SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid...

Full description

Saved in:
Bibliographic Details
Published inNature microbiology Vol. 7; no. 8; pp. 1161 - 1179
Main Authors Willett, Brian J., Grove, Joe, MacLean, Oscar A., Wilkie, Craig, De Lorenzo, Giuditta, Furnon, Wilhelm, Cantoni, Diego, Scott, Sam, Logan, Nicola, Ashraf, Shirin, Manali, Maria, Szemiel, Agnieszka, Cowton, Vanessa, Vink, Elen, Harvey, William T., Davis, Chris, Asamaphan, Patawee, Smollett, Katherine, Tong, Lily, Orton, Richard, Hughes, Joseph, Holland, Poppy, Silva, Vanessa, Pascall, David J., Puxty, Kathryn, da Silva Filipe, Ana, Yebra, Gonzalo, Shaaban, Sharif, Holden, Matthew T. G., Pinto, Rute Maria, Gunson, Rory, Templeton, Kate, Murcia, Pablo R., Patel, Arvind H., Klenerman, Paul, Dunachie, Susanna, Haughney, John, Robertson, David L., Palmarini, Massimo, Ray, Surajit, Thomson, Emma C.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant. The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein.
AbstractList Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant. The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein.
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein.
Author Furnon, Wilhelm
Smollett, Katherine
Scott, Sam
Szemiel, Agnieszka
Vink, Elen
Pascall, David J.
Orton, Richard
Murcia, Pablo R.
Silva, Vanessa
Klenerman, Paul
Tong, Lily
Haughney, John
Harvey, William T.
Manali, Maria
Holden, Matthew T. G.
Robertson, David L.
MacLean, Oscar A.
Holland, Poppy
Pinto, Rute Maria
Wilkie, Craig
Templeton, Kate
Thomson, Emma C.
Asamaphan, Patawee
Palmarini, Massimo
da Silva Filipe, Ana
Patel, Arvind H.
Ray, Surajit
Gunson, Rory
Shaaban, Sharif
Hughes, Joseph
Cantoni, Diego
Puxty, Kathryn
Logan, Nicola
Grove, Joe
De Lorenzo, Giuditta
Ashraf, Shirin
Dunachie, Susanna
Davis, Chris
Cowton, Vanessa
Yebra, Gonzalo
Willett, Brian J.
Author_xml – sequence: 1
  givenname: Brian J.
  orcidid: 0000-0001-8912-3266
  surname: Willett
  fullname: Willett, Brian J.
  email: brian.willett@glasgow.ac.uk
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 2
  givenname: Joe
  orcidid: 0000-0001-5390-7579
  surname: Grove
  fullname: Grove, Joe
  email: joe.grove@glasgow.ac.uk
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 3
  givenname: Oscar A.
  surname: MacLean
  fullname: MacLean, Oscar A.
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 4
  givenname: Craig
  orcidid: 0000-0003-0805-0195
  surname: Wilkie
  fullname: Wilkie, Craig
  organization: School of Mathematics & Statistics, University of Glasgow
– sequence: 5
  givenname: Giuditta
  orcidid: 0000-0002-2736-8740
  surname: De Lorenzo
  fullname: De Lorenzo, Giuditta
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 6
  givenname: Wilhelm
  orcidid: 0000-0002-5588-4232
  surname: Furnon
  fullname: Furnon, Wilhelm
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 7
  givenname: Diego
  surname: Cantoni
  fullname: Cantoni, Diego
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 8
  givenname: Sam
  orcidid: 0000-0001-7080-8038
  surname: Scott
  fullname: Scott, Sam
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 9
  givenname: Nicola
  surname: Logan
  fullname: Logan, Nicola
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 10
  givenname: Shirin
  orcidid: 0000-0002-6468-0258
  surname: Ashraf
  fullname: Ashraf, Shirin
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 11
  givenname: Maria
  surname: Manali
  fullname: Manali, Maria
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 12
  givenname: Agnieszka
  surname: Szemiel
  fullname: Szemiel, Agnieszka
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 13
  givenname: Vanessa
  orcidid: 0000-0003-1813-7825
  surname: Cowton
  fullname: Cowton, Vanessa
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 14
  givenname: Elen
  orcidid: 0000-0001-8535-6214
  surname: Vink
  fullname: Vink, Elen
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 15
  givenname: William T.
  surname: Harvey
  fullname: Harvey, William T.
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 16
  givenname: Chris
  surname: Davis
  fullname: Davis, Chris
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 17
  givenname: Patawee
  surname: Asamaphan
  fullname: Asamaphan, Patawee
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 18
  givenname: Katherine
  surname: Smollett
  fullname: Smollett, Katherine
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 19
  givenname: Lily
  orcidid: 0000-0003-3882-3339
  surname: Tong
  fullname: Tong, Lily
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 20
  givenname: Richard
  surname: Orton
  fullname: Orton, Richard
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 21
  givenname: Joseph
  orcidid: 0000-0003-2556-2563
  surname: Hughes
  fullname: Hughes, Joseph
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 22
  givenname: Poppy
  orcidid: 0000-0001-9708-9555
  surname: Holland
  fullname: Holland, Poppy
  organization: NHS Greater Glasgow & Clyde
– sequence: 23
  givenname: Vanessa
  surname: Silva
  fullname: Silva, Vanessa
  organization: NHS Greater Glasgow & Clyde
– sequence: 24
  givenname: David J.
  orcidid: 0000-0002-7543-0860
  surname: Pascall
  fullname: Pascall, David J.
  organization: MRC Biostatistics Unit, University of Cambridge
– sequence: 25
  givenname: Kathryn
  orcidid: 0000-0002-5742-6171
  surname: Puxty
  fullname: Puxty, Kathryn
  organization: NHS Greater Glasgow & Clyde
– sequence: 26
  givenname: Ana
  orcidid: 0000-0002-9442-2903
  surname: da Silva Filipe
  fullname: da Silva Filipe, Ana
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 27
  givenname: Gonzalo
  orcidid: 0000-0002-3472-3667
  surname: Yebra
  fullname: Yebra, Gonzalo
  organization: Public Health Scotland
– sequence: 28
  givenname: Sharif
  surname: Shaaban
  fullname: Shaaban, Sharif
  organization: Public Health Scotland
– sequence: 29
  givenname: Matthew T. G.
  surname: Holden
  fullname: Holden, Matthew T. G.
  organization: Public Health Scotland, School of Medicine, University of St Andrews
– sequence: 30
  givenname: Rute Maria
  surname: Pinto
  fullname: Pinto, Rute Maria
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 31
  givenname: Rory
  surname: Gunson
  fullname: Gunson, Rory
  organization: NHS Greater Glasgow & Clyde
– sequence: 32
  givenname: Kate
  surname: Templeton
  fullname: Templeton, Kate
  organization: NHS Lothian
– sequence: 33
  givenname: Pablo R.
  orcidid: 0000-0002-4352-394X
  surname: Murcia
  fullname: Murcia, Pablo R.
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 34
  givenname: Arvind H.
  orcidid: 0000-0003-4600-2047
  surname: Patel
  fullname: Patel, Arvind H.
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 35
  givenname: Paul
  surname: Klenerman
  fullname: Klenerman, Paul
  organization: University of Oxford
– sequence: 36
  givenname: Susanna
  orcidid: 0000-0001-5665-6293
  surname: Dunachie
  fullname: Dunachie, Susanna
  organization: University of Oxford
– sequence: 39
  givenname: John
  surname: Haughney
  fullname: Haughney, John
  organization: NHS Greater Glasgow & Clyde
– sequence: 40
  givenname: David L.
  orcidid: 0000-0001-6338-0221
  surname: Robertson
  fullname: Robertson, David L.
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 41
  givenname: Massimo
  surname: Palmarini
  fullname: Palmarini, Massimo
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow
– sequence: 42
  givenname: Surajit
  orcidid: 0000-0003-3965-8136
  surname: Ray
  fullname: Ray, Surajit
  organization: School of Mathematics & Statistics, University of Glasgow
– sequence: 43
  givenname: Emma C.
  orcidid: 0000-0003-1482-0889
  surname: Thomson
  fullname: Thomson, Emma C.
  email: emma.thomson@glasgow.ac.uk
  organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow, NHS Greater Glasgow & Clyde, London School of Hygiene and Tropical Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35798890$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJadI0f6CLIuimG7WyZL02hTD0BYGQpO1W3JE0GQVbnkp2wvz7yp28mkU2kuB-53Cuzmu0l4YUEHrb0I8N5fpTaRshW0IZI7RpWk7UC3TAqNBEMCX3Hr330VEpV5TSRjIptXyF9rlQRmtDD9DZxfH5BVkMvwnDp310eUg4Fgz17PspBRyKg03A15AjpBHfxHE9T6EbQw4eu9B1OKQxb_EGxvUNbN-glyvoSji6vQ_Rr69ffi6-k5PTbz8WxyfEtaodCXC3UkYqp7mUEkArLWjwS2DgtYcll94YtpLOt5KBE95RxRSTvub2hht-iD7vfDfTsg_ezSGgs5sce8hbO0C0_09SXNvL4doaLphQbTX4cGuQhz9TKKPtY5n3gRSGqVgmtVKNUZpV9P0T9GqYcqrrVcrUDXgrZurd40T3Ue5-uwJ6B9RvLiWHlXVxhDEOc8DY2YbauVu769bWbu2_bq2qUvZEeuf-rIjvRKXC6TLkh9jPqP4Cm9K1Wg
CitedBy_id crossref_primary_10_1038_s41597_024_04182_3
crossref_primary_10_1371_journal_ppat_1012763
crossref_primary_10_3390_ijms26020745
crossref_primary_10_1186_s12985_023_02186_w
crossref_primary_10_1016_j_isci_2023_108299
crossref_primary_10_3390_ijms24098156
crossref_primary_10_1038_s41598_023_31369_2
crossref_primary_10_1016_j_vaccine_2023_12_043
crossref_primary_10_1038_s41551_023_01094_2
crossref_primary_10_3390_vaccines10122167
crossref_primary_10_1038_s42003_023_04784_4
crossref_primary_10_1371_journal_pone_0284187
crossref_primary_10_3390_v15020321
crossref_primary_10_1098_rsif_2023_0187
crossref_primary_10_1038_s41467_024_48104_8
crossref_primary_10_1128_jvi_00828_23
crossref_primary_10_1136_bmjmed_2022_000468
crossref_primary_10_1371_journal_pbio_3002982
crossref_primary_10_3389_fpubh_2023_1145138
crossref_primary_10_3390_ijms232315136
crossref_primary_10_3389_fimmu_2023_1220600
crossref_primary_10_1016_j_csbj_2024_05_037
crossref_primary_10_7554_eLife_89801
crossref_primary_10_1016_j_jiph_2022_10_004
crossref_primary_10_1038_s41598_025_92254_8
crossref_primary_10_1016_j_mcpro_2024_100805
crossref_primary_10_1371_journal_ppat_1012757
crossref_primary_10_3389_fimmu_2023_1135815
crossref_primary_10_1038_s41467_024_45075_8
crossref_primary_10_1371_journal_ppat_1012755
crossref_primary_10_3390_vaccines11101568
crossref_primary_10_1088_1755_1315_1408_1_012014
crossref_primary_10_1093_evolut_qpae106
crossref_primary_10_1016_j_jinf_2023_05_019
crossref_primary_10_1038_s41541_022_00594_7
crossref_primary_10_1073_pnas_2407437121
crossref_primary_10_1016_j_antiviral_2023_105744
crossref_primary_10_1128_jvi_01140_22
crossref_primary_10_1021_acs_molpharmaceut_4c00165
crossref_primary_10_1038_s41590_024_02052_z
crossref_primary_10_3389_fimmu_2023_1296148
crossref_primary_10_1016_j_medj_2023_12_004
crossref_primary_10_1007_s11033_024_09799_6
crossref_primary_10_1016_j_vaccine_2023_12_036
crossref_primary_10_3390_v16111798
crossref_primary_10_1016_j_jbc_2023_104886
crossref_primary_10_1016_j_puhe_2024_03_009
crossref_primary_10_1016_j_micpath_2023_106460
crossref_primary_10_1016_j_ebiom_2023_104753
crossref_primary_10_1038_s41467_024_47451_w
crossref_primary_10_1016_j_xcrm_2023_101084
crossref_primary_10_7759_cureus_57008
crossref_primary_10_1016_j_carbon_2023_118058
crossref_primary_10_1080_15240657_2023_2275527
crossref_primary_10_1001_jamanetworkopen_2024_7822
crossref_primary_10_1016_j_heliyon_2024_e31392
crossref_primary_10_1371_journal_pbio_3002767
crossref_primary_10_1038_s41467_022_33911_8
crossref_primary_10_1007_s12325_023_02754_0
crossref_primary_10_1186_s12985_024_02566_w
crossref_primary_10_1016_j_cell_2024_12_015
crossref_primary_10_1016_j_fhj_2024_100023
crossref_primary_10_3390_vaccines12080887
crossref_primary_10_3390_ijms241311173
crossref_primary_10_1038_s41579_022_00841_7
crossref_primary_10_1186_s13578_023_01070_y
crossref_primary_10_1111_apt_17661
crossref_primary_10_3389_fcell_2023_1290876
crossref_primary_10_3389_fimmu_2023_1200456
crossref_primary_10_1093_bib_bbae535
crossref_primary_10_1111_irv_13340
crossref_primary_10_3389_fpubh_2023_1191377
crossref_primary_10_3390_cimb45020112
crossref_primary_10_1038_s41598_023_44668_5
crossref_primary_10_1128_msphere_00812_23
crossref_primary_10_17816_clinpract322036
crossref_primary_10_3390_v16020184
crossref_primary_10_1080_22221751_2023_2195020
crossref_primary_10_1038_s41467_023_41109_9
crossref_primary_10_1080_21645515_2024_2384192
crossref_primary_10_1038_s41564_023_01588_4
crossref_primary_10_1186_s12985_023_02137_5
crossref_primary_10_3390_ijms24031923
crossref_primary_10_1128_spectrum_04194_22
crossref_primary_10_1016_j_siny_2023_101429
crossref_primary_10_1186_s40635_023_00567_7
crossref_primary_10_3390_v15010167
crossref_primary_10_3390_microorganisms11082039
crossref_primary_10_3390_vaccines12111245
crossref_primary_10_1016_j_isci_2022_105044
crossref_primary_10_1016_j_meegid_2023_105480
crossref_primary_10_1186_s40478_022_01426_4
crossref_primary_10_1371_journal_ppat_1012846
crossref_primary_10_1021_acs_biochem_4c00535
crossref_primary_10_3390_vaccines12010034
crossref_primary_10_3390_vaccines12121451
crossref_primary_10_1080_07391102_2023_2202247
crossref_primary_10_1080_21645515_2024_2410579
crossref_primary_10_3389_fimmu_2024_1383612
crossref_primary_10_3724_abbs_2023129
crossref_primary_10_1371_journal_pone_0309645
crossref_primary_10_1038_s41420_024_01966_9
crossref_primary_10_1016_j_biopha_2023_114863
crossref_primary_10_1016_j_antiviral_2024_106006
crossref_primary_10_1073_pnas_2308655120
crossref_primary_10_1038_s41421_023_00534_2
crossref_primary_10_1016_j_cels_2023_11_001
crossref_primary_10_1016_j_omtm_2024_101325
crossref_primary_10_1007_s10730_024_09530_9
crossref_primary_10_1038_s41586_024_08511_9
crossref_primary_10_1093_nsr_nwae206
crossref_primary_10_1016_j_tcb_2023_06_005
crossref_primary_10_1128_spectrum_05131_22
crossref_primary_10_3390_v15071551
crossref_primary_10_3390_v16091491
crossref_primary_10_1016_j_vaccine_2025_126785
crossref_primary_10_3390_v16101556
crossref_primary_10_1073_pnas_2303546120
crossref_primary_10_1371_journal_pone_0284372
crossref_primary_10_1038_s41598_022_24170_0
crossref_primary_10_1093_cid_ciae381
crossref_primary_10_1016_j_omtn_2023_03_013
crossref_primary_10_3390_v16060984
crossref_primary_10_1016_j_vaccine_2023_05_051
crossref_primary_10_1371_journal_pcbi_1010721
crossref_primary_10_1136_rmdopen_2022_002650
crossref_primary_10_1371_journal_pone_0282624
crossref_primary_10_3390_microorganisms13020311
crossref_primary_10_1128_msphere_00338_24
crossref_primary_10_3390_vaccines11010058
crossref_primary_10_1055_a_2173_0277
crossref_primary_10_1038_s41586_023_06487_6
crossref_primary_10_1080_21645515_2024_2432105
crossref_primary_10_3390_vaccines10101658
crossref_primary_10_1001_jamanetworkopen_2023_5755
crossref_primary_10_1016_j_scitotenv_2024_177449
crossref_primary_10_1093_ve_vead081
crossref_primary_10_1016_j_vaccine_2024_05_028
crossref_primary_10_3390_biomedicines12071614
crossref_primary_10_1007_s10822_023_00534_0
crossref_primary_10_1073_pnas_2212577120
crossref_primary_10_1186_s12985_023_01977_5
crossref_primary_10_2174_0118715265279242240216114548
crossref_primary_10_1186_s13000_023_01306_y
crossref_primary_10_3389_fimmu_2024_1420304
crossref_primary_10_1007_s00228_023_03517_0
crossref_primary_10_1016_j_antiviral_2023_105655
crossref_primary_10_3390_v16010069
crossref_primary_10_1016_j_jri_2023_103798
crossref_primary_10_1111_ped_15777
crossref_primary_10_1016_j_mran_2023_100280
crossref_primary_10_1098_rsob_230349
crossref_primary_10_1186_s12865_024_00625_z
crossref_primary_10_1186_s13578_023_01154_9
crossref_primary_10_3389_fbinf_2024_1397968
crossref_primary_10_3390_jcm12237245
crossref_primary_10_1038_s41467_024_48098_3
crossref_primary_10_1016_j_ebiom_2024_105361
crossref_primary_10_1134_S0006350923050202
crossref_primary_10_1371_journal_ppat_1010870
crossref_primary_10_1016_j_ebiom_2023_104545
crossref_primary_10_1016_j_isci_2023_106582
crossref_primary_10_3390_v14122728
crossref_primary_10_1016_j_ebiom_2023_104669
crossref_primary_10_1016_j_vaccine_2023_09_051
crossref_primary_10_1038_s41591_024_02949_0
crossref_primary_10_1017_S0950268823000821
crossref_primary_10_3390_vaccines10122111
crossref_primary_10_1093_ve_vead075
crossref_primary_10_1371_journal_pone_0301330
crossref_primary_10_1186_s12951_022_01687_0
crossref_primary_10_1016_j_antiviral_2024_105820
crossref_primary_10_1126_science_adg6605
crossref_primary_10_3390_jcm12010283
crossref_primary_10_1038_s41564_024_01878_5
crossref_primary_10_1016_j_heliyon_2024_e29574
crossref_primary_10_3390_v15091937
crossref_primary_10_1002_jmv_28577
crossref_primary_10_3390_microorganisms11030717
crossref_primary_10_1007_s13318_023_00826_8
crossref_primary_10_1016_j_isci_2024_109363
crossref_primary_10_1016_j_xcrm_2022_100850
crossref_primary_10_1016_j_ijid_2023_02_020
crossref_primary_10_3390_ijms241814140
crossref_primary_10_3390_v16020254
crossref_primary_10_1016_j_xcrp_2023_101346
crossref_primary_10_1371_journal_ppat_1012365
crossref_primary_10_1016_j_xagr_2023_100264
crossref_primary_10_7717_peerj_16964
crossref_primary_10_1039_D3AN00802A
crossref_primary_10_1016_j_eclinm_2023_102249
crossref_primary_10_1371_journal_ppat_1012246
crossref_primary_10_1016_j_lanepe_2023_100809
crossref_primary_10_1038_s44298_024_00054_0
crossref_primary_10_1016_j_hlife_2024_03_006
crossref_primary_10_3390_microorganisms12030509
crossref_primary_10_1016_j_cmi_2023_03_007
crossref_primary_10_1093_ve_vead019
crossref_primary_10_3390_v16121877
crossref_primary_10_1016_j_ijid_2023_09_019
crossref_primary_10_1017_S0950268824000037
crossref_primary_10_1056_EVIDoa2400026
crossref_primary_10_1016_j_carbpol_2024_122605
crossref_primary_10_1172_JCI174439
crossref_primary_10_1038_s41596_023_00897_6
crossref_primary_10_1016_j_actatropica_2023_107042
crossref_primary_10_3390_ijms232012522
crossref_primary_10_1002_minf_202300120
crossref_primary_10_1016_j_isci_2024_110019
crossref_primary_10_3390_ijerph20031950
crossref_primary_10_1111_tid_14117
crossref_primary_10_1002_smsc_202300058
crossref_primary_10_1038_s41598_024_52499_1
crossref_primary_10_1016_j_isci_2023_107374
crossref_primary_10_1038_s41598_022_21674_7
crossref_primary_10_1371_journal_pone_0292099
crossref_primary_10_3389_fimmu_2023_1130539
crossref_primary_10_1016_j_bpc_2024_107387
crossref_primary_10_1186_s12964_023_01104_5
crossref_primary_10_1182_bloodadvances_2022009054
crossref_primary_10_1186_s12877_024_04680_4
crossref_primary_10_1371_journal_ppat_1010970
crossref_primary_10_1128_jvi_01853_24
crossref_primary_10_1038_s41598_023_34188_7
crossref_primary_10_1016_j_immuno_2023_100021
crossref_primary_10_1136_bmjopen_2024_085332
crossref_primary_10_1080_17425255_2023_2280221
crossref_primary_10_1172_jci_insight_179726
crossref_primary_10_1016_j_vaccine_2024_05_074
crossref_primary_10_1208_s12249_024_02778_x
crossref_primary_10_1038_s41541_023_00616_y
crossref_primary_10_1007_s10623_023_01291_9
crossref_primary_10_1080_21645515_2023_2264589
crossref_primary_10_1038_s44298_024_00017_5
crossref_primary_10_1038_s41467_023_44265_0
crossref_primary_10_1016_j_str_2024_09_008
crossref_primary_10_3389_fimmu_2022_947602
crossref_primary_10_3390_ijms232415834
crossref_primary_10_3389_fimmu_2024_1332440
crossref_primary_10_3390_v15051129
crossref_primary_10_3389_fmicb_2023_1228128
crossref_primary_10_1016_j_apsb_2023_08_023
crossref_primary_10_1093_cid_ciad124
crossref_primary_10_1016_j_ebiom_2023_104916
crossref_primary_10_1128_mbio_03129_23
crossref_primary_10_3390_pathogens12060843
crossref_primary_10_3390_v15102124
crossref_primary_10_3390_v16121892
crossref_primary_10_1016_j_jtbi_2023_111568
crossref_primary_10_2196_58018
crossref_primary_10_3390_biomedicines11020451
crossref_primary_10_1186_s12967_023_04095_6
crossref_primary_10_3390_bioengineering10080961
crossref_primary_10_1038_s41467_024_46490_7
crossref_primary_10_3390_v15091901
crossref_primary_10_1038_s41423_023_01104_y
crossref_primary_10_3390_v14092023
crossref_primary_10_1073_pnas_2410274121
crossref_primary_10_12688_wellcomeopenres_18908_1
crossref_primary_10_1038_s41551_023_01140_z
crossref_primary_10_3389_fphar_2023_1214351
crossref_primary_10_34133_research_0376
crossref_primary_10_1016_j_coviro_2023_101303
crossref_primary_10_1371_journal_ppat_1011805
crossref_primary_10_1016_j_chom_2023_10_018
crossref_primary_10_1183_16000617_0222_2024
crossref_primary_10_1371_journal_ppat_1012453
crossref_primary_10_1073_pnas_2300376120
crossref_primary_10_3390_vaccines12010103
crossref_primary_10_1371_journal_ppat_1012456
crossref_primary_10_1371_journal_pone_0307873
crossref_primary_10_3390_v15081661
crossref_primary_10_1038_s41467_024_49415_6
crossref_primary_10_1080_22221751_2023_2270071
crossref_primary_10_1016_j_antiviral_2024_106037
crossref_primary_10_1093_nsr_nwae011
crossref_primary_10_1038_s42003_022_04068_3
crossref_primary_10_31631_2073_3046_2024_23_5_4_12
crossref_primary_10_1016_j_jinf_2024_106121
crossref_primary_10_1371_journal_pone_0294262
crossref_primary_10_3389_fmicb_2024_1361197
crossref_primary_10_1016_j_lana_2024_100824
crossref_primary_10_1097_CCE_0000000000001122
crossref_primary_10_1371_journal_pcbi_1010822
crossref_primary_10_1089_vim_2024_0019
crossref_primary_10_1128_mbio_00171_23
crossref_primary_10_1016_j_cyto_2022_155971
crossref_primary_10_1016_j_ijbiomac_2023_125997
crossref_primary_10_3389_fcimb_2024_1484637
crossref_primary_10_3390_v14112535
crossref_primary_10_3390_vaccines11091502
crossref_primary_10_1097_MD_0000000000036777
crossref_primary_10_1016_j_vaccine_2023_07_056
crossref_primary_10_1016_j_jaci_2024_11_012
crossref_primary_10_1016_j_jfma_2024_08_021
crossref_primary_10_3389_fpubh_2023_1253762
crossref_primary_10_1016_j_patter_2023_100800
crossref_primary_10_1038_s41467_022_32772_5
crossref_primary_10_1080_22221751_2023_2271089
crossref_primary_10_1099_acmi_0_000513_v3
crossref_primary_10_1155_2023_8455852
crossref_primary_10_1093_database_baaf002
crossref_primary_10_1016_j_heliyon_2023_e20192
crossref_primary_10_3389_fimmu_2022_1016108
crossref_primary_10_3390_v15122300
crossref_primary_10_2217_fvl_2023_0066
crossref_primary_10_1093_immadv_ltad005
crossref_primary_10_3390_antib12040080
crossref_primary_10_3389_fimmu_2023_1045009
crossref_primary_10_1038_s41541_024_00933_w
crossref_primary_10_3390_v15081769
crossref_primary_10_2196_54383
crossref_primary_10_1038_s41598_024_62791_9
crossref_primary_10_1371_journal_ppat_1011589
crossref_primary_10_1016_j_isci_2024_108887
crossref_primary_10_1093_cid_ciad210
crossref_primary_10_32604_biocell_2025_058038
crossref_primary_10_1542_peds_2024_066190
crossref_primary_10_1016_j_ebiom_2025_105619
crossref_primary_10_1126_sciadv_ade1860
crossref_primary_10_3389_fimmu_2023_1066123
crossref_primary_10_1016_j_heliyon_2025_e42533
crossref_primary_10_1186_s12889_024_19853_4
crossref_primary_10_1038_s41598_023_43563_3
crossref_primary_10_3389_fmed_2024_1478466
crossref_primary_10_2807_1560_7917_ES_2022_27_45_2200125
crossref_primary_10_3201_eid2812_220666
crossref_primary_10_3390_vaccines11050991
crossref_primary_10_1007_s00430_022_00752_7
crossref_primary_10_1093_abt_tbad006
crossref_primary_10_1186_s12859_022_05105_y
crossref_primary_10_1016_j_coi_2023_102374
crossref_primary_10_3390_vaccines12090965
crossref_primary_10_1001_jamanetworkopen_2023_0589
crossref_primary_10_1016_j_jinf_2024_106284
crossref_primary_10_5812_jjm_139773
crossref_primary_10_1126_sciadv_ade5085
crossref_primary_10_1021_acs_jmedchem_4c00656
crossref_primary_10_3390_vaccines11071230
crossref_primary_10_1007_s43440_022_00425_5
crossref_primary_10_1038_s41541_022_00565_y
crossref_primary_10_1016_j_virol_2023_109889
crossref_primary_10_3390_v15101997
crossref_primary_10_1111_bph_16063
crossref_primary_10_1016_j_jvacx_2023_100404
crossref_primary_10_1038_s41586_023_05697_2
crossref_primary_10_1016_j_bbrc_2024_151224
crossref_primary_10_3390_v15010013
crossref_primary_10_1016_S1473_3099_23_00547_9
crossref_primary_10_1038_s43856_024_00521_y
crossref_primary_10_1128_jvi_01301_22
crossref_primary_10_1371_journal_ppat_1011206
crossref_primary_10_1038_s41467_023_37787_0
crossref_primary_10_3389_fimmu_2024_1412873
crossref_primary_10_1002_jmv_29012
crossref_primary_10_1038_s41598_023_45735_7
crossref_primary_10_1016_j_eclinm_2023_101926
crossref_primary_10_1080_19490976_2024_2342497
crossref_primary_10_3390_v15020271
crossref_primary_10_1128_mbio_02737_24
crossref_primary_10_1002_cbin_11928
crossref_primary_10_2147_JMDH_S419859
crossref_primary_10_1002_med_21941
crossref_primary_10_1016_j_aca_2022_340290
crossref_primary_10_1172_JCI160766
crossref_primary_10_1021_acs_jpcb_4c03119
crossref_primary_10_3390_vaccines10091504
crossref_primary_10_1016_j_bsheal_2024_04_001
crossref_primary_10_3390_v15030639
crossref_primary_10_1186_s12916_022_02655_z
crossref_primary_10_31857_S0006302923050277
crossref_primary_10_3390_ijms25147553
crossref_primary_10_1099_mgen_0_001013
crossref_primary_10_15252_embr_202154322
crossref_primary_10_3390_v15010243
crossref_primary_10_1371_journal_pcbi_1011795
crossref_primary_10_1038_s41598_024_84952_6
crossref_primary_10_4269_ajtmh_22_0434
crossref_primary_10_1038_s42003_024_07307_x
crossref_primary_10_1038_s43856_024_00539_2
crossref_primary_10_1002_jmv_28172
crossref_primary_10_18632_aging_205297
crossref_primary_10_1007_s11904_023_00676_8
Cites_doi 10.1093/infdis/jiaa788
10.1016/j.cell.2021.12.033
10.1056/NEJMoa2108891
10.1073/pnas.0809524106
10.1080/19420862.2021.1922134
10.1016/S1473-3099(22)00141-4
10.1101/2021.03.31.437925
10.1016/j.cell.2021.12.032
10.1038/s41586-021-04387-1
10.1038/s41586-022-04462-1
10.1016/j.cell.2020.02.052
10.1038/s41586-021-04386-2
10.1186/s13059-018-1618-7
10.1101/2021.12.15.21267805
10.7554/eLife.64508
10.1016/j.cell.2020.08.012
10.1038/s41422-022-00619-9
10.1016/j.cell.2021.10.011
10.1101/2021.12.23.21268293
10.1080/22221751.2021.2023329
10.1016/j.chom.2021.01.014
10.1016/j.bbrc.2016.04.141
10.1038/s41580-021-00418-x
10.1016/S0140-6736(21)01290-3
10.1101/2021.12.14.21267772
10.1038/s41586-021-03324-6
10.1038/s41467-021-24435-8
10.1016/S2666-5247(21)00267-6
10.1016/j.molcel.2020.04.022
10.1038/s41586-021-03491-6
10.1038/s41586-021-04352-y
10.1093/bioinformatics/bty191
10.1128/JVI.72.12.9873-9880.1998
10.1016/S0140-6736(21)01462-8
10.1038/s41586-020-2180-5
10.1016/j.celrep.2021.109292
10.1038/s41586-022-04399-5
10.1126/science.abm3425
10.1016/j.cell.2021.03.028
10.7554/eLife.61312
10.3201/eid2802.212422
10.1016/j.yexcr.2015.06.015
10.1016/j.celrep.2022.110344
10.1038/nbt0997-871
10.1101/2021.12.12.472252
10.1371/journal.pbio.3001091
10.1038/s41564-021-00908-w
10.1371/journal.ppat.1010022
10.1038/s41591-021-01377-8
10.1038/s41421-021-00256-3
10.1126/science.abl9463
10.1016/S0140-6736(21)02844-0
10.1101/2021.12.31.474653
10.1038/s41591-022-01704-7
10.1093/bioinformatics/btn199
10.1038/s41564-020-00838-z
10.3390/v14010079
10.1016/j.chom.2021.02.003
10.1038/s41586-022-04474-x
10.1093/cid/ciab999
10.1101/2021.03.22.436468
10.1093/ve/veab064
10.1371/journal.ppat.1009246
10.1128/JVI.02422-20
10.1016/j.isci.2021.102420
10.1038/s41586-021-04060-7
10.1038/s41586-022-04411-y
10.1038/s41564-021-00954-4
10.1016/j.antiviral.2022.105253
10.1056/NEJMoa2119451
10.1093/bioinformatics/btp324
10.1016/j.jinf.2020.03.058
10.1016/j.cell.2020.10.030
10.1016/j.immuni.2021.10.019
10.1371/journal.pone.0009490
10.1016/S2666-5247(21)00275-5
10.1056/NEJMoa2118946
10.1126/science.abf9302
10.1038/s41586-021-04389-z
10.1016/j.vaccine.2021.05.063
10.1126/science.abb2507
10.1016/S0140-6736(22)00152-0
10.1038/s41586-020-2349-y
10.1126/science.abn7591
10.1038/s41467-021-21006-9
10.1038/s41586-021-04385-3
10.1016/S0140-6736(20)32661-1
10.1201/9781420010404
10.1021/acs.jpcb.0c04553
10.1056/NEJMc2119236
ContentType Journal Article
Contributor Munn, Robert
Merrick, Ian
McMurray, Claire L
Menegazzo, Mirko
Fleming, Vicki M
Spellman, Karla
Boswell, Tim
Morriss, Arthur
Clark, Gemma
Blakey, Victoria
Joseph, Amelia
Workman, Trudy
Brown, Anthony
Adams, Helen
Abudahab, Khalil
Murray, Abigail
Underwood, Anthony P
Barnes, Eleanor
Berry, Louise
Holmes, Christopher W
Buchan, Sarah L
Afifi, Safiah
Duncan, Christopher
Adele, Sandra
Turtle, Lance
Moore, Shona
Patel, Amita
Nebbia, Gaia
Beer, Robert
Klenerman, Paul
de Silva, Thushan
Snell, Luke B
Mantzouratou, Anna
Raviprakash, Veena
Robson, Samuel C
Beckwith, Shaun M
Abraham, Priyanka
Willford, Nicholas J
Jones, Owen
Reynolds, Nicola
Shaw, Jessica
Deeks, Alexandra
Morgan, Sian
Edgeworth, Jonathan
Campbell, Sharon
McKenna, James P
Kitchen, Christine
Odedra, Mina
Bird, Paul W
Marchbank, Angela
Patel, Bindi
Fallon, Karlie
Price, Anna
Thomson, Laura
Fryer, Helen
John, Michaela
Whalley, Thomas
Charalampous, Themoula
Murray, Sam M
Guest, Martyn
Kele, Beatrix
Batra, Rahul
Sheriff, Nicola
Shelest, Ekaterina
Barrow, Magdalena
Williams, Lesley-Anne
Mack, Andrew
Payn
Contributor_xml – sequence: 1
  givenname: Susanna
  surname: Dunachie
  fullname: Dunachie, Susanna
– sequence: 2
  givenname: Paul
  surname: Klenerman
  fullname: Klenerman, Paul
– sequence: 3
  givenname: Eleanor
  surname: Barnes
  fullname: Barnes, Eleanor
– sequence: 4
  givenname: Anthony
  surname: Brown
  fullname: Brown, Anthony
– sequence: 5
  givenname: Sandra
  surname: Adele
  fullname: Adele, Sandra
– sequence: 6
  givenname: Barbara
  surname: Kronsteiner
  fullname: Kronsteiner, Barbara
– sequence: 7
  givenname: Sam M
  surname: Murray
  fullname: Murray, Sam M
– sequence: 8
  givenname: Priyanka
  surname: Abraham
  fullname: Abraham, Priyanka
– sequence: 9
  givenname: Alexandra
  surname: Deeks
  fullname: Deeks, Alexandra
– sequence: 10
  givenname: M Azim
  surname: Ansari
  fullname: Ansari, M Azim
– sequence: 11
  givenname: Thushan
  surname: de Silva
  fullname: de Silva, Thushan
– sequence: 12
  givenname: Lance
  surname: Turtle
  fullname: Turtle, Lance
– sequence: 13
  givenname: Shona
  surname: Moore
  fullname: Moore, Shona
– sequence: 14
  givenname: James
  surname: Austin
  fullname: Austin, James
– sequence: 15
  givenname: Alex
  surname: Richter
  fullname: Richter, Alex
– sequence: 16
  givenname: Christopher
  surname: Duncan
  fullname: Duncan, Christopher
– sequence: 17
  givenname: Rebecca
  surname: Payne
  fullname: Payne, Rebecca
– sequence: 18
  givenname: Amy
  surname: Ash
  fullname: Ash, Amy
– sequence: 19
  givenname: Cherian
  surname: Koshy
  fullname: Koshy, Cherian
– sequence: 20
  givenname: Beatrix
  surname: Kele
  fullname: Kele, Beatrix
– sequence: 21
  givenname: Teresa
  surname: Cutino-Moguel
  fullname: Cutino-Moguel, Teresa
– sequence: 22
  givenname: Derek J
  surname: Fairley
  fullname: Fairley, Derek J
– sequence: 23
  givenname: James P
  surname: McKenna
  fullname: McKenna, James P
– sequence: 24
  givenname: Tanya
  surname: Curran
  fullname: Curran, Tanya
– sequence: 25
  givenname: Helen
  surname: Adams
  fullname: Adams, Helen
– sequence: 26
  givenname: Christophe
  surname: Fraser
  fullname: Fraser, Christophe
– sequence: 27
  givenname: David
  surname: Bonsall
  fullname: Bonsall, David
– sequence: 28
  givenname: Helen
  surname: Fryer
  fullname: Fryer, Helen
– sequence: 29
  givenname: Katrina
  surname: Lythgoe
  fullname: Lythgoe, Katrina
– sequence: 30
  givenname: Laura
  surname: Thomson
  fullname: Thomson, Laura
– sequence: 31
  givenname: Tanya
  surname: Golubchik
  fullname: Golubchik, Tanya
– sequence: 32
  givenname: Abigail
  surname: Murray
  fullname: Murray, Abigail
– sequence: 33
  givenname: Dawn
  surname: Singleton
  fullname: Singleton, Dawn
– sequence: 34
  givenname: Shaun M
  surname: Beckwith
  fullname: Beckwith, Shaun M
– sequence: 35
  givenname: Anna
  surname: Mantzouratou
  fullname: Mantzouratou, Anna
– sequence: 36
  givenname: Magdalena
  surname: Barrow
  fullname: Barrow, Magdalena
– sequence: 37
  givenname: Sarah L
  surname: Buchan
  fullname: Buchan, Sarah L
– sequence: 38
  givenname: Nicola
  surname: Reynolds
  fullname: Reynolds, Nicola
– sequence: 39
  givenname: Ben
  surname: Warne
  fullname: Warne, Ben
– sequence: 40
  givenname: Joshua
  surname: Maksimovic
  fullname: Maksimovic, Joshua
– sequence: 41
  givenname: Karla
  surname: Spellman
  fullname: Spellman, Karla
– sequence: 42
  givenname: Kathryn
  surname: McCluggage
  fullname: McCluggage, Kathryn
– sequence: 43
  givenname: Michaela
  surname: John
  fullname: John, Michaela
– sequence: 44
  givenname: Robert
  surname: Beer
  fullname: Beer, Robert
– sequence: 45
  givenname: Safiah
  surname: Afifi
  fullname: Afifi, Safiah
– sequence: 46
  givenname: Sian
  surname: Morgan
  fullname: Morgan, Sian
– sequence: 47
  givenname: Andrew
  surname: Mack
  fullname: Mack, Andrew
– sequence: 48
  givenname: Angela
  surname: Marchbank
  fullname: Marchbank, Angela
– sequence: 49
  givenname: Anna
  surname: Price
  fullname: Price, Anna
– sequence: 50
  givenname: Arthur
  surname: Morriss
  fullname: Morriss, Arthur
– sequence: 51
  givenname: Catherine
  surname: Bresner
  fullname: Bresner, Catherine
– sequence: 52
  givenname: Christine
  surname: Kitchen
  fullname: Kitchen, Christine
– sequence: 53
  givenname: Ian
  surname: Merrick
  fullname: Merrick, Ian
– sequence: 54
  givenname: Joel
  surname: Southgate
  fullname: Southgate, Joel
– sequence: 55
  givenname: Martyn
  surname: Guest
  fullname: Guest, Martyn
– sequence: 56
  givenname: Owen
  surname: Jones
  fullname: Jones, Owen
– sequence: 57
  givenname: Robert
  surname: Munn
  fullname: Munn, Robert
– sequence: 58
  givenname: Thomas R
  surname: Connor
  fullname: Connor, Thomas R
– sequence: 59
  givenname: Thomas
  surname: Whalley
  fullname: Whalley, Thomas
– sequence: 60
  givenname: Trudy
  surname: Workman
  fullname: Workman, Trudy
– sequence: 61
  givenname: William
  surname: Fuller
  fullname: Fuller, William
– sequence: 62
  givenname: Amita
  surname: Patel
  fullname: Patel, Amita
– sequence: 63
  givenname: Bindi
  surname: Patel
  fullname: Patel, Bindi
– sequence: 64
  givenname: Gaia
  surname: Nebbia
  fullname: Nebbia, Gaia
– sequence: 65
  givenname: Jonathan
  surname: Edgeworth
  fullname: Edgeworth, Jonathan
– sequence: 66
  givenname: Luke B
  surname: Snell
  fullname: Snell, Luke B
– sequence: 67
  givenname: Rahul
  surname: Batra
  fullname: Batra, Rahul
– sequence: 68
  givenname: Themoula
  surname: Charalampous
  fullname: Charalampous, Themoula
– sequence: 69
  givenname: Angela H
  surname: Beckett
  fullname: Beckett, Angela H
– sequence: 70
  givenname: Ekaterina
  surname: Shelest
  fullname: Shelest, Ekaterina
– sequence: 71
  givenname: Samuel C
  surname: Robson
  fullname: Robson, Samuel C
– sequence: 72
  givenname: Anthony P
  surname: Underwood
  fullname: Underwood, Anthony P
– sequence: 73
  givenname: Ben E W
  surname: Taylor
  fullname: Taylor, Ben E W
– sequence: 74
  givenname: Corin A
  surname: Yeats
  fullname: Yeats, Corin A
– sequence: 75
  givenname: David M
  surname: Aanensen
  fullname: Aanensen, David M
– sequence: 76
  givenname: Khalil
  surname: Abudahab
  fullname: Abudahab, Khalil
– sequence: 77
  givenname: Mirko
  surname: Menegazzo
  fullname: Menegazzo, Mirko
– sequence: 78
  givenname: Amelia
  surname: Joseph
  fullname: Joseph, Amelia
– sequence: 79
  givenname: Gemma
  surname: Clark
  fullname: Clark, Gemma
– sequence: 80
  givenname: Hannah C
  surname: Howson-Wells
  fullname: Howson-Wells, Hannah C
– sequence: 81
  givenname: Louise
  surname: Berry
  fullname: Berry, Louise
– sequence: 82
  givenname: Manjinder
  surname: Khakh
  fullname: Khakh, Manjinder
– sequence: 83
  givenname: Michelle M
  surname: Lister
  fullname: Lister, Michelle M
– sequence: 84
  givenname: Tim
  surname: Boswell
  fullname: Boswell, Tim
– sequence: 85
  givenname: Vicki M
  surname: Fleming
  fullname: Fleming, Vicki M
– sequence: 86
  givenname: Christopher W
  surname: Holmes
  fullname: Holmes, Christopher W
– sequence: 87
  givenname: Claire L
  surname: McMurray
  fullname: McMurray, Claire L
– sequence: 88
  givenname: Jessica
  surname: Shaw
  fullname: Shaw, Jessica
– sequence: 89
  givenname: Julian W
  surname: Tang
  fullname: Tang, Julian W
– sequence: 90
  givenname: Karlie
  surname: Fallon
  fullname: Fallon, Karlie
– sequence: 91
  givenname: Mina
  surname: Odedra
  fullname: Odedra, Mina
– sequence: 92
  givenname: Nicholas J
  surname: Willford
  fullname: Willford, Nicholas J
– sequence: 93
  givenname: Paul W
  surname: Bird
  fullname: Bird, Paul W
– sequence: 94
  givenname: Thomas
  surname: Helmer
  fullname: Helmer, Thomas
– sequence: 95
  givenname: Lesley-Anne
  surname: Williams
  fullname: Williams, Lesley-Anne
– sequence: 96
  givenname: Nicola
  surname: Sheriff
  fullname: Sheriff, Nicola
– sequence: 97
  givenname: Sharon
  surname: Campbell
  fullname: Campbell, Sharon
– sequence: 98
  givenname: Veena
  surname: Raviprakash
  fullname: Raviprakash, Veena
– sequence: 99
  givenname: Victoria
  surname: Blakey
  fullname: Blakey, Victoria
– sequence: 100
  givenname: Christopher
  surname: Moore
  fullname: Moore, Christopher
Copyright The Author(s) 2022. corrected publication 2022
2022. The Author(s).
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022, corrected publication 2022
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022, corrected publication 2022
CorporateAuthor PITCH Consortium
The COVID-19 Genomics UK (COG-UK) Consortium
COVID-19 Genomics UK (COG-UK) Consortium
CorporateAuthor_xml – name: The COVID-19 Genomics UK (COG-UK) Consortium
– name: PITCH Consortium
– name: COVID-19 Genomics UK (COG-UK) Consortium
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41564-022-01143-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE


MEDLINE - Academic
ProQuest Central Student
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Public Health
EISSN 2058-5276
EndPage 1179
ExternalDocumentID PMC9352574
35798890
10_1038_s41564_022_01143_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: RCUK | Medical Research Council (MRC)
  grantid: MCUU1201412; MCUU1201412; MR/W02067X/1; MCUU1201412; MR/W005611/1; MR/R024758/1; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412
  funderid: https://doi.org/10.13039/501100000265
– fundername: Research Councils UK (RCUK)
  grantid: MR/V038613/1; MR/W005611/1; MR/W02067X/1; MR/W005611/1; MR/W005611/1
  funderid: https://doi.org/10.13039/501100000690
– fundername: Wellcome Trust (Wellcome)
  grantid: 107653/Z/15/A; WT109965MA; 220977/Z/20/Z
  funderid: https://doi.org/10.13039/100004440
– fundername: Health Data Research UK (HDR UK) 2021.0155)
– fundername: DH | National Institute for Health Research (NIHR)
  grantid: NIHR300791
  funderid: https://doi.org/10.13039/501100000272
– fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/R019843/1; BB/R004250/1; BB/R019843/1
  funderid: https://doi.org/10.13039/501100000268
– fundername: Health Data Research UK (HDR UK) 2021.0155
– fundername: Wellcome Trust
  grantid: WT109965MA
– fundername: Medical Research Council
  grantid: MC_UU_00002/11
– fundername: Wellcome Trust
  grantid: 107653/Z/15/A
– fundername: Wellcome Trust
  grantid: 204721/Z/16/Z
– fundername: Medical Research Council
  grantid: MC_UU_12014/12
– fundername: Medical Research Council
  grantid: MC_PC_20058
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/R019843/1
– fundername: Medical Research Council
  grantid: MC_PC_19027
– fundername: Department of Health
  grantid: NIHR300791
– fundername: Medical Research Council
  grantid: MR/W02067X/1
– fundername: ;
– fundername: ;
  grantid: BB/R019843/1; BB/R004250/1; BB/R019843/1
– fundername: ;
  grantid: MR/V038613/1; MR/W005611/1; MR/W02067X/1; MR/W005611/1; MR/W005611/1
– fundername: ;
  grantid: 107653/Z/15/A; WT109965MA; 220977/Z/20/Z
– fundername: ;
  grantid: NIHR300791
– fundername: ;
  grantid: MCUU1201412; MCUU1201412; MR/W02067X/1; MCUU1201412; MR/W005611/1; MR/R024758/1; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412
GroupedDBID 0R~
53G
8FE
8FH
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AFBBN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
AXYYD
BBNVY
BENPR
BHPHI
BKKNO
C6C
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
HZ~
LK8
M7P
NNMJJ
O9-
ODYON
R9-
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PQGLB
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-a3cf7967c83666aa87850edba2ad8dab36d992f6cd462ac5dc072726d889d9393
IEDL.DBID C6C
ISSN 2058-5276
IngestDate Thu Aug 21 18:19:14 EDT 2025
Fri Jul 11 15:04:33 EDT 2025
Sat Aug 23 13:05:49 EDT 2025
Mon Jul 21 06:03:50 EDT 2025
Tue Jul 01 00:55:57 EDT 2025
Thu Apr 24 22:58:33 EDT 2025
Fri Feb 21 02:38:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-a3cf7967c83666aa87850edba2ad8dab36d992f6cd462ac5dc072726d889d9393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7543-0860
0000-0002-4352-394X
0000-0003-0805-0195
0000-0001-5665-6293
0000-0003-1482-0889
0000-0003-1813-7825
0000-0003-3965-8136
0000-0002-2736-8740
0000-0001-8535-6214
0000-0002-5742-6171
0000-0001-9708-9555
0000-0003-3882-3339
0000-0003-4600-2047
0000-0001-5390-7579
0000-0001-6338-0221
0000-0001-8912-3266
0000-0002-9442-2903
0000-0003-2556-2563
0000-0002-5588-4232
0000-0001-7080-8038
0000-0002-3472-3667
0000-0002-6468-0258
OpenAccessLink https://www.nature.com/articles/s41564-022-01143-7
PMID 35798890
PQID 2698363452
PQPubID 2069616
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9352574
proquest_miscellaneous_2687719782
proquest_journals_2698363452
pubmed_primary_35798890
crossref_citationtrail_10_1038_s41564_022_01143_7
crossref_primary_10_1038_s41564_022_01143_7
springer_journals_10_1038_s41564_022_01143_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature microbiology
PublicationTitleAbbrev Nat Microbiol
PublicationTitleAlternate Nat Microbiol
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References VianaRRapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern AfricaNature20226036796861:CAS:528:DC%2BB38XntlWnsLk%3D35042229894285510.1038/s41586-022-04411-y
MuikANeutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human seraScience20223756786801:CAS:528:DC%2BB38XjvFKksbY%3D3504066710.1126/science.abn7591
PriceMNDehalPSArkinAPFastTree 2–approximately maximum-likelihood trees for large alignmentsPLoS ONE20105e949020224823283573610.1371/journal.pone.0009490
AngyalAT-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort studyLancet Microbe20223e21e311:CAS:528:DC%2BB38XjtFGjsLk%3D34778853857784610.1016/S2666-5247(21)00275-5
NieJFunctional comparison of SARS-CoV-2 with closely related pangolin and bat coronavirusesCell Discov.20217211:CAS:528:DC%2BB3MXotFejsbw%3D33824288802230210.1038/s41421-021-00256-3
KodakaMA new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cellsExp. Cell. Res.20153361711811:CAS:528:DC%2BC2MXhtFCkt7jI2611646710.1016/j.yexcr.2015.06.015
MengBAltered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicityNature20226037067141:CAS:528:DC%2BB38XntlGhu74%3D35104837894285610.1038/s41586-022-04474-x
ChoAAnti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccinationNature20216005175221:CAS:528:DC%2BB3MXisFWks7vI34619745867413310.1038/s41586-021-04060-7
WinstoneHThe polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2J. Virol.202195e024221:CAS:528:DC%2BB3MXhtVKisrrF33563656810411710.1128/JVI.02422-20
WrobelAGStructure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2Nat. Commun.2021121610.1038/s41467-021-21006-9
PintoDCross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibodyNature20205832902951:CAS:528:DC%2BB3cXht1Cmu7bI3242264510.1038/s41586-020-2349-y
Doria-Rose, N. A. et al. Booster of mRNA-1273 strengthens SARS-CoV-2 Omicron neutralization. Preprint at medRxivhttps://doi.org/10.1101/2021.12.15.21267805 (2021).
McCallumMN-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2Cell202118423322347.e161:CAS:528:DC%2BB3MXnsVGgtbo%3D33761326796258510.1016/j.cell.2021.03.028
KhouryDSNeutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infectionNat. Med.202127120512111:CAS:528:DC%2BB3MXhtFSktLrP3400208910.1038/s41591-021-01377-8
Wood, S. N. Generalized Additive Models. An Introduction with R (Chapman and Hall/CRC, 2006).
Basile, K. et al. Improved neutralization of the SARS-CoV-2 Omicron variant after Pfizer-BioNTech BNT162b2 COVID-19 vaccine boosting. Preprint at bioRxivhttps://doi.org/10.1101/2021.12.12.472252 (2021).
DavisCReduced neutralisation of the Delta (B. 1.617. 2) SARS-CoV-2 variant of concern following vaccinationPLoS Pathog.202117e10100221:CAS:528:DC%2BB3MXis12ktbbN34855916863907310.1371/journal.ppat.1010022
CromerDNeutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysisLancet Microbe20213e52e6134806056859256310.1016/S2666-5247(21)00267-6
VoyseyMSafety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UKLancet2021397991111:CAS:528:DC%2BB3cXisFCgt77I33306989772344510.1016/S0140-6736(20)32661-1
MengBAltered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicityNature20226037067141:CAS:528:DC%2BB38XntlGhu74%3D35104837894285610.1038/s41586-022-04474-x
StarrTNProspective mapping of viral mutations that escape antibodies used to treat COVID-19Science20213718508541:CAS:528:DC%2BB3MXkslynu74%3D33495308796321910.1126/science.abf9302
HoffmannMThe Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemicCell2022185447456.e111:CAS:528:DC%2BB38XhtVehsrs%3D3502615110.1016/j.cell.2021.12.032
Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife9, (2020).
SuzukiRAttenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variantNature20226037007051:CAS:528:DC%2BB38XmsF2kuro%3D35104835894285210.1038/s41586-022-04462-1
ZhaoHSARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cellsEmerg. Microbes Infect.2022112772831:CAS:528:DC%2BB38XhvVagurY%3D34951565877404910.1080/22221751.2021.2023329
LiHMinimap2: pairwise alignment for nucleotide sequencesBioinformatics201834309431001:CAS:528:DC%2BC1MXhtVamu73J29750242613799610.1093/bioinformatics/bty191
BragaLDrugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytiaNature202159488931:CAS:528:DC%2BB3MXhtVSrtbnN33827113761105510.1038/s41586-021-03491-6
DavisCReduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccinationPLoS Pathog.202117e10100221:CAS:528:DC%2BB3MXis12ktbbN34855916863907310.1371/journal.ppat.1010022
McCarthyKRRecurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escapeScience20213756578
GilbertPBImmune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy trialScience202237543501:CAS:528:DC%2BB38Xhtlamu70%3D3481265310.1126/science.abm3425
ZahradníkJSARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolutionNat. Microbiol.20216118811983440083510.1038/s41564-021-00954-4
DaniloskiZIdentification of required host factors for SARS-CoV-2 infection in human cellsCell2021184921051:CAS:528:DC%2BB3cXit1GqsL3L3314744510.1016/j.cell.2020.10.030
ChengSMSNeutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccinationNat. Med.2022284864891:CAS:528:DC%2BB38XkvVensbo%3D35051989894071410.1038/s41591-022-01704-7
BenvenutoDEvolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagyJ. Infect.202081e24e271:CAS:528:DC%2BB3cXhtFCjtb7L32283146719530310.1016/j.jinf.2020.03.058
AhmedSFQuadeerAAMcKayMRSARS-CoV-2 T cell responses elicited by COVID-19 vaccines or infection are expected to remain robust against OmicronViruses202214791:CAS:528:DC%2BB38XitFKqs74%3D35062283878179510.3390/v14010079
JacksonCBFarzanMChenBChoeHMechanisms of SARS-CoV-2 entry into cellsNat. Rev. Mol. Cell Biol.2022233201:CAS:528:DC%2BB3MXit1Whs7rP3461132610.1038/s41580-021-00418-x
da Silva FilipeAGenomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into ScotlandNat. Microbiol.202161121223334968110.1038/s41564-020-00838-z
RösslerARieplerLBanteDvon LaerDKimpelJSARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent personsN. Engl. J. Med.20223866987003502100510.1056/NEJMc2119236
StarrTNDeep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 bindingCell202018212951310.e201:CAS:528:DC%2BB3cXhs1yltLjP32841599741870410.1016/j.cell.2020.08.012
HoffmannMSARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitorCell20201812712801:CAS:528:DC%2BB3cXktl2qtb8%3D32142651710262710.1016/j.cell.2020.02.052
LanJStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature20205812152201:CAS:528:DC%2BB3cXoslOqtL8%3D3222517610.1038/s41586-020-2180-5
HughesECSARS-CoV-2 serosurveillance in a patient population reveals differences in virus exposure and antibody-mediated immunity according to host demography and healthcare settingJ. Infect. Dis.20212239719801:CAS:528:DC%2BB3MXnslyqtr0%3D3336784710.1093/infdis/jiaa788
GreaneyAJComprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodiesCell Host Microbe202129463476.e61:CAS:528:DC%2BB3MXjvVCrt7c%3D33592168786974810.1016/j.chom.2021.02.003
ZuffereyRNagyDMandelRJNaldiniLTronoDMultiply attenuated lentiviral vector achieves efficient gene delivery in vivoNat. Biotechnol.1997158718751:CAS:528:DyaK2sXmt1Cjs7c%3D930640210.1038/nbt0997-871
WallECAZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOCLancet20213982072091:CAS:528:DC%2BB3MXhsV2lt7rL34197809823844610.1016/S0140-6736(21)01462-8
Kim, P., Gordon, S. M., Sheehan, M. M. & Rothberg, M. B. Duration of SARS-CoV-2 natural immunity and protection against the Delta variant: a retrospective cohort study. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciab999 (2021).
LiuZIdentification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralizationCell Host Microbe2021294774881:CAS:528:DC%2BB3MXjtVWqtb4%3D33535027783983710.1016/j.chom.2021.01.014
Newman, J. et al. Neutralising antibody activity against SARS-CoV-2 variants, including Omicron, in an elderly cohort vaccinated with BNT162b2. Preprint at medRxivhttps://doi.org/10.1101/2021.12.23.21268293 (2021).
AndrewsNCovid-19 vaccine effectiveness against the Omicron (B.1.1.529) variantN. Engl. J. Med.2022386153215461:CAS:528:DC%2BB38XhtFGrsLbN3524927210.1056/NEJMoa2119451
PayneRPImmunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccineCell202118456995714.e111:CAS:528:DC%2BB3MXisVantbnM34735795851978110.1016/j.cell.2021.10.011
PeacockTPThe furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferretsNat. Microbiol.202168999091:CAS:528:DC%2BB3MXps12ltr8%3D3390731210.1038/s41564-021-00908-w
FeikinDDuration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regressionLancet20223999249441:CAS:528:DC%2BB38XltFSisbo%3D35202601886350210.1016/S0140-6736(22)00152-0
WangZmRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variantsNature20215926166221:CAS:528:DC%2BB3MXmt1ensLY%3D33567448850393810.1038/s41586-021-03324-6
Earle
TN Starr (1143_CR94) 2021; 371
CH Emmerich (1143_CR83) 2016; 474
J Lan (1143_CR86) 2020; 581
Z Daniloski (1143_CR54) 2021; 184
D Bojkova (1143_CR57) 2022; 32
EC Hughes (1143_CR79) 2021; 223
1143_CR88
AJ Greaney (1143_CR91) 2021; 12
H Winstone (1143_CR53) 2021; 95
1143_CR80
EC Wall (1143_CR4) 2021; 398
S Cele (1143_CR14) 2022; 602
A Cho (1143_CR35) 2021; 600
A Rössler (1143_CR55) 2022; 386
SJ Rihn (1143_CR72) 2021; 19
1143_CR13
D Pinto (1143_CR22) 2020; 583
1143_CR15
R Zufferey (1143_CR81) 1997; 15
1143_CR16
M Voysey (1143_CR32) 2021; 397
1143_CR17
B Meng (1143_CR25) 2021; 35
1143_CR93
N Andrews (1143_CR9) 2022; 386
PB Gilbert (1143_CR29) 2022; 375
1143_CR95
SF Ahmed (1143_CR12) 2022; 14
A Angyal (1143_CR33) 2022; 3
1143_CR10
1143_CR11
MJ Sweredoski (1143_CR87) 2008; 24
R Zufferey (1143_CR82) 1998; 72
Y Goldberg (1143_CR37) 2022; 386
B Meng (1143_CR18) 2022; 603
1143_CR68
1143_CR69
A da Silva Filipe (1143_CR73) 2021; 6
SMS Cheng (1143_CR67) 2022; 28
EC Wall (1143_CR3) 2021; 397
E Saccon (1143_CR52) 2021; 24
J Zahradník (1143_CR19) 2021; 6
TP Peacock (1143_CR24) 2021; 6
DS Khoury (1143_CR31) 2021; 27
R Abdelnabi (1143_CR43) 2022; 198
AZ Mykytyn (1143_CR45) 2021; 10
D Benvenuto (1143_CR70) 2020; 81
S Belouzard (1143_CR50) 2009; 106
D Cromer (1143_CR28) 2021; 3
B Meng (1143_CR59) 2022; 603
M McCallum (1143_CR26) 2021; 184
D Planas (1143_CR65) 2022; 602
MN Price (1143_CR90) 2010; 5
M Hoffmann (1143_CR46) 2020; 181
KA Earle (1143_CR30) 2021; 39
LG Thorne (1143_CR71) 2022; 602
1143_CR76
DL Burnett (1143_CR21) 2021; 54
H Woo (1143_CR84) 2020; 124
J Lopez Bernal (1143_CR5) 2021; 385
Z Wang (1143_CR96) 2021; 592
R Rouet (1143_CR23) 2021; 13
H Li (1143_CR89) 2018; 34
H Zhao (1143_CR58) 2022; 11
R Suzuki (1143_CR60) 2022; 603
J Zhang (1143_CR41) 2021; 374
E Cameroni (1143_CR61) 2022; 602
JM Carreño (1143_CR63) 2022; 602
G Papa (1143_CR39) 2021; 17
R Viana (1143_CR6) 2022; 603
A Muik (1143_CR62) 2022; 375
CB Jackson (1143_CR44) 2022; 23
1143_CR56
Z Liu (1143_CR85) 2021; 29
M Hoffmann (1143_CR47) 2020; 78
D Wrapp (1143_CR92) 2020; 367
1143_CR51
ND Grubaugh (1143_CR75) 2019; 20
TN Starr (1143_CR97) 2020; 182
M Kodaka (1143_CR42) 2015; 336
C Davis (1143_CR2) 2021; 17
L Braga (1143_CR40) 2021; 594
J Nie (1143_CR48) 2021; 7
C Davis (1143_CR78) 2021; 17
H Gu (1143_CR7) 2022; 28
1143_CR1
J Zhou (1143_CR77) 2022; 38
1143_CR8
1143_CR34
1143_CR36
AJ Greaney (1143_CR20) 2021; 29
M Hoffmann (1143_CR64) 2022; 185
D Feikin (1143_CR38) 2022; 399
AG Wrobel (1143_CR49) 2021; 12
RP Payne (1143_CR66) 2021; 184
KR McCarthy (1143_CR27) 2021; 375
H Li (1143_CR74) 2009; 25
36114232 - Nat Microbiol. 2022 Oct;7(10):1709. doi: 10.1038/s41564-022-01241-6.
References_xml – reference: WallECNeutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccinationLancet2021397233123331:CAS:528:DC%2BB3MXht12jtrvL34090624817504410.1016/S0140-6736(21)01290-3
– reference: StarrTNDeep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 bindingCell202018212951310.e201:CAS:528:DC%2BB3cXhs1yltLjP32841599741870410.1016/j.cell.2020.08.012
– reference: HoffmannMKleine-WeberHPöhlmannSA multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cellsMol. Cell2020787797841:CAS:528:DC%2BB3cXovVCgs7o%3D32362314719406510.1016/j.molcel.2020.04.022
– reference: DavisCReduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccinationPLoS Pathog.202117e10100221:CAS:528:DC%2BB3MXis12ktbbN34855916863907310.1371/journal.ppat.1010022
– reference: Lopez BernalJEffectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) VariantN. Engl. J. Med.20213855855943428927410.1056/NEJMoa2108891
– reference: EmmerichCHLys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signallingBiochem. Biophys. Res. Commun.20164744524611:CAS:528:DC%2BC28XnsFWrs7s%3D27133719488015010.1016/j.bbrc.2016.04.141
– reference: MykytynAZSARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage siteeLife202110e645081:CAS:528:DC%2BB3MXhslahsrvO33393462780625910.7554/eLife.64508
– reference: GrubaughNDAn amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVarGenome Biol.20192030621750632581610.1186/s13059-018-1618-7
– reference: VianaRRapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern AfricaNature20226036796861:CAS:528:DC%2BB38XntlWnsLk%3D35042229894285510.1038/s41586-022-04411-y
– reference: CromerDNeutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysisLancet Microbe20213e52e6134806056859256310.1016/S2666-5247(21)00267-6
– reference: PlanasDConsiderable escape of SARS-CoV-2 Omicron to antibody neutralizationNature20226026716751:CAS:528:DC%2BB38XjvFOktLs%3D3501619910.1038/s41586-021-04389-z
– reference: AndrewsNCovid-19 vaccine effectiveness against the Omicron (B.1.1.529) variantN. Engl. J. Med.2022386153215461:CAS:528:DC%2BB38XhtFGrsLbN3524927210.1056/NEJMoa2119451
– reference: AbdelnabiRThe omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamstersAntivir. Res.20221981052531:CAS:528:DC%2BB38Xit1CjtLY%3D3506601510.1016/j.antiviral.2022.105253
– reference: LiuZIdentification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralizationCell Host Microbe2021294774881:CAS:528:DC%2BB3MXjtVWqtb4%3D33535027783983710.1016/j.chom.2021.01.014
– reference: ZuffereyRNagyDMandelRJNaldiniLTronoDMultiply attenuated lentiviral vector achieves efficient gene delivery in vivoNat. Biotechnol.1997158718751:CAS:528:DyaK2sXmt1Cjs7c%3D930640210.1038/nbt0997-871
– reference: Report 50 – Hospitalisation Risk for Omicron Cases in England (Imperial College London, 2021).
– reference: ThorneLGEvolution of enhanced innate immune evasion by SARS-CoV-2Nature20226024874951:CAS:528:DC%2BB38XjtlSnsrw%3D3494263410.1038/s41586-021-04352-y
– reference: RouetRPotent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodiesMAbs202113192213434024246815804310.1080/19420862.2021.1922134
– reference: GilbertPBImmune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy trialScience202237543501:CAS:528:DC%2BB38Xhtlamu70%3D3481265310.1126/science.abm3425
– reference: GuHProbable transmission of SARS-CoV-2 Omicron variant in Quarantine Hotel, Hong Kong, China, November 2021Emerg. Infect. Dis.2022284604621:CAS:528:DC%2BB38XptFOjt70%3D34860154879867810.3201/eid2802.212422
– reference: ChengSMSNeutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccinationNat. Med.2022284864891:CAS:528:DC%2BB38XkvVensbo%3D35051989894071410.1038/s41591-022-01704-7
– reference: VoyseyMSafety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UKLancet2021397991111:CAS:528:DC%2BB3cXisFCgt77I33306989772344510.1016/S0140-6736(20)32661-1
– reference: da Silva FilipeAGenomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into ScotlandNat. Microbiol.202161121223334968110.1038/s41564-020-00838-z
– reference: SacconECell-type-resolved quantitative proteomics map of interferon response against SARS-CoV-2iScience2021241024201:CAS:528:DC%2BB3MXhtVaru7%2FI33898942805684310.1016/j.isci.2021.102420
– reference: Sheikh, A., Kerr, S., Woolhouse, M., McMenamin, J., Robertson, C. & EAVE II Collaborators. Severity of omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE II): a national cohort study with nested test-negative design. Lancet Infect. Dis.22, 959–966 (2022).
– reference: PayneRPImmunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccineCell202118456995714.e111:CAS:528:DC%2BB3MXisVantbnM34735795851978110.1016/j.cell.2021.10.011
– reference: FeikinDDuration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regressionLancet20223999249441:CAS:528:DC%2BB38XltFSisbo%3D35202601886350210.1016/S0140-6736(22)00152-0
– reference: WallECAZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOCLancet20213982072091:CAS:528:DC%2BB3MXhsV2lt7rL34197809823844610.1016/S0140-6736(21)01462-8
– reference: RösslerARieplerLBanteDvon LaerDKimpelJSARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent personsN. Engl. J. Med.20223866987003502100510.1056/NEJMc2119236
– reference: HoffmannMSARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitorCell20201812712801:CAS:528:DC%2BB3cXktl2qtb8%3D32142651710262710.1016/j.cell.2020.02.052
– reference: KodakaMA new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cellsExp. Cell. Res.20153361711811:CAS:528:DC%2BC2MXhtFCkt7jI2611646710.1016/j.yexcr.2015.06.015
– reference: WinstoneHThe polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2J. Virol.202195e024221:CAS:528:DC%2BB3MXhtVKisrrF33563656810411710.1128/JVI.02422-20
– reference: SweredoskiMJBaldiPPEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposureBioinformatics200824145914601:CAS:528:DC%2BD1cXnt1Slurw%3D1844301810.1093/bioinformatics/btn199
– reference: ZhangJMembrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variantScience2021374135313601:CAS:528:DC%2BB3MXislKnsb3M3469850410.1126/science.abl9463
– reference: WooHDeveloping a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membraneJ. Phys. Chem. B2020124712871371:CAS:528:DC%2BB3cXht1WmsrjK32559081734169110.1021/acs.jpcb.0c04553
– reference: McCarthyKRRecurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escapeScience20213756578
– reference: ZhaoHSARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cellsEmerg. Microbes Infect.2022112772831:CAS:528:DC%2BB38XhvVagurY%3D34951565877404910.1080/22221751.2021.2023329
– reference: Kim, P., Gordon, S. M., Sheehan, M. M. & Rothberg, M. B. Duration of SARS-CoV-2 natural immunity and protection against the Delta variant: a retrospective cohort study. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciab999 (2021).
– reference: Wood, S. N. Generalized Additive Models. An Introduction with R (Chapman and Hall/CRC, 2006).
– reference: Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Naturehttps://doi.org/10.1038/s41586-021-04386-2 (2022).
– reference: Schrodinger, L. The PyMOL molecular graphics system, Version 1.3r1 (2010).
– reference: AhmedSFQuadeerAAMcKayMRSARS-CoV-2 T cell responses elicited by COVID-19 vaccines or infection are expected to remain robust against OmicronViruses202214791:CAS:528:DC%2BB38XitFKqs74%3D35062283878179510.3390/v14010079
– reference: Doria-Rose, N. A. et al. Booster of mRNA-1273 strengthens SARS-CoV-2 Omicron neutralization. Preprint at medRxivhttps://doi.org/10.1101/2021.12.15.21267805 (2021).
– reference: DaniloskiZIdentification of required host factors for SARS-CoV-2 infection in human cellsCell2021184921051:CAS:528:DC%2BB3cXit1GqsL3L3314744510.1016/j.cell.2020.10.030
– reference: Garcia-Beltran, W. F. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cellhttps://doi.org/10.1016/j.cell.2021.12.033 (2022).
– reference: PriceMNDehalPSArkinAPFastTree 2–approximately maximum-likelihood trees for large alignmentsPLoS ONE20105e949020224823283573610.1371/journal.pone.0009490
– reference: LanJStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature20205812152201:CAS:528:DC%2BB3cXoslOqtL8%3D3222517610.1038/s41586-020-2180-5
– reference: WHO SPRP 2021 Mid-term Report – WHO Strategic Action Against COVID 19 (WHO, 2021).
– reference: BelouzardSChuVCWhittakerGRActivation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sitesProc. Natl Acad. Sci. USA2009106587158761:CAS:528:DC%2BD1MXkvFejtrY%3D19321428266006110.1073/pnas.0809524106
– reference: RihnSJA plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 researchPLoS Biol.202119e30010911:CAS:528:DC%2BB3MXls1ymsLw%3D33630831790641710.1371/journal.pbio.3001091
– reference: LiHDurbinRFast and accurate short read alignment with Burrows-Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D19451168270523410.1093/bioinformatics/btp324
– reference: WrobelAGStructure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2Nat. Commun.2021121610.1038/s41467-021-21006-9
– reference: Dicken, S. J. et al. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. Preprint at bioRxivhttps://doi.org/10.1101/2021.03.22.436468 (2021).
– reference: MengBAltered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicityNature20226037067141:CAS:528:DC%2BB38XntlGhu74%3D35104837894285610.1038/s41586-022-04474-x
– reference: NieJFunctional comparison of SARS-CoV-2 with closely related pangolin and bat coronavirusesCell Discov.20217211:CAS:528:DC%2BB3MXotFejsbw%3D33824288802230210.1038/s41421-021-00256-3
– reference: ChoAAnti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccinationNature20216005175221:CAS:528:DC%2BB3MXisFWks7vI34619745867413310.1038/s41586-021-04060-7
– reference: BurnettDLImmunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerabilityImmunity20215429082921.e61:CAS:528:DC%2BB3MXisV2lurjN34788600855407510.1016/j.immuni.2021.10.019
– reference: BojkovaDReduced interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta variant of SARS-CoV-2 isolatesCell Res.2022323193211:CAS:528:DC%2BB38XlsVChu7k%3D35064226878170910.1038/s41422-022-00619-9
– reference: MengBAltered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicityNature20226037067141:CAS:528:DC%2BB38XntlGhu74%3D35104837894285610.1038/s41586-022-04474-x
– reference: LiHMinimap2: pairwise alignment for nucleotide sequencesBioinformatics201834309431001:CAS:528:DC%2BC1MXhtVamu73J29750242613799610.1093/bioinformatics/bty191
– reference: StarrTNProspective mapping of viral mutations that escape antibodies used to treat COVID-19Science20213718508541:CAS:528:DC%2BB3MXkslynu74%3D33495308796321910.1126/science.abf9302
– reference: Basile, K. et al. Improved neutralization of the SARS-CoV-2 Omicron variant after Pfizer-BioNTech BNT162b2 COVID-19 vaccine boosting. Preprint at bioRxivhttps://doi.org/10.1101/2021.12.12.472252 (2021).
– reference: Dejnirattisai, W. et al. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancethttps://doi.org/10.1016/S0140-6736(21)02844-0 (2021).
– reference: HughesECSARS-CoV-2 serosurveillance in a patient population reveals differences in virus exposure and antibody-mediated immunity according to host demography and healthcare settingJ. Infect. Dis.20212239719801:CAS:528:DC%2BB3MXnslyqtr0%3D3336784710.1093/infdis/jiaa788
– reference: GreaneyAJComprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodiesCell Host Microbe202129463476.e61:CAS:528:DC%2BB3MXjvVCrt7c%3D33592168786974810.1016/j.chom.2021.02.003
– reference: GreaneyAJMapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodiesNat. Commun.2021121:CAS:528:DC%2BB3MXhsFGhtLfK34234131826375010.1038/s41467-021-24435-8
– reference: HoffmannMThe Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemicCell2022185447456.e111:CAS:528:DC%2BB38XhtVehsrs%3D3502615110.1016/j.cell.2021.12.032
– reference: CeleSOmicron extensively but incompletely escapes Pfizer BNT162b2 neutralizationNature20226026546561:CAS:528:DC%2BB38XjvFOktLw%3D3501619610.1038/s41586-021-04387-1
– reference: Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife9, (2020).
– reference: WangZmRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variantsNature20215926166221:CAS:528:DC%2BB3MXmt1ensLY%3D33567448850393810.1038/s41586-021-03324-6
– reference: PeacockTPThe furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferretsNat. Microbiol.202168999091:CAS:528:DC%2BB3MXps12ltr8%3D3390731210.1038/s41564-021-00908-w
– reference: EarleKAEvidence for antibody as a protective correlate for COVID-19 vaccinesVaccine202139442344281:CAS:528:DC%2BB3MXhsV2ltrrK34210573814284110.1016/j.vaccine.2021.05.063
– reference: CameroniEBroadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shiftNature20226026646701:CAS:528:DC%2BB38XjvFOktLY%3D3501619510.1038/s41586-021-04386-2
– reference: McCallum, M. et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. Preprint at bioRxivhttps://doi.org/10.1101/2021.03.31.437925 (2021).
– reference: GoldbergYProtection and waning of natural and hybrid COVID-19 immunityN. Engl. J. Med.2022386220122121:CAS:528:DC%2BB38Xit1ersLvI3561303610.1056/NEJMoa2118946
– reference: MuikANeutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human seraScience20223756786801:CAS:528:DC%2BB38XjvFKksbY%3D3504066710.1126/science.abn7591
– reference: PintoDCross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibodyNature20205832902951:CAS:528:DC%2BB3cXht1Cmu7bI3242264510.1038/s41586-020-2349-y
– reference: Newman, J. et al. Neutralising antibody activity against SARS-CoV-2 variants, including Omicron, in an elderly cohort vaccinated with BNT162b2. Preprint at medRxivhttps://doi.org/10.1101/2021.12.23.21268293 (2021).
– reference: ZahradníkJSARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolutionNat. Microbiol.20216118811983440083510.1038/s41564-021-00954-4
– reference: JacksonCBFarzanMChenBChoeHMechanisms of SARS-CoV-2 entry into cellsNat. Rev. Mol. Cell Biol.2022233201:CAS:528:DC%2BB3MXit1Whs7rP3461132610.1038/s41580-021-00418-x
– reference: ZhouJMutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airwayCell Rep.2022381103441:CAS:528:DC%2BB38XhvFGkurk%3D35093235876842810.1016/j.celrep.2022.110344
– reference: O’Toole, Á. et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol.7, (2021).
– reference: Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Naturehttps://doi.org/10.1038/s41586-021-04385-3 (2022).
– reference: SuzukiRAttenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variantNature20226037007051:CAS:528:DC%2BB38XmsF2kuro%3D35104835894285210.1038/s41586-022-04462-1
– reference: BragaLDrugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytiaNature202159488931:CAS:528:DC%2BB3MXhtVSrtbnN33827113761105510.1038/s41586-021-03491-6
– reference: PapaGFurin cleavage of SARS-CoV-2 spike promotes but is not essential for infection and cell-cell fusionPLoS Pathog.202117e10092461:CAS:528:DC%2BB3MXjs1arsLk%3D33493182786153710.1371/journal.ppat.1009246
– reference: CarreñoJMActivity of convalescent and vaccine serum against SARS-CoV-2 OmicronNature20226026826883501619710.1038/s41586-022-04399-5
– reference: DavisCReduced neutralisation of the Delta (B. 1.617. 2) SARS-CoV-2 variant of concern following vaccinationPLoS Pathog.202117e10100221:CAS:528:DC%2BB3MXis12ktbbN34855916863907310.1371/journal.ppat.1010022
– reference: Aggarwal, A. et al. SARS-CoV-2 Omicron: evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. Preprint at medRxivhttps://doi.org/10.1101/2021.12.14.21267772 (2021).
– reference: KhouryDSNeutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infectionNat. Med.202127120512111:CAS:528:DC%2BB3MXhtFSktLrP3400208910.1038/s41591-021-01377-8
– reference: AngyalAT-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort studyLancet Microbe20223e21e311:CAS:528:DC%2BB38XjtFGjsLk%3D34778853857784610.1016/S2666-5247(21)00275-5
– reference: MengBRecurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7Cell Rep.2021351092921:CAS:528:DC%2BB3MXhtlalt7bJ34166617818518810.1016/j.celrep.2021.109292
– reference: McCallumMN-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2Cell202118423322347.e161:CAS:528:DC%2BB3MXnsVGgtbo%3D33761326796258510.1016/j.cell.2021.03.028
– reference: ZuffereyRSelf-inactivating lentivirus vector for safe and efficient in vivo gene deliveryJ. Virol.199872987398801:CAS:528:DyaK1cXns1Sgs78%3D981172311049910.1128/JVI.72.12.9873-9880.1998
– reference: BenvenutoDEvolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagyJ. Infect.202081e24e271:CAS:528:DC%2BB3cXhtFCjtb7L32283146719530310.1016/j.jinf.2020.03.058
– reference: WrappDCryo-EM structure of the 2019-nCoV spike in the prefusion conformationScience2020367126012631:CAS:528:DC%2BB3cXkvFemt70%3D32075877716463710.1126/science.abb2507
– reference: Peacock, T. P. et al. The altered entry pathway and antigenic distance of the SARS-CoV-2 Omicron variant map to separate domains of spike protein. Preprint at bioRxivhttps://doi.org/10.1101/2021.12.31.474653 (2022).
– volume: 223
  start-page: 971
  year: 2021
  ident: 1143_CR79
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiaa788
– ident: 1143_CR88
– ident: 1143_CR17
  doi: 10.1016/j.cell.2021.12.033
– volume: 385
  start-page: 585
  year: 2021
  ident: 1143_CR5
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2108891
– volume: 106
  start-page: 5871
  year: 2009
  ident: 1143_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0809524106
– volume: 13
  start-page: 1922134
  year: 2021
  ident: 1143_CR23
  publication-title: MAbs
  doi: 10.1080/19420862.2021.1922134
– ident: 1143_CR68
  doi: 10.1016/S1473-3099(22)00141-4
– ident: 1143_CR93
  doi: 10.1101/2021.03.31.437925
– volume: 185
  start-page: 447
  year: 2022
  ident: 1143_CR64
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.032
– volume: 602
  start-page: 654
  year: 2022
  ident: 1143_CR14
  publication-title: Nature
  doi: 10.1038/s41586-021-04387-1
– volume: 603
  start-page: 700
  year: 2022
  ident: 1143_CR60
  publication-title: Nature
  doi: 10.1038/s41586-022-04462-1
– volume: 181
  start-page: 271
  year: 2020
  ident: 1143_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 602
  start-page: 664
  year: 2022
  ident: 1143_CR61
  publication-title: Nature
  doi: 10.1038/s41586-021-04386-2
– volume: 20
  year: 2019
  ident: 1143_CR75
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1618-7
– ident: 1143_CR1
– ident: 1143_CR16
  doi: 10.1101/2021.12.15.21267805
– volume: 10
  start-page: e64508
  year: 2021
  ident: 1143_CR45
  publication-title: eLife
  doi: 10.7554/eLife.64508
– volume: 182
  start-page: 1295
  year: 2020
  ident: 1143_CR97
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.012
– volume: 32
  start-page: 319
  year: 2022
  ident: 1143_CR57
  publication-title: Cell Res.
  doi: 10.1038/s41422-022-00619-9
– volume: 184
  start-page: 5699
  year: 2021
  ident: 1143_CR66
  publication-title: Cell
  doi: 10.1016/j.cell.2021.10.011
– ident: 1143_CR80
  doi: 10.1101/2021.12.23.21268293
– volume: 11
  start-page: 277
  year: 2022
  ident: 1143_CR58
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2021.2023329
– volume: 29
  start-page: 477
  year: 2021
  ident: 1143_CR85
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.01.014
– volume: 474
  start-page: 452
  year: 2016
  ident: 1143_CR83
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.04.141
– volume: 23
  start-page: 3
  year: 2022
  ident: 1143_CR44
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-021-00418-x
– volume: 397
  start-page: 2331
  year: 2021
  ident: 1143_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01290-3
– ident: 1143_CR10
  doi: 10.1101/2021.12.14.21267772
– volume: 592
  start-page: 616
  year: 2021
  ident: 1143_CR96
  publication-title: Nature
  doi: 10.1038/s41586-021-03324-6
– volume: 12
  year: 2021
  ident: 1143_CR91
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24435-8
– volume: 3
  start-page: e52
  year: 2021
  ident: 1143_CR28
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00267-6
– volume: 78
  start-page: 779
  year: 2020
  ident: 1143_CR47
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.04.022
– volume: 594
  start-page: 88
  year: 2021
  ident: 1143_CR40
  publication-title: Nature
  doi: 10.1038/s41586-021-03491-6
– volume: 602
  start-page: 487
  year: 2022
  ident: 1143_CR71
  publication-title: Nature
  doi: 10.1038/s41586-021-04352-y
– volume: 34
  start-page: 3094
  year: 2018
  ident: 1143_CR89
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 72
  start-page: 9873
  year: 1998
  ident: 1143_CR82
  publication-title: J. Virol.
  doi: 10.1128/JVI.72.12.9873-9880.1998
– volume: 398
  start-page: 207
  year: 2021
  ident: 1143_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)01462-8
– volume: 581
  start-page: 215
  year: 2020
  ident: 1143_CR86
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 35
  start-page: 109292
  year: 2021
  ident: 1143_CR25
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109292
– volume: 602
  start-page: 682
  year: 2022
  ident: 1143_CR63
  publication-title: Nature
  doi: 10.1038/s41586-022-04399-5
– volume: 375
  start-page: 43
  year: 2022
  ident: 1143_CR29
  publication-title: Science
  doi: 10.1126/science.abm3425
– volume: 184
  start-page: 2332
  year: 2021
  ident: 1143_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.028
– ident: 1143_CR95
  doi: 10.7554/eLife.61312
– volume: 28
  start-page: 460
  year: 2022
  ident: 1143_CR7
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2802.212422
– volume: 336
  start-page: 171
  year: 2015
  ident: 1143_CR42
  publication-title: Exp. Cell. Res.
  doi: 10.1016/j.yexcr.2015.06.015
– volume: 38
  start-page: 110344
  year: 2022
  ident: 1143_CR77
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110344
– volume: 15
  start-page: 871
  year: 1997
  ident: 1143_CR81
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0997-871
– ident: 1143_CR11
  doi: 10.1101/2021.12.12.472252
– volume: 19
  start-page: e3001091
  year: 2021
  ident: 1143_CR72
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3001091
– volume: 6
  start-page: 899
  year: 2021
  ident: 1143_CR24
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-021-00908-w
– volume: 17
  start-page: e1010022
  year: 2021
  ident: 1143_CR78
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1010022
– volume: 27
  start-page: 1205
  year: 2021
  ident: 1143_CR31
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01377-8
– volume: 7
  start-page: 21
  year: 2021
  ident: 1143_CR48
  publication-title: Cell Discov.
  doi: 10.1038/s41421-021-00256-3
– volume: 375
  start-page: 6578
  year: 2021
  ident: 1143_CR27
  publication-title: Science
– volume: 374
  start-page: 1353
  year: 2021
  ident: 1143_CR41
  publication-title: Science
  doi: 10.1126/science.abl9463
– ident: 1143_CR15
  doi: 10.1016/S0140-6736(21)02844-0
– ident: 1143_CR69
– ident: 1143_CR56
  doi: 10.1101/2021.12.31.474653
– volume: 28
  start-page: 486
  year: 2022
  ident: 1143_CR67
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01704-7
– volume: 24
  start-page: 1459
  year: 2008
  ident: 1143_CR87
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn199
– volume: 6
  start-page: 112
  year: 2021
  ident: 1143_CR73
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-00838-z
– volume: 14
  start-page: 79
  year: 2022
  ident: 1143_CR12
  publication-title: Viruses
  doi: 10.3390/v14010079
– volume: 29
  start-page: 463
  year: 2021
  ident: 1143_CR20
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.003
– volume: 603
  start-page: 706
  year: 2022
  ident: 1143_CR59
  publication-title: Nature
  doi: 10.1038/s41586-022-04474-x
– ident: 1143_CR36
  doi: 10.1093/cid/ciab999
– ident: 1143_CR51
  doi: 10.1101/2021.03.22.436468
– ident: 1143_CR76
  doi: 10.1093/ve/veab064
– volume: 17
  start-page: e1009246
  year: 2021
  ident: 1143_CR39
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009246
– volume: 95
  start-page: e02422
  year: 2021
  ident: 1143_CR53
  publication-title: J. Virol.
  doi: 10.1128/JVI.02422-20
– volume: 24
  start-page: 102420
  year: 2021
  ident: 1143_CR52
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102420
– volume: 600
  start-page: 517
  year: 2021
  ident: 1143_CR35
  publication-title: Nature
  doi: 10.1038/s41586-021-04060-7
– volume: 603
  start-page: 679
  year: 2022
  ident: 1143_CR6
  publication-title: Nature
  doi: 10.1038/s41586-022-04411-y
– volume: 6
  start-page: 1188
  year: 2021
  ident: 1143_CR19
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-021-00954-4
– volume: 198
  start-page: 105253
  year: 2022
  ident: 1143_CR43
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2022.105253
– volume: 386
  start-page: 1532
  year: 2022
  ident: 1143_CR9
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2119451
– volume: 25
  start-page: 1754
  year: 2009
  ident: 1143_CR74
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 81
  start-page: e24
  year: 2020
  ident: 1143_CR70
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.03.058
– ident: 1143_CR8
  doi: 10.1038/s41586-021-04386-2
– volume: 184
  start-page: 92
  year: 2021
  ident: 1143_CR54
  publication-title: Cell
  doi: 10.1016/j.cell.2020.10.030
– volume: 54
  start-page: 2908
  year: 2021
  ident: 1143_CR21
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.10.019
– volume: 5
  start-page: e9490
  year: 2010
  ident: 1143_CR90
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0009490
– volume: 3
  start-page: e21
  year: 2022
  ident: 1143_CR33
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(21)00275-5
– volume: 386
  start-page: 2201
  year: 2022
  ident: 1143_CR37
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2118946
– volume: 371
  start-page: 850
  year: 2021
  ident: 1143_CR94
  publication-title: Science
  doi: 10.1126/science.abf9302
– volume: 603
  start-page: 706
  year: 2022
  ident: 1143_CR18
  publication-title: Nature
  doi: 10.1038/s41586-022-04474-x
– volume: 602
  start-page: 671
  year: 2022
  ident: 1143_CR65
  publication-title: Nature
  doi: 10.1038/s41586-021-04389-z
– volume: 39
  start-page: 4423
  year: 2021
  ident: 1143_CR30
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.05.063
– volume: 367
  start-page: 1260
  year: 2020
  ident: 1143_CR92
  publication-title: Science
  doi: 10.1126/science.abb2507
– volume: 399
  start-page: 924
  year: 2022
  ident: 1143_CR38
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)00152-0
– volume: 583
  start-page: 290
  year: 2020
  ident: 1143_CR22
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 17
  start-page: e1010022
  year: 2021
  ident: 1143_CR2
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1010022
– volume: 375
  start-page: 678
  year: 2022
  ident: 1143_CR62
  publication-title: Science
  doi: 10.1126/science.abn7591
– volume: 12
  start-page: 1
  year: 2021
  ident: 1143_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21006-9
– ident: 1143_CR13
  doi: 10.1038/s41586-021-04385-3
– volume: 397
  start-page: 99
  year: 2021
  ident: 1143_CR32
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32661-1
– ident: 1143_CR34
  doi: 10.1201/9781420010404
– volume: 124
  start-page: 7128
  year: 2020
  ident: 1143_CR84
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c04553
– volume: 386
  start-page: 698
  year: 2022
  ident: 1143_CR55
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2119236
– reference: 36114232 - Nat Microbiol. 2022 Oct;7(10):1709. doi: 10.1038/s41564-022-01241-6.
SSID ssj0001626686
Score 2.6492286
Snippet Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1161
SubjectTerms 13/1
13/106
38/35
42/109
631/250
631/250/590
631/337
692/699/255/2514
Amino acids
Antibodies, Viral
Antigenicity
Biomedical and Life Sciences
BNT162 Vaccine
Cell fusion
COVID-19
Fusion protein
Humans
Immune evasion
Infectious Diseases
Life Sciences
Medical Microbiology
Membrane Glycoproteins - metabolism
Microbiology
mRNA
Parasitology
Pathogenicity
Peptide mapping
Phenotypes
Proteins
Public health
Replication
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - genetics
Spike protein
Syncytia
Vaccine efficacy
Vaccines
Viral Envelope Proteins - metabolism
Virology
Virus Internalization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxcNArgiCi9eu0SgTfNHRvk83HU6mlpQhWba30bckmWSy0e9W9Kv33ncnm7jiLfVkWMmE3M5NkvgfgXav0pHFN4IWxissW3xqJglzbeCFFQ6VQKXf484HaP5afTqqTbHDrc1jl_ExMB3WYerKRb5bKGqGErMqti1-cukaRdzW30LgLa3gEGzOCtY-7B18Pl1YWlNeVUTlbphBmsyeNRXIKYiddQHC9eiPdEDNvRkv-4zJNN9HeI3iYRUi2PdD8MdyJ3TrcG5pKXq3Dg8ESx4YEoyfw7Wj78IjvTH_wkn05p_i7jp32zOGTckMiiz0FQbE_qDUjmhlZZmk0-dFjYGTaZ6n_CKP2xX_d1VM43tv9vrPPcyMF7qWWM-6Eb7VV2iMGlXLOaFMVMTSudMEE1wgVkCat8kGq0vkq-IL8syoYY4MVVjyDUTft4gtg0isjfCW0D1Za1K2F9L6ysprgXo5Gj2EyR2btc5VxanZxVidvtzD1QIAaCVAnAtQ45_1izsVQY-NW6I05jeq83_p6yR1jeLsYxp1COHJdnF4SjNF6glozwjwfSLr4nKiobpstxqBXiL0AoCrcqyPd6c9UjdumgrJyDB_mbLH8rf-v4uXtq3gF98vEohRpuAGj2e_L-Bqln1nzJrP4NYgvAI8
  priority: 102
  providerName: ProQuest
Title SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway
URI https://link.springer.com/article/10.1038/s41564-022-01143-7
https://www.ncbi.nlm.nih.gov/pubmed/35798890
https://www.proquest.com/docview/2698363452
https://www.proquest.com/docview/2687719782
https://pubmed.ncbi.nlm.nih.gov/PMC9352574
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLqLX1tJYIfdPg3iabj8e7o0cpeGprpW9LNsnSQt0T76r0v3cmu3vlrAp92SxkwiaTZDOTmfkNwEGt9LByVeCZsYrLGt8qiYJcXXkhRUVQqBQ7_GGmjs7k8XlxvgF5HwuTnPYTpGX6TffeYe8XpGhITr7nJMILrh_AFkG3k8I1UZPbexWU0JVRXXxMJsxfmq6fQXcEy7v-kX8YSdPZM30CjzuhkY3abj6Fjdg8g4dtGsmbbfh8Ojo55ZP5V56zj9_Iw65hlwvm8EnRH5HFBbk5sZ-oFyMjGd29Um2ylMfA6PKepQwjjBIU_3I3z-FsevhlcsS7VAncSy2X3Alfa6u0NwL1EeeMNkUWQ-VyF0xwlVABuV4rH6TKnS-Cz8gCq4IxNlhhxQ5sNvMmvgAmvTLCF0L7YKVF7VlI7wsriyHu1mj0AIY980rf4YhTOourMtmzhSlbhpfI8DIxvMQ2b1dtvrcoGv-l3uvnpOx21KLMlcWxCVnkA3izqsa9QDxyTZxfE43Reoh6MdLstlO4-pwoCJnNZgPQa5O7IiCc7fWa5vIi4W3bBBkrB_CuXwa33fr3KF7ej_wVPMrTEiXfwj3YXP64jq9R3llW-7A1mo7HMyzHh7NPJ_tpwf8GOdX64w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFRthUBCCMproYCR4ARWs7HjxwGhUlptabtAH6i34NiOqATZQrZU-1N8Ix4n2dVS0VsvUSSPE9sztuc9AC9KIQeFKRxNlBaUl-Gt4IGRKwvLOCswFSrGDu-NxPCIfzjOjpfgTxcLg26V3ZkYD2o3tqgjX0uFVkwwnqVvT39SrBqF1tWuhEZDFjt-eh5EtvrN9vuA35dpurV5uDGkbVUBarnkE2qYLaUW0obPCWGMkipLvCtMapxypmDChQGWwjouUmMzZxM0VgqnlHaaYfKlcOQvcyaStAfL7zZHn_bnWp0gHwgl2uichKm1GiUkTtFpHmUPRuXiDXiBrb3onfmPiTbefFu34VbLspL1hsbuwJKvVuBaU8RyugI3G80faQKa7sLng_X9A7ox_kJT8vEH-vtV5KQmJjwxFsUTX6PTFfkdpPSAVoKaYGyNdnvvCJoSSKx3QrBc8rmZ3oOjK1ni-9CrxpV_CIRboZjNmLROcx1kecatzTTPBuHs8Er2YdAtZm7brOZYXON7Hq3rTOUNAvKAgDwiIA99Xs36nDY5PS6FXu1wlLf7u87n1NiH57PmsDNxjUzlx2cIo6QcBCk9wDxoUDr7HcswT5xO-iAXkD0DwKzfiy3VybeY_VvHBLa8D687spgP6_-zeHT5LJ7B9eHh3m6-uz3aeQw30kiu6OW4Cr3JrzP_JHBek-JpS-4Evl71DvsLUn493g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXRHkubcFIcALTbOz4ceBQbVm1FMqjFPVmHNsRlWi2Iluq_UP8TmacZKulgMShlyiSJ4ozYzszns_fEPKkkmpYujKwTBvJRAV3pQBHrio9F7xEKlQ8O_x2T24fiNeHxeES-dmfhUmg_URpmZbpHh220WCgIRhiz9GF50y9OAlVB6bcjbMzCNWalztbYNeneT5-9Wm0zbpqAswLJabMcV8pI5XXHFx257TSRRZD6XIXdHAllwE6VkkfhMydL4LPMEkpg9YmGI6kS7DUXwH_PkPo2EiOzvdyICqQWnZncjKu_9Ddxf_eBWf2Iibzt8Rs-t-Nb5IbnaNKN1vVrJClWN8iV9vSlbPb5MP-5sd9Npp8Zjl9d4yovpoeNdTBFU-cRBobhFbRHxCLg_Eo7vdia8rOx0AxYUBTVROKRZHP3OwOObgUhd4ly_WkjvcJFV5q7guufDDCQMTOhfeFEcUQVoio1YAMe-VZ33GXYwmNbzbl0Lm2rcItKNwmhVt45tn8mZOWueOf0mu9TWw3ixubSwPfxkWRD8jjeTPMP9SRq-PkFGW0UkOIxUHmXmvC-et4gWxwJhsQtWDcuQByey-21EdfE8e3STS1YkCe98PgvFt__4oH_yf-iFx7vzW2b3b2dlfJ9TyNVoQ2rpHl6ffTuA7u1rR8mMY6JV8ue3L9AldqNlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+Omicron+is+an+immune+escape+variant+with+an+altered+cell+entry+pathway&rft.jtitle=Nature+microbiology&rft.au=Willett%2C+Brian+J.&rft.au=Grove%2C+Joe&rft.au=MacLean%2C+Oscar+A.&rft.au=Wilkie%2C+Craig&rft.date=2022-08-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-5276&rft.volume=7&rft.issue=8&rft.spage=1161&rft.epage=1179&rft_id=info:doi/10.1038%2Fs41564-022-01143-7&rft.externalDocID=10_1038_s41564_022_01143_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon