The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy

The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell m...

Full description

Saved in:
Bibliographic Details
Published inHaematologica (Roma) Vol. 105; no. 6; pp. 1494 - 1506
Main Authors Pavlasova, Gabriela, Mraz, Marek
Format Journal Article
LanguageEnglish
Published Italy Ferrata Storti Foundation 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by ) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.
AbstractList The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the “BCR inhibitor” ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.
The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1 ) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the “BCR inhibitor” ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.
The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by MS4A1) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.
The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the precise physiological role and regulation of CD20 remains unclear. Furthermore, CD20 expression is highly variable between different B-cell malignancies, patients with the same malignancy, and even between intraclonal subpopulations in an individual patient. Several epigenetic (EZH2, HDAC1/2, HDAC1/4, HDAC6, complex Sin3A-HDAC1) and transcription factors (USF, OCT1/2, PU.1, PiP, ELK1, ETS1, SP1, NFκB, FOXO1, CREM, SMAD2/3) regulating CD20 expression (encoded by ) have been characterized. CD20 is induced in the context of microenvironmental interactions by CXCR4/SDF1 (CXCL12) chemokine signaling and the molecular function of CD20 has been linked to the signaling propensity of B-cell receptor (BCR). CD20 has also been shown to interact with multiple other surface proteins on B cells (such as CD40, MHCII, CD53, CD81, CD82, and CBP). Current efforts to combine anti-CD20 monoclonal antibodies with BCR signaling inhibitors targeting BTK or PI3K (ibrutinib, acalabrutinib, idelalisib, duvelisib) or BH3-mimetics (venetoclax) lead to the necessity to better understand both the mechanisms of regulation and the biological functions of CD20. This is underscored by the observation that CD20 is decreased in response to the "BCR inhibitor" ibrutinib which largely prevents its successful combination with rituximab. Several small molecules (such as histone deacetylase inhibitors, DNA methyl-transferase inhibitors, aurora kinase A/B inhibitors, farnesyltransferase inhibitors, FOXO1 inhibitors, and bryostatin-1) are being tested to upregulate cell-surface CD20 levels and increase the efficacy of anti-CD20 monoclonal antibodies. Herein, we review the current understanding of CD20 function, and the mechanisms of its regulation in normal and malignant B cells, highlighting the therapeutic implications.
Author Mraz, Marek
Pavlasova, Gabriela
AuthorAffiliation 1 Central European Institute of Technology, Masaryk University, Brno
2 Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
AuthorAffiliation_xml – name: 1 Central European Institute of Technology, Masaryk University, Brno
– name: 2 Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
Author_xml – sequence: 1
  givenname: Gabriela
  surname: Pavlasova
  fullname: Pavlasova, Gabriela
– sequence: 2
  givenname: Marek
  surname: Mraz
  fullname: Mraz, Marek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32482755$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVAR3Rb-AUI5csni2I7t9IAES4FKlbiUEwfLH-Osq2y8OAnS3vpD6J_rL8GbbSvKgZPtmffezHjeCTrqYw8Iva7wklLC3q01bPQYuyXBVbMkjNaMPkOLqm5IKQWpjtAC0waXHAt5jE6G4RpjgptGvEDHmS-JqOsF-nG1hiJBO3V6DLEvdO8KP_V2fkRfrD4RfJajxd3Nb-hDu9F3N7f7xMfSQtcVJsQutruZN-rUwgj5soakt7uX6LnX3QCv7s9T9P3z-dXqa3n57cvF6sNlaZlgY6kr7LAQHCTFxNmGcnA1raX0zOYJrPPY8AYLa0Bynzun3nDKtNfWycoaeoouDrou6mu1TWGj005FHdQciKlVOo3BdqAMFt7X3DimMZPWSKDacKytbLCj0met9wet7WQ24Cz0Y9LdE9GnmT6sVRt_KUFEVXORBd7eC6T4c4JhVJsw7L9K9xCnQRGGpWSczNA3f9d6LPKwnQxgB4BNcRgS-EdIhdXeBOrBBGpvAnUwQaad_UOzYZzXmzsO3f_JfwC4u7zf
CitedBy_id crossref_primary_10_3389_fimmu_2021_729143
crossref_primary_10_3390_biom13040701
crossref_primary_10_1111_imr_13390
crossref_primary_10_3389_fonc_2022_1010506
crossref_primary_10_1097_j_pain_0000000000002725
crossref_primary_10_1097_HS9_0000000000000971
crossref_primary_10_1016_j_jconrel_2022_08_045
crossref_primary_10_1038_s41409_020_01179_5
crossref_primary_10_1080_21645515_2021_1969850
crossref_primary_10_1002_imo2_37
crossref_primary_10_1016_j_smim_2025_101931
crossref_primary_10_3389_fcell_2022_870088
crossref_primary_10_3390_antib9040068
crossref_primary_10_25259_JHAS_2_2021
crossref_primary_10_1016_j_pharmthera_2024_108697
crossref_primary_10_1007_s13346_024_01629_3
crossref_primary_10_1007_s43440_024_00642_0
crossref_primary_10_1016_j_imlet_2021_05_006
crossref_primary_10_3390_cancers16030505
crossref_primary_10_1186_s13075_023_03169_6
crossref_primary_10_3389_fimmu_2021_737332
crossref_primary_10_3389_fimmu_2024_1441994
crossref_primary_10_3389_fphar_2025_1505432
crossref_primary_10_1128_mbio_02070_23
crossref_primary_10_1038_s41467_024_51590_5
crossref_primary_10_1111_imr_13265
crossref_primary_10_1128_JVI_00610_21
crossref_primary_10_51847_Pl6Zz3ZNgP
crossref_primary_10_1002_hon_3294
crossref_primary_10_1007_s00011_022_01622_x
crossref_primary_10_3389_fcvm_2021_732369
crossref_primary_10_3389_fimmu_2024_1363102
crossref_primary_10_2217_fon_2022_0112
crossref_primary_10_1182_blood_2023020400
crossref_primary_10_1182_blood_2020009014
crossref_primary_10_1016_j_xkme_2024_100791
crossref_primary_10_1002_anie_202109769
crossref_primary_10_3390_cancers13071561
crossref_primary_10_1038_s41582_023_00916_w
crossref_primary_10_1007_s00277_024_05744_6
crossref_primary_10_1007_s00438_023_02071_9
crossref_primary_10_1007_s11427_022_2173_9
crossref_primary_10_3390_jpm14050527
crossref_primary_10_1038_s12276_022_00884_z
crossref_primary_10_3390_cancers14246026
crossref_primary_10_1111_bjh_17139
crossref_primary_10_1080_13543784_2022_2130751
crossref_primary_10_1111_bjh_19553
crossref_primary_10_1007_s12268_022_1835_1
crossref_primary_10_1111_bjh_18341
crossref_primary_10_3390_cancers16020244
crossref_primary_10_7555_JBR_38_20240009
crossref_primary_10_1002_1873_3468_15057
crossref_primary_10_1038_s41592_022_01709_7
crossref_primary_10_3390_cancers14235942
crossref_primary_10_3389_fimmu_2025_1529184
crossref_primary_10_1016_j_neurot_2025_e00539
crossref_primary_10_1021_cbmi_4c00117
crossref_primary_10_1016_j_ejmech_2021_114009
crossref_primary_10_1093_ndt_gfad186
crossref_primary_10_1016_j_phrs_2024_107442
crossref_primary_10_1016_j_intimp_2025_114467
crossref_primary_10_1038_s41467_023_40480_x
crossref_primary_10_4239_wjd_v15_i6_1111
crossref_primary_10_2147_PPA_S350756
crossref_primary_10_3390_cancers13143524
crossref_primary_10_1038_s41467_022_28803_w
crossref_primary_10_3389_fmed_2022_1026521
crossref_primary_10_3390_cancers16081580
crossref_primary_10_1016_j_actbio_2021_02_026
crossref_primary_10_1007_s11095_022_03214_0
crossref_primary_10_1016_j_leukres_2021_106684
crossref_primary_10_3389_fimmu_2024_1487530
crossref_primary_10_1186_s40164_024_00524_4
crossref_primary_10_3390_vaccines10081335
crossref_primary_10_1021_acsptsci_2c00153
crossref_primary_10_3390_vaccines11091474
crossref_primary_10_1186_s13550_025_01213_x
crossref_primary_10_14341_probl13456
crossref_primary_10_1016_j_anai_2023_01_018
crossref_primary_10_1172_JCI173770
crossref_primary_10_1007_s40259_023_00597_3
crossref_primary_10_1007_s00403_025_04028_x
crossref_primary_10_1016_j_jad_2024_07_135
crossref_primary_10_3389_fimmu_2024_1454747
crossref_primary_10_3390_ijms23031501
crossref_primary_10_1002_eji_202250037
crossref_primary_10_3324_haematol_2021_278644
crossref_primary_10_3390_ijms232214135
crossref_primary_10_1016_j_jaut_2022_102873
crossref_primary_10_3892_ol_2025_14867
crossref_primary_10_1016_j_pcad_2024_01_012
crossref_primary_10_1021_acs_analchem_0c04240
crossref_primary_10_1016_j_it_2021_07_002
crossref_primary_10_1016_j_tranon_2024_102008
crossref_primary_10_1016_j_leukres_2022_106824
crossref_primary_10_1016_j_bcp_2023_115872
crossref_primary_10_3389_fimmu_2023_1298891
crossref_primary_10_3390_jcm12041451
crossref_primary_10_3389_fimmu_2023_1188760
crossref_primary_10_3390_jcm11154288
crossref_primary_10_1038_s41416_024_02922_1
crossref_primary_10_1080_09273948_2022_2141034
crossref_primary_10_56875_2589_0646_1026
crossref_primary_10_1016_j_humimm_2024_111165
crossref_primary_10_1080_08916934_2022_2128782
crossref_primary_10_3389_fendo_2023_1326344
crossref_primary_10_1016_j_msard_2021_102787
crossref_primary_10_3389_fonc_2022_906372
crossref_primary_10_1016_j_lfs_2024_122419
crossref_primary_10_1016_j_clim_2023_109778
crossref_primary_10_1016_j_bcp_2024_116232
crossref_primary_10_1016_j_clim_2022_108948
crossref_primary_10_3390_ijms23010387
crossref_primary_10_1038_s41598_022_26784_w
crossref_primary_10_1016_j_compbiomed_2022_106285
crossref_primary_10_1007_s40259_024_00696_9
crossref_primary_10_1002_eji_202249947
crossref_primary_10_3390_cells11010139
crossref_primary_10_7759_cureus_58834
crossref_primary_10_1016_j_celrep_2020_108204
crossref_primary_10_1096_fj_202302259RR
crossref_primary_10_1016_j_legalmed_2025_102569
crossref_primary_10_3389_fimmu_2024_1356666
crossref_primary_10_3389_fmars_2024_1498223
crossref_primary_10_1007_s11033_025_10366_w
crossref_primary_10_1038_s41392_023_01331_9
crossref_primary_10_3389_fimmu_2024_1353034
crossref_primary_10_1080_21645515_2023_2267865
crossref_primary_10_1080_14712598_2024_2413365
crossref_primary_10_3390_ijms252111384
crossref_primary_10_29262_ram_v69i4_1142
crossref_primary_10_1016_j_pharmthera_2022_108180
crossref_primary_10_1002_ptr_8131
crossref_primary_10_1186_s13148_020_00965_8
crossref_primary_10_1002_eji_202149667
crossref_primary_10_1186_s40364_021_00309_5
crossref_primary_10_1186_s43556_023_00126_2
crossref_primary_10_1007_s10120_021_01220_6
crossref_primary_10_1002_ange_202109769
crossref_primary_10_1016_j_intimp_2025_114271
crossref_primary_10_1007_s12020_021_02965_x
crossref_primary_10_1016_j_tice_2024_102335
crossref_primary_10_1016_j_jtauto_2025_100270
crossref_primary_10_1016_j_jim_2022_113327
crossref_primary_10_1016_j_joen_2024_10_003
crossref_primary_10_3390_life14060751
crossref_primary_10_1016_j_joen_2022_10_003
crossref_primary_10_1093_brain_awae362
crossref_primary_10_1177_20552173241257876
crossref_primary_10_1002_hon_3213
crossref_primary_10_3892_etm_2024_12702
crossref_primary_10_3389_fimmu_2021_709164
crossref_primary_10_1016_j_chroma_2024_464845
crossref_primary_10_3390_cancers16010046
crossref_primary_10_1080_14728214_2021_1966414
crossref_primary_10_59761_RCR5154
crossref_primary_10_1007_s00415_023_12007_3
crossref_primary_10_1007_s00011_023_01847_4
crossref_primary_10_1016_j_jddst_2023_104880
crossref_primary_10_3390_cancers14082021
crossref_primary_10_3390_biomedicines11072086
crossref_primary_10_47183_mes_2021_020
crossref_primary_10_31083_j_fbl2901042
crossref_primary_10_1080_17474086_2022_2073213
crossref_primary_10_26416_ORL_61_4_2023_8960
crossref_primary_10_5500_wjt_v14_i1_89772
crossref_primary_10_1038_s41467_022_30163_4
crossref_primary_10_3390_cancers16122243
crossref_primary_10_1038_s41586_023_05925_9
crossref_primary_10_3324_haematol_2020_257048
crossref_primary_10_23950_jcmk_11423
crossref_primary_10_1016_j_jchromb_2021_122853
crossref_primary_10_1016_j_cellimm_2020_104260
crossref_primary_10_1016_j_jep_2024_118148
crossref_primary_10_1182_blood_2023021672
crossref_primary_10_1093_intimm_dxaf004
crossref_primary_10_3390_vaccines11040835
crossref_primary_10_1002_psp4_12885
crossref_primary_10_1109_ACCESS_2024_3489958
crossref_primary_10_3390_cancers14030771
crossref_primary_10_1155_2023_9422990
crossref_primary_10_1182_hematology_2024000531
crossref_primary_10_3389_fimmu_2024_1309916
crossref_primary_10_1371_journal_pone_0311854
crossref_primary_10_1007_s00262_024_03814_2
crossref_primary_10_1016_j_molimm_2023_07_003
crossref_primary_10_1097_JS9_0000000000001814
crossref_primary_10_1016_j_cll_2024_04_009
crossref_primary_10_1016_j_csbj_2022_09_008
crossref_primary_10_1186_s12974_023_02900_z
crossref_primary_10_1016_j_apsb_2022_12_016
crossref_primary_10_1182_bloodadvances_2020003768
crossref_primary_10_1002_jha2_414
crossref_primary_10_1172_JCI180012
crossref_primary_10_3390_cancers14194917
crossref_primary_10_1007_s10238_023_01218_7
crossref_primary_10_3892_ol_2022_13634
crossref_primary_10_3389_fimmu_2023_1325255
crossref_primary_10_1016_j_neurol_2024_09_006
crossref_primary_10_1177_13524585221122219
crossref_primary_10_1002_cyto_a_24507
crossref_primary_10_3389_fimmu_2024_1346671
crossref_primary_10_1016_j_clinre_2024_102392
crossref_primary_10_1158_0008_5472_CAN_21_1109
crossref_primary_10_1186_s12883_022_03031_3
crossref_primary_10_1126_sciadv_adl3975
crossref_primary_10_2147_IJWH_S508352
crossref_primary_10_3390_cancers15184550
crossref_primary_10_1158_1078_0432_CCR_23_1962
crossref_primary_10_3390_ijms25052908
crossref_primary_10_1016_j_autrev_2022_103032
crossref_primary_10_3389_fimmu_2022_900117
crossref_primary_10_3389_fonc_2023_1168622
crossref_primary_10_1016_j_jconrel_2023_04_048
crossref_primary_10_1080_16078454_2024_2335856
crossref_primary_10_1002_ctm2_943
crossref_primary_10_3389_fimmu_2022_1076594
crossref_primary_10_3390_clinpract12020022
crossref_primary_10_3324_haematol_2020_261891
crossref_primary_10_1051_e3sconf_202338903108
crossref_primary_10_3389_fimmu_2024_1454913
crossref_primary_10_1016_j_cll_2021_04_005
crossref_primary_10_3389_fimmu_2023_1135096
crossref_primary_10_2147_ITT_S492062
crossref_primary_10_3390_ijms25031553
crossref_primary_10_1177_13524585221147635
crossref_primary_10_3389_fonc_2020_591577
crossref_primary_10_1073_pnas_2021342118
crossref_primary_10_26508_lsa_202101355
crossref_primary_10_1186_s13045_024_01621_x
crossref_primary_10_3389_fimmu_2024_1348836
crossref_primary_10_1007_s12032_023_02138_y
crossref_primary_10_3390_cancers14133230
crossref_primary_10_3390_fractalfract8100600
ContentType Journal Article
Copyright Copyright© 2020 Ferrata Storti Foundation.
Copyright© 2020 Ferrata Storti Foundation 2020
Copyright_xml – notice: Copyright© 2020 Ferrata Storti Foundation.
– notice: Copyright© 2020 Ferrata Storti Foundation 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3324/haematol.2019.243543
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1592-8721
EndPage 1506
ExternalDocumentID oai_doaj_org_article_b07ff56bd4a048cb8e3ab60ac890d38f
PMC7271567
32482755
10_3324_haematol_2019_243543
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: European Research Council
  grantid: 802644
GroupedDBID ---
29I
2WC
53G
5GY
5RE
5VS
AAFWJ
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
C1A
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GROUPED_DOAJ
H13
HYE
KQ8
OK1
OVT
P2P
RHI
RNS
RPM
SJN
TFS
TR2
UDS
W8F
WOQ
WOW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c474t-a10d0776e8302dc936ed53588f4c039cdf0b6907cbe86f2483fb634afacd81cb3
IEDL.DBID DOA
ISSN 0390-6078
1592-8721
IngestDate Wed Aug 27 01:30:34 EDT 2025
Thu Aug 21 13:54:08 EDT 2025
Fri Jul 11 11:58:15 EDT 2025
Mon Jul 21 06:06:32 EDT 2025
Thu Apr 24 22:57:49 EDT 2025
Tue Jul 01 04:22:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright© 2020 Ferrata Storti Foundation.
https://creativecommons.org/licenses/by-nc/4.0/legalcode. Copies of published material are allowed for personal or internal use. Sharing published material for non-commercial purposes is subject to the following conditions
Material published in Haematologica is covered by copyright. All rights are reserved to the Ferrata Storti Foundation. Use of published material is allowed under the following terms and conditions
https://creativecommons.org/licenses/by-nc/4.0/legalcode, sect. 3. Reproducing and sharing published material for commercial purposes is not allowed without permission in writing from the publisher.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-a10d0776e8302dc936ed53588f4c039cdf0b6907cbe86f2483fb634afacd81cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/b07ff56bd4a048cb8e3ab60ac890d38f
PMID 32482755
PQID 2408846267
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_b07ff56bd4a048cb8e3ab60ac890d38f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7271567
proquest_miscellaneous_2408846267
pubmed_primary_32482755
crossref_primary_10_3324_haematol_2019_243543
crossref_citationtrail_10_3324_haematol_2019_243543
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-00
20200601
2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-00
PublicationDecade 2020
PublicationPlace Italy
PublicationPlace_xml – name: Italy
PublicationTitle Haematologica (Roma)
PublicationTitleAlternate Haematologica
PublicationYear 2020
Publisher Ferrata Storti Foundation
Publisher_xml – name: Ferrata Storti Foundation
SSID ssj0020997
Score 2.664496
SecondaryResourceType review_article
Snippet The introduction of anti-CD20 monoclonal antibodies such as rituximab, ofatumumab, or obinutuzumab improved the therapy of B-cell malignancies even though the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1494
SubjectTerms Antibodies, Monoclonal
Antigens, CD20
B-Lymphocytes
Humans
Leukemia, Lymphocytic, Chronic, B-Cell
Pyrimidines
Review
Rituximab
Title The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/32482755
https://www.proquest.com/docview/2408846267
https://pubmed.ncbi.nlm.nih.gov/PMC7271567
https://doaj.org/article/b07ff56bd4a048cb8e3ab60ac890d38f
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSx0xFA7FhXRTWh91aispiLvUmUkmk3TnoyIFXSkIXYQ8Vahzi14X3flD2j_nL-k5ydyLtxTcdDeTx-RwzsmcR5IvhGw3TUhgNy2TKmkmROwY6I1g4Okmr7QVQuPZ4ZNTeXwuvl50F0-u-sI9YQUeuDBu19V9Sp10QVhQNu9U5NbJ2sKH6sBVwr8v2LxZMDWGWngeNK8faAiOwAqWQ3McqNi9sgiGOsFlh0Z_asFdEHzBKGXs_n85nH_vm3xiiI5ek1ejB0n3CuVvyIs4rJDVvQFGu_lJd2je05mT5Stk-WRcOl8l30Ah6G25eR5kQe0QKBq1_DJJ9OCwrT9DKX18-BWH68sb-_jwGyv2GSb36YjWlPuV7eMRHgomwRo5P_pydnDMxpsVmBe9mDLb1AFxfCKifwWvuYyh451SSXjgmQ-pdhg2exeVTK1QPDnJhU3WB9V4x9fJ0jAZ4gahUcvggd0qtFxIq3XyVlrhhAuhbmJbET5jrfEj7DjefvHdQPiBAjEzgRgUiCkCqQib9_pRYDeeab-PUpu3RdDsXACqZEZVMs-pUkU-zmRuYJIhc-0QJ_d3BnHgwFFrZV-Rt0UH5kMBSartu64i_YJ2LNCyWDNcX2Ugb_AdIXzu3_0P4jfJyxZTATlB9J4sTW_v4wfwl6ZuK0-NrZzI-gPupxaG
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+regulation+and+function+of+CD20%3A+an+%22enigma%22+of+B-cell+biology+and+targeted+therapy&rft.jtitle=Haematologica+%28Roma%29&rft.au=Pavlasova%2C+Gabriela&rft.au=Mraz%2C+Marek&rft.date=2020-06-01&rft.issn=1592-8721&rft.eissn=1592-8721&rft.volume=105&rft.issue=6&rft.spage=1494&rft_id=info:doi/10.3324%2Fhaematol.2019.243543&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0390-6078&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0390-6078&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0390-6078&client=summon