Automatic diagnosis of neurological diseases using MEG signals with a deep neural network
The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 5057 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.03.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-019-41500-x |
Cover
Loading…
Abstract | The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1–4 Hz; θ: 4–8 Hz; low-α: 8–10 Hz; high-α: 10–13 Hz; β: 13–30 Hz; low-γ: 30–50 Hz) for each channel using a support vector machine as a classifier (
p
= 4.2 × 10
−2
). The specificity of classification for each disease ranged from 86–94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases. |
---|---|
AbstractList | The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1-4 Hz; θ: 4-8 Hz; low-α: 8-10 Hz; high-α: 10-13 Hz; β: 13-30 Hz; low-γ: 30-50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10
). The specificity of classification for each disease ranged from 86-94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases. The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1–4 Hz; θ: 4–8 Hz; low-α: 8–10 Hz; high-α: 10–13 Hz; β: 13–30 Hz; low-γ: 30–50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10−2). The specificity of classification for each disease ranged from 86–94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases. The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1–4 Hz; θ: 4–8 Hz; low-α: 8–10 Hz; high-α: 10–13 Hz; β: 13–30 Hz; low-γ: 30–50 Hz) for each channel using a support vector machine as a classifier ( p = 4.2 × 10 −2 ). The specificity of classification for each disease ranged from 86–94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases. The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1-4 Hz; θ: 4-8 Hz; low-α: 8-10 Hz; high-α: 10-13 Hz; β: 13-30 Hz; low-γ: 30-50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10-2). The specificity of classification for each disease ranged from 86-94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases.The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological diseases, leading to better diagnoses. In this study, we developed MNet, a novel deep neural network to classify multiple neurological diseases using resting-state magnetoencephalography (MEG) signals. We used the MEG signals of 67 healthy subjects, 26 patients with spinal cord injury, and 140 patients with epilepsy to train and test the network using 10-fold cross-validation. The trained MNet succeeded in classifying the healthy subjects and those with the two neurological diseases with an accuracy of 70.7 ± 10.6%, which significantly exceeded the accuracy of 63.4 ± 12.7% calculated from relative powers of six frequency bands (δ: 1-4 Hz; θ: 4-8 Hz; low-α: 8-10 Hz; high-α: 10-13 Hz; β: 13-30 Hz; low-γ: 30-50 Hz) for each channel using a support vector machine as a classifier (p = 4.2 × 10-2). The specificity of classification for each disease ranged from 86-94%. Our results suggest that this technique would be useful for developing a classifier that will improve neurological diagnoses and allow high specificity in identifying diseases. |
ArticleNumber | 5057 |
Author | Fukuma, Ryohei Aoe, Jo Kobayashi, Maki Tanaka, Masataka Inoue, You Ohnishi, Yuichiro Harada, Tatsuya Kishima, Haruhiko Yamamoto, Shota Yanagisawa, Takufumi |
Author_xml | – sequence: 1 givenname: Jo orcidid: 0000-0002-2940-0740 surname: Aoe fullname: Aoe, Jo organization: Osaka University Institute for Advanced Co-Creation Studies – sequence: 2 givenname: Ryohei surname: Fukuma fullname: Fukuma, Ryohei organization: Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 3 givenname: Takufumi surname: Yanagisawa fullname: Yanagisawa, Takufumi email: tyanagisawa@nsurg.med.osaka-u.ac.jp organization: Osaka University Institute for Advanced Co-Creation Studies, Department of Neurosurgery, Osaka University Graduate School of Medicine, JST PRESTO – sequence: 4 givenname: Tatsuya surname: Harada fullname: Harada, Tatsuya email: harada@mi.t.u-tokyo.ac.jp organization: Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, RIKEN – sequence: 5 givenname: Masataka surname: Tanaka fullname: Tanaka, Masataka organization: Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 6 givenname: Maki surname: Kobayashi fullname: Kobayashi, Maki organization: Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 7 givenname: You surname: Inoue fullname: Inoue, You organization: Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 8 givenname: Shota surname: Yamamoto fullname: Yamamoto, Shota organization: Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 9 givenname: Yuichiro surname: Ohnishi fullname: Ohnishi, Yuichiro organization: Department of Neurosurgery, Osaka University Graduate School of Medicine – sequence: 10 givenname: Haruhiko orcidid: 0000-0002-9041-2337 surname: Kishima fullname: Kishima, Haruhiko organization: Department of Neurosurgery, Osaka University Graduate School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30911028$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O3DAUha2KqlDKC3SBLLFhE-rfxN4goRGllai6aRddWY5zE0wz9mAnQN--nhmglAXe-Er3O0dH97xHOyEGQOgjJSeUcPUpCyq1qgjVVZkIqe7foD1GhKwYZ2zn2byLDnK-JuVJpgXV79AuJ5pSwtQe-nU2T3FpJ-9w5-0QYvYZxx4HmFMc4-CdHcsmg82Q8Zx9GPC38wuc_RDsmPGdn66wxR3AaqMpdIDpLqbfH9DbvhBw8PDvo5-fz38svlSX3y--Ls4uKycaMVW2a0uYntdALYXGOcVt09SdZrJTSrDa8U4yqgiQvgelBdFt20LbdNZy2bd8H51ufVdzu4TOQZhKCrNKfmnTHxOtN_9vgr8yQ7w1teBck7oYHD8YpHgzQ57M0mcH42gDxDkbRnWjtGRKF_ToBXod57Q-xIZqBJNMFurweaKnKI9XL4DaAi7FnBP0xvmpdBDXAf1oKDHrjs22Y1M6NpuOzX2RshfSR_dXRXwrygUOA6R_sV9R_QUYCLsE |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2020_03_141 crossref_primary_10_1016_j_neunet_2023_12_009 crossref_primary_10_5351_KJAS_2024_37_2_139 crossref_primary_10_1088_1741_2552_ac23bf crossref_primary_10_1140_epjs_s11734_025_01587_y crossref_primary_10_3390_biomimetics8050442 crossref_primary_10_3390_ijerph191811708 crossref_primary_10_18699_SSMJ20230311 crossref_primary_10_1038_s41598_024_75370_9 crossref_primary_10_3389_fnins_2023_1183391 crossref_primary_10_1016_j_procbio_2022_12_011 crossref_primary_10_1007_s13205_020_02342_x crossref_primary_10_1038_s41598_024_70304_x crossref_primary_10_1007_s00521_021_06105_4 crossref_primary_10_1016_j_neuroimage_2023_120142 crossref_primary_10_1093_bib_bbaa310 crossref_primary_10_4018_IJNCR_2020010103 crossref_primary_10_1088_1741_2552_ac64c4 crossref_primary_10_3389_fpsyg_2024_1114811 crossref_primary_10_1016_j_artmed_2020_101924 crossref_primary_10_1007_s11571_022_09897_w crossref_primary_10_1142_S012906572550011X crossref_primary_10_1055_s_0040_1715838 crossref_primary_10_1142_S0129065720500562 crossref_primary_10_1186_s40560_020_00452_5 crossref_primary_10_1016_j_jpain_2024_104523 crossref_primary_10_3390_s22239311 |
Cites_doi | 10.1016/j.compbiomed.2007.12.005 10.1016/j.neuroimage.2007.03.066 10.1038/nature14539 10.1142/S0129065712500116 10.1001/jama.2016.17216 10.1016/j.eswa.2005.04.011 10.1088/2057-1976/2/3/035003 10.1109/CISP.2008.595 10.1016/j.cmpb.2010.11.014 10.1016/j.compmedimag.2007.10.003 10.1016/S0920-1211(01)00195-4 10.1016/j.neuron.2013.10.017 10.3390/a2030925 10.1007/s00521-016-2276-x 10.1016/j.jneumeth.2003.10.009 10.1007/s41019-016-0011-3 10.1162/jocn.1993.5.2.162 10.1111/j.1440-1819.2006.01510.x 10.1016/j.acra.2008.09.015 10.1111/j.1528-1157.1999.tb00800.x 10.1097/01.WNP.0000158947.68733.51 10.1007/s10916-008-9145-9 10.1016/j.knosys.2013.02.014 10.1016/j.tics.2015.08.016 10.1109/TBME.2015.2422378 10.1093/brain/awt316 10.1109/TMI.2016.2553401 10.1038/sj.sc.3101543 10.1093/brain/awm319 10.1038/nature21056 10.1016/j.jneumeth.2005.12.005 10.1158/1078-0432.CCR-17-2236 10.1109/ISCE.2011.5973888 10.1109/ACC.2000.877006 10.1007/11861898_41 10.1155/2015/370194 10.3389/fnagi.2017.00003 10.1109/ICASSP.2017.7952651 10.1007/978-0-387-39940-9_565 10.1109/CRV.2015.25 10.1016/j.compbiomed.2017.09.017 10.1109/ICCV.2015.123 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-019-41500-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (Proquest) Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC6433906 30911028 10_1038_s41598_019_41500_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Health, Labour and Welfare (Ministry of Health, Labour and Welfare, Japan) grantid: 29200801 funderid: https://doi.org/10.13039/501100003478 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: Brain/MINDS funderid: https://doi.org/10.13039/100009619 – fundername: MEXT | Japan Science and Technology Agency (JST) grantid: PRESTO (15654740) funderid: https://doi.org/10.13039/501100002241 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: JP17H06032; JP15H05710 funderid: https://doi.org/10.13039/501100001691 – fundername: ; grantid: Brain/MINDS – fundername: ; grantid: 29200801 – fundername: ; grantid: PRESTO (15654740) – fundername: ; grantid: JP17H06032; JP15H05710 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-adb091f36e1a1e7cc83a776d925d88426c3d52180e0ffe89409bbbeb7daa35fb3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 13:59:06 EDT 2025 Fri Jul 11 15:45:28 EDT 2025 Fri Jul 25 10:03:58 EDT 2025 Thu Apr 03 07:06:24 EDT 2025 Tue Jul 01 03:08:31 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Fri Feb 21 02:38:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-adb091f36e1a1e7cc83a776d925d88426c3d52180e0ffe89409bbbeb7daa35fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9041-2337 0000-0002-2940-0740 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-019-41500-x |
PMID | 30911028 |
PQID | 2197742525 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6433906 proquest_miscellaneous_2197895289 proquest_journals_2197742525 pubmed_primary_30911028 crossref_citationtrail_10_1038_s41598_019_41500_x crossref_primary_10_1038_s41598_019_41500_x springer_journals_10_1038_s41598_019_41500_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-25 |
PublicationDateYYYYMMDD | 2019-03-25 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | de Jongh, de Munck, Gonçalves, Ossenblok (CR30) 2005; 22 Andrzejak (CR40) 2001; 44 CR39 CR38 CR37 Arimura, Magome, Yamashita, Yamamoto (CR2) 2009; 2 Khayati, Vafadust, Towhidkhah, Nabavi (CR9) 2008; 38 Aslan, Bozdemir, Şahin, Oğulata, Erol (CR3) 2008; 32 CR33 Dale, Sereno (CR46) 1993; 5 Esteva (CR23) 2017; 542 Wheless (CR28) 1999; 40 Pettersen, Devor, Ulbert, Dale, Einevoll (CR42) 2006; 154 Siuly, Zhang (CR1) 2016; 1 Khayati, Vafadust, Towhidkhah, Nabavi (CR10) 2008; 32 CR8 Varon, Caicedo, Testelmans, Buyse, Huffel (CR18) 2015; 62 CR49 Stokes, Wolff, Spaak (CR31) 2015; 19 Sheikhani, Behnam, Mohammadi, Noroozian, Golabi (CR11) 2008; 1 Hassan, Haque (CR17) 2016; 2 CR43 CR41 Klöppel (CR5) 2008; 131 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR56) 2014; 15 Güler, Übeyli, Güler (CR4) 2005; 29 Pedregosa (CR52) 2011; 12 Siuly, Wen (CR27) 2011; 104 Lopes da Silva (CR32) 2013; 80 Acharya, Sree, Chattopadhyay, Suri (CR16) 2012; 22 CR14 Gulshan (CR24) 2016; 316 Dubbelink (CR29) 2014; 137 CR12 CR55 CR54 CR53 CR51 Hamou (CR6) 2011; 6 Fan, Chang, Hsieh, Wang, Lin (CR57) 2008; 9 Demšar (CR36) 2006; 7 Matsuoka, Uno, Kasai, Koyama, Kim (CR47) 2006; 60 LeCun, Bengio, Hinton (CR19) 2015; 521 Bajaj, Guo, Sengur, Siuly, Alcin (CR15) 2017; 28 Gil, Johnsson (CR7) 2009; 9 Sharon, Hämäläinen, Tootell, Halgren, Belliveau (CR45) 2007; 36 CR26 Delorme, Makeig (CR48) 2004; 134 CR25 Kitajima (CR13) 2009; 16 CR22 CR21 CR20 Acharya, Vinitha Sree, Swapna, Martis, Suri (CR34) 2013; 45 Greenspan, Ginneken, Summers (CR44) 2016; 35 Tran, Boord, Middleton, Craig (CR35) 2004; 42 Tokui, Oono, Hido, Clayton (CR50) 2015; 5 UR Acharya (41500_CR16) 2012; 22 A Hamou (41500_CR6) 2011; 6 KH Pettersen (41500_CR42) 2006; 154 41500_CR33 H Arimura (41500_CR2) 2009; 2 R-E Fan (41500_CR57) 2008; 9 41500_CR37 41500_CR38 41500_CR39 LY Siuly (41500_CR27) 2011; 104 RG Andrzejak (41500_CR40) 2001; 44 A Sheikhani (41500_CR11) 2008; 1 K Matsuoka (41500_CR47) 2006; 60 C Varon (41500_CR18) 2015; 62 41500_CR8 41500_CR41 A de Jongh (41500_CR30) 2005; 22 Y Tran (41500_CR35) 2004; 42 41500_CR43 41500_CR49 S Tokui (41500_CR50) 2015; 5 S Klöppel (41500_CR5) 2008; 131 J Demšar (41500_CR36) 2006; 7 MG Stokes (41500_CR31) 2015; 19 F Pedregosa (41500_CR52) 2011; 12 S Siuly (41500_CR1) 2016; 1 AM Dale (41500_CR46) 1993; 5 41500_CR51 V Gulshan (41500_CR24) 2016; 316 41500_CR53 41500_CR54 41500_CR55 41500_CR12 Y LeCun (41500_CR19) 2015; 521 41500_CR14 N Srivastava (41500_CR56) 2014; 15 NF Güler (41500_CR4) 2005; 29 R Khayati (41500_CR9) 2008; 38 O Dubbelink (41500_CR29) 2014; 137 A Esteva (41500_CR23) 2017; 542 F Lopes da Silva (41500_CR32) 2013; 80 AR Hassan (41500_CR17) 2016; 2 UR Acharya (41500_CR34) 2013; 45 A Delorme (41500_CR48) 2004; 134 D Gil (41500_CR7) 2009; 9 M Kitajima (41500_CR13) 2009; 16 D Sharon (41500_CR45) 2007; 36 41500_CR20 K Aslan (41500_CR3) 2008; 32 41500_CR21 41500_CR22 41500_CR25 V Bajaj (41500_CR15) 2017; 28 41500_CR26 H Greenspan (41500_CR44) 2016; 35 R Khayati (41500_CR10) 2008; 32 JW Wheless (41500_CR28) 1999; 40 |
References_xml | – ident: CR22 – volume: 38 start-page: 379 year: 2008 end-page: 390 ident: CR9 article-title: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and markov random field model publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.12.005 – volume: 36 start-page: 1225 year: 2007 end-page: 1235 ident: CR45 article-title: The advantage of combining MEG and EEG: comparison to fMRI in focally-stimulated visual cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.03.066 – ident: CR49 – ident: CR39 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR36 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – ident: CR51 – volume: 9 start-page: 63 year: 2009 end-page: 71 ident: CR7 article-title: Diagnosing Parkinson by using artificial neural networks and support vector machines publication-title: Glob. J. Comput. Sci. Technol. – ident: CR12 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR56 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J Mach Learn Res – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR52 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR19 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 22 start-page: 1250011 year: 2012 ident: CR16 article-title: Automated diagnosis of normal and alcoholic eeg signals publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065712500116 – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: CR24 article-title: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – ident: CR54 – ident: CR8 – ident: CR25 – volume: 29 start-page: 506 year: 2005 end-page: 514 ident: CR4 article-title: Recurrent neural networks employing Lyapunov exponents for EEG signals classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.011 – volume: 2 start-page: 035003 year: 2016 ident: CR17 article-title: Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/2/3/035003 – volume: 1 start-page: 207 year: 2008 end-page: 212 ident: CR11 article-title: Connectivity Analysis of Quantitative Electroencephalogram Background Activity in Autism Disorders with Short Time Fourier Transform and Coherence Values publication-title: In 2008 Congress on Image and Signal Processing doi: 10.1109/CISP.2008.595 – ident: CR21 – volume: 104 start-page: 358 year: 2011 end-page: 372 ident: CR27 article-title: Clustering technique-based least square support vector machine for EEG signal classification publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2010.11.014 – volume: 32 start-page: 124 year: 2008 end-page: 133 ident: CR10 article-title: A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2007.10.003 – volume: 44 start-page: 129 year: 2001 end-page: 140 ident: CR40 article-title: The epileptic process as nonlinear deterministic dynamics in a stochastic environment: an evaluation on mesial temporal lobe epilepsy publication-title: Epilepsy Res. doi: 10.1016/S0920-1211(01)00195-4 – volume: 6 start-page: 90 year: 2011 end-page: 99 ident: CR6 article-title: Cluster Analysis of MR Imaging in Alzheimer’s Disease using Decision Tree Refinement publication-title: Int. J. Artif. Intell. – volume: 80 start-page: 1112 year: 2013 end-page: 1128 ident: CR32 article-title: EEG and MEG: Relevance to Neuroscience publication-title: Neuron doi: 10.1016/j.neuron.2013.10.017 – volume: 2 start-page: 925 year: 2009 end-page: 952 ident: CR2 article-title: Computer-Aided Diagnosis Systems for Brain Diseases in Magnetic Resonance Images publication-title: Algorithms doi: 10.3390/a2030925 – volume: 28 start-page: 3717 year: 2017 end-page: 3723 ident: CR15 article-title: A hybrid method based on time–frequency images for classification of alcohol and control EEG signals publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2276-x – ident: CR26 – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: CR48 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 9 start-page: 1871 year: 2008 end-page: 1874 ident: CR57 article-title: LIBLINEAR: A library for large linear classification publication-title: J. Mach. Learn. Res. – ident: CR43 – volume: 1 start-page: 54 year: 2016 end-page: 64 ident: CR1 article-title: Medical Big Data: Neurological Diseases Diagnosis Through Medical Data Analysis publication-title: Data Sci. Eng. doi: 10.1007/s41019-016-0011-3 – ident: CR14 – ident: CR37 – ident: CR53 – ident: CR33 – volume: 5 start-page: 162 year: 1993 end-page: 176 ident: CR46 article-title: Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1993.5.2.162 – volume: 60 start-page: 332 year: 2006 end-page: 339 ident: CR47 article-title: Estimation of premorbid IQ in individuals with Alzheimer’s disease using Japanese ideographic script (Kanji) compound words: Japanese version of National Adult Reading Test publication-title: Psychiatry Clin. Neurosci. doi: 10.1111/j.1440-1819.2006.01510.x – volume: 16 start-page: 313 year: 2009 end-page: 320 ident: CR13 article-title: Differentiation of Common Large Sellar-Suprasellar Masses: Effect of Artificial Neural Network on Radiologists’ Diagnosis Performance publication-title: Acad. Radiol. doi: 10.1016/j.acra.2008.09.015 – volume: 40 start-page: 931 year: 1999 end-page: 941 ident: CR28 article-title: A Comparison of Magnetoencephalography, MRI, and V-EEG in Patients Evaluated for Epilepsy Surgery publication-title: Epilepsia doi: 10.1111/j.1528-1157.1999.tb00800.x – volume: 5 start-page: 1 year: 2015 end-page: 6 ident: CR50 article-title: Chainer: a next-generation open source framework for deep learning publication-title: In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS) – volume: 22 start-page: 153 year: 2005 ident: CR30 article-title: Differences in MEG/EEG Epileptic Spike Yields Explained by Regional Differences in Signal-to-Noise Ratios publication-title: J. Clin. Neurophysiol. doi: 10.1097/01.WNP.0000158947.68733.51 – volume: 32 start-page: 403 year: 2008 end-page: 408 ident: CR3 article-title: A Radial Basis Function Neural Network Model for Classification of Epilepsy Using EEG Signals publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9145-9 – volume: 45 start-page: 147 year: 2013 end-page: 165 ident: CR34 article-title: Automated EEG analysis of epilepsy: A review publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.02.014 – ident: CR38 – volume: 19 start-page: 636 year: 2015 end-page: 638 ident: CR31 article-title: Decoding Rich Spatial Information with High Temporal Resolution publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2015.08.016 – volume: 62 start-page: 2269 year: 2015 end-page: 2278 ident: CR18 article-title: A Novel Algorithm for the Automatic Detection of Sleep Apnea From Single-Lead ECG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2422378 – volume: 137 start-page: 197 year: 2014 end-page: 207 ident: CR29 article-title: Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study publication-title: Brain doi: 10.1093/brain/awt316 – volume: 35 start-page: 1153 year: 2016 end-page: 1159 ident: CR44 article-title: Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2553401 – volume: 42 start-page: 73 year: 2004 end-page: 79 ident: CR35 article-title: Levels of brain wave activity (8-13 Hz) in persons with spinal cord injury publication-title: Spinal Cord doi: 10.1038/sj.sc.3101543 – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: CR5 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm319 – ident: CR55 – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: CR23 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – ident: CR41 – volume: 154 start-page: 116 year: 2006 end-page: 133 ident: CR42 article-title: Current-source density estimation based on inversion of electrostatic forward solution: effects of finite extent of neuronal activity and conductivity discontinuities publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.12.005 – ident: CR20 – volume: 22 start-page: 1250011 year: 2012 ident: 41500_CR16 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065712500116 – ident: 41500_CR37 – ident: 41500_CR21 doi: 10.1158/1078-0432.CCR-17-2236 – ident: 41500_CR12 doi: 10.1109/ISCE.2011.5973888 – volume: 29 start-page: 506 year: 2005 ident: 41500_CR4 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.04.011 – ident: 41500_CR14 doi: 10.1109/ACC.2000.877006 – volume: 521 start-page: 436 year: 2015 ident: 41500_CR19 publication-title: Nature doi: 10.1038/nature14539 – volume: 80 start-page: 1112 year: 2013 ident: 41500_CR32 publication-title: Neuron doi: 10.1016/j.neuron.2013.10.017 – volume: 28 start-page: 3717 year: 2017 ident: 41500_CR15 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2276-x – ident: 41500_CR33 doi: 10.1007/11861898_41 – volume: 32 start-page: 403 year: 2008 ident: 41500_CR3 publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9145-9 – volume: 7 start-page: 1 year: 2006 ident: 41500_CR36 publication-title: J. Mach. Learn. Res. – volume: 60 start-page: 332 year: 2006 ident: 41500_CR47 publication-title: Psychiatry Clin. Neurosci. doi: 10.1111/j.1440-1819.2006.01510.x – volume: 38 start-page: 379 year: 2008 ident: 41500_CR9 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.12.005 – ident: 41500_CR26 doi: 10.1155/2015/370194 – volume: 9 start-page: 1871 year: 2008 ident: 41500_CR57 publication-title: J. Mach. Learn. Res. – volume: 40 start-page: 931 year: 1999 ident: 41500_CR28 publication-title: Epilepsia doi: 10.1111/j.1528-1157.1999.tb00800.x – volume: 6 start-page: 90 year: 2011 ident: 41500_CR6 publication-title: Int. J. Artif. Intell. – ident: 41500_CR8 doi: 10.3389/fnagi.2017.00003 – volume: 32 start-page: 124 year: 2008 ident: 41500_CR10 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2007.10.003 – volume: 42 start-page: 73 year: 2004 ident: 41500_CR35 publication-title: Spinal Cord doi: 10.1038/sj.sc.3101543 – ident: 41500_CR53 – ident: 41500_CR43 – volume: 22 start-page: 153 year: 2005 ident: 41500_CR30 publication-title: J. Clin. Neurophysiol. doi: 10.1097/01.WNP.0000158947.68733.51 – volume: 62 start-page: 2269 year: 2015 ident: 41500_CR18 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2422378 – ident: 41500_CR38 doi: 10.1109/ICASSP.2017.7952651 – ident: 41500_CR39 – volume: 316 start-page: 2402 year: 2016 ident: 41500_CR24 publication-title: JAMA doi: 10.1001/jama.2016.17216 – ident: 41500_CR54 – volume: 1 start-page: 54 year: 2016 ident: 41500_CR1 publication-title: Data Sci. Eng. doi: 10.1007/s41019-016-0011-3 – volume: 9 start-page: 63 year: 2009 ident: 41500_CR7 publication-title: Glob. J. Comput. Sci. Technol. – volume: 154 start-page: 116 year: 2006 ident: 41500_CR42 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2005.12.005 – volume: 2 start-page: 925 year: 2009 ident: 41500_CR2 publication-title: Algorithms doi: 10.3390/a2030925 – volume: 131 start-page: 681 year: 2008 ident: 41500_CR5 publication-title: Brain doi: 10.1093/brain/awm319 – ident: 41500_CR51 doi: 10.1007/978-0-387-39940-9_565 – volume: 19 start-page: 636 year: 2015 ident: 41500_CR31 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2015.08.016 – volume: 44 start-page: 129 year: 2001 ident: 41500_CR40 publication-title: Epilepsy Res. doi: 10.1016/S0920-1211(01)00195-4 – volume: 137 start-page: 197 year: 2014 ident: 41500_CR29 publication-title: Brain doi: 10.1093/brain/awt316 – volume: 36 start-page: 1225 year: 2007 ident: 41500_CR45 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.03.066 – volume: 45 start-page: 147 year: 2013 ident: 41500_CR34 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.02.014 – volume: 2 start-page: 035003 year: 2016 ident: 41500_CR17 publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/2/3/035003 – volume: 5 start-page: 162 year: 1993 ident: 41500_CR46 publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1993.5.2.162 – volume: 134 start-page: 9 year: 2004 ident: 41500_CR48 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 5 start-page: 1 year: 2015 ident: 41500_CR50 publication-title: In Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS) – ident: 41500_CR55 – ident: 41500_CR22 doi: 10.1109/CRV.2015.25 – volume: 15 start-page: 1929 year: 2014 ident: 41500_CR56 publication-title: J Mach Learn Res – volume: 542 start-page: 115 year: 2017 ident: 41500_CR23 publication-title: Nature doi: 10.1038/nature21056 – volume: 12 start-page: 2825 year: 2011 ident: 41500_CR52 publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 1153 year: 2016 ident: 41500_CR44 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2553401 – ident: 41500_CR49 – volume: 16 start-page: 313 year: 2009 ident: 41500_CR13 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2008.09.015 – ident: 41500_CR41 doi: 10.1016/j.compbiomed.2017.09.017 – volume: 1 start-page: 207 year: 2008 ident: 41500_CR11 publication-title: In 2008 Congress on Image and Signal Processing doi: 10.1109/CISP.2008.595 – ident: 41500_CR25 doi: 10.1109/ICCV.2015.123 – volume: 104 start-page: 358 year: 2011 ident: 41500_CR27 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2010.11.014 – ident: 41500_CR20 |
SSID | ssj0000529419 |
Score | 2.4521792 |
Snippet | The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5057 |
SubjectTerms | 692/617/375/178 692/617/375/1824 9/10 Brain Mapping - methods Case-Control Studies Computational Biology - methods Data processing Diagnosis Diagnosis, Differential Epilepsy Epilepsy - diagnosis Female Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Magnetoencephalography Magnetoencephalography - methods Male Medical imaging multidisciplinary Nervous System Diseases - diagnosis Nervous System Diseases - etiology Neural networks Neural Networks, Computer Neuroimaging Neurological diseases Pattern recognition Reproducibility of Results Science Science (multidisciplinary) Sensitivity and Specificity Spinal cord injuries |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgCInLNL7LBgoSN4iWNkmTntCENiakcWLS41TlqzAJtW_re9L23-OkeZ0eEzvHURvbiX-OHRvgg0ObKWobaOOYpqLWjhovJPWeK9NYU_qURHP2vT49F98WcpEv3MacVrk5E9NB7QcX78gPcWchUqlkJT8vL2nsGhWjq7mFxkN4FEuXRedLLdR8xxKjWKJs8lsZxvXhiPYqvikrY_hTMkavt-3RHZB5N1fyn4BpskMne7CbASQ5miT-FB6E_hk8nlpK3jyHn0fr1ZDKsBI_ZdFdjGToSKpbmc85kqMyI4lZ77_I2fFXEvM4UBNJvJclhvgQlmkOUvdTpvgLOD85_vHllOb2CdQJJVbIc4tgoON1KE0ZlHOaG6Vq31TSa42W2XGPxluzwLou6AY9PWttsMobw2Vn-UvY6Yc-vAaCGKy0LnDJghS1c41RDh0zFmxdCVN1BZQbJrYu1xaPLS7-tCnGzXU7Mb5FxreJ8e11AR_nOcupssa91Acb2bR5l43trU4U8H4exv0Rgx6mD8N6otGNRL-ygFeTKOfPceRPBFgFqC0hzwSx9vb2SH_xO9XgRiDHG1YX8GmjDre_9f9VvLl_FfvwpIqqyTit5AHsrK7W4S1inpV9lxT7L--XAKU priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSyQxFH6IIngZXMdyI4K3sZhUZanUURoXBD0pOKciW42CVIvdDfrvfUkt0joKc84LlXpZ3pe8L18AjizGTC6NT0tLVcqlsql2XKTOsUKXRmcukmiuruXFLb-8E3cLkPd3YSJpP0paxmW6Z4f9nmCgCZfBspC3FJSmiBuXgnR7oPGN5Gg4VwmZK56V3f0YytQ_qs7HoE_A8jM_8kOSNMaes1X40YFGctI2cw0WfLMOy-0zkq8b8OdkNh1H6VXiWubcw4SMaxK1Kru1jXSZmAkJTPe_5Or0nATuBo4-Es5iiSbO-6dYB62blh2-Cbdnpzeji7R7MiG1vOBT9LNBAFAz6TOd-cJaxXRRSFfmwimF0dgyhwFbUU_r2qsSd3fGGG8KpzUTtWFbsNiMG78NBHFXZqxngnrBpbWlLixuxqg3Muc6rxPIeidWttMTD89aPFYxr81U1Tq-QsdX0fHVSwK_hjpPrZrGt9Z7fd9U3cyaVLjCImLNRS4SOByKcU6ERIdu_HjW2qhS4F4ygZ9tVw6fY-ifAKoSKOY6eTAIetvzJc3DfdTdRvDGSioTOO6Hw3uzvv6Lnf8z34WVPAxVytJc7MHi9Hnm9xH3TM1BHOhvc-j-4A priority: 102 providerName: Springer Nature |
Title | Automatic diagnosis of neurological diseases using MEG signals with a deep neural network |
URI | https://link.springer.com/article/10.1038/s41598-019-41500-x https://www.ncbi.nlm.nih.gov/pubmed/30911028 https://www.proquest.com/docview/2197742525 https://www.proquest.com/docview/2197895289 https://pubmed.ncbi.nlm.nih.gov/PMC6433906 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTUi8IL7JNioj8QaBJLZj5wGhUnVMlTohoFJ5ivyVMWlKx9pK23_P2U6KygbiKVJyTpw72_c73_kO4JVBnclK7dLKZDJlpTSpsoyn1lKhKq1yG4Jopifl8YxN5ny-A325o46By1tNO19PanZ5_vbq5_UHnPDv45Fx-W6JSsgfFMu9T5NnWYqYcg81k_ClHKYd3I-5vouKhVofPgl7imCi6M7R3P6abV11A4DejKP8w5kadNTRA7jfgUsyjKPhIey49hHcjeUmrx_D9-F6tQgpWomNEXZnS7JoSMhp2a2BpPPYLImPiD8l0_En4mM8kFvE79kSRaxzF6ENUrcxivwJzI7G30bHaVdaITVMsBXKQyNQaGjpcpU7YYykSojSVgW3UqLWNtSiYpeZy5rGyQqtQK2108IqRXmj6VPYbRetew4E8VmujaM8c5yVxlRKGDTaMqfLgqmiSSDvmVibLu-4L39xXgf_N5V1ZHyNjK8D4-urBF5v2lzErBv_pD7sZVP3A6jGlRiRbcELnsDLzWOcO94holq3WEcaWXG0ORN4FkW5-RxF_njwlYDYEvKGwOfl3n7Snv0I-bkR5NEqKxN40w-H3936-1_s_0c3D-Be4cdnRtOCH8Lu6nLtXiAoWukB3BFzMYC94XDydYLXj-OTz1_w7qgcDcJGwyDMhV9tjA3a |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2QvSCeBMoYCQ4QVQnthPngFCBLVvaXSHUSuUU_EqphJKF7Ir2p_hGxnlVS0VvPXuc2PPwzHjGMwAvDOpMnmgXZobKkCfShMpyEVrLUpVpFdkmiWY6SyaH_NOROFqDP_1bGJ9W2Z-JzUFtK-PvyLdQstBSiUUs3s5_hr5rlI-u9i00WrbYc2e_0WWr3-x-QPq-jOOd8cH7Sdh1FQgNT_kCl6JRRxYscZGKXGqMZCpNE5vFwkqJCsswizpNUkeLwskMHSCttdOpVYqJQjP87jVY5wxNhRGsvxvPPn8ZbnV83IxHWfc6hzK5VaOG9K_YIh9wFZSGp6sa8IJZezE7858QbaP5dm7Bzc5kJdstj92GNVfegettE8uzu_B1e7momsKvxLZ5eyc1qQrSVMrsTlbSxYFq4vPsj8l0_JH4zBHkfeJvgoki1rl5MwehyzY3_R4cXglq78OorEr3EAhafZE2jgnqBE-MyVRq0BWkTicxV3ERQNQjMTddNXPfVONH3kTVmcxbxOeI-LxBfH4awKthzryt5XEp9GZPm7yT6zo_58IAng_DKJE-zKJKVy1bGJkJ9GQDeNCScvgdQ_x4ky6AdIXIA4Cv9r06Up58b6p-o-nIMpoE8Lpnh_Nl_X8Xjy7fxTO4MTmY7uf7u7O9x7ARezalLIzFJowWv5buCVpcC_20Y3MC365asv4C6UFAMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQL0g3gQKGAlOEK0Tx7FzQKiiXVpKKw5UWk7Br9BKKFnIrmh_ja9j7DyqpaK3nj1O7Hl4ZjzjGYCXBnVmlmsXF4bKOMuliZXNeGwtE6rQKrEhiebgMN89yj7O-GwN_gxvYXxa5XAmhoPaNsbfkU9QstBSSXnKJ1WfFvF5e_pu_jP2HaR8pHVop9GxyL47-43uW_t2bxtp_SpNpztf3u_GfYeB2GQiW-CyNOrLiuUuUYkTxkimhMhtkXIrJSovwyzqN0kdrSonC3SGtNZOC6sU45Vm-N1rcF0wVJsoS2ImxvsdH0HLkqJ_p0OZnLSoK_17tsSHXjml8emqLrxg4F7M0_wnWBt04PQ23OqNV7LVcdsdWHP1XbjRtbM8uwdft5aLJpSAJbbL4DtpSVORUDOzP2NJHxFqic-4_04Odj4Qn0OCUkD8nTBRxDo3D3MQuu6y1O_D0ZUg9gGs103tHgFB-y_RxjFOHc9yYwolDDqF1Ok8zVRaRZAMSCxNX9fct9f4UYb4OpNlh_gSEV8GxJenEbwe58y7qh6XQm8OtCl7CW_Lc36M4MU4jLLpAy6qds2yg5EFR582gocdKcffMcSPN-4iECtEHgF83e_VkfrkONT_RiOSFTSP4M3ADufL-v8uHl--i-dwE-Wp_LR3uP8ENlLPpZTFKd-E9cWvpXuKptdCPws8TuDbVQvVXzO3QwI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+diagnosis+of+neurological+diseases+using+MEG+signals+with+a+deep+neural+network&rft.jtitle=Scientific+reports&rft.au=Aoe%2C+Jo&rft.au=Fukuma%2C+Ryohei&rft.au=Yanagisawa%2C+Takufumi&rft.au=Harada%2C+Tatsuya&rft.date=2019-03-25&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=5057&rft_id=info:doi/10.1038%2Fs41598-019-41500-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |