Automatic diagnosis of neurological diseases using MEG signals with a deep neural network

The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 5057
Main Authors Aoe, Jo, Fukuma, Ryohei, Yanagisawa, Takufumi, Harada, Tatsuya, Tanaka, Masataka, Kobayashi, Maki, Inoue, You, Yamamoto, Shota, Ohnishi, Yuichiro, Kishima, Haruhiko
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.03.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-019-41500-x

Cover

Loading…
Abstract The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1–4 Hz; θ: 4–8 Hz; low-α: 8–10 Hz; high-α: 10–13 Hz; β: 13–30 Hz; low-γ: 30–50 Hz) for each channel using a support vector machine as a classifier ( p  = 4.2 × 10 −2 ). The specificity of classification for each disease ranged from 86–94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases.
AbstractList The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1-4 Hz; θ: 4-8 Hz; low-α: 8-10 Hz; high-α: 10-13 Hz; β: 13-30 Hz; low-γ: 30-50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10 ). The specificity of classification for each disease ranged from 86-94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases.
The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1–4 Hz; θ: 4–8 Hz; low-α: 8–10 Hz; high-α: 10–13 Hz; β: 13–30 Hz; low-γ: 30–50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10−2). The specificity of classification for each disease ranged from 86–94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases.
The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1–4 Hz; θ: 4–8 Hz; low-α: 8–10 Hz; high-α: 10–13 Hz; β: 13–30 Hz; low-γ: 30–50 Hz) for each channel using a support vector machine as a classifier ( p  = 4.2 × 10 −2 ). The specificity of classification for each disease ranged from 86–94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases.
The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1-4 Hz; θ: 4-8 Hz; low-α: 8-10 Hz; high-α: 10-13 Hz; β: 13-30 Hz; low-γ: 30-50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10-2). The specificity of classification for each disease ranged from 86-94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases.The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1-4 Hz; θ: 4-8 Hz; low-α: 8-10 Hz; high-α: 10-13 Hz; β: 13-30 Hz; low-γ: 30-50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10-2). The specificity of classification for each disease ranged from 86-94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases.
ArticleNumber 5057
Author Fukuma, Ryohei
Aoe, Jo
Kobayashi, Maki
Tanaka, Masataka
Inoue, You
Ohnishi, Yuichiro
Harada, Tatsuya
Kishima, Haruhiko
Yamamoto, Shota
Yanagisawa, Takufumi
Author_xml – sequence: 1
  givenname: Jo
  orcidid: 0000-0002-2940-0740
  surname: Aoe
  fullname: Aoe, Jo
  organization: Osaka University Institute for Advanced Co-Creation Studies
– sequence: 2
  givenname: Ryohei
  surname: Fukuma
  fullname: Fukuma, Ryohei
  organization: Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 3
  givenname: Takufumi
  surname: Yanagisawa
  fullname: Yanagisawa, Takufumi
  email: tyanagisawa@nsurg.med.osaka-u.ac.jp
  organization: Osaka University Institute for Advanced Co-Creation Studies, Department of Neurosurgery, Osaka University Graduate School of Medicine, JST PRESTO
– sequence: 4
  givenname: Tatsuya
  surname: Harada
  fullname: Harada, Tatsuya
  email: harada@mi.t.u-tokyo.ac.jp
  organization: Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, RIKEN
– sequence: 5
  givenname: Masataka
  surname: Tanaka
  fullname: Tanaka, Masataka
  organization: Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 6
  givenname: Maki
  surname: Kobayashi
  fullname: Kobayashi, Maki
  organization: Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 7
  givenname: You
  surname: Inoue
  fullname: Inoue, You
  organization: Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 8
  givenname: Shota
  surname: Yamamoto
  fullname: Yamamoto, Shota
  organization: Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 9
  givenname: Yuichiro
  surname: Ohnishi
  fullname: Ohnishi, Yuichiro
  organization: Department of Neurosurgery, Osaka University Graduate School of Medicine
– sequence: 10
  givenname: Haruhiko
  orcidid: 0000-0002-9041-2337
  surname: Kishima
  fullname: Kishima, Haruhiko
  organization: Department of Neurosurgery, Osaka University Graduate School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30911028$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha2KqlDKC3SBLLFhE-rfxN4goRGllai6aRddWY5zE0wz9mAnQN--nhmglAXe-Er3O0dH97xHOyEGQOgjJSeUcPUpCyq1qgjVVZkIqe7foD1GhKwYZ2zn2byLDnK-JuVJpgXV79AuJ5pSwtQe-nU2T3FpJ-9w5-0QYvYZxx4HmFMc4-CdHcsmg82Q8Zx9GPC38wuc_RDsmPGdn66wxR3AaqMpdIDpLqbfH9DbvhBw8PDvo5-fz38svlSX3y--Ls4uKycaMVW2a0uYntdALYXGOcVt09SdZrJTSrDa8U4yqgiQvgelBdFt20LbdNZy2bd8H51ufVdzu4TOQZhKCrNKfmnTHxOtN_9vgr8yQ7w1teBck7oYHD8YpHgzQ57M0mcH42gDxDkbRnWjtGRKF_ToBXod57Q-xIZqBJNMFurweaKnKI9XL4DaAi7FnBP0xvmpdBDXAf1oKDHrjs22Y1M6NpuOzX2RshfSR_dXRXwrygUOA6R_sV9R_QUYCLsE
CitedBy_id crossref_primary_10_1016_j_bbrc_2020_03_141
crossref_primary_10_1016_j_neunet_2023_12_009
crossref_primary_10_5351_KJAS_2024_37_2_139
crossref_primary_10_1088_1741_2552_ac23bf
crossref_primary_10_1140_epjs_s11734_025_01587_y
crossref_primary_10_3390_biomimetics8050442
crossref_primary_10_3390_ijerph191811708
crossref_primary_10_18699_SSMJ20230311
crossref_primary_10_1038_s41598_024_75370_9
crossref_primary_10_3389_fnins_2023_1183391
crossref_primary_10_1016_j_procbio_2022_12_011
crossref_primary_10_1007_s13205_020_02342_x
crossref_primary_10_1038_s41598_024_70304_x
crossref_primary_10_1007_s00521_021_06105_4
crossref_primary_10_1016_j_neuroimage_2023_120142
crossref_primary_10_1093_bib_bbaa310
crossref_primary_10_4018_IJNCR_2020010103
crossref_primary_10_1088_1741_2552_ac64c4
crossref_primary_10_3389_fpsyg_2024_1114811
crossref_primary_10_1016_j_artmed_2020_101924
crossref_primary_10_1007_s11571_022_09897_w
crossref_primary_10_1142_S012906572550011X
crossref_primary_10_1055_s_0040_1715838
crossref_primary_10_1142_S0129065720500562
crossref_primary_10_1186_s40560_020_00452_5
crossref_primary_10_1016_j_jpain_2024_104523
crossref_primary_10_3390_s22239311
Cites_doi 10.1016/j.compbiomed.2007.12.005
10.1016/j.neuroimage.2007.03.066
10.1038/nature14539
10.1142/S0129065712500116
10.1001/jama.2016.17216
10.1016/j.eswa.2005.04.011
10.1088/2057-1976/2/3/035003
10.1109/CISP.2008.595
10.1016/j.cmpb.2010.11.014
10.1016/j.compmedimag.2007.10.003
10.1016/S0920-1211(01)00195-4
10.1016/j.neuron.2013.10.017
10.3390/a2030925
10.1007/s00521-016-2276-x
10.1016/j.jneumeth.2003.10.009
10.1007/s41019-016-0011-3
10.1162/jocn.1993.5.2.162
10.1111/j.1440-1819.2006.01510.x
10.1016/j.acra.2008.09.015
10.1111/j.1528-1157.1999.tb00800.x
10.1097/01.WNP.0000158947.68733.51
10.1007/s10916-008-9145-9
10.1016/j.knosys.2013.02.014
10.1016/j.tics.2015.08.016
10.1109/TBME.2015.2422378
10.1093/brain/awt316
10.1109/TMI.2016.2553401
10.1038/sj.sc.3101543
10.1093/brain/awm319
10.1038/nature21056
10.1016/j.jneumeth.2005.12.005
10.1158/1078-0432.CCR-17-2236
10.1109/ISCE.2011.5973888
10.1109/ACC.2000.877006
10.1007/11861898_41
10.1155/2015/370194
10.3389/fnagi.2017.00003
10.1109/ICASSP.2017.7952651
10.1007/978-0-387-39940-9_565
10.1109/CRV.2015.25
10.1016/j.compbiomed.2017.09.017
10.1109/ICCV.2015.123
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-019-41500-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (Proquest)
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC6433906
30911028
10_1038_s41598_019_41500_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Health, Labour and Welfare (Ministry of Health, Labour and Welfare, Japan)
  grantid: 29200801
  funderid: https://doi.org/10.13039/501100003478
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: Brain/MINDS
  funderid: https://doi.org/10.13039/100009619
– fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: PRESTO (15654740)
  funderid: https://doi.org/10.13039/501100002241
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: JP17H06032; JP15H05710
  funderid: https://doi.org/10.13039/501100001691
– fundername: ;
  grantid: Brain/MINDS
– fundername: ;
  grantid: 29200801
– fundername: ;
  grantid: PRESTO (15654740)
– fundername: ;
  grantid: JP17H06032; JP15H05710
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-adb091f36e1a1e7cc83a776d925d88426c3d52180e0ffe89409bbbeb7daa35fb3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 13:59:06 EDT 2025
Fri Jul 11 15:45:28 EDT 2025
Fri Jul 25 10:03:58 EDT 2025
Thu Apr 03 07:06:24 EDT 2025
Tue Jul 01 03:08:31 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Fri Feb 21 02:38:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-adb091f36e1a1e7cc83a776d925d88426c3d52180e0ffe89409bbbeb7daa35fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9041-2337
0000-0002-2940-0740
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-019-41500-x
PMID 30911028
PQID 2197742525
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433906
proquest_miscellaneous_2197895289
proquest_journals_2197742525
pubmed_primary_30911028
crossref_citationtrail_10_1038_s41598_019_41500_x
crossref_primary_10_1038_s41598_019_41500_x
springer_journals_10_1038_s41598_019_41500_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-25
PublicationDateYYYYMMDD 2019-03-25
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References de Jongh, de Munck, Gonçalves, Ossenblok (CR30) 2005; 22
Andrzejak (CR40) 2001; 44
CR39
CR38
CR37
Arimura, Magome, Yamashita, Yamamoto (CR2) 2009; 2
Khayati, Vafadust, Towhidkhah, Nabavi (CR9) 2008; 38
Aslan, Bozdemir, Şahin, Oğulata, Erol (CR3) 2008; 32
CR33
Dale, Sereno (CR46) 1993; 5
Esteva (CR23) 2017; 542
Wheless (CR28) 1999; 40
Pettersen, Devor, Ulbert, Dale, Einevoll (CR42) 2006; 154
Siuly, Zhang (CR1) 2016; 1
Khayati, Vafadust, Towhidkhah, Nabavi (CR10) 2008; 32
CR8
Varon, Caicedo, Testelmans, Buyse, Huffel (CR18) 2015; 62
CR49
Stokes, Wolff, Spaak (CR31) 2015; 19
Sheikhani, Behnam, Mohammadi, Noroozian, Golabi (CR11) 2008; 1
Hassan, Haque (CR17) 2016; 2
CR43
CR41
Klöppel (CR5) 2008; 131
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR56) 2014; 15
Güler, Übeyli, Güler (CR4) 2005; 29
Pedregosa (CR52) 2011; 12
Siuly, Wen (CR27) 2011; 104
Lopes da Silva (CR32) 2013; 80
Acharya, Sree, Chattopadhyay, Suri (CR16) 2012; 22
CR14
Gulshan (CR24) 2016; 316
Dubbelink (CR29) 2014; 137
CR12
CR55
CR54
CR53
CR51
Hamou (CR6) 2011; 6
Fan, Chang, Hsieh, Wang, Lin (CR57) 2008; 9
Demšar (CR36) 2006; 7
Matsuoka, Uno, Kasai, Koyama, Kim (CR47) 2006; 60
LeCun, Bengio, Hinton (CR19) 2015; 521
Bajaj, Guo, Sengur, Siuly, Alcin (CR15) 2017; 28
Gil, Johnsson (CR7) 2009; 9
Sharon, Hämäläinen, Tootell, Halgren, Belliveau (CR45) 2007; 36
CR26
Delorme, Makeig (CR48) 2004; 134
CR25
Kitajima (CR13) 2009; 16
CR22
CR21
CR20
Acharya, Vinitha Sree, Swapna, Martis, Suri (CR34) 2013; 45
Greenspan, Ginneken, Summers (CR44) 2016; 35
Tran, Boord, Middleton, Craig (CR35) 2004; 42
Tokui, Oono, Hido, Clayton (CR50) 2015; 5
UR Acharya (41500_CR16) 2012; 22
A Hamou (41500_CR6) 2011; 6
KH Pettersen (41500_CR42) 2006; 154
41500_CR33
H Arimura (41500_CR2) 2009; 2
R-E Fan (41500_CR57) 2008; 9
41500_CR37
41500_CR38
41500_CR39
LY Siuly (41500_CR27) 2011; 104
RG Andrzejak (41500_CR40) 2001; 44
A Sheikhani (41500_CR11) 2008; 1
K Matsuoka (41500_CR47) 2006; 60
C Varon (41500_CR18) 2015; 62
41500_CR8
41500_CR41
A de Jongh (41500_CR30) 2005; 22
Y Tran (41500_CR35) 2004; 42
41500_CR43
41500_CR49
S Tokui (41500_CR50) 2015; 5
S Klöppel (41500_CR5) 2008; 131
J Demšar (41500_CR36) 2006; 7
MG Stokes (41500_CR31) 2015; 19
F Pedregosa (41500_CR52) 2011; 12
S Siuly (41500_CR1) 2016; 1
AM Dale (41500_CR46) 1993; 5
41500_CR51
V Gulshan (41500_CR24) 2016; 316
41500_CR53
41500_CR54
41500_CR55
41500_CR12
Y LeCun (41500_CR19) 2015; 521
41500_CR14
N Srivastava (41500_CR56) 2014; 15
NF Güler (41500_CR4) 2005; 29
R Khayati (41500_CR9) 2008; 38
O Dubbelink (41500_CR29) 2014; 137
A Esteva (41500_CR23) 2017; 542
F Lopes da Silva (41500_CR32) 2013; 80
AR Hassan (41500_CR17) 2016; 2
UR Acharya (41500_CR34) 2013; 45
A Delorme (41500_CR48) 2004; 134
D Gil (41500_CR7) 2009; 9
M Kitajima (41500_CR13) 2009; 16
D Sharon (41500_CR45) 2007; 36
41500_CR20
K Aslan (41500_CR3) 2008; 32
41500_CR21
41500_CR22
41500_CR25
V Bajaj (41500_CR15) 2017; 28
41500_CR26
H Greenspan (41500_CR44) 2016; 35
R Khayati (41500_CR10) 2008; 32
JW Wheless (41500_CR28) 1999; 40
References_xml – ident: CR22
– volume: 38
  start-page: 379
  year: 2008
  end-page: 390
  ident: CR9
  article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.12.005
– volume: 36
  start-page: 1225
  year: 2007
  end-page: 1235
  ident: CR45
  article-title: The advantage of combining MEG and EEG: comparison to fMRI in focally-stimulated visual cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.03.066
– ident: CR49
– ident: CR39
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR36
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: CR51
– volume: 9
  start-page: 63
  year: 2009
  end-page: 71
  ident: CR7
  article-title: Diagnosing Parkinson by using artificial neural networks and support vector machines
  publication-title: Glob. J. Comput. Sci. Technol.
– ident: CR12
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR56
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J Mach Learn Res
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR52
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR19
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 22
  start-page: 1250011
  year: 2012
  ident: CR16
  article-title: Automated diagnosis of normal and alcoholic eeg signals
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065712500116
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR24
  article-title: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– ident: CR54
– ident: CR8
– ident: CR25
– volume: 29
  start-page: 506
  year: 2005
  end-page: 514
  ident: CR4
  article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.011
– volume: 2
  start-page: 035003
  year: 2016
  ident: CR17
  article-title: Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/2/3/035003
– volume: 1
  start-page: 207
  year: 2008
  end-page: 212
  ident: CR11
  article-title: Connectivity Analysis of Quantitative Electroencephalogram Background Activity in Autism Disorders with Short Time Fourier Transform and Coherence Values
  publication-title: In 2008 Congress on Image and Signal Processing
  doi: 10.1109/CISP.2008.595
– ident: CR21
– volume: 104
  start-page: 358
  year: 2011
  end-page: 372
  ident: CR27
  article-title: Clustering technique-based least square support vector machine for EEG signal classification
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.11.014
– volume: 32
  start-page: 124
  year: 2008
  end-page: 133
  ident: CR10
  article-title: A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.10.003
– volume: 44
  start-page: 129
  year: 2001
  end-page: 140
  ident: CR40
  article-title: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy
  publication-title: Epilepsy Res.
  doi: 10.1016/S0920-1211(01)00195-4
– volume: 6
  start-page: 90
  year: 2011
  end-page: 99
  ident: CR6
  article-title: Cluster Analysis of MR Imaging in Alzheimer’s Disease using Decision Tree Refinement
  publication-title: Int. J. Artif. Intell.
– volume: 80
  start-page: 1112
  year: 2013
  end-page: 1128
  ident: CR32
  article-title: EEG and MEG: Relevance to Neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.017
– volume: 2
  start-page: 925
  year: 2009
  end-page: 952
  ident: CR2
  article-title: Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images
  publication-title: Algorithms
  doi: 10.3390/a2030925
– volume: 28
  start-page: 3717
  year: 2017
  end-page: 3723
  ident: CR15
  article-title: A hybrid method based on time–frequency images for classification of alcohol and control EEG signals
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2276-x
– ident: CR26
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: CR48
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 9
  start-page: 1871
  year: 2008
  end-page: 1874
  ident: CR57
  article-title: LIBLINEAR: A library for large linear classification
  publication-title: J. Mach. Learn. Res.
– ident: CR43
– volume: 1
  start-page: 54
  year: 2016
  end-page: 64
  ident: CR1
  article-title: Medical Big Data: Neurological Diseases Diagnosis Through Medical Data Analysis
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-016-0011-3
– ident: CR14
– ident: CR37
– ident: CR53
– ident: CR33
– volume: 5
  start-page: 162
  year: 1993
  end-page: 176
  ident: CR46
  article-title: Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1993.5.2.162
– volume: 60
  start-page: 332
  year: 2006
  end-page: 339
  ident: CR47
  article-title: Estimation of premorbid IQ in individuals with Alzheimer’s disease using Japanese ideographic script (Kanji) compound words: Japanese version of National Adult Reading Test
  publication-title: Psychiatry Clin. Neurosci.
  doi: 10.1111/j.1440-1819.2006.01510.x
– volume: 16
  start-page: 313
  year: 2009
  end-page: 320
  ident: CR13
  article-title: Differentiation of Common Large Sellar-Suprasellar Masses: Effect of Artificial Neural Network on Radiologists’ Diagnosis Performance
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2008.09.015
– volume: 40
  start-page: 931
  year: 1999
  end-page: 941
  ident: CR28
  article-title: A Comparison of Magnetoencephalography, MRI, and V-EEG in Patients Evaluated for Epilepsy Surgery
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1999.tb00800.x
– volume: 5
  start-page: 1
  year: 2015
  end-page: 6
  ident: CR50
  article-title: Chainer: a next-generation open source framework for deep learning
  publication-title: In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS)
– volume: 22
  start-page: 153
  year: 2005
  ident: CR30
  article-title: Differences in MEG/EEG Epileptic Spike Yields Explained by Regional Differences in Signal-to-Noise Ratios
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/01.WNP.0000158947.68733.51
– volume: 32
  start-page: 403
  year: 2008
  end-page: 408
  ident: CR3
  article-title: A Radial Basis Function Neural Network Model for Classification of Epilepsy Using EEG Signals
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9145-9
– volume: 45
  start-page: 147
  year: 2013
  end-page: 165
  ident: CR34
  article-title: Automated EEG analysis of epilepsy: A review
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.02.014
– ident: CR38
– volume: 19
  start-page: 636
  year: 2015
  end-page: 638
  ident: CR31
  article-title: Decoding Rich Spatial Information with High Temporal Resolution
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2015.08.016
– volume: 62
  start-page: 2269
  year: 2015
  end-page: 2278
  ident: CR18
  article-title: A Novel Algorithm for the Automatic Detection of Sleep Apnea From Single-Lead ECG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2422378
– volume: 137
  start-page: 197
  year: 2014
  end-page: 207
  ident: CR29
  article-title: Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study
  publication-title: Brain
  doi: 10.1093/brain/awt316
– volume: 35
  start-page: 1153
  year: 2016
  end-page: 1159
  ident: CR44
  article-title: Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2553401
– volume: 42
  start-page: 73
  year: 2004
  end-page: 79
  ident: CR35
  article-title: Levels of brain wave activity (8-13 Hz) in persons with spinal cord injury
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101543
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: CR5
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– ident: CR55
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: CR23
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: CR41
– volume: 154
  start-page: 116
  year: 2006
  end-page: 133
  ident: CR42
  article-title: Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.12.005
– ident: CR20
– volume: 22
  start-page: 1250011
  year: 2012
  ident: 41500_CR16
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065712500116
– ident: 41500_CR37
– ident: 41500_CR21
  doi: 10.1158/1078-0432.CCR-17-2236
– ident: 41500_CR12
  doi: 10.1109/ISCE.2011.5973888
– volume: 29
  start-page: 506
  year: 2005
  ident: 41500_CR4
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.04.011
– ident: 41500_CR14
  doi: 10.1109/ACC.2000.877006
– volume: 521
  start-page: 436
  year: 2015
  ident: 41500_CR19
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 80
  start-page: 1112
  year: 2013
  ident: 41500_CR32
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.017
– volume: 28
  start-page: 3717
  year: 2017
  ident: 41500_CR15
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2276-x
– ident: 41500_CR33
  doi: 10.1007/11861898_41
– volume: 32
  start-page: 403
  year: 2008
  ident: 41500_CR3
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9145-9
– volume: 7
  start-page: 1
  year: 2006
  ident: 41500_CR36
  publication-title: J. Mach. Learn. Res.
– volume: 60
  start-page: 332
  year: 2006
  ident: 41500_CR47
  publication-title: Psychiatry Clin. Neurosci.
  doi: 10.1111/j.1440-1819.2006.01510.x
– volume: 38
  start-page: 379
  year: 2008
  ident: 41500_CR9
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.12.005
– ident: 41500_CR26
  doi: 10.1155/2015/370194
– volume: 9
  start-page: 1871
  year: 2008
  ident: 41500_CR57
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 931
  year: 1999
  ident: 41500_CR28
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1999.tb00800.x
– volume: 6
  start-page: 90
  year: 2011
  ident: 41500_CR6
  publication-title: Int. J. Artif. Intell.
– ident: 41500_CR8
  doi: 10.3389/fnagi.2017.00003
– volume: 32
  start-page: 124
  year: 2008
  ident: 41500_CR10
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.10.003
– volume: 42
  start-page: 73
  year: 2004
  ident: 41500_CR35
  publication-title: Spinal Cord
  doi: 10.1038/sj.sc.3101543
– ident: 41500_CR53
– ident: 41500_CR43
– volume: 22
  start-page: 153
  year: 2005
  ident: 41500_CR30
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/01.WNP.0000158947.68733.51
– volume: 62
  start-page: 2269
  year: 2015
  ident: 41500_CR18
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2422378
– ident: 41500_CR38
  doi: 10.1109/ICASSP.2017.7952651
– ident: 41500_CR39
– volume: 316
  start-page: 2402
  year: 2016
  ident: 41500_CR24
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– ident: 41500_CR54
– volume: 1
  start-page: 54
  year: 2016
  ident: 41500_CR1
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-016-0011-3
– volume: 9
  start-page: 63
  year: 2009
  ident: 41500_CR7
  publication-title: Glob. J. Comput. Sci. Technol.
– volume: 154
  start-page: 116
  year: 2006
  ident: 41500_CR42
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2005.12.005
– volume: 2
  start-page: 925
  year: 2009
  ident: 41500_CR2
  publication-title: Algorithms
  doi: 10.3390/a2030925
– volume: 131
  start-page: 681
  year: 2008
  ident: 41500_CR5
  publication-title: Brain
  doi: 10.1093/brain/awm319
– ident: 41500_CR51
  doi: 10.1007/978-0-387-39940-9_565
– volume: 19
  start-page: 636
  year: 2015
  ident: 41500_CR31
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2015.08.016
– volume: 44
  start-page: 129
  year: 2001
  ident: 41500_CR40
  publication-title: Epilepsy Res.
  doi: 10.1016/S0920-1211(01)00195-4
– volume: 137
  start-page: 197
  year: 2014
  ident: 41500_CR29
  publication-title: Brain
  doi: 10.1093/brain/awt316
– volume: 36
  start-page: 1225
  year: 2007
  ident: 41500_CR45
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.03.066
– volume: 45
  start-page: 147
  year: 2013
  ident: 41500_CR34
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.02.014
– volume: 2
  start-page: 035003
  year: 2016
  ident: 41500_CR17
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/2/3/035003
– volume: 5
  start-page: 162
  year: 1993
  ident: 41500_CR46
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1993.5.2.162
– volume: 134
  start-page: 9
  year: 2004
  ident: 41500_CR48
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 5
  start-page: 1
  year: 2015
  ident: 41500_CR50
  publication-title: In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS)
– ident: 41500_CR55
– ident: 41500_CR22
  doi: 10.1109/CRV.2015.25
– volume: 15
  start-page: 1929
  year: 2014
  ident: 41500_CR56
  publication-title: J Mach Learn Res
– volume: 542
  start-page: 115
  year: 2017
  ident: 41500_CR23
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 12
  start-page: 2825
  year: 2011
  ident: 41500_CR52
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 1153
  year: 2016
  ident: 41500_CR44
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2553401
– ident: 41500_CR49
– volume: 16
  start-page: 313
  year: 2009
  ident: 41500_CR13
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2008.09.015
– ident: 41500_CR41
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 1
  start-page: 207
  year: 2008
  ident: 41500_CR11
  publication-title: In 2008 Congress on Image and Signal Processing
  doi: 10.1109/CISP.2008.595
– ident: 41500_CR25
  doi: 10.1109/ICCV.2015.123
– volume: 104
  start-page: 358
  year: 2011
  ident: 41500_CR27
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.11.014
– ident: 41500_CR20
SSID ssj0000529419
Score 2.4521792
Snippet The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5057
SubjectTerms 692/617/375/178
692/617/375/1824
9/10
Brain Mapping - methods
Case-Control Studies
Computational Biology - methods
Data processing
Diagnosis
Diagnosis, Differential
Epilepsy
Epilepsy - diagnosis
Female
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Magnetoencephalography
Magnetoencephalography - methods
Male
Medical imaging
multidisciplinary
Nervous System Diseases - diagnosis
Nervous System Diseases - etiology
Neural networks
Neural Networks, Computer
Neuroimaging
Neurological diseases
Pattern recognition
Reproducibility of Results
Science
Science (multidisciplinary)
Sensitivity and Specificity
Spinal cord injuries
SummonAdditionalLinks – databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgCInLNL7LBgoSN4iWNkmTntCENiakcWLS41TlqzAJtW_re9L23-OkeZ0eEzvHURvbiX-OHRvgg0ObKWobaOOYpqLWjhovJPWeK9NYU_qURHP2vT49F98WcpEv3MacVrk5E9NB7QcX78gPcWchUqlkJT8vL2nsGhWjq7mFxkN4FEuXRedLLdR8xxKjWKJs8lsZxvXhiPYqvikrY_hTMkavt-3RHZB5N1fyn4BpskMne7CbASQ5miT-FB6E_hk8nlpK3jyHn0fr1ZDKsBI_ZdFdjGToSKpbmc85kqMyI4lZ77_I2fFXEvM4UBNJvJclhvgQlmkOUvdTpvgLOD85_vHllOb2CdQJJVbIc4tgoON1KE0ZlHOaG6Vq31TSa42W2XGPxluzwLou6AY9PWttsMobw2Vn-UvY6Yc-vAaCGKy0LnDJghS1c41RDh0zFmxdCVN1BZQbJrYu1xaPLS7-tCnGzXU7Mb5FxreJ8e11AR_nOcupssa91Acb2bR5l43trU4U8H4exv0Rgx6mD8N6otGNRL-ygFeTKOfPceRPBFgFqC0hzwSx9vb2SH_xO9XgRiDHG1YX8GmjDre_9f9VvLl_FfvwpIqqyTit5AHsrK7W4S1inpV9lxT7L--XAKU
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSyQxFH6IIngZXMdyI4K3sZhUZanUURoXBD0pOKciW42CVIvdDfrvfUkt0joKc84LlXpZ3pe8L18AjizGTC6NT0tLVcqlsql2XKTOsUKXRmcukmiuruXFLb-8E3cLkPd3YSJpP0paxmW6Z4f9nmCgCZfBspC3FJSmiBuXgnR7oPGN5Gg4VwmZK56V3f0YytQ_qs7HoE_A8jM_8kOSNMaes1X40YFGctI2cw0WfLMOy-0zkq8b8OdkNh1H6VXiWubcw4SMaxK1Kru1jXSZmAkJTPe_5Or0nATuBo4-Es5iiSbO-6dYB62blh2-Cbdnpzeji7R7MiG1vOBT9LNBAFAz6TOd-cJaxXRRSFfmwimF0dgyhwFbUU_r2qsSd3fGGG8KpzUTtWFbsNiMG78NBHFXZqxngnrBpbWlLixuxqg3Muc6rxPIeidWttMTD89aPFYxr81U1Tq-QsdX0fHVSwK_hjpPrZrGt9Z7fd9U3cyaVLjCImLNRS4SOByKcU6ERIdu_HjW2qhS4F4ygZ9tVw6fY-ifAKoSKOY6eTAIetvzJc3DfdTdRvDGSioTOO6Hw3uzvv6Lnf8z34WVPAxVytJc7MHi9Hnm9xH3TM1BHOhvc-j-4A
  priority: 102
  providerName: Springer Nature
Title Automatic diagnosis of neurological diseases using MEG signals with a deep neural network
URI https://link.springer.com/article/10.1038/s41598-019-41500-x
https://www.ncbi.nlm.nih.gov/pubmed/30911028
https://www.proquest.com/docview/2197742525
https://www.proquest.com/docview/2197895289
https://pubmed.ncbi.nlm.nih.gov/PMC6433906
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTUi8IL7JNioj8QaBJLZj5wGhUnVMlTohoFJ5ivyVMWlKx9pK23_P2U6KygbiKVJyTpw72_c73_kO4JVBnclK7dLKZDJlpTSpsoyn1lKhKq1yG4Jopifl8YxN5ny-A325o46By1tNO19PanZ5_vbq5_UHnPDv45Fx-W6JSsgfFMu9T5NnWYqYcg81k_ClHKYd3I-5vouKhVofPgl7imCi6M7R3P6abV11A4DejKP8w5kadNTRA7jfgUsyjKPhIey49hHcjeUmrx_D9-F6tQgpWomNEXZnS7JoSMhp2a2BpPPYLImPiD8l0_En4mM8kFvE79kSRaxzF6ENUrcxivwJzI7G30bHaVdaITVMsBXKQyNQaGjpcpU7YYykSojSVgW3UqLWNtSiYpeZy5rGyQqtQK2108IqRXmj6VPYbRetew4E8VmujaM8c5yVxlRKGDTaMqfLgqmiSSDvmVibLu-4L39xXgf_N5V1ZHyNjK8D4-urBF5v2lzErBv_pD7sZVP3A6jGlRiRbcELnsDLzWOcO94holq3WEcaWXG0ORN4FkW5-RxF_njwlYDYEvKGwOfl3n7Snv0I-bkR5NEqKxN40w-H3936-1_s_0c3D-Be4cdnRtOCH8Lu6nLtXiAoWukB3BFzMYC94XDydYLXj-OTz1_w7qgcDcJGwyDMhV9tjA3a
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2QvSCeBMoYCQ4QVQnthPngFCBLVvaXSHUSuUU_EqphJKF7Ir2p_hGxnlVS0VvPXuc2PPwzHjGMwAvDOpMnmgXZobKkCfShMpyEVrLUpVpFdkmiWY6SyaH_NOROFqDP_1bGJ9W2Z-JzUFtK-PvyLdQstBSiUUs3s5_hr5rlI-u9i00WrbYc2e_0WWr3-x-QPq-jOOd8cH7Sdh1FQgNT_kCl6JRRxYscZGKXGqMZCpNE5vFwkqJCsswizpNUkeLwskMHSCttdOpVYqJQjP87jVY5wxNhRGsvxvPPn8ZbnV83IxHWfc6hzK5VaOG9K_YIh9wFZSGp6sa8IJZezE7858QbaP5dm7Bzc5kJdstj92GNVfegettE8uzu_B1e7momsKvxLZ5eyc1qQrSVMrsTlbSxYFq4vPsj8l0_JH4zBHkfeJvgoki1rl5MwehyzY3_R4cXglq78OorEr3EAhafZE2jgnqBE-MyVRq0BWkTicxV3ERQNQjMTddNXPfVONH3kTVmcxbxOeI-LxBfH4awKthzryt5XEp9GZPm7yT6zo_58IAng_DKJE-zKJKVy1bGJkJ9GQDeNCScvgdQ_x4ky6AdIXIA4Cv9r06Up58b6p-o-nIMpoE8Lpnh_Nl_X8Xjy7fxTO4MTmY7uf7u7O9x7ARezalLIzFJowWv5buCVpcC_20Y3MC365asv4C6UFAMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQL0g3gQKGAlOEK0Tx7FzQKiiXVpKKw5UWk7Br9BKKFnIrmh_ja9j7DyqpaK3nj1O7Hl4ZjzjGYCXBnVmlmsXF4bKOMuliZXNeGwtE6rQKrEhiebgMN89yj7O-GwN_gxvYXxa5XAmhoPaNsbfkU9QstBSSXnKJ1WfFvF5e_pu_jP2HaR8pHVop9GxyL47-43uW_t2bxtp_SpNpztf3u_GfYeB2GQiW-CyNOrLiuUuUYkTxkimhMhtkXIrJSovwyzqN0kdrSonC3SGtNZOC6sU45Vm-N1rcF0wVJsoS2ImxvsdH0HLkqJ_p0OZnLSoK_17tsSHXjml8emqLrxg4F7M0_wnWBt04PQ23OqNV7LVcdsdWHP1XbjRtbM8uwdft5aLJpSAJbbL4DtpSVORUDOzP2NJHxFqic-4_04Odj4Qn0OCUkD8nTBRxDo3D3MQuu6y1O_D0ZUg9gGs103tHgFB-y_RxjFOHc9yYwolDDqF1Ok8zVRaRZAMSCxNX9fct9f4UYb4OpNlh_gSEV8GxJenEbwe58y7qh6XQm8OtCl7CW_Lc36M4MU4jLLpAy6qds2yg5EFR582gocdKcffMcSPN-4iECtEHgF83e_VkfrkONT_RiOSFTSP4M3ADufL-v8uHl--i-dwE-Wp_LR3uP8ENlLPpZTFKd-E9cWvpXuKptdCPws8TuDbVQvVXzO3QwI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+diagnosis+of+neurological+diseases+using+MEG+signals+with+a+deep+neural+network&rft.jtitle=Scientific+reports&rft.au=Aoe%2C+Jo&rft.au=Fukuma%2C+Ryohei&rft.au=Yanagisawa%2C+Takufumi&rft.au=Harada%2C+Tatsuya&rft.date=2019-03-25&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=5057&rft_id=info:doi/10.1038%2Fs41598-019-41500-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon