SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid...
Saved in:
Published in | Nature microbiology Vol. 7; no. 8; pp. 1161 - 1179 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.
The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein. |
---|---|
AbstractList | Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant. Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant. The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein. Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant. Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein. |
Author | Furnon, Wilhelm Smollett, Katherine Scott, Sam Szemiel, Agnieszka Vink, Elen Pascall, David J. Orton, Richard Murcia, Pablo R. Silva, Vanessa Klenerman, Paul Tong, Lily Haughney, John Harvey, William T. Manali, Maria Holden, Matthew T. G. Robertson, David L. MacLean, Oscar A. Holland, Poppy Pinto, Rute Maria Wilkie, Craig Templeton, Kate Thomson, Emma C. Asamaphan, Patawee Palmarini, Massimo da Silva Filipe, Ana Patel, Arvind H. Ray, Surajit Gunson, Rory Shaaban, Sharif Hughes, Joseph Cantoni, Diego Puxty, Kathryn Logan, Nicola Grove, Joe De Lorenzo, Giuditta Ashraf, Shirin Dunachie, Susanna Davis, Chris Cowton, Vanessa Yebra, Gonzalo Willett, Brian J. |
Author_xml | – sequence: 1 givenname: Brian J. orcidid: 0000-0001-8912-3266 surname: Willett fullname: Willett, Brian J. email: brian.willett@glasgow.ac.uk organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 2 givenname: Joe orcidid: 0000-0001-5390-7579 surname: Grove fullname: Grove, Joe email: joe.grove@glasgow.ac.uk organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 3 givenname: Oscar A. surname: MacLean fullname: MacLean, Oscar A. organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 4 givenname: Craig orcidid: 0000-0003-0805-0195 surname: Wilkie fullname: Wilkie, Craig organization: School of Mathematics & Statistics, University of Glasgow – sequence: 5 givenname: Giuditta orcidid: 0000-0002-2736-8740 surname: De Lorenzo fullname: De Lorenzo, Giuditta organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 6 givenname: Wilhelm orcidid: 0000-0002-5588-4232 surname: Furnon fullname: Furnon, Wilhelm organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 7 givenname: Diego surname: Cantoni fullname: Cantoni, Diego organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 8 givenname: Sam orcidid: 0000-0001-7080-8038 surname: Scott fullname: Scott, Sam organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 9 givenname: Nicola surname: Logan fullname: Logan, Nicola organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 10 givenname: Shirin orcidid: 0000-0002-6468-0258 surname: Ashraf fullname: Ashraf, Shirin organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 11 givenname: Maria surname: Manali fullname: Manali, Maria organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 12 givenname: Agnieszka surname: Szemiel fullname: Szemiel, Agnieszka organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 13 givenname: Vanessa orcidid: 0000-0003-1813-7825 surname: Cowton fullname: Cowton, Vanessa organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 14 givenname: Elen orcidid: 0000-0001-8535-6214 surname: Vink fullname: Vink, Elen organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 15 givenname: William T. surname: Harvey fullname: Harvey, William T. organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 16 givenname: Chris surname: Davis fullname: Davis, Chris organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 17 givenname: Patawee surname: Asamaphan fullname: Asamaphan, Patawee organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 18 givenname: Katherine surname: Smollett fullname: Smollett, Katherine organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 19 givenname: Lily orcidid: 0000-0003-3882-3339 surname: Tong fullname: Tong, Lily organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 20 givenname: Richard surname: Orton fullname: Orton, Richard organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 21 givenname: Joseph orcidid: 0000-0003-2556-2563 surname: Hughes fullname: Hughes, Joseph organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 22 givenname: Poppy orcidid: 0000-0001-9708-9555 surname: Holland fullname: Holland, Poppy organization: NHS Greater Glasgow & Clyde – sequence: 23 givenname: Vanessa surname: Silva fullname: Silva, Vanessa organization: NHS Greater Glasgow & Clyde – sequence: 24 givenname: David J. orcidid: 0000-0002-7543-0860 surname: Pascall fullname: Pascall, David J. organization: MRC Biostatistics Unit, University of Cambridge – sequence: 25 givenname: Kathryn orcidid: 0000-0002-5742-6171 surname: Puxty fullname: Puxty, Kathryn organization: NHS Greater Glasgow & Clyde – sequence: 26 givenname: Ana orcidid: 0000-0002-9442-2903 surname: da Silva Filipe fullname: da Silva Filipe, Ana organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 27 givenname: Gonzalo orcidid: 0000-0002-3472-3667 surname: Yebra fullname: Yebra, Gonzalo organization: Public Health Scotland – sequence: 28 givenname: Sharif surname: Shaaban fullname: Shaaban, Sharif organization: Public Health Scotland – sequence: 29 givenname: Matthew T. G. surname: Holden fullname: Holden, Matthew T. G. organization: Public Health Scotland, School of Medicine, University of St Andrews – sequence: 30 givenname: Rute Maria surname: Pinto fullname: Pinto, Rute Maria organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 31 givenname: Rory surname: Gunson fullname: Gunson, Rory organization: NHS Greater Glasgow & Clyde – sequence: 32 givenname: Kate surname: Templeton fullname: Templeton, Kate organization: NHS Lothian – sequence: 33 givenname: Pablo R. orcidid: 0000-0002-4352-394X surname: Murcia fullname: Murcia, Pablo R. organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 34 givenname: Arvind H. orcidid: 0000-0003-4600-2047 surname: Patel fullname: Patel, Arvind H. organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 35 givenname: Paul surname: Klenerman fullname: Klenerman, Paul organization: University of Oxford – sequence: 36 givenname: Susanna orcidid: 0000-0001-5665-6293 surname: Dunachie fullname: Dunachie, Susanna organization: University of Oxford – sequence: 39 givenname: John surname: Haughney fullname: Haughney, John organization: NHS Greater Glasgow & Clyde – sequence: 40 givenname: David L. orcidid: 0000-0001-6338-0221 surname: Robertson fullname: Robertson, David L. organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 41 givenname: Massimo surname: Palmarini fullname: Palmarini, Massimo organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow – sequence: 42 givenname: Surajit orcidid: 0000-0003-3965-8136 surname: Ray fullname: Ray, Surajit organization: School of Mathematics & Statistics, University of Glasgow – sequence: 43 givenname: Emma C. orcidid: 0000-0003-1482-0889 surname: Thomson fullname: Thomson, Emma C. email: emma.thomson@glasgow.ac.uk organization: MRC-University of Glasgow Centre for Virus Research, University of Glasgow, NHS Greater Glasgow & Clyde, London School of Hygiene and Tropical Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35798890$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJadI0f6CLIuimG7WyZL02hTD0BYGQpO1W3JE0GQVbnkp2wvz7yp28mkU2kuB-53Cuzmu0l4YUEHrb0I8N5fpTaRshW0IZI7RpWk7UC3TAqNBEMCX3Hr330VEpV5TSRjIptXyF9rlQRmtDD9DZxfH5BVkMvwnDp310eUg4Fgz17PspBRyKg03A15AjpBHfxHE9T6EbQw4eu9B1OKQxb_EGxvUNbN-glyvoSji6vQ_Rr69ffi6-k5PTbz8WxyfEtaodCXC3UkYqp7mUEkArLWjwS2DgtYcll94YtpLOt5KBE95RxRSTvub2hht-iD7vfDfTsg_ezSGgs5sce8hbO0C0_09SXNvL4doaLphQbTX4cGuQhz9TKKPtY5n3gRSGqVgmtVKNUZpV9P0T9GqYcqrrVcrUDXgrZurd40T3Ue5-uwJ6B9RvLiWHlXVxhDEOc8DY2YbauVu769bWbu2_bq2qUvZEeuf-rIjvRKXC6TLkh9jPqP4Cm9K1Wg |
CitedBy_id | crossref_primary_10_1038_s41597_024_04182_3 crossref_primary_10_1371_journal_ppat_1012763 crossref_primary_10_3390_ijms26020745 crossref_primary_10_1186_s12985_023_02186_w crossref_primary_10_1016_j_isci_2023_108299 crossref_primary_10_3390_ijms24098156 crossref_primary_10_1038_s41598_023_31369_2 crossref_primary_10_1016_j_vaccine_2023_12_043 crossref_primary_10_1038_s41551_023_01094_2 crossref_primary_10_3390_vaccines10122167 crossref_primary_10_1038_s42003_023_04784_4 crossref_primary_10_1371_journal_pone_0284187 crossref_primary_10_3390_v15020321 crossref_primary_10_1098_rsif_2023_0187 crossref_primary_10_1038_s41467_024_48104_8 crossref_primary_10_1128_jvi_00828_23 crossref_primary_10_1136_bmjmed_2022_000468 crossref_primary_10_1371_journal_pbio_3002982 crossref_primary_10_3389_fpubh_2023_1145138 crossref_primary_10_3390_ijms232315136 crossref_primary_10_3389_fimmu_2023_1220600 crossref_primary_10_1016_j_csbj_2024_05_037 crossref_primary_10_7554_eLife_89801 crossref_primary_10_1016_j_jiph_2022_10_004 crossref_primary_10_1038_s41598_025_92254_8 crossref_primary_10_1016_j_mcpro_2024_100805 crossref_primary_10_1371_journal_ppat_1012757 crossref_primary_10_3389_fimmu_2023_1135815 crossref_primary_10_1038_s41467_024_45075_8 crossref_primary_10_1371_journal_ppat_1012755 crossref_primary_10_3390_vaccines11101568 crossref_primary_10_1088_1755_1315_1408_1_012014 crossref_primary_10_1093_evolut_qpae106 crossref_primary_10_1016_j_jinf_2023_05_019 crossref_primary_10_1038_s41541_022_00594_7 crossref_primary_10_1073_pnas_2407437121 crossref_primary_10_1016_j_antiviral_2023_105744 crossref_primary_10_1128_jvi_01140_22 crossref_primary_10_1021_acs_molpharmaceut_4c00165 crossref_primary_10_1038_s41590_024_02052_z crossref_primary_10_3389_fimmu_2023_1296148 crossref_primary_10_1016_j_medj_2023_12_004 crossref_primary_10_1007_s11033_024_09799_6 crossref_primary_10_1016_j_vaccine_2023_12_036 crossref_primary_10_3390_v16111798 crossref_primary_10_1016_j_jbc_2023_104886 crossref_primary_10_1016_j_puhe_2024_03_009 crossref_primary_10_1016_j_micpath_2023_106460 crossref_primary_10_1016_j_ebiom_2023_104753 crossref_primary_10_1038_s41467_024_47451_w crossref_primary_10_1016_j_xcrm_2023_101084 crossref_primary_10_7759_cureus_57008 crossref_primary_10_1016_j_carbon_2023_118058 crossref_primary_10_1080_15240657_2023_2275527 crossref_primary_10_1001_jamanetworkopen_2024_7822 crossref_primary_10_1016_j_heliyon_2024_e31392 crossref_primary_10_1371_journal_pbio_3002767 crossref_primary_10_1038_s41467_022_33911_8 crossref_primary_10_1007_s12325_023_02754_0 crossref_primary_10_1186_s12985_024_02566_w crossref_primary_10_1016_j_cell_2024_12_015 crossref_primary_10_1016_j_fhj_2024_100023 crossref_primary_10_3390_vaccines12080887 crossref_primary_10_3390_ijms241311173 crossref_primary_10_1038_s41579_022_00841_7 crossref_primary_10_1186_s13578_023_01070_y crossref_primary_10_1111_apt_17661 crossref_primary_10_3389_fcell_2023_1290876 crossref_primary_10_3389_fimmu_2023_1200456 crossref_primary_10_1093_bib_bbae535 crossref_primary_10_1111_irv_13340 crossref_primary_10_3389_fpubh_2023_1191377 crossref_primary_10_3390_cimb45020112 crossref_primary_10_1038_s41598_023_44668_5 crossref_primary_10_1128_msphere_00812_23 crossref_primary_10_17816_clinpract322036 crossref_primary_10_3390_v16020184 crossref_primary_10_1080_22221751_2023_2195020 crossref_primary_10_1038_s41467_023_41109_9 crossref_primary_10_1080_21645515_2024_2384192 crossref_primary_10_1038_s41564_023_01588_4 crossref_primary_10_1186_s12985_023_02137_5 crossref_primary_10_3390_ijms24031923 crossref_primary_10_1128_spectrum_04194_22 crossref_primary_10_1016_j_siny_2023_101429 crossref_primary_10_1186_s40635_023_00567_7 crossref_primary_10_3390_v15010167 crossref_primary_10_3390_microorganisms11082039 crossref_primary_10_3390_vaccines12111245 crossref_primary_10_1016_j_isci_2022_105044 crossref_primary_10_1016_j_meegid_2023_105480 crossref_primary_10_1186_s40478_022_01426_4 crossref_primary_10_1371_journal_ppat_1012846 crossref_primary_10_1021_acs_biochem_4c00535 crossref_primary_10_3390_vaccines12010034 crossref_primary_10_3390_vaccines12121451 crossref_primary_10_1080_07391102_2023_2202247 crossref_primary_10_1080_21645515_2024_2410579 crossref_primary_10_3389_fimmu_2024_1383612 crossref_primary_10_3724_abbs_2023129 crossref_primary_10_1371_journal_pone_0309645 crossref_primary_10_1038_s41420_024_01966_9 crossref_primary_10_1016_j_biopha_2023_114863 crossref_primary_10_1016_j_antiviral_2024_106006 crossref_primary_10_1073_pnas_2308655120 crossref_primary_10_1038_s41421_023_00534_2 crossref_primary_10_1016_j_cels_2023_11_001 crossref_primary_10_1016_j_omtm_2024_101325 crossref_primary_10_1007_s10730_024_09530_9 crossref_primary_10_1038_s41586_024_08511_9 crossref_primary_10_1093_nsr_nwae206 crossref_primary_10_1016_j_tcb_2023_06_005 crossref_primary_10_1128_spectrum_05131_22 crossref_primary_10_3390_v15071551 crossref_primary_10_3390_v16091491 crossref_primary_10_1016_j_vaccine_2025_126785 crossref_primary_10_3390_v16101556 crossref_primary_10_1073_pnas_2303546120 crossref_primary_10_1371_journal_pone_0284372 crossref_primary_10_1038_s41598_022_24170_0 crossref_primary_10_1093_cid_ciae381 crossref_primary_10_1016_j_omtn_2023_03_013 crossref_primary_10_3390_v16060984 crossref_primary_10_1016_j_vaccine_2023_05_051 crossref_primary_10_1371_journal_pcbi_1010721 crossref_primary_10_1136_rmdopen_2022_002650 crossref_primary_10_1371_journal_pone_0282624 crossref_primary_10_3390_microorganisms13020311 crossref_primary_10_1128_msphere_00338_24 crossref_primary_10_3390_vaccines11010058 crossref_primary_10_1055_a_2173_0277 crossref_primary_10_1038_s41586_023_06487_6 crossref_primary_10_1080_21645515_2024_2432105 crossref_primary_10_3390_vaccines10101658 crossref_primary_10_1001_jamanetworkopen_2023_5755 crossref_primary_10_1016_j_scitotenv_2024_177449 crossref_primary_10_1093_ve_vead081 crossref_primary_10_1016_j_vaccine_2024_05_028 crossref_primary_10_3390_biomedicines12071614 crossref_primary_10_1007_s10822_023_00534_0 crossref_primary_10_1073_pnas_2212577120 crossref_primary_10_1186_s12985_023_01977_5 crossref_primary_10_2174_0118715265279242240216114548 crossref_primary_10_1186_s13000_023_01306_y crossref_primary_10_3389_fimmu_2024_1420304 crossref_primary_10_1007_s00228_023_03517_0 crossref_primary_10_1016_j_antiviral_2023_105655 crossref_primary_10_3390_v16010069 crossref_primary_10_1016_j_jri_2023_103798 crossref_primary_10_1111_ped_15777 crossref_primary_10_1016_j_mran_2023_100280 crossref_primary_10_1098_rsob_230349 crossref_primary_10_1186_s12865_024_00625_z crossref_primary_10_1186_s13578_023_01154_9 crossref_primary_10_3389_fbinf_2024_1397968 crossref_primary_10_3390_jcm12237245 crossref_primary_10_1038_s41467_024_48098_3 crossref_primary_10_1016_j_ebiom_2024_105361 crossref_primary_10_1134_S0006350923050202 crossref_primary_10_1371_journal_ppat_1010870 crossref_primary_10_1016_j_ebiom_2023_104545 crossref_primary_10_1016_j_isci_2023_106582 crossref_primary_10_3390_v14122728 crossref_primary_10_1016_j_ebiom_2023_104669 crossref_primary_10_1016_j_vaccine_2023_09_051 crossref_primary_10_1038_s41591_024_02949_0 crossref_primary_10_1017_S0950268823000821 crossref_primary_10_3390_vaccines10122111 crossref_primary_10_1093_ve_vead075 crossref_primary_10_1371_journal_pone_0301330 crossref_primary_10_1186_s12951_022_01687_0 crossref_primary_10_1016_j_antiviral_2024_105820 crossref_primary_10_1126_science_adg6605 crossref_primary_10_3390_jcm12010283 crossref_primary_10_1038_s41564_024_01878_5 crossref_primary_10_1016_j_heliyon_2024_e29574 crossref_primary_10_3390_v15091937 crossref_primary_10_1002_jmv_28577 crossref_primary_10_3390_microorganisms11030717 crossref_primary_10_1007_s13318_023_00826_8 crossref_primary_10_1016_j_isci_2024_109363 crossref_primary_10_1016_j_xcrm_2022_100850 crossref_primary_10_1016_j_ijid_2023_02_020 crossref_primary_10_3390_ijms241814140 crossref_primary_10_3390_v16020254 crossref_primary_10_1016_j_xcrp_2023_101346 crossref_primary_10_1371_journal_ppat_1012365 crossref_primary_10_1016_j_xagr_2023_100264 crossref_primary_10_7717_peerj_16964 crossref_primary_10_1039_D3AN00802A crossref_primary_10_1016_j_eclinm_2023_102249 crossref_primary_10_1371_journal_ppat_1012246 crossref_primary_10_1016_j_lanepe_2023_100809 crossref_primary_10_1038_s44298_024_00054_0 crossref_primary_10_1016_j_hlife_2024_03_006 crossref_primary_10_3390_microorganisms12030509 crossref_primary_10_1016_j_cmi_2023_03_007 crossref_primary_10_1093_ve_vead019 crossref_primary_10_3390_v16121877 crossref_primary_10_1016_j_ijid_2023_09_019 crossref_primary_10_1017_S0950268824000037 crossref_primary_10_1056_EVIDoa2400026 crossref_primary_10_1016_j_carbpol_2024_122605 crossref_primary_10_1172_JCI174439 crossref_primary_10_1038_s41596_023_00897_6 crossref_primary_10_1016_j_actatropica_2023_107042 crossref_primary_10_3390_ijms232012522 crossref_primary_10_1002_minf_202300120 crossref_primary_10_1016_j_isci_2024_110019 crossref_primary_10_3390_ijerph20031950 crossref_primary_10_1111_tid_14117 crossref_primary_10_1002_smsc_202300058 crossref_primary_10_1038_s41598_024_52499_1 crossref_primary_10_1016_j_isci_2023_107374 crossref_primary_10_1038_s41598_022_21674_7 crossref_primary_10_1371_journal_pone_0292099 crossref_primary_10_3389_fimmu_2023_1130539 crossref_primary_10_1016_j_bpc_2024_107387 crossref_primary_10_1186_s12964_023_01104_5 crossref_primary_10_1182_bloodadvances_2022009054 crossref_primary_10_1186_s12877_024_04680_4 crossref_primary_10_1371_journal_ppat_1010970 crossref_primary_10_1128_jvi_01853_24 crossref_primary_10_1038_s41598_023_34188_7 crossref_primary_10_1016_j_immuno_2023_100021 crossref_primary_10_1136_bmjopen_2024_085332 crossref_primary_10_1080_17425255_2023_2280221 crossref_primary_10_1172_jci_insight_179726 crossref_primary_10_1016_j_vaccine_2024_05_074 crossref_primary_10_1208_s12249_024_02778_x crossref_primary_10_1038_s41541_023_00616_y crossref_primary_10_1007_s10623_023_01291_9 crossref_primary_10_1080_21645515_2023_2264589 crossref_primary_10_1038_s44298_024_00017_5 crossref_primary_10_1038_s41467_023_44265_0 crossref_primary_10_1016_j_str_2024_09_008 crossref_primary_10_3389_fimmu_2022_947602 crossref_primary_10_3390_ijms232415834 crossref_primary_10_3389_fimmu_2024_1332440 crossref_primary_10_3390_v15051129 crossref_primary_10_3389_fmicb_2023_1228128 crossref_primary_10_1016_j_apsb_2023_08_023 crossref_primary_10_1093_cid_ciad124 crossref_primary_10_1016_j_ebiom_2023_104916 crossref_primary_10_1128_mbio_03129_23 crossref_primary_10_3390_pathogens12060843 crossref_primary_10_3390_v15102124 crossref_primary_10_3390_v16121892 crossref_primary_10_1016_j_jtbi_2023_111568 crossref_primary_10_2196_58018 crossref_primary_10_3390_biomedicines11020451 crossref_primary_10_1186_s12967_023_04095_6 crossref_primary_10_3390_bioengineering10080961 crossref_primary_10_1038_s41467_024_46490_7 crossref_primary_10_3390_v15091901 crossref_primary_10_1038_s41423_023_01104_y crossref_primary_10_3390_v14092023 crossref_primary_10_1073_pnas_2410274121 crossref_primary_10_12688_wellcomeopenres_18908_1 crossref_primary_10_1038_s41551_023_01140_z crossref_primary_10_3389_fphar_2023_1214351 crossref_primary_10_34133_research_0376 crossref_primary_10_1016_j_coviro_2023_101303 crossref_primary_10_1371_journal_ppat_1011805 crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1183_16000617_0222_2024 crossref_primary_10_1371_journal_ppat_1012453 crossref_primary_10_1073_pnas_2300376120 crossref_primary_10_3390_vaccines12010103 crossref_primary_10_1371_journal_ppat_1012456 crossref_primary_10_1371_journal_pone_0307873 crossref_primary_10_3390_v15081661 crossref_primary_10_1038_s41467_024_49415_6 crossref_primary_10_1080_22221751_2023_2270071 crossref_primary_10_1016_j_antiviral_2024_106037 crossref_primary_10_1093_nsr_nwae011 crossref_primary_10_1038_s42003_022_04068_3 crossref_primary_10_31631_2073_3046_2024_23_5_4_12 crossref_primary_10_1016_j_jinf_2024_106121 crossref_primary_10_1371_journal_pone_0294262 crossref_primary_10_3389_fmicb_2024_1361197 crossref_primary_10_1016_j_lana_2024_100824 crossref_primary_10_1097_CCE_0000000000001122 crossref_primary_10_1371_journal_pcbi_1010822 crossref_primary_10_1089_vim_2024_0019 crossref_primary_10_1128_mbio_00171_23 crossref_primary_10_1016_j_cyto_2022_155971 crossref_primary_10_1016_j_ijbiomac_2023_125997 crossref_primary_10_3389_fcimb_2024_1484637 crossref_primary_10_3390_v14112535 crossref_primary_10_3390_vaccines11091502 crossref_primary_10_1097_MD_0000000000036777 crossref_primary_10_1016_j_vaccine_2023_07_056 crossref_primary_10_1016_j_jaci_2024_11_012 crossref_primary_10_1016_j_jfma_2024_08_021 crossref_primary_10_3389_fpubh_2023_1253762 crossref_primary_10_1016_j_patter_2023_100800 crossref_primary_10_1038_s41467_022_32772_5 crossref_primary_10_1080_22221751_2023_2271089 crossref_primary_10_1099_acmi_0_000513_v3 crossref_primary_10_1155_2023_8455852 crossref_primary_10_1093_database_baaf002 crossref_primary_10_1016_j_heliyon_2023_e20192 crossref_primary_10_3389_fimmu_2022_1016108 crossref_primary_10_3390_v15122300 crossref_primary_10_2217_fvl_2023_0066 crossref_primary_10_1093_immadv_ltad005 crossref_primary_10_3390_antib12040080 crossref_primary_10_3389_fimmu_2023_1045009 crossref_primary_10_1038_s41541_024_00933_w crossref_primary_10_3390_v15081769 crossref_primary_10_2196_54383 crossref_primary_10_1038_s41598_024_62791_9 crossref_primary_10_1371_journal_ppat_1011589 crossref_primary_10_1016_j_isci_2024_108887 crossref_primary_10_1093_cid_ciad210 crossref_primary_10_32604_biocell_2025_058038 crossref_primary_10_1542_peds_2024_066190 crossref_primary_10_1016_j_ebiom_2025_105619 crossref_primary_10_1126_sciadv_ade1860 crossref_primary_10_3389_fimmu_2023_1066123 crossref_primary_10_1016_j_heliyon_2025_e42533 crossref_primary_10_1186_s12889_024_19853_4 crossref_primary_10_1038_s41598_023_43563_3 crossref_primary_10_3389_fmed_2024_1478466 crossref_primary_10_2807_1560_7917_ES_2022_27_45_2200125 crossref_primary_10_3201_eid2812_220666 crossref_primary_10_3390_vaccines11050991 crossref_primary_10_1007_s00430_022_00752_7 crossref_primary_10_1093_abt_tbad006 crossref_primary_10_1186_s12859_022_05105_y crossref_primary_10_1016_j_coi_2023_102374 crossref_primary_10_3390_vaccines12090965 crossref_primary_10_1001_jamanetworkopen_2023_0589 crossref_primary_10_1016_j_jinf_2024_106284 crossref_primary_10_5812_jjm_139773 crossref_primary_10_1126_sciadv_ade5085 crossref_primary_10_1021_acs_jmedchem_4c00656 crossref_primary_10_3390_vaccines11071230 crossref_primary_10_1007_s43440_022_00425_5 crossref_primary_10_1038_s41541_022_00565_y crossref_primary_10_1016_j_virol_2023_109889 crossref_primary_10_3390_v15101997 crossref_primary_10_1111_bph_16063 crossref_primary_10_1016_j_jvacx_2023_100404 crossref_primary_10_1038_s41586_023_05697_2 crossref_primary_10_1016_j_bbrc_2024_151224 crossref_primary_10_3390_v15010013 crossref_primary_10_1016_S1473_3099_23_00547_9 crossref_primary_10_1038_s43856_024_00521_y crossref_primary_10_1128_jvi_01301_22 crossref_primary_10_1371_journal_ppat_1011206 crossref_primary_10_1038_s41467_023_37787_0 crossref_primary_10_3389_fimmu_2024_1412873 crossref_primary_10_1002_jmv_29012 crossref_primary_10_1038_s41598_023_45735_7 crossref_primary_10_1016_j_eclinm_2023_101926 crossref_primary_10_1080_19490976_2024_2342497 crossref_primary_10_3390_v15020271 crossref_primary_10_1128_mbio_02737_24 crossref_primary_10_1002_cbin_11928 crossref_primary_10_2147_JMDH_S419859 crossref_primary_10_1002_med_21941 crossref_primary_10_1016_j_aca_2022_340290 crossref_primary_10_1172_JCI160766 crossref_primary_10_1021_acs_jpcb_4c03119 crossref_primary_10_3390_vaccines10091504 crossref_primary_10_1016_j_bsheal_2024_04_001 crossref_primary_10_3390_v15030639 crossref_primary_10_1186_s12916_022_02655_z crossref_primary_10_31857_S0006302923050277 crossref_primary_10_3390_ijms25147553 crossref_primary_10_1099_mgen_0_001013 crossref_primary_10_15252_embr_202154322 crossref_primary_10_3390_v15010243 crossref_primary_10_1371_journal_pcbi_1011795 crossref_primary_10_1038_s41598_024_84952_6 crossref_primary_10_4269_ajtmh_22_0434 crossref_primary_10_1038_s42003_024_07307_x crossref_primary_10_1038_s43856_024_00539_2 crossref_primary_10_1002_jmv_28172 crossref_primary_10_18632_aging_205297 crossref_primary_10_1007_s11904_023_00676_8 |
Cites_doi | 10.1093/infdis/jiaa788 10.1016/j.cell.2021.12.033 10.1056/NEJMoa2108891 10.1073/pnas.0809524106 10.1080/19420862.2021.1922134 10.1016/S1473-3099(22)00141-4 10.1101/2021.03.31.437925 10.1016/j.cell.2021.12.032 10.1038/s41586-021-04387-1 10.1038/s41586-022-04462-1 10.1016/j.cell.2020.02.052 10.1038/s41586-021-04386-2 10.1186/s13059-018-1618-7 10.1101/2021.12.15.21267805 10.7554/eLife.64508 10.1016/j.cell.2020.08.012 10.1038/s41422-022-00619-9 10.1016/j.cell.2021.10.011 10.1101/2021.12.23.21268293 10.1080/22221751.2021.2023329 10.1016/j.chom.2021.01.014 10.1016/j.bbrc.2016.04.141 10.1038/s41580-021-00418-x 10.1016/S0140-6736(21)01290-3 10.1101/2021.12.14.21267772 10.1038/s41586-021-03324-6 10.1038/s41467-021-24435-8 10.1016/S2666-5247(21)00267-6 10.1016/j.molcel.2020.04.022 10.1038/s41586-021-03491-6 10.1038/s41586-021-04352-y 10.1093/bioinformatics/bty191 10.1128/JVI.72.12.9873-9880.1998 10.1016/S0140-6736(21)01462-8 10.1038/s41586-020-2180-5 10.1016/j.celrep.2021.109292 10.1038/s41586-022-04399-5 10.1126/science.abm3425 10.1016/j.cell.2021.03.028 10.7554/eLife.61312 10.3201/eid2802.212422 10.1016/j.yexcr.2015.06.015 10.1016/j.celrep.2022.110344 10.1038/nbt0997-871 10.1101/2021.12.12.472252 10.1371/journal.pbio.3001091 10.1038/s41564-021-00908-w 10.1371/journal.ppat.1010022 10.1038/s41591-021-01377-8 10.1038/s41421-021-00256-3 10.1126/science.abl9463 10.1016/S0140-6736(21)02844-0 10.1101/2021.12.31.474653 10.1038/s41591-022-01704-7 10.1093/bioinformatics/btn199 10.1038/s41564-020-00838-z 10.3390/v14010079 10.1016/j.chom.2021.02.003 10.1038/s41586-022-04474-x 10.1093/cid/ciab999 10.1101/2021.03.22.436468 10.1093/ve/veab064 10.1371/journal.ppat.1009246 10.1128/JVI.02422-20 10.1016/j.isci.2021.102420 10.1038/s41586-021-04060-7 10.1038/s41586-022-04411-y 10.1038/s41564-021-00954-4 10.1016/j.antiviral.2022.105253 10.1056/NEJMoa2119451 10.1093/bioinformatics/btp324 10.1016/j.jinf.2020.03.058 10.1016/j.cell.2020.10.030 10.1016/j.immuni.2021.10.019 10.1371/journal.pone.0009490 10.1016/S2666-5247(21)00275-5 10.1056/NEJMoa2118946 10.1126/science.abf9302 10.1038/s41586-021-04389-z 10.1016/j.vaccine.2021.05.063 10.1126/science.abb2507 10.1016/S0140-6736(22)00152-0 10.1038/s41586-020-2349-y 10.1126/science.abn7591 10.1038/s41467-021-21006-9 10.1038/s41586-021-04385-3 10.1016/S0140-6736(20)32661-1 10.1201/9781420010404 10.1021/acs.jpcb.0c04553 10.1056/NEJMc2119236 |
ContentType | Journal Article |
Contributor | Munn, Robert Merrick, Ian McMurray, Claire L Menegazzo, Mirko Fleming, Vicki M Spellman, Karla Boswell, Tim Morriss, Arthur Clark, Gemma Blakey, Victoria Joseph, Amelia Workman, Trudy Brown, Anthony Adams, Helen Abudahab, Khalil Murray, Abigail Underwood, Anthony P Barnes, Eleanor Berry, Louise Holmes, Christopher W Buchan, Sarah L Afifi, Safiah Duncan, Christopher Adele, Sandra Turtle, Lance Moore, Shona Patel, Amita Nebbia, Gaia Beer, Robert Klenerman, Paul de Silva, Thushan Snell, Luke B Mantzouratou, Anna Raviprakash, Veena Robson, Samuel C Beckwith, Shaun M Abraham, Priyanka Willford, Nicholas J Jones, Owen Reynolds, Nicola Shaw, Jessica Deeks, Alexandra Morgan, Sian Edgeworth, Jonathan Campbell, Sharon McKenna, James P Kitchen, Christine Odedra, Mina Bird, Paul W Marchbank, Angela Patel, Bindi Fallon, Karlie Price, Anna Thomson, Laura Fryer, Helen John, Michaela Whalley, Thomas Charalampous, Themoula Murray, Sam M Guest, Martyn Kele, Beatrix Batra, Rahul Sheriff, Nicola Shelest, Ekaterina Barrow, Magdalena Williams, Lesley-Anne Mack, Andrew Payn |
Contributor_xml | – sequence: 1 givenname: Susanna surname: Dunachie fullname: Dunachie, Susanna – sequence: 2 givenname: Paul surname: Klenerman fullname: Klenerman, Paul – sequence: 3 givenname: Eleanor surname: Barnes fullname: Barnes, Eleanor – sequence: 4 givenname: Anthony surname: Brown fullname: Brown, Anthony – sequence: 5 givenname: Sandra surname: Adele fullname: Adele, Sandra – sequence: 6 givenname: Barbara surname: Kronsteiner fullname: Kronsteiner, Barbara – sequence: 7 givenname: Sam M surname: Murray fullname: Murray, Sam M – sequence: 8 givenname: Priyanka surname: Abraham fullname: Abraham, Priyanka – sequence: 9 givenname: Alexandra surname: Deeks fullname: Deeks, Alexandra – sequence: 10 givenname: M Azim surname: Ansari fullname: Ansari, M Azim – sequence: 11 givenname: Thushan surname: de Silva fullname: de Silva, Thushan – sequence: 12 givenname: Lance surname: Turtle fullname: Turtle, Lance – sequence: 13 givenname: Shona surname: Moore fullname: Moore, Shona – sequence: 14 givenname: James surname: Austin fullname: Austin, James – sequence: 15 givenname: Alex surname: Richter fullname: Richter, Alex – sequence: 16 givenname: Christopher surname: Duncan fullname: Duncan, Christopher – sequence: 17 givenname: Rebecca surname: Payne fullname: Payne, Rebecca – sequence: 18 givenname: Amy surname: Ash fullname: Ash, Amy – sequence: 19 givenname: Cherian surname: Koshy fullname: Koshy, Cherian – sequence: 20 givenname: Beatrix surname: Kele fullname: Kele, Beatrix – sequence: 21 givenname: Teresa surname: Cutino-Moguel fullname: Cutino-Moguel, Teresa – sequence: 22 givenname: Derek J surname: Fairley fullname: Fairley, Derek J – sequence: 23 givenname: James P surname: McKenna fullname: McKenna, James P – sequence: 24 givenname: Tanya surname: Curran fullname: Curran, Tanya – sequence: 25 givenname: Helen surname: Adams fullname: Adams, Helen – sequence: 26 givenname: Christophe surname: Fraser fullname: Fraser, Christophe – sequence: 27 givenname: David surname: Bonsall fullname: Bonsall, David – sequence: 28 givenname: Helen surname: Fryer fullname: Fryer, Helen – sequence: 29 givenname: Katrina surname: Lythgoe fullname: Lythgoe, Katrina – sequence: 30 givenname: Laura surname: Thomson fullname: Thomson, Laura – sequence: 31 givenname: Tanya surname: Golubchik fullname: Golubchik, Tanya – sequence: 32 givenname: Abigail surname: Murray fullname: Murray, Abigail – sequence: 33 givenname: Dawn surname: Singleton fullname: Singleton, Dawn – sequence: 34 givenname: Shaun M surname: Beckwith fullname: Beckwith, Shaun M – sequence: 35 givenname: Anna surname: Mantzouratou fullname: Mantzouratou, Anna – sequence: 36 givenname: Magdalena surname: Barrow fullname: Barrow, Magdalena – sequence: 37 givenname: Sarah L surname: Buchan fullname: Buchan, Sarah L – sequence: 38 givenname: Nicola surname: Reynolds fullname: Reynolds, Nicola – sequence: 39 givenname: Ben surname: Warne fullname: Warne, Ben – sequence: 40 givenname: Joshua surname: Maksimovic fullname: Maksimovic, Joshua – sequence: 41 givenname: Karla surname: Spellman fullname: Spellman, Karla – sequence: 42 givenname: Kathryn surname: McCluggage fullname: McCluggage, Kathryn – sequence: 43 givenname: Michaela surname: John fullname: John, Michaela – sequence: 44 givenname: Robert surname: Beer fullname: Beer, Robert – sequence: 45 givenname: Safiah surname: Afifi fullname: Afifi, Safiah – sequence: 46 givenname: Sian surname: Morgan fullname: Morgan, Sian – sequence: 47 givenname: Andrew surname: Mack fullname: Mack, Andrew – sequence: 48 givenname: Angela surname: Marchbank fullname: Marchbank, Angela – sequence: 49 givenname: Anna surname: Price fullname: Price, Anna – sequence: 50 givenname: Arthur surname: Morriss fullname: Morriss, Arthur – sequence: 51 givenname: Catherine surname: Bresner fullname: Bresner, Catherine – sequence: 52 givenname: Christine surname: Kitchen fullname: Kitchen, Christine – sequence: 53 givenname: Ian surname: Merrick fullname: Merrick, Ian – sequence: 54 givenname: Joel surname: Southgate fullname: Southgate, Joel – sequence: 55 givenname: Martyn surname: Guest fullname: Guest, Martyn – sequence: 56 givenname: Owen surname: Jones fullname: Jones, Owen – sequence: 57 givenname: Robert surname: Munn fullname: Munn, Robert – sequence: 58 givenname: Thomas R surname: Connor fullname: Connor, Thomas R – sequence: 59 givenname: Thomas surname: Whalley fullname: Whalley, Thomas – sequence: 60 givenname: Trudy surname: Workman fullname: Workman, Trudy – sequence: 61 givenname: William surname: Fuller fullname: Fuller, William – sequence: 62 givenname: Amita surname: Patel fullname: Patel, Amita – sequence: 63 givenname: Bindi surname: Patel fullname: Patel, Bindi – sequence: 64 givenname: Gaia surname: Nebbia fullname: Nebbia, Gaia – sequence: 65 givenname: Jonathan surname: Edgeworth fullname: Edgeworth, Jonathan – sequence: 66 givenname: Luke B surname: Snell fullname: Snell, Luke B – sequence: 67 givenname: Rahul surname: Batra fullname: Batra, Rahul – sequence: 68 givenname: Themoula surname: Charalampous fullname: Charalampous, Themoula – sequence: 69 givenname: Angela H surname: Beckett fullname: Beckett, Angela H – sequence: 70 givenname: Ekaterina surname: Shelest fullname: Shelest, Ekaterina – sequence: 71 givenname: Samuel C surname: Robson fullname: Robson, Samuel C – sequence: 72 givenname: Anthony P surname: Underwood fullname: Underwood, Anthony P – sequence: 73 givenname: Ben E W surname: Taylor fullname: Taylor, Ben E W – sequence: 74 givenname: Corin A surname: Yeats fullname: Yeats, Corin A – sequence: 75 givenname: David M surname: Aanensen fullname: Aanensen, David M – sequence: 76 givenname: Khalil surname: Abudahab fullname: Abudahab, Khalil – sequence: 77 givenname: Mirko surname: Menegazzo fullname: Menegazzo, Mirko – sequence: 78 givenname: Amelia surname: Joseph fullname: Joseph, Amelia – sequence: 79 givenname: Gemma surname: Clark fullname: Clark, Gemma – sequence: 80 givenname: Hannah C surname: Howson-Wells fullname: Howson-Wells, Hannah C – sequence: 81 givenname: Louise surname: Berry fullname: Berry, Louise – sequence: 82 givenname: Manjinder surname: Khakh fullname: Khakh, Manjinder – sequence: 83 givenname: Michelle M surname: Lister fullname: Lister, Michelle M – sequence: 84 givenname: Tim surname: Boswell fullname: Boswell, Tim – sequence: 85 givenname: Vicki M surname: Fleming fullname: Fleming, Vicki M – sequence: 86 givenname: Christopher W surname: Holmes fullname: Holmes, Christopher W – sequence: 87 givenname: Claire L surname: McMurray fullname: McMurray, Claire L – sequence: 88 givenname: Jessica surname: Shaw fullname: Shaw, Jessica – sequence: 89 givenname: Julian W surname: Tang fullname: Tang, Julian W – sequence: 90 givenname: Karlie surname: Fallon fullname: Fallon, Karlie – sequence: 91 givenname: Mina surname: Odedra fullname: Odedra, Mina – sequence: 92 givenname: Nicholas J surname: Willford fullname: Willford, Nicholas J – sequence: 93 givenname: Paul W surname: Bird fullname: Bird, Paul W – sequence: 94 givenname: Thomas surname: Helmer fullname: Helmer, Thomas – sequence: 95 givenname: Lesley-Anne surname: Williams fullname: Williams, Lesley-Anne – sequence: 96 givenname: Nicola surname: Sheriff fullname: Sheriff, Nicola – sequence: 97 givenname: Sharon surname: Campbell fullname: Campbell, Sharon – sequence: 98 givenname: Veena surname: Raviprakash fullname: Raviprakash, Veena – sequence: 99 givenname: Victoria surname: Blakey fullname: Blakey, Victoria – sequence: 100 givenname: Christopher surname: Moore fullname: Moore, Christopher |
Copyright | The Author(s) 2022. corrected publication 2022 2022. The Author(s). The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022, corrected publication 2022 |
Copyright_xml | – notice: The Author(s) 2022. corrected publication 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022, corrected publication 2022 |
CorporateAuthor | PITCH Consortium The COVID-19 Genomics UK (COG-UK) Consortium COVID-19 Genomics UK (COG-UK) Consortium |
CorporateAuthor_xml | – name: The COVID-19 Genomics UK (COG-UK) Consortium – name: PITCH Consortium – name: COVID-19 Genomics UK (COG-UK) Consortium |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FH AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41564-022-01143-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Biological Science Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Public Health |
EISSN | 2058-5276 |
EndPage | 1179 |
ExternalDocumentID | PMC9352574 35798890 10_1038_s41564_022_01143_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: RCUK | Medical Research Council (MRC) grantid: MCUU1201412; MCUU1201412; MR/W02067X/1; MCUU1201412; MR/W005611/1; MR/R024758/1; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412 funderid: https://doi.org/10.13039/501100000265 – fundername: Research Councils UK (RCUK) grantid: MR/V038613/1; MR/W005611/1; MR/W02067X/1; MR/W005611/1; MR/W005611/1 funderid: https://doi.org/10.13039/501100000690 – fundername: Wellcome Trust (Wellcome) grantid: 107653/Z/15/A; WT109965MA; 220977/Z/20/Z funderid: https://doi.org/10.13039/100004440 – fundername: Health Data Research UK (HDR UK) 2021.0155) – fundername: DH | National Institute for Health Research (NIHR) grantid: NIHR300791 funderid: https://doi.org/10.13039/501100000272 – fundername: RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/R019843/1; BB/R004250/1; BB/R019843/1 funderid: https://doi.org/10.13039/501100000268 – fundername: Health Data Research UK (HDR UK) 2021.0155 – fundername: Wellcome Trust grantid: WT109965MA – fundername: Medical Research Council grantid: MC_UU_00002/11 – fundername: Wellcome Trust grantid: 107653/Z/15/A – fundername: Wellcome Trust grantid: 204721/Z/16/Z – fundername: Medical Research Council grantid: MC_UU_12014/12 – fundername: Medical Research Council grantid: MC_PC_20058 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/R019843/1 – fundername: Medical Research Council grantid: MC_PC_19027 – fundername: Department of Health grantid: NIHR300791 – fundername: Medical Research Council grantid: MR/W02067X/1 – fundername: ; – fundername: ; grantid: BB/R019843/1; BB/R004250/1; BB/R019843/1 – fundername: ; grantid: MR/V038613/1; MR/W005611/1; MR/W02067X/1; MR/W005611/1; MR/W005611/1 – fundername: ; grantid: 107653/Z/15/A; WT109965MA; 220977/Z/20/Z – fundername: ; grantid: NIHR300791 – fundername: ; grantid: MCUU1201412; MCUU1201412; MR/W02067X/1; MCUU1201412; MR/W005611/1; MR/R024758/1; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412; MCUU1201412 |
GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAYZH AAZLF ABJNI ABLJU ACBWK ACGFS ADBBV AFBBN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO C6C CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- ODYON R9- RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PQGLB AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-a3cf7967c83666aa87850edba2ad8dab36d992f6cd462ac5dc072726d889d9393 |
IEDL.DBID | C6C |
ISSN | 2058-5276 |
IngestDate | Thu Aug 21 18:19:14 EDT 2025 Fri Jul 11 15:04:33 EDT 2025 Sat Aug 23 13:05:49 EDT 2025 Mon Jul 21 06:03:50 EDT 2025 Tue Jul 01 00:55:57 EDT 2025 Thu Apr 24 22:58:33 EDT 2025 Fri Feb 21 02:38:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-a3cf7967c83666aa87850edba2ad8dab36d992f6cd462ac5dc072726d889d9393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7543-0860 0000-0002-4352-394X 0000-0003-0805-0195 0000-0001-5665-6293 0000-0003-1482-0889 0000-0003-1813-7825 0000-0003-3965-8136 0000-0002-2736-8740 0000-0001-8535-6214 0000-0002-5742-6171 0000-0001-9708-9555 0000-0003-3882-3339 0000-0003-4600-2047 0000-0001-5390-7579 0000-0001-6338-0221 0000-0001-8912-3266 0000-0002-9442-2903 0000-0003-2556-2563 0000-0002-5588-4232 0000-0001-7080-8038 0000-0002-3472-3667 0000-0002-6468-0258 |
OpenAccessLink | https://www.nature.com/articles/s41564-022-01143-7 |
PMID | 35798890 |
PQID | 2698363452 |
PQPubID | 2069616 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9352574 proquest_miscellaneous_2687719782 proquest_journals_2698363452 pubmed_primary_35798890 crossref_citationtrail_10_1038_s41564_022_01143_7 crossref_primary_10_1038_s41564_022_01143_7 springer_journals_10_1038_s41564_022_01143_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature microbiology |
PublicationTitleAbbrev | Nat Microbiol |
PublicationTitleAlternate | Nat Microbiol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | VianaRRapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern AfricaNature20226036796861:CAS:528:DC%2BB38XntlWnsLk%3D35042229894285510.1038/s41586-022-04411-y MuikANeutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human seraScience20223756786801:CAS:528:DC%2BB38XjvFKksbY%3D3504066710.1126/science.abn7591 PriceMNDehalPSArkinAPFastTree 2–approximately maximum-likelihood trees for large alignmentsPLoS ONE20105e949020224823283573610.1371/journal.pone.0009490 AngyalAT-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort studyLancet Microbe20223e21e311:CAS:528:DC%2BB38XjtFGjsLk%3D34778853857784610.1016/S2666-5247(21)00275-5 NieJFunctional comparison of SARS-CoV-2 with closely related pangolin and bat coronavirusesCell Discov.20217211:CAS:528:DC%2BB3MXotFejsbw%3D33824288802230210.1038/s41421-021-00256-3 KodakaMA new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cellsExp. Cell. Res.20153361711811:CAS:528:DC%2BC2MXhtFCkt7jI2611646710.1016/j.yexcr.2015.06.015 MengBAltered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicityNature20226037067141:CAS:528:DC%2BB38XntlGhu74%3D35104837894285610.1038/s41586-022-04474-x ChoAAnti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccinationNature20216005175221:CAS:528:DC%2BB3MXisFWks7vI34619745867413310.1038/s41586-021-04060-7 WinstoneHThe polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2J. Virol.202195e024221:CAS:528:DC%2BB3MXhtVKisrrF33563656810411710.1128/JVI.02422-20 WrobelAGStructure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2Nat. Commun.2021121610.1038/s41467-021-21006-9 PintoDCross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibodyNature20205832902951:CAS:528:DC%2BB3cXht1Cmu7bI3242264510.1038/s41586-020-2349-y Doria-Rose, N. A. et al. Booster of mRNA-1273 strengthens SARS-CoV-2 Omicron neutralization. Preprint at medRxivhttps://doi.org/10.1101/2021.12.15.21267805 (2021). McCallumMN-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2Cell202118423322347.e161:CAS:528:DC%2BB3MXnsVGgtbo%3D33761326796258510.1016/j.cell.2021.03.028 KhouryDSNeutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infectionNat. Med.202127120512111:CAS:528:DC%2BB3MXhtFSktLrP3400208910.1038/s41591-021-01377-8 Wood, S. N. Generalized Additive Models. An Introduction with R (Chapman and Hall/CRC, 2006). Basile, K. et al. Improved neutralization of the SARS-CoV-2 Omicron variant after Pfizer-BioNTech BNT162b2 COVID-19 vaccine boosting. Preprint at bioRxivhttps://doi.org/10.1101/2021.12.12.472252 (2021). DavisCReduced neutralisation of the Delta (B. 1.617. 2) SARS-CoV-2 variant of concern following vaccinationPLoS Pathog.202117e10100221:CAS:528:DC%2BB3MXis12ktbbN34855916863907310.1371/journal.ppat.1010022 CromerDNeutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysisLancet Microbe20213e52e6134806056859256310.1016/S2666-5247(21)00267-6 VoyseyMSafety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UKLancet2021397991111:CAS:528:DC%2BB3cXisFCgt77I33306989772344510.1016/S0140-6736(20)32661-1 MengBAltered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicityNature20226037067141:CAS:528:DC%2BB38XntlGhu74%3D35104837894285610.1038/s41586-022-04474-x StarrTNProspective mapping of viral mutations that escape antibodies used to treat COVID-19Science20213718508541:CAS:528:DC%2BB3MXkslynu74%3D33495308796321910.1126/science.abf9302 HoffmannMThe Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemicCell2022185447456.e111:CAS:528:DC%2BB38XhtVehsrs%3D3502615110.1016/j.cell.2021.12.032 Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife9, (2020). SuzukiRAttenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variantNature20226037007051:CAS:528:DC%2BB38XmsF2kuro%3D35104835894285210.1038/s41586-022-04462-1 ZhaoHSARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cellsEmerg. Microbes Infect.2022112772831:CAS:528:DC%2BB38XhvVagurY%3D34951565877404910.1080/22221751.2021.2023329 LiHMinimap2: pairwise alignment for nucleotide sequencesBioinformatics201834309431001:CAS:528:DC%2BC1MXhtVamu73J29750242613799610.1093/bioinformatics/bty191 BragaLDrugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytiaNature202159488931:CAS:528:DC%2BB3MXhtVSrtbnN33827113761105510.1038/s41586-021-03491-6 DavisCReduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccinationPLoS Pathog.202117e10100221:CAS:528:DC%2BB3MXis12ktbbN34855916863907310.1371/journal.ppat.1010022 McCarthyKRRecurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escapeScience20213756578 GilbertPBImmune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy trialScience202237543501:CAS:528:DC%2BB38Xhtlamu70%3D3481265310.1126/science.abm3425 ZahradníkJSARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolutionNat. Microbiol.20216118811983440083510.1038/s41564-021-00954-4 DaniloskiZIdentification of required host factors for SARS-CoV-2 infection in human cellsCell2021184921051:CAS:528:DC%2BB3cXit1GqsL3L3314744510.1016/j.cell.2020.10.030 ChengSMSNeutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccinationNat. Med.2022284864891:CAS:528:DC%2BB38XkvVensbo%3D35051989894071410.1038/s41591-022-01704-7 BenvenutoDEvolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagyJ. Infect.202081e24e271:CAS:528:DC%2BB3cXhtFCjtb7L32283146719530310.1016/j.jinf.2020.03.058 AhmedSFQuadeerAAMcKayMRSARS-CoV-2 T cell responses elicited by COVID-19 vaccines or infection are expected to remain robust against OmicronViruses202214791:CAS:528:DC%2BB38XitFKqs74%3D35062283878179510.3390/v14010079 JacksonCBFarzanMChenBChoeHMechanisms of SARS-CoV-2 entry into cellsNat. Rev. Mol. Cell Biol.2022233201:CAS:528:DC%2BB3MXit1Whs7rP3461132610.1038/s41580-021-00418-x da Silva FilipeAGenomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into ScotlandNat. Microbiol.202161121223334968110.1038/s41564-020-00838-z RösslerARieplerLBanteDvon LaerDKimpelJSARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent personsN. Engl. J. Med.20223866987003502100510.1056/NEJMc2119236 StarrTNDeep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 bindingCell202018212951310.e201:CAS:528:DC%2BB3cXhs1yltLjP32841599741870410.1016/j.cell.2020.08.012 HoffmannMSARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitorCell20201812712801:CAS:528:DC%2BB3cXktl2qtb8%3D32142651710262710.1016/j.cell.2020.02.052 LanJStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature20205812152201:CAS:528:DC%2BB3cXoslOqtL8%3D3222517610.1038/s41586-020-2180-5 HughesECSARS-CoV-2 serosurveillance in a patient population reveals differences in virus exposure and antibody-mediated immunity according to host demography and healthcare settingJ. Infect. Dis.20212239719801:CAS:528:DC%2BB3MXnslyqtr0%3D3336784710.1093/infdis/jiaa788 GreaneyAJComprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodiesCell Host Microbe202129463476.e61:CAS:528:DC%2BB3MXjvVCrt7c%3D33592168786974810.1016/j.chom.2021.02.003 ZuffereyRNagyDMandelRJNaldiniLTronoDMultiply attenuated lentiviral vector achieves efficient gene delivery in vivoNat. Biotechnol.1997158718751:CAS:528:DyaK2sXmt1Cjs7c%3D930640210.1038/nbt0997-871 WallECAZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOCLancet20213982072091:CAS:528:DC%2BB3MXhsV2lt7rL34197809823844610.1016/S0140-6736(21)01462-8 Kim, P., Gordon, S. M., Sheehan, M. M. & Rothberg, M. B. Duration of SARS-CoV-2 natural immunity and protection against the Delta variant: a retrospective cohort study. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciab999 (2021). LiuZIdentification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralizationCell Host Microbe2021294774881:CAS:528:DC%2BB3MXjtVWqtb4%3D33535027783983710.1016/j.chom.2021.01.014 Newman, J. et al. Neutralising antibody activity against SARS-CoV-2 variants, including Omicron, in an elderly cohort vaccinated with BNT162b2. Preprint at medRxivhttps://doi.org/10.1101/2021.12.23.21268293 (2021). AndrewsNCovid-19 vaccine effectiveness against the Omicron (B.1.1.529) variantN. Engl. J. Med.2022386153215461:CAS:528:DC%2BB38XhtFGrsLbN3524927210.1056/NEJMoa2119451 PayneRPImmunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccineCell202118456995714.e111:CAS:528:DC%2BB3MXisVantbnM34735795851978110.1016/j.cell.2021.10.011 PeacockTPThe furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferretsNat. Microbiol.202168999091:CAS:528:DC%2BB3MXps12ltr8%3D3390731210.1038/s41564-021-00908-w FeikinDDuration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regressionLancet20223999249441:CAS:528:DC%2BB38XltFSisbo%3D35202601886350210.1016/S0140-6736(22)00152-0 WangZmRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variantsNature20215926166221:CAS:528:DC%2BB3MXmt1ensLY%3D33567448850393810.1038/s41586-021-03324-6 Earle TN Starr (1143_CR94) 2021; 371 CH Emmerich (1143_CR83) 2016; 474 J Lan (1143_CR86) 2020; 581 Z Daniloski (1143_CR54) 2021; 184 D Bojkova (1143_CR57) 2022; 32 EC Hughes (1143_CR79) 2021; 223 1143_CR88 AJ Greaney (1143_CR91) 2021; 12 H Winstone (1143_CR53) 2021; 95 1143_CR80 EC Wall (1143_CR4) 2021; 398 S Cele (1143_CR14) 2022; 602 A Cho (1143_CR35) 2021; 600 A Rössler (1143_CR55) 2022; 386 SJ Rihn (1143_CR72) 2021; 19 1143_CR13 D Pinto (1143_CR22) 2020; 583 1143_CR15 R Zufferey (1143_CR81) 1997; 15 1143_CR16 M Voysey (1143_CR32) 2021; 397 1143_CR17 B Meng (1143_CR25) 2021; 35 1143_CR93 N Andrews (1143_CR9) 2022; 386 PB Gilbert (1143_CR29) 2022; 375 1143_CR95 SF Ahmed (1143_CR12) 2022; 14 A Angyal (1143_CR33) 2022; 3 1143_CR10 1143_CR11 MJ Sweredoski (1143_CR87) 2008; 24 R Zufferey (1143_CR82) 1998; 72 Y Goldberg (1143_CR37) 2022; 386 B Meng (1143_CR18) 2022; 603 1143_CR68 1143_CR69 A da Silva Filipe (1143_CR73) 2021; 6 SMS Cheng (1143_CR67) 2022; 28 EC Wall (1143_CR3) 2021; 397 E Saccon (1143_CR52) 2021; 24 J Zahradník (1143_CR19) 2021; 6 TP Peacock (1143_CR24) 2021; 6 DS Khoury (1143_CR31) 2021; 27 R Abdelnabi (1143_CR43) 2022; 198 AZ Mykytyn (1143_CR45) 2021; 10 D Benvenuto (1143_CR70) 2020; 81 S Belouzard (1143_CR50) 2009; 106 D Cromer (1143_CR28) 2021; 3 B Meng (1143_CR59) 2022; 603 M McCallum (1143_CR26) 2021; 184 D Planas (1143_CR65) 2022; 602 MN Price (1143_CR90) 2010; 5 M Hoffmann (1143_CR46) 2020; 181 KA Earle (1143_CR30) 2021; 39 LG Thorne (1143_CR71) 2022; 602 1143_CR76 DL Burnett (1143_CR21) 2021; 54 H Woo (1143_CR84) 2020; 124 J Lopez Bernal (1143_CR5) 2021; 385 Z Wang (1143_CR96) 2021; 592 R Rouet (1143_CR23) 2021; 13 H Li (1143_CR89) 2018; 34 H Zhao (1143_CR58) 2022; 11 R Suzuki (1143_CR60) 2022; 603 J Zhang (1143_CR41) 2021; 374 E Cameroni (1143_CR61) 2022; 602 JM Carreño (1143_CR63) 2022; 602 G Papa (1143_CR39) 2021; 17 R Viana (1143_CR6) 2022; 603 A Muik (1143_CR62) 2022; 375 CB Jackson (1143_CR44) 2022; 23 1143_CR56 Z Liu (1143_CR85) 2021; 29 M Hoffmann (1143_CR47) 2020; 78 D Wrapp (1143_CR92) 2020; 367 1143_CR51 ND Grubaugh (1143_CR75) 2019; 20 TN Starr (1143_CR97) 2020; 182 M Kodaka (1143_CR42) 2015; 336 C Davis (1143_CR2) 2021; 17 L Braga (1143_CR40) 2021; 594 J Nie (1143_CR48) 2021; 7 C Davis (1143_CR78) 2021; 17 H Gu (1143_CR7) 2022; 28 1143_CR1 J Zhou (1143_CR77) 2022; 38 1143_CR8 1143_CR34 1143_CR36 AJ Greaney (1143_CR20) 2021; 29 M Hoffmann (1143_CR64) 2022; 185 D Feikin (1143_CR38) 2022; 399 AG Wrobel (1143_CR49) 2021; 12 RP Payne (1143_CR66) 2021; 184 KR McCarthy (1143_CR27) 2021; 375 H Li (1143_CR74) 2009; 25 36114232 - Nat Microbiol. 2022 Oct;7(10):1709. doi: 10.1038/s41564-022-01241-6. |
References_xml | – reference: WallECNeutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccinationLancet2021397233123331:CAS:528:DC%2BB3MXht12jtrvL34090624817504410.1016/S0140-6736(21)01290-3 – reference: StarrTNDeep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 bindingCell202018212951310.e201:CAS:528:DC%2BB3cXhs1yltLjP32841599741870410.1016/j.cell.2020.08.012 – reference: HoffmannMKleine-WeberHPöhlmannSA multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cellsMol. Cell2020787797841:CAS:528:DC%2BB3cXovVCgs7o%3D32362314719406510.1016/j.molcel.2020.04.022 – reference: DavisCReduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccinationPLoS Pathog.202117e10100221:CAS:528:DC%2BB3MXis12ktbbN34855916863907310.1371/journal.ppat.1010022 – reference: Lopez BernalJEffectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) VariantN. Engl. J. Med.20213855855943428927410.1056/NEJMoa2108891 – reference: EmmerichCHLys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signallingBiochem. Biophys. Res. Commun.20164744524611:CAS:528:DC%2BC28XnsFWrs7s%3D27133719488015010.1016/j.bbrc.2016.04.141 – reference: MykytynAZSARS-CoV-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage siteeLife202110e645081:CAS:528:DC%2BB3MXhslahsrvO33393462780625910.7554/eLife.64508 – reference: GrubaughNDAn amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVarGenome Biol.20192030621750632581610.1186/s13059-018-1618-7 – reference: VianaRRapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern AfricaNature20226036796861:CAS:528:DC%2BB38XntlWnsLk%3D35042229894285510.1038/s41586-022-04411-y – reference: CromerDNeutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysisLancet Microbe20213e52e6134806056859256310.1016/S2666-5247(21)00267-6 – reference: PlanasDConsiderable escape of SARS-CoV-2 Omicron to antibody neutralizationNature20226026716751:CAS:528:DC%2BB38XjvFOktLs%3D3501619910.1038/s41586-021-04389-z – reference: AndrewsNCovid-19 vaccine effectiveness against the Omicron (B.1.1.529) variantN. Engl. J. Med.2022386153215461:CAS:528:DC%2BB38XhtFGrsLbN3524927210.1056/NEJMoa2119451 – reference: AbdelnabiRThe omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamstersAntivir. Res.20221981052531:CAS:528:DC%2BB38Xit1CjtLY%3D3506601510.1016/j.antiviral.2022.105253 – reference: LiuZIdentification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralizationCell Host Microbe2021294774881:CAS:528:DC%2BB3MXjtVWqtb4%3D33535027783983710.1016/j.chom.2021.01.014 – reference: ZuffereyRNagyDMandelRJNaldiniLTronoDMultiply attenuated lentiviral vector achieves efficient gene delivery in vivoNat. Biotechnol.1997158718751:CAS:528:DyaK2sXmt1Cjs7c%3D930640210.1038/nbt0997-871 – reference: Report 50 – Hospitalisation Risk for Omicron Cases in England (Imperial College London, 2021). – reference: ThorneLGEvolution of enhanced innate immune evasion by SARS-CoV-2Nature20226024874951:CAS:528:DC%2BB38XjtlSnsrw%3D3494263410.1038/s41586-021-04352-y – reference: RouetRPotent SARS-CoV-2 binding and neutralization through maturation of iconic SARS-CoV-1 antibodiesMAbs202113192213434024246815804310.1080/19420862.2021.1922134 – reference: GilbertPBImmune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy trialScience202237543501:CAS:528:DC%2BB38Xhtlamu70%3D3481265310.1126/science.abm3425 – reference: GuHProbable transmission of SARS-CoV-2 Omicron variant in Quarantine Hotel, Hong Kong, China, November 2021Emerg. Infect. Dis.2022284604621:CAS:528:DC%2BB38XptFOjt70%3D34860154879867810.3201/eid2802.212422 – reference: ChengSMSNeutralizing antibodies against the SARS-CoV-2 Omicron variant BA.1 following homologous and heterologous CoronaVac or BNT162b2 vaccinationNat. Med.2022284864891:CAS:528:DC%2BB38XkvVensbo%3D35051989894071410.1038/s41591-022-01704-7 – reference: VoyseyMSafety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UKLancet2021397991111:CAS:528:DC%2BB3cXisFCgt77I33306989772344510.1016/S0140-6736(20)32661-1 – reference: da Silva FilipeAGenomic epidemiology reveals multiple introductions of SARS-CoV-2 from mainland Europe into ScotlandNat. Microbiol.202161121223334968110.1038/s41564-020-00838-z – reference: SacconECell-type-resolved quantitative proteomics map of interferon response against SARS-CoV-2iScience2021241024201:CAS:528:DC%2BB3MXhtVaru7%2FI33898942805684310.1016/j.isci.2021.102420 – reference: Sheikh, A., Kerr, S., Woolhouse, M., McMenamin, J., Robertson, C. & EAVE II Collaborators. Severity of omicron variant of concern and effectiveness of vaccine boosters against symptomatic disease in Scotland (EAVE II): a national cohort study with nested test-negative design. Lancet Infect. Dis.22, 959–966 (2022). – reference: PayneRPImmunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccineCell202118456995714.e111:CAS:528:DC%2BB3MXisVantbnM34735795851978110.1016/j.cell.2021.10.011 – reference: FeikinDDuration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regressionLancet20223999249441:CAS:528:DC%2BB38XltFSisbo%3D35202601886350210.1016/S0140-6736(22)00152-0 – reference: WallECAZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOCLancet20213982072091:CAS:528:DC%2BB3MXhsV2lt7rL34197809823844610.1016/S0140-6736(21)01462-8 – reference: RösslerARieplerLBanteDvon LaerDKimpelJSARS-CoV-2 Omicron variant neutralization in serum from vaccinated and convalescent personsN. Engl. J. Med.20223866987003502100510.1056/NEJMc2119236 – reference: HoffmannMSARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitorCell20201812712801:CAS:528:DC%2BB3cXktl2qtb8%3D32142651710262710.1016/j.cell.2020.02.052 – reference: KodakaMA new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cellsExp. Cell. Res.20153361711811:CAS:528:DC%2BC2MXhtFCkt7jI2611646710.1016/j.yexcr.2015.06.015 – reference: WinstoneHThe polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2J. Virol.202195e024221:CAS:528:DC%2BB3MXhtVKisrrF33563656810411710.1128/JVI.02422-20 – reference: SweredoskiMJBaldiPPEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposureBioinformatics200824145914601:CAS:528:DC%2BD1cXnt1Slurw%3D1844301810.1093/bioinformatics/btn199 – reference: ZhangJMembrane fusion and immune evasion by the spike protein of SARS-CoV-2 Delta variantScience2021374135313601:CAS:528:DC%2BB3MXislKnsb3M3469850410.1126/science.abl9463 – reference: WooHDeveloping a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membraneJ. Phys. Chem. B2020124712871371:CAS:528:DC%2BB3cXht1WmsrjK32559081734169110.1021/acs.jpcb.0c04553 – reference: McCarthyKRRecurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escapeScience20213756578 – reference: ZhaoHSARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cellsEmerg. Microbes Infect.2022112772831:CAS:528:DC%2BB38XhvVagurY%3D34951565877404910.1080/22221751.2021.2023329 – reference: Kim, P., Gordon, S. M., Sheehan, M. M. & Rothberg, M. B. Duration of SARS-CoV-2 natural immunity and protection against the Delta variant: a retrospective cohort study. Clin. Infect. Dis.https://doi.org/10.1093/cid/ciab999 (2021). – reference: Wood, S. N. Generalized Additive Models. An Introduction with R (Chapman and Hall/CRC, 2006). – reference: Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Naturehttps://doi.org/10.1038/s41586-021-04386-2 (2022). – reference: Schrodinger, L. The PyMOL molecular graphics system, Version 1.3r1 (2010). – reference: AhmedSFQuadeerAAMcKayMRSARS-CoV-2 T cell responses elicited by COVID-19 vaccines or infection are expected to remain robust against OmicronViruses202214791:CAS:528:DC%2BB38XitFKqs74%3D35062283878179510.3390/v14010079 – reference: Doria-Rose, N. A. et al. Booster of mRNA-1273 strengthens SARS-CoV-2 Omicron neutralization. Preprint at medRxivhttps://doi.org/10.1101/2021.12.15.21267805 (2021). – reference: DaniloskiZIdentification of required host factors for SARS-CoV-2 infection in human cellsCell2021184921051:CAS:528:DC%2BB3cXit1GqsL3L3314744510.1016/j.cell.2020.10.030 – reference: Garcia-Beltran, W. F. et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cellhttps://doi.org/10.1016/j.cell.2021.12.033 (2022). – reference: PriceMNDehalPSArkinAPFastTree 2–approximately maximum-likelihood trees for large alignmentsPLoS ONE20105e949020224823283573610.1371/journal.pone.0009490 – reference: LanJStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature20205812152201:CAS:528:DC%2BB3cXoslOqtL8%3D3222517610.1038/s41586-020-2180-5 – reference: WHO SPRP 2021 Mid-term Report – WHO Strategic Action Against COVID 19 (WHO, 2021). – reference: BelouzardSChuVCWhittakerGRActivation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sitesProc. Natl Acad. Sci. USA2009106587158761:CAS:528:DC%2BD1MXkvFejtrY%3D19321428266006110.1073/pnas.0809524106 – reference: RihnSJA plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 researchPLoS Biol.202119e30010911:CAS:528:DC%2BB3MXls1ymsLw%3D33630831790641710.1371/journal.pbio.3001091 – reference: LiHDurbinRFast and accurate short read alignment with Burrows-Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D19451168270523410.1093/bioinformatics/btp324 – reference: WrobelAGStructure and binding properties of Pangolin-CoV spike glycoprotein inform the evolution of SARS-CoV-2Nat. Commun.2021121610.1038/s41467-021-21006-9 – reference: Dicken, S. J. et al. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. Preprint at bioRxivhttps://doi.org/10.1101/2021.03.22.436468 (2021). – reference: MengBAltered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicityNature20226037067141:CAS:528:DC%2BB38XntlGhu74%3D35104837894285610.1038/s41586-022-04474-x – reference: NieJFunctional comparison of SARS-CoV-2 with closely related pangolin and bat coronavirusesCell Discov.20217211:CAS:528:DC%2BB3MXotFejsbw%3D33824288802230210.1038/s41421-021-00256-3 – reference: ChoAAnti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccinationNature20216005175221:CAS:528:DC%2BB3MXisFWks7vI34619745867413310.1038/s41586-021-04060-7 – reference: BurnettDLImmunizations with diverse sarbecovirus receptor-binding domains elicit SARS-CoV-2 neutralizing antibodies against a conserved site of vulnerabilityImmunity20215429082921.e61:CAS:528:DC%2BB3MXisV2lurjN34788600855407510.1016/j.immuni.2021.10.019 – reference: BojkovaDReduced interferon antagonism but similar drug sensitivity in Omicron variant compared to Delta variant of SARS-CoV-2 isolatesCell Res.2022323193211:CAS:528:DC%2BB38XlsVChu7k%3D35064226878170910.1038/s41422-022-00619-9 – reference: MengBAltered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicityNature20226037067141:CAS:528:DC%2BB38XntlGhu74%3D35104837894285610.1038/s41586-022-04474-x – reference: LiHMinimap2: pairwise alignment for nucleotide sequencesBioinformatics201834309431001:CAS:528:DC%2BC1MXhtVamu73J29750242613799610.1093/bioinformatics/bty191 – reference: StarrTNProspective mapping of viral mutations that escape antibodies used to treat COVID-19Science20213718508541:CAS:528:DC%2BB3MXkslynu74%3D33495308796321910.1126/science.abf9302 – reference: Basile, K. et al. Improved neutralization of the SARS-CoV-2 Omicron variant after Pfizer-BioNTech BNT162b2 COVID-19 vaccine boosting. Preprint at bioRxivhttps://doi.org/10.1101/2021.12.12.472252 (2021). – reference: Dejnirattisai, W. et al. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancethttps://doi.org/10.1016/S0140-6736(21)02844-0 (2021). – reference: HughesECSARS-CoV-2 serosurveillance in a patient population reveals differences in virus exposure and antibody-mediated immunity according to host demography and healthcare settingJ. Infect. Dis.20212239719801:CAS:528:DC%2BB3MXnslyqtr0%3D3336784710.1093/infdis/jiaa788 – reference: GreaneyAJComprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodiesCell Host Microbe202129463476.e61:CAS:528:DC%2BB3MXjvVCrt7c%3D33592168786974810.1016/j.chom.2021.02.003 – reference: GreaneyAJMapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodiesNat. Commun.2021121:CAS:528:DC%2BB3MXhsFGhtLfK34234131826375010.1038/s41467-021-24435-8 – reference: HoffmannMThe Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemicCell2022185447456.e111:CAS:528:DC%2BB38XhtVehsrs%3D3502615110.1016/j.cell.2021.12.032 – reference: CeleSOmicron extensively but incompletely escapes Pfizer BNT162b2 neutralizationNature20226026546561:CAS:528:DC%2BB38XjvFOktLw%3D3501619610.1038/s41586-021-04387-1 – reference: Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife9, (2020). – reference: WangZmRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variantsNature20215926166221:CAS:528:DC%2BB3MXmt1ensLY%3D33567448850393810.1038/s41586-021-03324-6 – reference: PeacockTPThe furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferretsNat. Microbiol.202168999091:CAS:528:DC%2BB3MXps12ltr8%3D3390731210.1038/s41564-021-00908-w – reference: EarleKAEvidence for antibody as a protective correlate for COVID-19 vaccinesVaccine202139442344281:CAS:528:DC%2BB3MXhsV2ltrrK34210573814284110.1016/j.vaccine.2021.05.063 – reference: CameroniEBroadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shiftNature20226026646701:CAS:528:DC%2BB38XjvFOktLY%3D3501619510.1038/s41586-021-04386-2 – reference: McCallum, M. et al. SARS-CoV-2 immune evasion by variant B.1.427/B.1.429. Preprint at bioRxivhttps://doi.org/10.1101/2021.03.31.437925 (2021). – reference: GoldbergYProtection and waning of natural and hybrid COVID-19 immunityN. Engl. J. Med.2022386220122121:CAS:528:DC%2BB38Xit1ersLvI3561303610.1056/NEJMoa2118946 – reference: MuikANeutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human seraScience20223756786801:CAS:528:DC%2BB38XjvFKksbY%3D3504066710.1126/science.abn7591 – reference: PintoDCross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibodyNature20205832902951:CAS:528:DC%2BB3cXht1Cmu7bI3242264510.1038/s41586-020-2349-y – reference: Newman, J. et al. Neutralising antibody activity against SARS-CoV-2 variants, including Omicron, in an elderly cohort vaccinated with BNT162b2. Preprint at medRxivhttps://doi.org/10.1101/2021.12.23.21268293 (2021). – reference: ZahradníkJSARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolutionNat. Microbiol.20216118811983440083510.1038/s41564-021-00954-4 – reference: JacksonCBFarzanMChenBChoeHMechanisms of SARS-CoV-2 entry into cellsNat. Rev. Mol. Cell Biol.2022233201:CAS:528:DC%2BB3MXit1Whs7rP3461132610.1038/s41580-021-00418-x – reference: ZhouJMutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airwayCell Rep.2022381103441:CAS:528:DC%2BB38XhvFGkurk%3D35093235876842810.1016/j.celrep.2022.110344 – reference: O’Toole, Á. et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol.7, (2021). – reference: Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Naturehttps://doi.org/10.1038/s41586-021-04385-3 (2022). – reference: SuzukiRAttenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variantNature20226037007051:CAS:528:DC%2BB38XmsF2kuro%3D35104835894285210.1038/s41586-022-04462-1 – reference: BragaLDrugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytiaNature202159488931:CAS:528:DC%2BB3MXhtVSrtbnN33827113761105510.1038/s41586-021-03491-6 – reference: PapaGFurin cleavage of SARS-CoV-2 spike promotes but is not essential for infection and cell-cell fusionPLoS Pathog.202117e10092461:CAS:528:DC%2BB3MXjs1arsLk%3D33493182786153710.1371/journal.ppat.1009246 – reference: CarreñoJMActivity of convalescent and vaccine serum against SARS-CoV-2 OmicronNature20226026826883501619710.1038/s41586-022-04399-5 – reference: DavisCReduced neutralisation of the Delta (B. 1.617. 2) SARS-CoV-2 variant of concern following vaccinationPLoS Pathog.202117e10100221:CAS:528:DC%2BB3MXis12ktbbN34855916863907310.1371/journal.ppat.1010022 – reference: Aggarwal, A. et al. SARS-CoV-2 Omicron: evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. Preprint at medRxivhttps://doi.org/10.1101/2021.12.14.21267772 (2021). – reference: KhouryDSNeutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infectionNat. Med.202127120512111:CAS:528:DC%2BB3MXhtFSktLrP3400208910.1038/s41591-021-01377-8 – reference: AngyalAT-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort studyLancet Microbe20223e21e311:CAS:528:DC%2BB38XjtFGjsLk%3D34778853857784610.1016/S2666-5247(21)00275-5 – reference: MengBRecurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7Cell Rep.2021351092921:CAS:528:DC%2BB3MXhtlalt7bJ34166617818518810.1016/j.celrep.2021.109292 – reference: McCallumMN-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2Cell202118423322347.e161:CAS:528:DC%2BB3MXnsVGgtbo%3D33761326796258510.1016/j.cell.2021.03.028 – reference: ZuffereyRSelf-inactivating lentivirus vector for safe and efficient in vivo gene deliveryJ. Virol.199872987398801:CAS:528:DyaK1cXns1Sgs78%3D981172311049910.1128/JVI.72.12.9873-9880.1998 – reference: BenvenutoDEvolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagyJ. Infect.202081e24e271:CAS:528:DC%2BB3cXhtFCjtb7L32283146719530310.1016/j.jinf.2020.03.058 – reference: WrappDCryo-EM structure of the 2019-nCoV spike in the prefusion conformationScience2020367126012631:CAS:528:DC%2BB3cXkvFemt70%3D32075877716463710.1126/science.abb2507 – reference: Peacock, T. P. et al. The altered entry pathway and antigenic distance of the SARS-CoV-2 Omicron variant map to separate domains of spike protein. Preprint at bioRxivhttps://doi.org/10.1101/2021.12.31.474653 (2022). – volume: 223 start-page: 971 year: 2021 ident: 1143_CR79 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiaa788 – ident: 1143_CR88 – ident: 1143_CR17 doi: 10.1016/j.cell.2021.12.033 – volume: 385 start-page: 585 year: 2021 ident: 1143_CR5 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2108891 – volume: 106 start-page: 5871 year: 2009 ident: 1143_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0809524106 – volume: 13 start-page: 1922134 year: 2021 ident: 1143_CR23 publication-title: MAbs doi: 10.1080/19420862.2021.1922134 – ident: 1143_CR68 doi: 10.1016/S1473-3099(22)00141-4 – ident: 1143_CR93 doi: 10.1101/2021.03.31.437925 – volume: 185 start-page: 447 year: 2022 ident: 1143_CR64 publication-title: Cell doi: 10.1016/j.cell.2021.12.032 – volume: 602 start-page: 654 year: 2022 ident: 1143_CR14 publication-title: Nature doi: 10.1038/s41586-021-04387-1 – volume: 603 start-page: 700 year: 2022 ident: 1143_CR60 publication-title: Nature doi: 10.1038/s41586-022-04462-1 – volume: 181 start-page: 271 year: 2020 ident: 1143_CR46 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 602 start-page: 664 year: 2022 ident: 1143_CR61 publication-title: Nature doi: 10.1038/s41586-021-04386-2 – volume: 20 year: 2019 ident: 1143_CR75 publication-title: Genome Biol. doi: 10.1186/s13059-018-1618-7 – ident: 1143_CR1 – ident: 1143_CR16 doi: 10.1101/2021.12.15.21267805 – volume: 10 start-page: e64508 year: 2021 ident: 1143_CR45 publication-title: eLife doi: 10.7554/eLife.64508 – volume: 182 start-page: 1295 year: 2020 ident: 1143_CR97 publication-title: Cell doi: 10.1016/j.cell.2020.08.012 – volume: 32 start-page: 319 year: 2022 ident: 1143_CR57 publication-title: Cell Res. doi: 10.1038/s41422-022-00619-9 – volume: 184 start-page: 5699 year: 2021 ident: 1143_CR66 publication-title: Cell doi: 10.1016/j.cell.2021.10.011 – ident: 1143_CR80 doi: 10.1101/2021.12.23.21268293 – volume: 11 start-page: 277 year: 2022 ident: 1143_CR58 publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2021.2023329 – volume: 29 start-page: 477 year: 2021 ident: 1143_CR85 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.01.014 – volume: 474 start-page: 452 year: 2016 ident: 1143_CR83 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.04.141 – volume: 23 start-page: 3 year: 2022 ident: 1143_CR44 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-021-00418-x – volume: 397 start-page: 2331 year: 2021 ident: 1143_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(21)01290-3 – ident: 1143_CR10 doi: 10.1101/2021.12.14.21267772 – volume: 592 start-page: 616 year: 2021 ident: 1143_CR96 publication-title: Nature doi: 10.1038/s41586-021-03324-6 – volume: 12 year: 2021 ident: 1143_CR91 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24435-8 – volume: 3 start-page: e52 year: 2021 ident: 1143_CR28 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00267-6 – volume: 78 start-page: 779 year: 2020 ident: 1143_CR47 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.022 – volume: 594 start-page: 88 year: 2021 ident: 1143_CR40 publication-title: Nature doi: 10.1038/s41586-021-03491-6 – volume: 602 start-page: 487 year: 2022 ident: 1143_CR71 publication-title: Nature doi: 10.1038/s41586-021-04352-y – volume: 34 start-page: 3094 year: 2018 ident: 1143_CR89 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 72 start-page: 9873 year: 1998 ident: 1143_CR82 publication-title: J. Virol. doi: 10.1128/JVI.72.12.9873-9880.1998 – volume: 398 start-page: 207 year: 2021 ident: 1143_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(21)01462-8 – volume: 581 start-page: 215 year: 2020 ident: 1143_CR86 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 35 start-page: 109292 year: 2021 ident: 1143_CR25 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109292 – volume: 602 start-page: 682 year: 2022 ident: 1143_CR63 publication-title: Nature doi: 10.1038/s41586-022-04399-5 – volume: 375 start-page: 43 year: 2022 ident: 1143_CR29 publication-title: Science doi: 10.1126/science.abm3425 – volume: 184 start-page: 2332 year: 2021 ident: 1143_CR26 publication-title: Cell doi: 10.1016/j.cell.2021.03.028 – ident: 1143_CR95 doi: 10.7554/eLife.61312 – volume: 28 start-page: 460 year: 2022 ident: 1143_CR7 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2802.212422 – volume: 336 start-page: 171 year: 2015 ident: 1143_CR42 publication-title: Exp. Cell. Res. doi: 10.1016/j.yexcr.2015.06.015 – volume: 38 start-page: 110344 year: 2022 ident: 1143_CR77 publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110344 – volume: 15 start-page: 871 year: 1997 ident: 1143_CR81 publication-title: Nat. Biotechnol. doi: 10.1038/nbt0997-871 – ident: 1143_CR11 doi: 10.1101/2021.12.12.472252 – volume: 19 start-page: e3001091 year: 2021 ident: 1143_CR72 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3001091 – volume: 6 start-page: 899 year: 2021 ident: 1143_CR24 publication-title: Nat. Microbiol. doi: 10.1038/s41564-021-00908-w – volume: 17 start-page: e1010022 year: 2021 ident: 1143_CR78 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1010022 – volume: 27 start-page: 1205 year: 2021 ident: 1143_CR31 publication-title: Nat. Med. doi: 10.1038/s41591-021-01377-8 – volume: 7 start-page: 21 year: 2021 ident: 1143_CR48 publication-title: Cell Discov. doi: 10.1038/s41421-021-00256-3 – volume: 375 start-page: 6578 year: 2021 ident: 1143_CR27 publication-title: Science – volume: 374 start-page: 1353 year: 2021 ident: 1143_CR41 publication-title: Science doi: 10.1126/science.abl9463 – ident: 1143_CR15 doi: 10.1016/S0140-6736(21)02844-0 – ident: 1143_CR69 – ident: 1143_CR56 doi: 10.1101/2021.12.31.474653 – volume: 28 start-page: 486 year: 2022 ident: 1143_CR67 publication-title: Nat. Med. doi: 10.1038/s41591-022-01704-7 – volume: 24 start-page: 1459 year: 2008 ident: 1143_CR87 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn199 – volume: 6 start-page: 112 year: 2021 ident: 1143_CR73 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-00838-z – volume: 14 start-page: 79 year: 2022 ident: 1143_CR12 publication-title: Viruses doi: 10.3390/v14010079 – volume: 29 start-page: 463 year: 2021 ident: 1143_CR20 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.02.003 – volume: 603 start-page: 706 year: 2022 ident: 1143_CR59 publication-title: Nature doi: 10.1038/s41586-022-04474-x – ident: 1143_CR36 doi: 10.1093/cid/ciab999 – ident: 1143_CR51 doi: 10.1101/2021.03.22.436468 – ident: 1143_CR76 doi: 10.1093/ve/veab064 – volume: 17 start-page: e1009246 year: 2021 ident: 1143_CR39 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009246 – volume: 95 start-page: e02422 year: 2021 ident: 1143_CR53 publication-title: J. Virol. doi: 10.1128/JVI.02422-20 – volume: 24 start-page: 102420 year: 2021 ident: 1143_CR52 publication-title: iScience doi: 10.1016/j.isci.2021.102420 – volume: 600 start-page: 517 year: 2021 ident: 1143_CR35 publication-title: Nature doi: 10.1038/s41586-021-04060-7 – volume: 603 start-page: 679 year: 2022 ident: 1143_CR6 publication-title: Nature doi: 10.1038/s41586-022-04411-y – volume: 6 start-page: 1188 year: 2021 ident: 1143_CR19 publication-title: Nat. Microbiol. doi: 10.1038/s41564-021-00954-4 – volume: 198 start-page: 105253 year: 2022 ident: 1143_CR43 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2022.105253 – volume: 386 start-page: 1532 year: 2022 ident: 1143_CR9 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2119451 – volume: 25 start-page: 1754 year: 2009 ident: 1143_CR74 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 81 start-page: e24 year: 2020 ident: 1143_CR70 publication-title: J. Infect. doi: 10.1016/j.jinf.2020.03.058 – ident: 1143_CR8 doi: 10.1038/s41586-021-04386-2 – volume: 184 start-page: 92 year: 2021 ident: 1143_CR54 publication-title: Cell doi: 10.1016/j.cell.2020.10.030 – volume: 54 start-page: 2908 year: 2021 ident: 1143_CR21 publication-title: Immunity doi: 10.1016/j.immuni.2021.10.019 – volume: 5 start-page: e9490 year: 2010 ident: 1143_CR90 publication-title: PLoS ONE doi: 10.1371/journal.pone.0009490 – volume: 3 start-page: e21 year: 2022 ident: 1143_CR33 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(21)00275-5 – volume: 386 start-page: 2201 year: 2022 ident: 1143_CR37 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2118946 – volume: 371 start-page: 850 year: 2021 ident: 1143_CR94 publication-title: Science doi: 10.1126/science.abf9302 – volume: 603 start-page: 706 year: 2022 ident: 1143_CR18 publication-title: Nature doi: 10.1038/s41586-022-04474-x – volume: 602 start-page: 671 year: 2022 ident: 1143_CR65 publication-title: Nature doi: 10.1038/s41586-021-04389-z – volume: 39 start-page: 4423 year: 2021 ident: 1143_CR30 publication-title: Vaccine doi: 10.1016/j.vaccine.2021.05.063 – volume: 367 start-page: 1260 year: 2020 ident: 1143_CR92 publication-title: Science doi: 10.1126/science.abb2507 – volume: 399 start-page: 924 year: 2022 ident: 1143_CR38 publication-title: Lancet doi: 10.1016/S0140-6736(22)00152-0 – volume: 583 start-page: 290 year: 2020 ident: 1143_CR22 publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 17 start-page: e1010022 year: 2021 ident: 1143_CR2 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1010022 – volume: 375 start-page: 678 year: 2022 ident: 1143_CR62 publication-title: Science doi: 10.1126/science.abn7591 – volume: 12 start-page: 1 year: 2021 ident: 1143_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21006-9 – ident: 1143_CR13 doi: 10.1038/s41586-021-04385-3 – volume: 397 start-page: 99 year: 2021 ident: 1143_CR32 publication-title: Lancet doi: 10.1016/S0140-6736(20)32661-1 – ident: 1143_CR34 doi: 10.1201/9781420010404 – volume: 124 start-page: 7128 year: 2020 ident: 1143_CR84 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c04553 – volume: 386 start-page: 698 year: 2022 ident: 1143_CR55 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2119236 – reference: 36114232 - Nat Microbiol. 2022 Oct;7(10):1709. doi: 10.1038/s41564-022-01241-6. |
SSID | ssj0001626686 |
Score | 2.6492286 |
Snippet | Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1161 |
SubjectTerms | 13/1 13/106 38/35 42/109 631/250 631/250/590 631/337 692/699/255/2514 Amino acids Antibodies, Viral Antigenicity Biomedical and Life Sciences BNT162 Vaccine Cell fusion COVID-19 Fusion protein Humans Immune evasion Infectious Diseases Life Sciences Medical Microbiology Membrane Glycoproteins - metabolism Microbiology mRNA Parasitology Pathogenicity Peptide mapping Phenotypes Proteins Public health Replication SARS-CoV-2 - genetics Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - genetics Spike protein Syncytia Vaccine efficacy Vaccines Viral Envelope Proteins - metabolism Virology Virus Internalization |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1daxQxcNArgiCi9eu0SgTfNHRvk83HU6mlpQhWba30bckmWSy0e9W9Kv33ncnm7jiLfVkWMmE3M5NkvgfgXav0pHFN4IWxissW3xqJglzbeCFFQ6VQKXf484HaP5afTqqTbHDrc1jl_ExMB3WYerKRb5bKGqGErMqti1-cukaRdzW30LgLa3gEGzOCtY-7B18Pl1YWlNeVUTlbphBmsyeNRXIKYiddQHC9eiPdEDNvRkv-4zJNN9HeI3iYRUi2PdD8MdyJ3TrcG5pKXq3Dg8ESx4YEoyfw7Wj78IjvTH_wkn05p_i7jp32zOGTckMiiz0FQbE_qDUjmhlZZmk0-dFjYGTaZ6n_CKP2xX_d1VM43tv9vrPPcyMF7qWWM-6Eb7VV2iMGlXLOaFMVMTSudMEE1wgVkCat8kGq0vkq-IL8syoYY4MVVjyDUTft4gtg0isjfCW0D1Za1K2F9L6ysprgXo5Gj2EyR2btc5VxanZxVidvtzD1QIAaCVAnAtQ45_1izsVQY-NW6I05jeq83_p6yR1jeLsYxp1COHJdnF4SjNF6glozwjwfSLr4nKiobpstxqBXiL0AoCrcqyPd6c9UjdumgrJyDB_mbLH8rf-v4uXtq3gF98vEohRpuAGj2e_L-Bqln1nzJrP4NYgvAI8 priority: 102 providerName: ProQuest |
Title | SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway |
URI | https://link.springer.com/article/10.1038/s41564-022-01143-7 https://www.ncbi.nlm.nih.gov/pubmed/35798890 https://www.proquest.com/docview/2698363452 https://www.proquest.com/docview/2687719782 https://pubmed.ncbi.nlm.nih.gov/PMC9352574 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLqLX1tJYIfdPg3iabj8e7o0cpeGprpW9LNsnSQt0T76r0v3cmu3vlrAp92SxkwiaTZDOTmfkNwEGt9LByVeCZsYrLGt8qiYJcXXkhRUVQqBQ7_GGmjs7k8XlxvgF5HwuTnPYTpGX6TffeYe8XpGhITr7nJMILrh_AFkG3k8I1UZPbexWU0JVRXXxMJsxfmq6fQXcEy7v-kX8YSdPZM30CjzuhkY3abj6Fjdg8g4dtGsmbbfh8Ojo55ZP5V56zj9_Iw65hlwvm8EnRH5HFBbk5sZ-oFyMjGd29Um2ylMfA6PKepQwjjBIU_3I3z-FsevhlcsS7VAncSy2X3Alfa6u0NwL1EeeMNkUWQ-VyF0xwlVABuV4rH6TKnS-Cz8gCq4IxNlhhxQ5sNvMmvgAmvTLCF0L7YKVF7VlI7wsriyHu1mj0AIY980rf4YhTOourMtmzhSlbhpfI8DIxvMQ2b1dtvrcoGv-l3uvnpOx21KLMlcWxCVnkA3izqsa9QDxyTZxfE43Reoh6MdLstlO4-pwoCJnNZgPQa5O7IiCc7fWa5vIi4W3bBBkrB_CuXwa33fr3KF7ej_wVPMrTEiXfwj3YXP64jq9R3llW-7A1mo7HMyzHh7NPJ_tpwf8GOdX64w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFRthUBCCMproYCR4ARWs7HjxwGhUlptabtAH6i34NiOqATZQrZU-1N8Ix4n2dVS0VsvUSSPE9sztuc9AC9KIQeFKRxNlBaUl-Gt4IGRKwvLOCswFSrGDu-NxPCIfzjOjpfgTxcLg26V3ZkYD2o3tqgjX0uFVkwwnqVvT39SrBqF1tWuhEZDFjt-eh5EtvrN9vuA35dpurV5uDGkbVUBarnkE2qYLaUW0obPCWGMkipLvCtMapxypmDChQGWwjouUmMzZxM0VgqnlHaaYfKlcOQvcyaStAfL7zZHn_bnWp0gHwgl2uichKm1GiUkTtFpHmUPRuXiDXiBrb3onfmPiTbefFu34VbLspL1hsbuwJKvVuBaU8RyugI3G80faQKa7sLng_X9A7ox_kJT8vEH-vtV5KQmJjwxFsUTX6PTFfkdpPSAVoKaYGyNdnvvCJoSSKx3QrBc8rmZ3oOjK1ni-9CrxpV_CIRboZjNmLROcx1kecatzTTPBuHs8Er2YdAtZm7brOZYXON7Hq3rTOUNAvKAgDwiIA99Xs36nDY5PS6FXu1wlLf7u87n1NiH57PmsDNxjUzlx2cIo6QcBCk9wDxoUDr7HcswT5xO-iAXkD0DwKzfiy3VybeY_VvHBLa8D687spgP6_-zeHT5LJ7B9eHh3m6-uz3aeQw30kiu6OW4Cr3JrzP_JHBek-JpS-4Evl71DvsLUn493g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhAXRHkubcFIcALTbOz4ceBQbVm1FMqjFPVmHNsRlWi2Iluq_UP8TmacZKulgMShlyiSJ4ozYzszns_fEPKkkmpYujKwTBvJRAV3pQBHrio9F7xEKlQ8O_x2T24fiNeHxeES-dmfhUmg_URpmZbpHh220WCgIRhiz9GF50y9OAlVB6bcjbMzCNWalztbYNeneT5-9Wm0zbpqAswLJabMcV8pI5XXHFx257TSRRZD6XIXdHAllwE6VkkfhMydL4LPMEkpg9YmGI6kS7DUXwH_PkPo2EiOzvdyICqQWnZncjKu_9Ddxf_eBWf2Iibzt8Rs-t-Nb5IbnaNKN1vVrJClWN8iV9vSlbPb5MP-5sd9Npp8Zjl9d4yovpoeNdTBFU-cRBobhFbRHxCLg_Eo7vdia8rOx0AxYUBTVROKRZHP3OwOObgUhd4ly_WkjvcJFV5q7guufDDCQMTOhfeFEcUQVoio1YAMe-VZ33GXYwmNbzbl0Lm2rcItKNwmhVt45tn8mZOWueOf0mu9TWw3ixubSwPfxkWRD8jjeTPMP9SRq-PkFGW0UkOIxUHmXmvC-et4gWxwJhsQtWDcuQByey-21EdfE8e3STS1YkCe98PgvFt__4oH_yf-iFx7vzW2b3b2dlfJ9TyNVoQ2rpHl6ffTuA7u1rR8mMY6JV8ue3L9AldqNlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+Omicron+is+an+immune+escape+variant+with+an+altered+cell+entry+pathway&rft.jtitle=Nature+microbiology&rft.au=Willett%2C+Brian+J.&rft.au=Grove%2C+Joe&rft.au=MacLean%2C+Oscar+A.&rft.au=Wilkie%2C+Craig&rft.date=2022-08-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-5276&rft.volume=7&rft.issue=8&rft.spage=1161&rft.epage=1179&rft_id=info:doi/10.1038%2Fs41564-022-01143-7&rft.externalDocID=10_1038_s41564_022_01143_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |