The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy
The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell m...
Saved in:
Published in | Haematologica (Roma) Vol. 105; no. 6; pp. 1494 - 1506 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Italy
Ferrata Storti Foundation
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by
) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications. |
---|---|
AbstractList | The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the “BCR inhibitor” ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications. The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1 ) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the “BCR inhibitor” ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications. The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications. The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by ) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications. |
Author | Mraz, Marek Pavlasova, Gabriela |
AuthorAffiliation | 1 Central European Institute of Technology, Masaryk University, Brno 2 Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic |
AuthorAffiliation_xml | – name: 1 Central European Institute of Technology, Masaryk University, Brno – name: 2 Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic |
Author_xml | – sequence: 1 givenname: Gabriela surname: Pavlasova fullname: Pavlasova, Gabriela – sequence: 2 givenname: Marek surname: Mraz fullname: Mraz, Marek |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32482755$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVAR3Rb-AUI5csni2I7t9IAES4FKlbiUEwfLH-Osq2y8OAnS3vpD6J_rL8GbbSvKgZPtmffezHjeCTrqYw8Iva7wklLC3q01bPQYuyXBVbMkjNaMPkOLqm5IKQWpjtAC0waXHAt5jE6G4RpjgptGvEDHmS-JqOsF-nG1hiJBO3V6DLEvdO8KP_V2fkRfrD4RfJajxd3Nb-hDu9F3N7f7xMfSQtcVJsQutruZN-rUwgj5soakt7uX6LnX3QCv7s9T9P3z-dXqa3n57cvF6sNlaZlgY6kr7LAQHCTFxNmGcnA1raX0zOYJrPPY8AYLa0Bynzun3nDKtNfWycoaeoouDrou6mu1TWGj005FHdQciKlVOo3BdqAMFt7X3DimMZPWSKDacKytbLCj0met9wet7WQ24Cz0Y9LdE9GnmT6sVRt_KUFEVXORBd7eC6T4c4JhVJsw7L9K9xCnQRGGpWSczNA3f9d6LPKwnQxgB4BNcRgS-EdIhdXeBOrBBGpvAnUwQaad_UOzYZzXmzsO3f_JfwC4u7zf |
CitedBy_id | crossref_primary_10_3389_fimmu_2021_729143 crossref_primary_10_3390_biom13040701 crossref_primary_10_1111_imr_13390 crossref_primary_10_3389_fonc_2022_1010506 crossref_primary_10_1097_j_pain_0000000000002725 crossref_primary_10_1097_HS9_0000000000000971 crossref_primary_10_1016_j_jconrel_2022_08_045 crossref_primary_10_1038_s41409_020_01179_5 crossref_primary_10_1080_21645515_2021_1969850 crossref_primary_10_1002_imo2_37 crossref_primary_10_1016_j_smim_2025_101931 crossref_primary_10_3389_fcell_2022_870088 crossref_primary_10_3390_antib9040068 crossref_primary_10_25259_JHAS_2_2021 crossref_primary_10_1016_j_pharmthera_2024_108697 crossref_primary_10_1007_s13346_024_01629_3 crossref_primary_10_1007_s43440_024_00642_0 crossref_primary_10_1016_j_imlet_2021_05_006 crossref_primary_10_3390_cancers16030505 crossref_primary_10_1186_s13075_023_03169_6 crossref_primary_10_3389_fimmu_2021_737332 crossref_primary_10_3389_fimmu_2024_1441994 crossref_primary_10_3389_fphar_2025_1505432 crossref_primary_10_1128_mbio_02070_23 crossref_primary_10_1038_s41467_024_51590_5 crossref_primary_10_1111_imr_13265 crossref_primary_10_1128_JVI_00610_21 crossref_primary_10_51847_Pl6Zz3ZNgP crossref_primary_10_1002_hon_3294 crossref_primary_10_1007_s00011_022_01622_x crossref_primary_10_3389_fcvm_2021_732369 crossref_primary_10_3389_fimmu_2024_1363102 crossref_primary_10_2217_fon_2022_0112 crossref_primary_10_1182_blood_2023020400 crossref_primary_10_1182_blood_2020009014 crossref_primary_10_1016_j_xkme_2024_100791 crossref_primary_10_1002_anie_202109769 crossref_primary_10_3390_cancers13071561 crossref_primary_10_1038_s41582_023_00916_w crossref_primary_10_1007_s00277_024_05744_6 crossref_primary_10_1007_s00438_023_02071_9 crossref_primary_10_1007_s11427_022_2173_9 crossref_primary_10_3390_jpm14050527 crossref_primary_10_1038_s12276_022_00884_z crossref_primary_10_3390_cancers14246026 crossref_primary_10_1111_bjh_17139 crossref_primary_10_1080_13543784_2022_2130751 crossref_primary_10_1111_bjh_19553 crossref_primary_10_1007_s12268_022_1835_1 crossref_primary_10_1111_bjh_18341 crossref_primary_10_3390_cancers16020244 crossref_primary_10_7555_JBR_38_20240009 crossref_primary_10_1002_1873_3468_15057 crossref_primary_10_1038_s41592_022_01709_7 crossref_primary_10_3390_cancers14235942 crossref_primary_10_3389_fimmu_2025_1529184 crossref_primary_10_1016_j_neurot_2025_e00539 crossref_primary_10_1021_cbmi_4c00117 crossref_primary_10_1016_j_ejmech_2021_114009 crossref_primary_10_1093_ndt_gfad186 crossref_primary_10_1016_j_phrs_2024_107442 crossref_primary_10_1016_j_intimp_2025_114467 crossref_primary_10_1038_s41467_023_40480_x crossref_primary_10_4239_wjd_v15_i6_1111 crossref_primary_10_2147_PPA_S350756 crossref_primary_10_3390_cancers13143524 crossref_primary_10_1038_s41467_022_28803_w crossref_primary_10_3389_fmed_2022_1026521 crossref_primary_10_3390_cancers16081580 crossref_primary_10_1016_j_actbio_2021_02_026 crossref_primary_10_1007_s11095_022_03214_0 crossref_primary_10_1016_j_leukres_2021_106684 crossref_primary_10_3389_fimmu_2024_1487530 crossref_primary_10_1186_s40164_024_00524_4 crossref_primary_10_3390_vaccines10081335 crossref_primary_10_1021_acsptsci_2c00153 crossref_primary_10_3390_vaccines11091474 crossref_primary_10_1186_s13550_025_01213_x crossref_primary_10_14341_probl13456 crossref_primary_10_1016_j_anai_2023_01_018 crossref_primary_10_1172_JCI173770 crossref_primary_10_1007_s40259_023_00597_3 crossref_primary_10_1007_s00403_025_04028_x crossref_primary_10_1016_j_jad_2024_07_135 crossref_primary_10_3389_fimmu_2024_1454747 crossref_primary_10_3390_ijms23031501 crossref_primary_10_1002_eji_202250037 crossref_primary_10_3324_haematol_2021_278644 crossref_primary_10_3390_ijms232214135 crossref_primary_10_1016_j_jaut_2022_102873 crossref_primary_10_3892_ol_2025_14867 crossref_primary_10_1016_j_pcad_2024_01_012 crossref_primary_10_1021_acs_analchem_0c04240 crossref_primary_10_1016_j_it_2021_07_002 crossref_primary_10_1016_j_tranon_2024_102008 crossref_primary_10_1016_j_leukres_2022_106824 crossref_primary_10_1016_j_bcp_2023_115872 crossref_primary_10_3389_fimmu_2023_1298891 crossref_primary_10_3390_jcm12041451 crossref_primary_10_3389_fimmu_2023_1188760 crossref_primary_10_3390_jcm11154288 crossref_primary_10_1038_s41416_024_02922_1 crossref_primary_10_1080_09273948_2022_2141034 crossref_primary_10_56875_2589_0646_1026 crossref_primary_10_1016_j_humimm_2024_111165 crossref_primary_10_1080_08916934_2022_2128782 crossref_primary_10_3389_fendo_2023_1326344 crossref_primary_10_1016_j_msard_2021_102787 crossref_primary_10_3389_fonc_2022_906372 crossref_primary_10_1016_j_lfs_2024_122419 crossref_primary_10_1016_j_clim_2023_109778 crossref_primary_10_1016_j_bcp_2024_116232 crossref_primary_10_1016_j_clim_2022_108948 crossref_primary_10_3390_ijms23010387 crossref_primary_10_1038_s41598_022_26784_w crossref_primary_10_1016_j_compbiomed_2022_106285 crossref_primary_10_1007_s40259_024_00696_9 crossref_primary_10_1002_eji_202249947 crossref_primary_10_3390_cells11010139 crossref_primary_10_7759_cureus_58834 crossref_primary_10_1016_j_celrep_2020_108204 crossref_primary_10_1096_fj_202302259RR crossref_primary_10_1016_j_legalmed_2025_102569 crossref_primary_10_3389_fimmu_2024_1356666 crossref_primary_10_3389_fmars_2024_1498223 crossref_primary_10_1007_s11033_025_10366_w crossref_primary_10_1038_s41392_023_01331_9 crossref_primary_10_3389_fimmu_2024_1353034 crossref_primary_10_1080_21645515_2023_2267865 crossref_primary_10_1080_14712598_2024_2413365 crossref_primary_10_3390_ijms252111384 crossref_primary_10_29262_ram_v69i4_1142 crossref_primary_10_1016_j_pharmthera_2022_108180 crossref_primary_10_1002_ptr_8131 crossref_primary_10_1186_s13148_020_00965_8 crossref_primary_10_1002_eji_202149667 crossref_primary_10_1186_s40364_021_00309_5 crossref_primary_10_1186_s43556_023_00126_2 crossref_primary_10_1007_s10120_021_01220_6 crossref_primary_10_1002_ange_202109769 crossref_primary_10_1016_j_intimp_2025_114271 crossref_primary_10_1007_s12020_021_02965_x crossref_primary_10_1016_j_tice_2024_102335 crossref_primary_10_1016_j_jtauto_2025_100270 crossref_primary_10_1016_j_jim_2022_113327 crossref_primary_10_1016_j_joen_2024_10_003 crossref_primary_10_3390_life14060751 crossref_primary_10_1016_j_joen_2022_10_003 crossref_primary_10_1093_brain_awae362 crossref_primary_10_1177_20552173241257876 crossref_primary_10_1002_hon_3213 crossref_primary_10_3892_etm_2024_12702 crossref_primary_10_3389_fimmu_2021_709164 crossref_primary_10_1016_j_chroma_2024_464845 crossref_primary_10_3390_cancers16010046 crossref_primary_10_1080_14728214_2021_1966414 crossref_primary_10_59761_RCR5154 crossref_primary_10_1007_s00415_023_12007_3 crossref_primary_10_1007_s00011_023_01847_4 crossref_primary_10_1016_j_jddst_2023_104880 crossref_primary_10_3390_cancers14082021 crossref_primary_10_3390_biomedicines11072086 crossref_primary_10_47183_mes_2021_020 crossref_primary_10_31083_j_fbl2901042 crossref_primary_10_1080_17474086_2022_2073213 crossref_primary_10_26416_ORL_61_4_2023_8960 crossref_primary_10_5500_wjt_v14_i1_89772 crossref_primary_10_1038_s41467_022_30163_4 crossref_primary_10_3390_cancers16122243 crossref_primary_10_1038_s41586_023_05925_9 crossref_primary_10_3324_haematol_2020_257048 crossref_primary_10_23950_jcmk_11423 crossref_primary_10_1016_j_jchromb_2021_122853 crossref_primary_10_1016_j_cellimm_2020_104260 crossref_primary_10_1016_j_jep_2024_118148 crossref_primary_10_1182_blood_2023021672 crossref_primary_10_1093_intimm_dxaf004 crossref_primary_10_3390_vaccines11040835 crossref_primary_10_1002_psp4_12885 crossref_primary_10_1109_ACCESS_2024_3489958 crossref_primary_10_3390_cancers14030771 crossref_primary_10_1155_2023_9422990 crossref_primary_10_1182_hematology_2024000531 crossref_primary_10_3389_fimmu_2024_1309916 crossref_primary_10_1371_journal_pone_0311854 crossref_primary_10_1007_s00262_024_03814_2 crossref_primary_10_1016_j_molimm_2023_07_003 crossref_primary_10_1097_JS9_0000000000001814 crossref_primary_10_1016_j_cll_2024_04_009 crossref_primary_10_1016_j_csbj_2022_09_008 crossref_primary_10_1186_s12974_023_02900_z crossref_primary_10_1016_j_apsb_2022_12_016 crossref_primary_10_1182_bloodadvances_2020003768 crossref_primary_10_1002_jha2_414 crossref_primary_10_1172_JCI180012 crossref_primary_10_3390_cancers14194917 crossref_primary_10_1007_s10238_023_01218_7 crossref_primary_10_3892_ol_2022_13634 crossref_primary_10_3389_fimmu_2023_1325255 crossref_primary_10_1016_j_neurol_2024_09_006 crossref_primary_10_1177_13524585221122219 crossref_primary_10_1002_cyto_a_24507 crossref_primary_10_3389_fimmu_2024_1346671 crossref_primary_10_1016_j_clinre_2024_102392 crossref_primary_10_1158_0008_5472_CAN_21_1109 crossref_primary_10_1186_s12883_022_03031_3 crossref_primary_10_1126_sciadv_adl3975 crossref_primary_10_2147_IJWH_S508352 crossref_primary_10_3390_cancers15184550 crossref_primary_10_1158_1078_0432_CCR_23_1962 crossref_primary_10_3390_ijms25052908 crossref_primary_10_1016_j_autrev_2022_103032 crossref_primary_10_3389_fimmu_2022_900117 crossref_primary_10_3389_fonc_2023_1168622 crossref_primary_10_1016_j_jconrel_2023_04_048 crossref_primary_10_1080_16078454_2024_2335856 crossref_primary_10_1002_ctm2_943 crossref_primary_10_3389_fimmu_2022_1076594 crossref_primary_10_3390_clinpract12020022 crossref_primary_10_3324_haematol_2020_261891 crossref_primary_10_1051_e3sconf_202338903108 crossref_primary_10_3389_fimmu_2024_1454913 crossref_primary_10_1016_j_cll_2021_04_005 crossref_primary_10_3389_fimmu_2023_1135096 crossref_primary_10_2147_ITT_S492062 crossref_primary_10_3390_ijms25031553 crossref_primary_10_1177_13524585221147635 crossref_primary_10_3389_fonc_2020_591577 crossref_primary_10_1073_pnas_2021342118 crossref_primary_10_26508_lsa_202101355 crossref_primary_10_1186_s13045_024_01621_x crossref_primary_10_3389_fimmu_2024_1348836 crossref_primary_10_1007_s12032_023_02138_y crossref_primary_10_3390_cancers14133230 crossref_primary_10_3390_fractalfract8100600 |
ContentType | Journal Article |
Copyright | Copyright© 2020 Ferrata Storti Foundation. Copyright© 2020 Ferrata Storti Foundation 2020 |
Copyright_xml | – notice: Copyright© 2020 Ferrata Storti Foundation. – notice: Copyright© 2020 Ferrata Storti Foundation 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3324/haematol.2019.243543 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1592-8721 |
EndPage | 1506 |
ExternalDocumentID | oai_doaj_org_article_b07ff56bd4a048cb8e3ab60ac890d38f PMC7271567 32482755 10_3324_haematol_2019_243543 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: European Research Council grantid: 802644 |
GroupedDBID | --- 29I 2WC 53G 5GY 5RE 5VS AAFWJ AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW C1A CITATION CS3 DIK E3Z EBS EJD F5P FRP GROUPED_DOAJ H13 HYE KQ8 OK1 OVT P2P RHI RNS RPM SJN TFS TR2 UDS W8F WOQ WOW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c474t-a10d0776e8302dc936ed53588f4c039cdf0b6907cbe86f2483fb634afacd81cb3 |
IEDL.DBID | DOA |
ISSN | 0390-6078 1592-8721 |
IngestDate | Wed Aug 27 01:30:34 EDT 2025 Thu Aug 21 13:54:08 EDT 2025 Fri Jul 11 11:58:15 EDT 2025 Mon Jul 21 06:06:32 EDT 2025 Thu Apr 24 22:57:49 EDT 2025 Tue Jul 01 04:22:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright© 2020 Ferrata Storti Foundation. https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-a10d0776e8302dc936ed53588f4c039cdf0b6907cbe86f2483fb634afacd81cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/b07ff56bd4a048cb8e3ab60ac890d38f |
PMID | 32482755 |
PQID | 2408846267 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b07ff56bd4a048cb8e3ab60ac890d38f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7271567 proquest_miscellaneous_2408846267 pubmed_primary_32482755 crossref_primary_10_3324_haematol_2019_243543 crossref_citationtrail_10_3324_haematol_2019_243543 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-00 20200601 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-00 |
PublicationDecade | 2020 |
PublicationPlace | Italy |
PublicationPlace_xml | – name: Italy |
PublicationTitle | Haematologica (Roma) |
PublicationTitleAlternate | Haematologica |
PublicationYear | 2020 |
Publisher | Ferrata Storti Foundation |
Publisher_xml | – name: Ferrata Storti Foundation |
SSID | ssj0020997 |
Score | 2.664496 |
SecondaryResourceType | review_article |
Snippet | The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1494 |
SubjectTerms | Antibodies, Monoclonal Antigens, CD20 B-Lymphocytes Humans Leukemia, Lymphocytic, Chronic, B-Cell Pyrimidines Review Rituximab |
Title | The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32482755 https://www.proquest.com/docview/2408846267 https://pubmed.ncbi.nlm.nih.gov/PMC7271567 https://doaj.org/article/b07ff56bd4a048cb8e3ab60ac890d38f |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSx0xFA7FhXRTWh91aispiLvUmUkmk3TnoyIFXSkIXYQ8Vahzi14X3flD2j_nL-k5ydyLtxTcdDeTx-RwzsmcR5IvhGw3TUhgNy2TKmkmROwY6I1g4Okmr7QVQuPZ4ZNTeXwuvl50F0-u-sI9YQUeuDBu19V9Sp10QVhQNu9U5NbJ2sKH6sBVwr8v2LxZMDWGWngeNK8faAiOwAqWQ3McqNi9sgiGOsFlh0Z_asFdEHzBKGXs_n85nH_vm3xiiI5ek1ejB0n3CuVvyIs4rJDVvQFGu_lJd2je05mT5Stk-WRcOl8l30Ah6G25eR5kQe0QKBq1_DJJ9OCwrT9DKX18-BWH68sb-_jwGyv2GSb36YjWlPuV7eMRHgomwRo5P_pydnDMxpsVmBe9mDLb1AFxfCKifwWvuYyh451SSXjgmQ-pdhg2exeVTK1QPDnJhU3WB9V4x9fJ0jAZ4gahUcvggd0qtFxIq3XyVlrhhAuhbmJbET5jrfEj7DjefvHdQPiBAjEzgRgUiCkCqQib9_pRYDeeab-PUpu3RdDsXACqZEZVMs-pUkU-zmRuYJIhc-0QJ_d3BnHgwFFrZV-Rt0UH5kMBSartu64i_YJ2LNCyWDNcX2Ugb_AdIXzu3_0P4jfJyxZTATlB9J4sTW_v4wfwl6ZuK0-NrZzI-gPupxaG |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+regulation+and+function+of+CD20%3A+an+%22enigma%22+of+B-cell+biology+and+targeted+therapy&rft.jtitle=Haematologica+%28Roma%29&rft.au=Pavlasova%2C+Gabriela&rft.au=Mraz%2C+Marek&rft.date=2020-06-01&rft.issn=1592-8721&rft.eissn=1592-8721&rft.volume=105&rft.issue=6&rft.spage=1494&rft_id=info:doi/10.3324%2Fhaematol.2019.243543&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0390-6078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0390-6078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0390-6078&client=summon |