10
  article-title: Advanced spectroscopic techniques for plant disease diagnostics. A review
  publication-title: TrAC Trends Anal. Chem.
– volume: 293
  year: 2021
  ident: bib18
  article-title: Improved generalization of spectral models associated with Vis-NIR spectroscopy for determining the moisture content of different tea leaves
  publication-title: J. Food Eng.
– volume: 117
  start-page: 701
  year: 2014
  end-page: 707
  ident: bib15
  article-title: Insight into the evolution, redox, and metal binding properties of dissolved organic matter from municipal solid wastes using two-dimensional correlation spectroscopy
  publication-title: Chemosphere
– volume: 61
  start-page: 753
  year: 2005
  end-page: 760
  ident: bib46
  article-title: Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area
  publication-title: Chemosphere
– volume: 129
  start-page: 516
  year: 2002
  end-page: 529
  ident: bib53
  article-title: Starch synthesis in arabidopsis. Granule synthesis, composition, and structure
  publication-title: Plant Physiol.
– volume: 427–428
  start-page: 253
  year: 2012
  end-page: 262
  ident: bib38
  article-title: Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead
  publication-title: Sci. Total Environ.
– volume: 48
  start-page: 906
  year: 2020
  end-page: 923
  ident: bib2
  article-title: Modulating effect of EDTA and SDS on growth, biochemical parameters and antioxidant defense system of Dahlia variabilis grown under cadmium and lead-induced stress
  publication-title: Not. Bot. Horti Agrobot. Cluj. -Napoca
– volume: 7
  start-page: 288
  year: 2016
  ident: bib4
  article-title: Intraspecific variability of floral nectar volume and composition in rapeseed (Brassica napus L. var. oleifera)
  publication-title: Front. Plant Sci.
– volume: 165
  start-page: 124
  year: 2012
  end-page: 132
  ident: bib36
  article-title: How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany
  publication-title: Environ. Pollut.
– volume: 15
  year: 2018
  ident: bib56
  article-title: Raman spectroscopy for rapid and inexpensive diagnosis of echinococcosis using the adaptive iteratively reweighted penalized least squares-Kennard-stone-back propagation neural network
  publication-title: Laser Phys. Lett.
– start-page: 117
  year: 2017
  end-page: 142
  ident: bib6
  article-title: Leaf pigment content, in: Comprehensive Remote Sensing
– year: 2014
  ident: bib12
  article-title: Fully supervised training of Gaussian radial basis function networks in WEKA (Computer Science Working Papers, 04/2014)
– volume: 199
  start-page: 3737
  year: 2021
  end-page: 3751
  ident: bib26
  article-title: Diagnosis of systemic diseases using infrared spectroscopy: detection of iron overload in plasma—preliminary study
  publication-title: Biol. Trace Elem. Res.
– volume: 350
  year: 2021
  ident: bib30
  article-title: Simultaneous quantification of chemical constituents in matcha with visible-near infrared hyperspectral imaging technology
  publication-title: Food Chem.
– volume: 248
  start-page: 89
  year: 2019
  end-page: 96
  ident: bib48
  article-title: Visual detection of the moisture content of tea leaves with hyperspectral imaging technology
  publication-title: J. Food Eng.
– volume: 91
  start-page: 193
  year: 2018
  end-page: 199
  ident: bib39
  article-title: Combined data mining/NIR spectroscopy for purity assessment of lime juice
  publication-title: Infrared Phys. Technol.
– volume: 17
  start-page: 4
  year: 2021
  ident: bib54
  article-title: Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer
  publication-title: Plant Methods
– volume: 66
  start-page: 53
  year: 2018
  end-page: 62
  ident: bib14
  article-title: Identifying plant stress responses to roxarsone in soybean root exudates: new insights from two-dimensional correlation spectroscopy
  publication-title: J. Agric. Food Chem.
– volume: 18
  start-page: 1944
  year: 2018
  ident: bib11
  article-title: Detection of oil chestnuts infected by blue mold using near-infrared hyperspectral imaging combined with artificial neural networks
  publication-title: Sens. (Switz. )
– volume: 53
  start-page: 649
  year: 2013
  end-page: 658
  ident: bib29
  article-title: Determination for major chemical contaminants in tea (Camellia sinensis) matrices: A review
  publication-title: Food Res. Int.
– volume: 41
  year: 2018
  ident: bib44
  article-title: Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique
  publication-title: J. Food Process Eng.
– volume: 66
  start-page: 12327
  year: 2018
  end-page: 12334
  ident: bib51
  article-title: Influence of humic acid on Pb uptake and accumulation in tea plants
  publication-title: J. Agric. Food Chem.
– volume: 362
  start-page: 9
  year: 2019
  end-page: 16
  ident: bib28
  article-title: Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system
  publication-title: J. Hazard. Mater.
– volume: 16
  year: 2021
  ident: bib8
  article-title: Photosynthetic performance of rocket (Eruca sativa. Mill.) grown under different regimes of light intensity, quality, and photoperiod
  publication-title: PLoS One
– volume: 13
  start-page: 1872
  year: 2013
  end-page: 1883
  ident: bib40
  article-title: Visible/near infrared spectroscopy and chemometrics for the prediction of trace element (Fe and Zn) levels in rice leaf
  publication-title: Sens. (Switz. )
– volume: 31
  year: 2020
  ident: bib49
  article-title: Rapid, non-invasive screening of keratitis based on Raman spectroscopy combined with multivariate statistical analysis
  publication-title: Photo Photodyn. Ther.
– volume: 802
  year: 2022
  ident: bib35
  article-title: Rapid quantitative characterization of tea seedlings under lead-containing aerosol particles stress using Vis-NIR spectra
  publication-title: Sci. Total Environ.
– volume: 245
  year: 2021
  ident: bib52
  article-title: Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods
  publication-title: Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.
– volume: 54
  start-page: 262
  year: 2008
  end-page: 270
  ident: bib21
  article-title: Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L
  publication-title: Plant, Soil Environ.
– volume: 22
  start-page: 3
  year: 2007
  end-page: 16
  ident: bib24
  article-title: High-spectral resolution data for determining leaf water content in Eucalyptus species: leaf level experiments
  publication-title: Geocarto Int
– start-page: 2693
  year: 1998
  end-page: 2696
  ident: bib25
  article-title: Influence of Cd and Pb on the Ion Content, Growth and Photosynthesis in Cucumber, in: Photosynthesis: Mechanisms and Effects
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib9
  article-title: Heavy metal stress and some mechanisms of plant defense response
  publication-title: Sci. World J.
– volume: 53
  start-page: 478
  year: 2010
  end-page: 484
  ident: bib5
  article-title: Determination of sucrose content in soybean using near-infrared reflectance spectroscopy
  publication-title: J. Korean Soc. Appl. Biol. Chem.
– volume: 139
  start-page: 115
  year: 2013
  end-page: 119
  ident: bib13
  article-title: Synchronous two-dimensional MIR correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine
  publication-title: Food Chem.
– volume: 26
  start-page: 655
  year: 1976
  end-page: 660
  ident: bib59
  article-title: Entry and movement in vegetation of lead derived from air and soil sources
  publication-title: J. Air Pollut. Control Assoc.
– volume: 23
  start-page: S106
  year: 2016
  end-page: S112
  ident: bib27
  article-title: Near infrared spectroscopy coupled with radial basis function neural network for at-line monitoring of Lactococcus lactis subsp. fermentation
  publication-title: Saudi J. Biol. Sci.
– volume: 8
  start-page: 5860
  year: 2020
  end-page: 5874
  ident: bib32
  article-title: Nondestructive monitoring of polyphenols and caffeine during green tea processing using Vis-NIR spectroscopy
  publication-title: Food Sci. Nutr.
– volume: 31
  start-page: 1794
  year: 2014
  end-page: 1804
  ident: bib1
  article-title: Residues and contaminants in tea and tea infusions: a review
  publication-title: Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess.
– volume: 6
  start-page: 20
  year: 2019
  end-page: 25
  ident: bib33
  article-title: Determination of the oxidative stability of olive oil using an integrated system based on dielectric spectroscopy and computer vision
  publication-title: Inf. Process. Agric.
– volume: 17
  start-page: 35
  year: 2005
  end-page: 52
  ident: bib41
  article-title: Lead toxicity in plants
  publication-title: Braz. J. Plant Physiol.
– volume: 24
  start-page: 46
  year: 2016
  end-page: 55
  ident: bib57
  article-title: Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry
  publication-title: J. Food Drug Anal.
– volume: 145
  start-page: 142
  year: 2018
  end-page: 152
  ident: bib34
  article-title: Fusion of dielectric spectroscopy and computer vision for quality characterization of olive oil during storage
  publication-title: Comput. Electron. Agric.
– volume: 42
  year: 2019
  ident: bib45
  article-title: Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology
  publication-title: J. Food Process Eng.
– volume: 61
  start-page: 726
  year: 2005
  end-page: 732
  ident: bib20
  article-title: Lead contamination in tea leaves and non-edaphic factors affecting it
  publication-title: Chemosphere
– volume: 43
  start-page: 2234
  year: 2010
  end-page: 2252
  ident: bib23
  article-title: Trace elements in tea leaves, made tea and tea infusion: A review
  publication-title: Food Res. Int.
– volume: 41
  start-page: 2263
  year: 2020
  end-page: 2276
  ident: bib58
  article-title: Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images
  publication-title: Int. J. Remote Sens
– volume: 173
  year: 2020
  ident: bib17
  article-title: Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy
  publication-title: Comput. Electron. Agric.
– volume: 112
  start-page: 20
  year: 2015
  end-page: 27
  ident: bib55
  article-title: Predicting apple sugar content based on spectral characteristics of apple tree leaf in different phenological phases
  publication-title: Comput. Electron. Agric.
– volume: 31
  start-page: 1794
  year: 2014
  ident: 10.1016/j.ecoenv.2021.113056_bib1
  article-title: Residues and contaminants in tea and tea infusions: a review
  publication-title: Food Addit. Contam. - Part A Chem. Anal. Control. Expo. Risk Assess.
  doi: 10.1080/19440049.2014.958575
– volume: 112
  start-page: 20
  year: 2015
  ident: 10.1016/j.ecoenv.2021.113056_bib55
  article-title: Predicting apple sugar content based on spectral characteristics of apple tree leaf in different phenological phases
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.01.006
– volume: 212
  start-page: 215
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib22
  article-title: Research and analysis of cadmium residue in tomato leaves based on WT-LSSVR and Vis-NIR hyperspectral imaging
  publication-title: Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2018.12.051
– volume: 145
  start-page: 142
  year: 2018
  ident: 10.1016/j.ecoenv.2021.113056_bib34
  article-title: Fusion of dielectric spectroscopy and computer vision for quality characterization of olive oil during storage
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.12.035
– volume: 10
  start-page: 815
  year: 2020
  ident: 10.1016/j.ecoenv.2021.113056_bib7
  article-title: Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants
  publication-title: Agronomy
  doi: 10.3390/agronomy10060815
– volume: 173
  year: 2020
  ident: 10.1016/j.ecoenv.2021.113056_bib17
  article-title: Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105388
– volume: 22
  start-page: 3
  year: 2007
  ident: 10.1016/j.ecoenv.2021.113056_bib24
  article-title: High-spectral resolution data for determining leaf water content in Eucalyptus species: leaf level experiments
  publication-title: Geocarto Int
  doi: 10.1080/10106040701204396
– volume: 54
  start-page: 262
  year: 2008
  ident: 10.1016/j.ecoenv.2021.113056_bib21
  article-title: Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L
  publication-title: Plant, Soil Environ.
  doi: 10.17221/2787-PSE
– volume: 7
  start-page: 54
  year: 2014
  ident: 10.1016/j.ecoenv.2021.113056_bib3
  article-title: Measurement of soluble solid contents and pH of white vinegars using VIS/NIR spectroscopy and least squares support vector machine
  publication-title: Food Bioprocess Technol.
  doi: 10.1007/s11947-013-1065-0
– volume: 245
  year: 2021
  ident: 10.1016/j.ecoenv.2021.113056_bib52
  article-title: Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods
  publication-title: Spectrochim. Acta - Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2020.118917
– volume: 18
  start-page: 1944
  year: 2018
  ident: 10.1016/j.ecoenv.2021.113056_bib11
  article-title: Detection of oil chestnuts infected by blue mold using near-infrared hyperspectral imaging combined with artificial neural networks
  publication-title: Sens. (Switz. )
  doi: 10.3390/s18061944
– volume: 31
  year: 2020
  ident: 10.1016/j.ecoenv.2021.113056_bib49
  article-title: Rapid, non-invasive screening of keratitis based on Raman spectroscopy combined with multivariate statistical analysis
  publication-title: Photo Photodyn. Ther.
– volume: 118
  start-page: 43
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib10
  article-title: Advanced spectroscopic techniques for plant disease diagnostics. A review
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.05.022
– volume: 44
  start-page: 1036
  year: 2010
  ident: 10.1016/j.ecoenv.2021.113056_bib47
  article-title: Foliar Lead uptake by lettuce exposed to atmospheric fallouts
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902190u
– start-page: 2693
  year: 1998
  ident: 10.1016/j.ecoenv.2021.113056_bib25
– volume: 13
  start-page: 1872
  year: 2013
  ident: 10.1016/j.ecoenv.2021.113056_bib40
  article-title: Visible/near infrared spectroscopy and chemometrics for the prediction of trace element (Fe and Zn) levels in rice leaf
  publication-title: Sens. (Switz. )
  doi: 10.3390/s130201872
– volume: 9
  start-page: 339
  year: 2018
  ident: 10.1016/j.ecoenv.2021.113056_bib43
  article-title: Plant fructokinases: Evolutionary, developmental, and metabolic aspects in sink tissues
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00339
– volume: 42
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib45
  article-title: Estimating cadmium content in lettuce leaves based on deep brief network and hyperspectral imaging technology
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.13293
– volume: 53
  start-page: 478
  year: 2010
  ident: 10.1016/j.ecoenv.2021.113056_bib5
  article-title: Determination of sucrose content in soybean using near-infrared reflectance spectroscopy
  publication-title: J. Korean Soc. Appl. Biol. Chem.
  doi: 10.3839/jksabc.2010.073
– volume: 350
  year: 2021
  ident: 10.1016/j.ecoenv.2021.113056_bib30
  article-title: Simultaneous quantification of chemical constituents in matcha with visible-near infrared hyperspectral imaging technology
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2021.129141
– volume: 362
  start-page: 9
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib28
  article-title: Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.09.032
– volume: 293
  year: 2021
  ident: 10.1016/j.ecoenv.2021.113056_bib18
  article-title: Improved generalization of spectral models associated with Vis-NIR spectroscopy for determining the moisture content of different tea leaves
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110374
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.ecoenv.2021.113056_bib9
  article-title: Heavy metal stress and some mechanisms of plant defense response
  publication-title: Sci. World J.
  doi: 10.1155/2015/756120
– volume: 53
  start-page: 649
  year: 2013
  ident: 10.1016/j.ecoenv.2021.113056_bib29
  article-title: Determination for major chemical contaminants in tea (Camellia sinensis) matrices: A review
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2012.12.048
– volume: 129
  start-page: 516
  year: 2002
  ident: 10.1016/j.ecoenv.2021.113056_bib53
  article-title: Starch synthesis in arabidopsis. Granule synthesis, composition, and structure
  publication-title: Plant Physiol.
  doi: 10.1104/pp.003756
– volume: 17
  start-page: 35
  year: 2005
  ident: 10.1016/j.ecoenv.2021.113056_bib41
  article-title: Lead toxicity in plants
  publication-title: Braz. J. Plant Physiol.
  doi: 10.1590/S1677-04202005000100004
– volume: 165
  start-page: 124
  year: 2012
  ident: 10.1016/j.ecoenv.2021.113056_bib36
  article-title: How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2012.02.019
– volume: 8
  start-page: 721
  year: 2017
  ident: 10.1016/j.ecoenv.2021.113056_bib19
  article-title: Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in Miscanthus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00721
– volume: 61
  start-page: 753
  year: 2005
  ident: 10.1016/j.ecoenv.2021.113056_bib46
  article-title: Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.03.077
– volume: 16
  year: 2021
  ident: 10.1016/j.ecoenv.2021.113056_bib8
  article-title: Photosynthetic performance of rocket (Eruca sativa. Mill.) grown under different regimes of light intensity, quality, and photoperiod
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0257745
– volume: 41
  year: 2018
  ident: 10.1016/j.ecoenv.2021.113056_bib44
  article-title: Quantitative detection of mixed pesticide residue of lettuce leaves based on hyperspectral technique
  publication-title: J. Food Process Eng.
  doi: 10.1111/jfpe.12654
– volume: 23
  start-page: S106
  year: 2016
  ident: 10.1016/j.ecoenv.2021.113056_bib27
  article-title: Near infrared spectroscopy coupled with radial basis function neural network for at-line monitoring of Lactococcus lactis subsp. fermentation
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2015.06.023
– volume: 248
  start-page: 89
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib48
  article-title: Visual detection of the moisture content of tea leaves with hyperspectral imaging technology
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2019.01.004
– volume: 91
  start-page: 193
  year: 2018
  ident: 10.1016/j.ecoenv.2021.113056_bib39
  article-title: Combined data mining/NIR spectroscopy for purity assessment of lime juice
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2018.04.012
– volume: 41
  start-page: 2263
  year: 2020
  ident: 10.1016/j.ecoenv.2021.113056_bib58
  article-title: Development of deep learning method for lead content prediction of lettuce leaf using hyperspectral images
  publication-title: Int. J. Remote Sens
  doi: 10.1080/01431161.2019.1685721
– volume: 7
  start-page: 288
  year: 2016
  ident: 10.1016/j.ecoenv.2021.113056_bib4
  article-title: Intraspecific variability of floral nectar volume and composition in rapeseed (Brassica napus L. var. oleifera)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00288
– volume: 43
  start-page: 2234
  year: 2010
  ident: 10.1016/j.ecoenv.2021.113056_bib23
  article-title: Trace elements in tea leaves, made tea and tea infusion: A review
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2010.08.010
– volume: 6
  start-page: 20
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib33
  article-title: Determination of the oxidative stability of olive oil using an integrated system based on dielectric spectroscopy and computer vision
  publication-title: Inf. Process. Agric.
– volume: 476–477
  start-page: 667
  year: 2014
  ident: 10.1016/j.ecoenv.2021.113056_bib37
  article-title: Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.12.089
– volume: 8
  start-page: 5860
  year: 2020
  ident: 10.1016/j.ecoenv.2021.113056_bib32
  article-title: Nondestructive monitoring of polyphenols and caffeine during green tea processing using Vis-NIR spectroscopy
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.1861
– volume: 17
  start-page: 4
  year: 2021
  ident: 10.1016/j.ecoenv.2021.113056_bib54
  article-title: Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer
  publication-title: Plant Methods
  doi: 10.1186/s13007-020-00704-3
– year: 2014
  ident: 10.1016/j.ecoenv.2021.113056_bib12
– volume: 139
  start-page: 115
  year: 2013
  ident: 10.1016/j.ecoenv.2021.113056_bib13
  article-title: Synchronous two-dimensional MIR correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.01.090
– volume: 802
  year: 2022
  ident: 10.1016/j.ecoenv.2021.113056_bib35
  article-title: Rapid quantitative characterization of tea seedlings under lead-containing aerosol particles stress using Vis-NIR spectra
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149824
– volume: 427–428
  start-page: 253
  year: 2012
  ident: 10.1016/j.ecoenv.2021.113056_bib38
  article-title: Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.03.051
– volume: 61
  start-page: 726
  year: 2005
  ident: 10.1016/j.ecoenv.2021.113056_bib20
  article-title: Lead contamination in tea leaves and non-edaphic factors affecting it
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.03.053
– volume: 337
  start-page: 758
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib16
  article-title: Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.025
– volume: 66
  start-page: 12327
  year: 2018
  ident: 10.1016/j.ecoenv.2021.113056_bib51
  article-title: Influence of humic acid on Pb uptake and accumulation in tea plants
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.8b03556
– volume: 24
  start-page: 46
  year: 2016
  ident: 10.1016/j.ecoenv.2021.113056_bib57
  article-title: Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2015.04.010
– volume: 66
  start-page: 53
  year: 2018
  ident: 10.1016/j.ecoenv.2021.113056_bib14
  article-title: Identifying plant stress responses to roxarsone in soybean root exudates: new insights from two-dimensional correlation spectroscopy
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b04706
– volume: 298
  year: 2021
  ident: 10.1016/j.ecoenv.2021.113056_bib50
  article-title: Application of the radial basis function neural networks to improve the nondestructive Vis/NIR spectrophotometric analysis of potassium in fresh lettuces
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110417
– volume: 8
  start-page: 45
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib42
  article-title: Effects of nitrogen dioxide on biochemical responses in 41 garden plants
  publication-title: Plants
  doi: 10.3390/plants8020045
– volume: 252
  start-page: 1125
  year: 2019
  ident: 10.1016/j.ecoenv.2021.113056_bib31
  article-title: Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.06.027
– volume: 117
  start-page: 701
  year: 2014
  ident: 10.1016/j.ecoenv.2021.113056_bib15
  article-title: Insight into the evolution, redox, and metal binding properties of dissolved organic matter from municipal solid wastes using two-dimensional correlation spectroscopy
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.09.060
– volume: 15
  year: 2018
  ident: 10.1016/j.ecoenv.2021.113056_bib56
  article-title: Raman spectroscopy for rapid and inexpensive diagnosis of echinococcosis using the adaptive iteratively reweighted penalized least squares-Kennard-stone-back propagation neural network
  publication-title: Laser Phys. Lett.
  doi: 10.1088/1612-202X/aac29f
– volume: 199
  start-page: 3737
  year: 2021
  ident: 10.1016/j.ecoenv.2021.113056_bib26
  article-title: Diagnosis of systemic diseases using infrared spectroscopy: detection of iron overload in plasma—preliminary study
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-020-02510-3
– volume: 48
  start-page: 906
  year: 2020
  ident: 10.1016/j.ecoenv.2021.113056_bib2
  article-title: Modulating effect of EDTA and SDS on growth, biochemical parameters and antioxidant defense system of Dahlia variabilis grown under cadmium and lead-induced stress
  publication-title: Not. Bot. Horti Agrobot. Cluj. -Napoca
  doi: 10.15835/nbha48211909
– start-page: 117
  year: 2017
  ident: 10.1016/j.ecoenv.2021.113056_bib6
– volume: 26
  start-page: 655
  year: 1976
  ident: 10.1016/j.ecoenv.2021.113056_bib59
  article-title: Entry and movement in vegetation of lead derived from air and soil sources
  publication-title: J. Air Pollut. Control Assoc.
  doi: 10.1080/00022470.1976.10470298
SSID ssj0003055
Score 2.4241443
Snippet Tea plants that have a large leaf area mainly suffer from heavy metal accumulation in the above-ground parts through foliar uptake. With the world rapid...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113056
SubjectTerms Airborne Pb pollution
Chemometrics
Lead
Least-Squares Analysis
Neural Networks, Computer
Quality indicators
Quality Indicators, Health Care
Quantitative determination model
Spectroscopy, Near-Infrared
Tea
Tea plant
Vis-NIR spectroscopy
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEF5KoSCI2Ho7amUEX-PJJpvd5FFLS_WhiFjpW9hbSuQ0CecinBf_kH_Smd3k2D5IwdfJ5jqTnZndb75h7J01phJNYZPUa07bjDLRVpqk9A1G_NIpEVG-F_L8Uny-Kq722MlUC0OwynHuj3N6mK1HyXz8mvOhbecES1Ky4FSEwrksiRNUoARt-v2vvzAPYrSKMEaV0OipfC5gvDDD891PzBIzTs1NUmpjfcs9BRb_O17qX1Fo8EZnj9mjMYyED_FJD9me747YwWmgoN4esYdxNQ5ikdET9pvgglvoOxjxG9A3oNslGkDn4YuBgToek45oTCy03AJtZ1tKylegOwfa2s3N2O0LjwGaBwwLwtEAoeev4Xu7Si4-fYVQvUksmf2wBdtvhoV3QAu-sCQmhAWg62xXQC41XIs4NVHaRUT6U3Z5dvrt5DwZ2zQkViixTgymdI4KXEUpK60bYzFEwsCoMN6hjDtZavSDKvdK-JIraWWDYVVaKe1RYTx_xva7vvMvGBQq9VnluPOFFoXNSwxQfCmckqYwjclnLJ-0U9uRw5xaaSzqCaz2o446rUmnddTpjCW7s4bI4XHP-I-k-N1YYuAOgn55XY8mWGc8d2mBs51oUiGbxnjpsgrfxzdF5XM-Y2oym_qOQeOl2ntu_3ayshr_ddrA0Z3vN6sac0-MrspMqRl7Hs1v95C5oLbRWf7yv-_7ij3IqLYjrC-9Zvvr5cYfY8S1Nm_CL_UHwVIp0A
  priority: 102
  providerName: Elsevier
Title Study on effects of airborne Pb pollution on quality indicators and accumulation in tea plants using Vis-NIR spectroscopy coupled with radial basis function neural network
URI https://dx.doi.org/10.1016/j.ecoenv.2021.113056
https://www.ncbi.nlm.nih.gov/pubmed/34883323
https://www.proquest.com/docview/2608538277
https://doaj.org/article/213d058704f046ffbe6d29447ef59e31
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG50RRBEdH2Nj6EEr9E8-pEcV9llVmEQcWVvoZ8yMiZhHsJc9g_tn7QqnQzrQebitacnaVKV1FfdX33F2FtrTMWDsEnqdUbHjDLRVpqk9AERv3SKR5bvXM4u-KdLcXmj1RdxwqI8cHxw7_OscKlAr-IBU7kQjJcurzhXPogqVlDnGPPGZGr4BpOOVSQvqkSKrBiL5npmF-Z1vvmNuWGeUUuTlJpX3whKvXb_X7HpX9izj0FnD9mDATzCSVz0I3bLN8fs7mkvPL07ZvfjHhzE0qLH7JpIgjtoGxhYG9AG0IsVmr3x8MVAR32OyTI0J5ZX7oAOsS2l4mvQjQNt7fbX0OMLfwN0CuiWxJ4B4sz_gO-LdTI__wp9zSZpY7bdDmy77ZbeAW3zwor0D5aAAXOxBgqk_bVISRNHm8hDf8Iuzk6_fZwlQ3OGxHLFN4nBRM5RWSsvZaV1MBaBEcIhYbzDsczJUmP0U4VX3JeZklYGBFNppbRH62XFU3bUtI1_zkCo1OeVy5wXmgtblAhLfMmdkkaYYIoJK0br1HZQLqcGGst6pKj9rKNNa7JpHW06Ycn-X11U7jgw_wMZfj-XdLf7AfTGevDG-pA3Tpga3aYeIEyEJnipxYHbvxm9rMY3nI5tdOPb7brGjBMxVZkrNWHPovvtF1lwahadFy_-x-Jfsns5FXf0G0yv2NFmtfWvEXJtzJTdfneVTdmdk_PPs_m0f9f-AI5bKsc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIJISgUlucgcQ2bh2MnR6hatVBWCLWoN8uvVEFLEu0DaS_8If4kM3Gy0AOqxNVxnMeMPTP2N98w9sYaU_Iqt1HsdULHjCLSVpio8BV6_MJJHlC-M3F8zj9c5Bc77GDMhSFY5bD2hzW9X62HlunwN6ddXU8JliRFnlASSpKIgt9gNzlOXypj8PbnH5wHUVoFHKOMqPuYP9eDvDDE880PDBPThKqbxFTH-i_71NP4XzFT_3JDe3N0dJ_dG_xIeBde9QHb8c0eu3XYc1Bv9tjdsB0HIcvoIftFeMENtA0MAA5oK9D1AjWg8fDZQEclj0lI1CdkWm6AzrMtReVL0I0Dbe36-1DuC68B6gd0cwLSAMHnL-FrvYxmJ1-gT98kmsy224Bt193cO6AdX1gQFcIc0HbWSyCb2o9FpJrY2gRI-iN2fnR4dnAcDXUaIsslX0UGYzpHGa68EKXWlbHoI6FnlBvvsC1xotBoCGXmJfdFIoUVFfpVcSm152gcs32227SNf8Igl7FPS5c4n2ue26xAD8UX3ElhclOZbMKyUTrKDiTmVEtjrka02jcVZKpIpirIdMKi7V1dIPG4pv97Evy2L1Fw9w3t4lINOqjSJHNxjssdr2Iuqsp44dISv8dXeemzZMLkqDbqikbjUPU1j389apnCyU4nOLrx7XqpMPgsSMWlnLDHQf22L5lxqhudZk__-7mv2O3js0-n6vRk9vEZu5NSoke_2fSc7a4Wa_8C3a-VedlPr9-meCzs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+effects+of+airborne+Pb+pollution+on+quality+indicators+and+accumulation+in+tea+plants+using+Vis-NIR+spectroscopy+coupled+with+radial+basis+function+neural+network&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Sanaeifar%2C+Alireza&rft.au=Zhang%2C+Wenkai&rft.au=Chen%2C+Haitian&rft.au=Zhang%2C+Dongyi&rft.date=2022-01-01&rft.eissn=1090-2414&rft.volume=229&rft.spage=113056&rft_id=info:doi/10.1016%2Fj.ecoenv.2021.113056&rft_id=info%3Apmid%2F34883323&rft.externalDocID=34883323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon