Model selection procedures in social research: Monte-Carlo simulation results
Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commo...
Saved in:
Published in | Journal of applied statistics Vol. 35; no. 10; pp. 1093 - 1114 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Routledge
01.10.2008
Taylor and Francis Journals Taylor & Francis Ltd |
Series | Journal of Applied Statistics |
Subjects | |
Online Access | Get full text |
ISSN | 0266-4763 1360-0532 |
DOI | 10.1080/03081070802203959 |
Cover
Abstract | Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R
2
, Mallows' C
p
, Akaike information criteria (AIC), AIC
c
, and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known.
We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R
2
, Mallows' C
p
AIC, and AIC
c
are clearly inferior and should be avoided. |
---|---|
AbstractList | Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R2, Mallows' Cp, Akaike information criteria (AIC), AICc, and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known. We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R2, Mallows' Cp AIC, and AICc are clearly inferior and should be avoided. Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R..., Mallows' C..., Akaike information criteria (AIC), AIC..., and stepwise regression] using Monte- Carlo simulation of model selection when the true data generating processes (DGP) are known. We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R..., Mallows' C... AIC, and AIC... are clearly inferior and should be avoided. (ProQuest: ... denotes formulae/symbols omitted.) Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R 2 , Mallows' C p , Akaike information criteria (AIC), AIC c , and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known. We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R 2 , Mallows' C p AIC, and AIC c are clearly inferior and should be avoided. |
Author | Deane, Glenn D. Tsao, Hui-Shien Raffalovich, Lawrence E. Armstrong, David |
Author_xml | – sequence: 1 givenname: Lawrence E. surname: Raffalovich fullname: Raffalovich, Lawrence E. email: L.Raffalovich@albany.edu organization: Department of Sociology , University at Albany – sequence: 2 givenname: Glenn D. surname: Deane fullname: Deane, Glenn D. organization: Department of Sociology , University at Albany – sequence: 3 givenname: David surname: Armstrong fullname: Armstrong, David organization: Department of Sociology , University at Albany – sequence: 4 givenname: Hui-Shien surname: Tsao fullname: Tsao, Hui-Shien organization: Department of Sociology , University at Albany |
BackLink | http://econpapers.repec.org/article/tafjapsta/v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093-1114.htm$$DView record in RePEc |
BookMark | eNqNkU2LFDEQhoOs4OzqD_DWeG9NUv2RiBcZ_IIdvOg5VCdpNkOm0yYZdf695Yx4cBE9VKUC7_NWUXXNrpa0eMaeCv5ccMVfcOBK8JFKKTnoXj9gGwEDb3kP8optuByGthsHeMSuS9lzTvIeNmy3S87HpvjobQ1padacrHfH7EsTlqYkGzA29POY7d3LZpeW6tst5piaEg7HiGeKBMdYy2P2cMZY_JNf7w37_PbNp-379vbjuw_b17et7cautnoGPk6jBt0Nk9IDKu5AKyfl5B0qNeI0cxy8dk6DG0CimoXTUy9776zjcMOeXXxp2i9HX6rZp2NeqKWRAkalFCgS7S6i7FdvzZrDAfPJVJz3uJaK5qsBhJ7SiULSRugJFIJTWs-FBiOE6MxdPZCfuPjZnErJfv5tScDPI5h7RyBm_IOxoZ5XVjOG-D9kWOaUD_gt5eho-FNMec642FDuU6Z-r0S--icJf2_8A2aZsRY |
CitedBy_id | crossref_primary_10_1111_1365_2656_14073 crossref_primary_10_1016_j_fishres_2016_01_001 crossref_primary_10_1111_gcb_14742 crossref_primary_10_1007_s10940_018_9398_5 crossref_primary_10_3390_jcm10030544 crossref_primary_10_1007_s10530_011_0032_9 crossref_primary_10_1016_j_cities_2023_104572 crossref_primary_10_5735_086_052_0502 crossref_primary_10_1007_s42991_020_00058_2 crossref_primary_10_1111_2041_210X_12541 crossref_primary_10_1016_j_cub_2023_08_066 crossref_primary_10_15195_v5_a9 crossref_primary_10_1111_j_1466_8238_2010_00535_x crossref_primary_10_3390_w10040419 crossref_primary_10_1139_cjfas_2016_0445 crossref_primary_10_1371_journal_pone_0028939 crossref_primary_10_1007_s00265_010_1036_7 crossref_primary_10_1111_j_1472_4642_2011_00797_x crossref_primary_10_1080_00405000_2012_755295 crossref_primary_10_1111_geb_12758 crossref_primary_10_1111_j_1461_0248_2009_01361_x crossref_primary_10_1097_MD_0000000000025133 crossref_primary_10_1111_ele_13743 crossref_primary_10_1111_mec_12198 crossref_primary_10_17711_SM_0185_3325_2021_016 crossref_primary_10_1111_ddi_12555 crossref_primary_10_1145_3441452 crossref_primary_10_1890_12_1683_1 crossref_primary_10_1111_j_1472_4642_2012_00917_x crossref_primary_10_1007_s13157_021_01525_3 crossref_primary_10_1111_j_1365_2699_2010_02369_x crossref_primary_10_4028_www_scientific_net_AMR_677_357 crossref_primary_10_1002_sim_5639 crossref_primary_10_1080_02664763_2010_545371 crossref_primary_10_1644_13_MAMM_A_036 crossref_primary_10_3923_ajms_2015_19_34 crossref_primary_10_1016_j_foodqual_2024_105350 |
Cites_doi | 10.2307/1403192 10.2307/271063 10.2307/1924403 10.1177/0013164490504014 10.1086/260058 10.1177/0049124103262065 10.1177/0049124104268644 10.1214/aos/1176344136 10.1142/3573 10.1093/biomet/76.2.297 10.1007/BF02289635 10.1080/00401706.1973.10489103 10.2307/271022 10.1080/07474939208800232 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2008 Copyright Taylor & Francis Ltd. 2008 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2008 – notice: Copyright Taylor & Francis Ltd. 2008 |
DBID | AAYXX CITATION DKI X2L 7SC 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1080/03081070802203959 |
DatabaseName | CrossRef RePEc IDEAS RePEc Computer and Information Systems Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1360-0532 |
EndPage | 1114 |
ExternalDocumentID | 1562578711 tafjapsta_v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093_1114_htm 10_1080_03081070802203959 320562 |
Genre | Feature |
GroupedDBID | .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS 7WY 8FL 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGXH AEISY AEMOZ AENEX AEOZL AEPSL AEYOC AFKVX AGCQS AGDLA AGMYJ AHDZW AHQJS AIAGR AIJEM AJWEG AKBVH AKOOK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 DGEBU DKSSO DU5 EBE EBO EBR EBS EBU ECR EJD EMK EPL E~A E~B F5P GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HZ~ H~P IPNFZ J.P K1G K60 K6~ KYCEM M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RPM RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TH9 TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ 07G 1TA 8C1 8FE 8FG 8G5 AAGDL AAHIA AAIKQ AAKBW AAYXX ABJCF ABUWG ACAGQ ACGEE ADBBV ADYSH AEUMN AFKRA AFRVT AGLEN AGROQ AHMOU AI. AIYEW ALCKM AMEWO AMPGV AMVHM AMXXU ARAPS AZQEC BCCOT BENPR BEZIV BGLVJ BPHCQ BPLKW C06 CCPQU CITATION CRFIH DMQIW DWIFK DWQXO FRNLG FYUFA GNUQQ GUQSH HCIFZ HF~ IVXBP K6V K7- L6V LJTGL M0C M2O M7S NHB NUSFT P62 PHGZM PHGZT PQBIZ PQBZA PQQKQ PRG PROAC PTHSS QCRFL TAQ TFMCV TOXWX UB9 UKHRP UU8 V3K V4Q VH1 0R 3V. 3YN 7F AAAVI ABJVF ABQHQ ADIYS AEGYZ AFOLD AHDLD AIRXU BBAFP COQAR DKI FUNRP FVPDL HZ K6 M0N NY PADUT PQEST PQUKI PRINS QJ S V1K X2L 7SC 8FD ACTCW H8D JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c474t-9f307b793946b896a80d398d22beda887abf0a6e9dd93d632a8f1d9b525edcd03 |
ISSN | 0266-4763 |
IngestDate | Wed Aug 13 06:25:57 EDT 2025 Wed Aug 18 03:07:35 EDT 2021 Thu Apr 24 22:58:29 EDT 2025 Tue Jul 01 02:25:04 EDT 2025 Wed Dec 25 09:01:58 EST 2024 Mon May 13 12:12:17 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-9f307b793946b896a80d398d22beda887abf0a6e9dd93d632a8f1d9b525edcd03 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 213788838 |
PQPubID | 32901 |
PageCount | 22 |
ParticipantIDs | proquest_journals_213788838 crossref_citationtrail_10_1080_03081070802203959 informaworld_taylorfrancis_310_1080_03081070802203959 crossref_primary_10_1080_03081070802203959 repec_primary_tafjapsta_v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093_1114_htm |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-00 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-00 |
PublicationDecade | 2000 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationSeriesTitle | Journal of Applied Statistics |
PublicationTitle | Journal of applied statistics |
PublicationYear | 2008 |
Publisher | Routledge Taylor and Francis Journals Taylor & Francis Ltd |
Publisher_xml | – name: Routledge – name: Taylor and Francis Journals – name: Taylor & Francis Ltd |
References | CIT0010 CIT0021 Akaike H. (CIT0001) CIT0012 CIT0011 Judge G. G. (CIT0008) 1985 SAS Institute (CIT0016) 1990 Burnham K. P. (CIT0002) 2002 Theil H. (CIT0018) 1971 CIT0003 Cook R. D. (CIT0004) 1982 CIT0014 CIT0013 Toothaker L. E. (CIT0020) 1991 CIT0005 CIT0015 CIT0007 CIT0006 CIT0017 CIT0009 CIT0019 |
References_xml | – ident: CIT0007 doi: 10.2307/1403192 – ident: CIT0015 doi: 10.2307/271063 – ident: CIT0011 doi: 10.2307/1924403 – volume-title: SAS/STAT 9.1 User's Guide year: 1990 ident: CIT0016 – ident: CIT0019 doi: 10.1177/0013164490504014 – volume-title: Residuals and Influence in Regression year: 1982 ident: CIT0004 – ident: CIT0005 doi: 10.1086/260058 – ident: CIT0010 doi: 10.1177/0049124103262065 – volume-title: The Theory and Practice of Econometrics year: 1985 ident: CIT0008 – ident: CIT0003 doi: 10.1177/0049124104268644 – start-page: 267 volume-title: Second International Symposium on Information Theory ident: CIT0001 – ident: CIT0017 doi: 10.1214/aos/1176344136 – volume-title: Model Selection and Multimodel Inference: a Practical Information Theoretic Approach year: 2002 ident: CIT0002 – ident: CIT0013 doi: 10.1142/3573 – ident: CIT0006 doi: 10.1093/biomet/76.2.297 – ident: CIT0009 doi: 10.1007/BF02289635 – volume-title: Multiple Comparisons for Researchers year: 1991 ident: CIT0020 – volume-title: Principles of Econometrics year: 1971 ident: CIT0018 – ident: CIT0012 doi: 10.1080/00401706.1973.10489103 – ident: CIT0021 doi: 10.2307/271022 – ident: CIT0014 doi: 10.1080/07474939208800232 |
SSID | ssj0008153 |
Score | 2.0003302 |
Snippet | Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely... |
SourceID | proquest repec crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1093 |
SubjectTerms | AIC Bayesian analysis BIC Data processing model selection Monte Carlo simulation Social research stepwise regression |
Title | Model selection procedures in social research: Monte-Carlo simulation results |
URI | https://www.tandfonline.com/doi/abs/10.1080/03081070802203959 http://econpapers.repec.org/article/tafjapsta/v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093-1114.htm https://www.proquest.com/docview/213788838 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbK9rIcECwgysIqB06sgtLYeZjbapelgMqFXbHiEtmxQ4uybdWkvP4wf4PxK01KVcGKQ6IochLX83VmPB5_g9AzTFMZppHwC8ypTyQBPZjw3JdchCxhCSe5CuiP38ejS_L2Krrq9X61spZWNX-R_9y6r-QmUoV7IFe1S_YfJNu8FG7ANcgXziBhOP-VjFUhs_K40qVslBi1NRKrpU6ycuFwS-czUXP_seKi8k_ZspwfV9NrW7pLNVmVhtJpi6PKrKOq9h4ZWudmul8xHWkdraa-KqrdAO1M2hTa12DUZi1QVSry_nkjmV6tMhUFK-egtSZms_Y3vQnRqDxFxVxt85w_dDvkYhdpkwVn0GaCEnqVxJYRcYvw7UAluBA-cWpQGjWNY7WEjzt63NCeOLwGLa2sKLNaFh7UO9lqPWy6JQY3CTSh3oSMqSUs75Jy16z4whYw7tnXDDMcwekHHLqmJ2ZTOGByhdlCX1Cs5lkkm9TXt1A_TBKVT9A_GZ19-tg4DenQEKa6H-sW4BUN_GZ_Oi5Uh2C3M03qL-VC5i1v6eIuumPH1zsxmL2HenJ2gG6PG47g6gDtr8V3H401lL0Gyt4ayt505hkoew7KL70WkL01kD0L5Afo8vzVxenIt5U-_JwkpPZpAaaGg6mgJOYpjVkaCNAiIgy5FAzsIONFwGJJhaBYxDhkaTEUlEdhJEUuAvwQ7c3mM_kIeRizRA45YTQMiBSpIrALeF6EUZ5SQoMBCtzgZbmlwVfVWMps6NhyN8d7gJ43jywMB8yuxkFbIlmtMV4YeP_ZPKu_1wMU7XgE7_jUoZN2ZrVSlYVDVSEixekAnWsANF2-KWYf_68XHaL9tRJ4gvbq5Uo-BZe-5kf273AEk9p3b34D7TT2pA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGP8E24Fx4DFAlPHwgRNShuNHYnNDE1WBpadN2s3yK6LQdVWTIuCvx46Tah2ohx0c5WDHTr73Z-f3AbylUngiuMtqamTGPAt6sDQ288YRXerSMBsT-tW0mJyzLxf8ok-4Nf2xyhhD1wkootPVUbhjMno4Evc-YqyEsCX9Jkoll3dhnwe_PXI4xdONJhZ5QqEMRihjQZCGXc3_PWLLLm2hlm75nvsrv_T2mgkaPwQ1LD6dPPlxvG7Nsf1zA9fx9m_3CB703in6mNjpMdzxi0O4X22gXZtDOIjuaUJ3fgJVLKU2R01XTCdQGHX20K1DDI9mC5QS8qgHFPr2AVURCys70av5FWpml33psNhhPW-bp3A-_nR2Msn6Ag2ZZSVrM1kHDWGChEtWGCELLbALxHeEGO90UF_a1FgXXjonqSso0aLOnTSccO-sw_QZ7C2uFv45IEp16XPDtCSYeSci7hg2tibcCskkHgEeyKNsj14ei2jMVT6AnN78bCN4txmyTNAduzrj6zRXbZcvqVNxk3-7q_ZXOwK-YwjdMdXRwE-qVxiNInkE9hdUjGDcsdhmya2uv-tlCBXUT0U15eHyO7SufCjVs9DCTFQvuxtJY0jHAkdevrjl8t7AvclZdapOP0-_HsEBGfB_85ew167W_lVwwlrzupO0vxGlI30 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaglVA5sBQQQ1l84ISU4thOYnNDhVFZZsSBSr1ZXtUp02k08SDg1-MlGXUKmkMPjnKwEyfPb3Nevg-A14Qzi1llCkcUL6ilwQ42ShdWGSwb2Siq44b-ZFofn9DPp9VpX5vT9WWVMYd2GSgi2eqo3K1xQ0Xc2wixErKW_Jco4RW_DXbrEJrEij6CpmtDzMoMQhl8UEGDHg0fNf93iQ23tAFauhF67i5ta_UVDzS-n2lWuwRcGAtPfhyuvDrUf67BOt744R6Ae31sCt_nxfQQ3LKLfXB3sgZ27fbBXgxOM7bzIzCJRGpz2CUqnSBfmLyhWYUMHs4WMG_Hwx5O6OwdnEQkrOJILueXsJtd9MRhscNq7rvH4GT88fvRcdHTMxSaNtQX3AX7oIJ-c1orxmvJkAmiNxgra2QwXlI5JGvLjeHE1ARL5krDVYUra7RB5AnYWVwu7FMACZGNLRWVHCNqDYuoY0hphyvNOOVoBNAgHaF77PJIoTEX5QBxev21jcCb9ZA2A3ds64yuilz4tFviMrXJv92F_-VHoNoyhGy51cGwnERvLjqBywjrzwgbgXFaYespe-nOZRsSBfFTEEmqcPgdWiIPJXIWWrgTkW064SQmdFSc-YtnN5zeK3Dn24ex-Ppp-uUA7OEB_Ld8Dnb8cmVfhAjMq5dJz_4CUsQiIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+selection+procedures+in+social+research%3A+Monte-Carlo+simulation+results&rft.jtitle=Journal+of+applied+statistics&rft.au=Tsao%2C+Hui-Shien&rft.au=Deane%2C+Glenn&rft.au=Armstrong%2C+David&rft.au=Raffalovich%2C+Lawrence&rft.series=Journal+of+Applied+Statistics&rft.date=2008-10-01&rft.pub=Taylor+and+Francis+Journals&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=35&rft.issue=10&rft.spage=1093&rft.epage=1114&rft_id=info:doi/10.1080%2F03081070802203959&rft.externalDocID=tafjapsta_v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093_1114_htm |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon |