Model selection procedures in social research: Monte-Carlo simulation results

Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commo...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied statistics Vol. 35; no. 10; pp. 1093 - 1114
Main Authors Raffalovich, Lawrence E., Deane, Glenn D., Armstrong, David, Tsao, Hui-Shien
Format Journal Article
LanguageEnglish
Published Abingdon Routledge 01.10.2008
Taylor and Francis Journals
Taylor & Francis Ltd
SeriesJournal of Applied Statistics
Subjects
Online AccessGet full text
ISSN0266-4763
1360-0532
DOI10.1080/03081070802203959

Cover

Abstract Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R 2 , Mallows' C p , Akaike information criteria (AIC), AIC c , and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known. We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R 2 , Mallows' C p AIC, and AIC c are clearly inferior and should be avoided.
AbstractList Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R2, Mallows' Cp, Akaike information criteria (AIC), AICc, and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known. We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R2, Mallows' Cp AIC, and AICc are clearly inferior and should be avoided.
Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R..., Mallows' C..., Akaike information criteria (AIC), AIC..., and stepwise regression] using Monte- Carlo simulation of model selection when the true data generating processes (DGP) are known. We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R..., Mallows' C... AIC, and AIC... are clearly inferior and should be avoided. (ProQuest: ... denotes formulae/symbols omitted.)
Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely unknown, therefore, there is little basis for recommending (or avoiding) any particular set of strategies. In this paper, we evaluate several commonly used model selection procedures [Bayesian information criterion (BIC), adjusted R 2 , Mallows' C p , Akaike information criteria (AIC), AIC c , and stepwise regression] using Monte-Carlo simulation of model selection when the true data generating processes (DGP) are known. We find that the ability of these selection procedures to include important variables and exclude irrelevant variables increases with the size of the sample and decreases with the amount of noise in the model. None of the model selection procedures do well in small samples, even when the true DGP is largely deterministic; thus, data mining in small samples should be avoided entirely. Instead, the implicit uncertainty in model specification should be explicitly discussed. In large samples, BIC is better than the other procedures at correctly identifying most of the generating processes we simulated, and stepwise does almost as well. In the absence of strong theory, both BIC and stepwise appear to be reasonable model selection strategies in large samples. Under the conditions simulated, adjusted R 2 , Mallows' C p AIC, and AIC c are clearly inferior and should be avoided.
Author Deane, Glenn D.
Tsao, Hui-Shien
Raffalovich, Lawrence E.
Armstrong, David
Author_xml – sequence: 1
  givenname: Lawrence E.
  surname: Raffalovich
  fullname: Raffalovich, Lawrence E.
  email: L.Raffalovich@albany.edu
  organization: Department of Sociology , University at Albany
– sequence: 2
  givenname: Glenn D.
  surname: Deane
  fullname: Deane, Glenn D.
  organization: Department of Sociology , University at Albany
– sequence: 3
  givenname: David
  surname: Armstrong
  fullname: Armstrong, David
  organization: Department of Sociology , University at Albany
– sequence: 4
  givenname: Hui-Shien
  surname: Tsao
  fullname: Tsao, Hui-Shien
  organization: Department of Sociology , University at Albany
BackLink http://econpapers.repec.org/article/tafjapsta/v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093-1114.htm$$DView record in RePEc
BookMark eNqNkU2LFDEQhoOs4OzqD_DWeG9NUv2RiBcZ_IIdvOg5VCdpNkOm0yYZdf695Yx4cBE9VKUC7_NWUXXNrpa0eMaeCv5ccMVfcOBK8JFKKTnoXj9gGwEDb3kP8optuByGthsHeMSuS9lzTvIeNmy3S87HpvjobQ1padacrHfH7EsTlqYkGzA29POY7d3LZpeW6tst5piaEg7HiGeKBMdYy2P2cMZY_JNf7w37_PbNp-379vbjuw_b17et7cautnoGPk6jBt0Nk9IDKu5AKyfl5B0qNeI0cxy8dk6DG0CimoXTUy9776zjcMOeXXxp2i9HX6rZp2NeqKWRAkalFCgS7S6i7FdvzZrDAfPJVJz3uJaK5qsBhJ7SiULSRugJFIJTWs-FBiOE6MxdPZCfuPjZnErJfv5tScDPI5h7RyBm_IOxoZ5XVjOG-D9kWOaUD_gt5eho-FNMec642FDuU6Z-r0S--icJf2_8A2aZsRY
CitedBy_id crossref_primary_10_1111_1365_2656_14073
crossref_primary_10_1016_j_fishres_2016_01_001
crossref_primary_10_1111_gcb_14742
crossref_primary_10_1007_s10940_018_9398_5
crossref_primary_10_3390_jcm10030544
crossref_primary_10_1007_s10530_011_0032_9
crossref_primary_10_1016_j_cities_2023_104572
crossref_primary_10_5735_086_052_0502
crossref_primary_10_1007_s42991_020_00058_2
crossref_primary_10_1111_2041_210X_12541
crossref_primary_10_1016_j_cub_2023_08_066
crossref_primary_10_15195_v5_a9
crossref_primary_10_1111_j_1466_8238_2010_00535_x
crossref_primary_10_3390_w10040419
crossref_primary_10_1139_cjfas_2016_0445
crossref_primary_10_1371_journal_pone_0028939
crossref_primary_10_1007_s00265_010_1036_7
crossref_primary_10_1111_j_1472_4642_2011_00797_x
crossref_primary_10_1080_00405000_2012_755295
crossref_primary_10_1111_geb_12758
crossref_primary_10_1111_j_1461_0248_2009_01361_x
crossref_primary_10_1097_MD_0000000000025133
crossref_primary_10_1111_ele_13743
crossref_primary_10_1111_mec_12198
crossref_primary_10_17711_SM_0185_3325_2021_016
crossref_primary_10_1111_ddi_12555
crossref_primary_10_1145_3441452
crossref_primary_10_1890_12_1683_1
crossref_primary_10_1111_j_1472_4642_2012_00917_x
crossref_primary_10_1007_s13157_021_01525_3
crossref_primary_10_1111_j_1365_2699_2010_02369_x
crossref_primary_10_4028_www_scientific_net_AMR_677_357
crossref_primary_10_1002_sim_5639
crossref_primary_10_1080_02664763_2010_545371
crossref_primary_10_1644_13_MAMM_A_036
crossref_primary_10_3923_ajms_2015_19_34
crossref_primary_10_1016_j_foodqual_2024_105350
Cites_doi 10.2307/1403192
10.2307/271063
10.2307/1924403
10.1177/0013164490504014
10.1086/260058
10.1177/0049124103262065
10.1177/0049124104268644
10.1214/aos/1176344136
10.1142/3573
10.1093/biomet/76.2.297
10.1007/BF02289635
10.1080/00401706.1973.10489103
10.2307/271022
10.1080/07474939208800232
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2008
Copyright Taylor & Francis Ltd. 2008
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2008
– notice: Copyright Taylor & Francis Ltd. 2008
DBID AAYXX
CITATION
DKI
X2L
7SC
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1080/03081070802203959
DatabaseName CrossRef
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1360-0532
EndPage 1114
ExternalDocumentID 1562578711
tafjapsta_v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093_1114_htm
10_1080_03081070802203959
320562
Genre Feature
GroupedDBID .7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
7WY
8FL
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGCQS
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AJWEG
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EBE
EBO
EBR
EBS
EBU
ECR
EJD
EMK
EPL
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
K1G
K60
K6~
KYCEM
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RPM
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TH9
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
07G
1TA
8C1
8FE
8FG
8G5
AAGDL
AAHIA
AAIKQ
AAKBW
AAYXX
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
ADYSH
AEUMN
AFKRA
AFRVT
AGLEN
AGROQ
AHMOU
AI.
AIYEW
ALCKM
AMEWO
AMPGV
AMVHM
AMXXU
ARAPS
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BPHCQ
BPLKW
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
FRNLG
FYUFA
GNUQQ
GUQSH
HCIFZ
HF~
IVXBP
K6V
K7-
L6V
LJTGL
M0C
M2O
M7S
NHB
NUSFT
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PRG
PROAC
PTHSS
QCRFL
TAQ
TFMCV
TOXWX
UB9
UKHRP
UU8
V3K
V4Q
VH1
0R
3V.
3YN
7F
AAAVI
ABJVF
ABQHQ
ADIYS
AEGYZ
AFOLD
AHDLD
AIRXU
BBAFP
COQAR
DKI
FUNRP
FVPDL
HZ
K6
M0N
NY
PADUT
PQEST
PQUKI
PRINS
QJ
S
V1K
X2L
7SC
8FD
ACTCW
H8D
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c474t-9f307b793946b896a80d398d22beda887abf0a6e9dd93d632a8f1d9b525edcd03
ISSN 0266-4763
IngestDate Wed Aug 13 06:25:57 EDT 2025
Wed Aug 18 03:07:35 EDT 2021
Thu Apr 24 22:58:29 EDT 2025
Tue Jul 01 02:25:04 EDT 2025
Wed Dec 25 09:01:58 EST 2024
Mon May 13 12:12:17 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-9f307b793946b896a80d398d22beda887abf0a6e9dd93d632a8f1d9b525edcd03
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 213788838
PQPubID 32901
PageCount 22
ParticipantIDs proquest_journals_213788838
crossref_citationtrail_10_1080_03081070802203959
informaworld_taylorfrancis_310_1080_03081070802203959
crossref_primary_10_1080_03081070802203959
repec_primary_tafjapsta_v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093_1114_htm
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-00
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-00
PublicationDecade 2000
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationSeriesTitle Journal of Applied Statistics
PublicationTitle Journal of applied statistics
PublicationYear 2008
Publisher Routledge
Taylor and Francis Journals
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor and Francis Journals
– name: Taylor & Francis Ltd
References CIT0010
CIT0021
Akaike H. (CIT0001)
CIT0012
CIT0011
Judge G. G. (CIT0008) 1985
SAS Institute (CIT0016) 1990
Burnham K. P. (CIT0002) 2002
Theil H. (CIT0018) 1971
CIT0003
Cook R. D. (CIT0004) 1982
CIT0014
CIT0013
Toothaker L. E. (CIT0020) 1991
CIT0005
CIT0015
CIT0007
CIT0006
CIT0017
CIT0009
CIT0019
References_xml – ident: CIT0007
  doi: 10.2307/1403192
– ident: CIT0015
  doi: 10.2307/271063
– ident: CIT0011
  doi: 10.2307/1924403
– volume-title: SAS/STAT 9.1 User's Guide
  year: 1990
  ident: CIT0016
– ident: CIT0019
  doi: 10.1177/0013164490504014
– volume-title: Residuals and Influence in Regression
  year: 1982
  ident: CIT0004
– ident: CIT0005
  doi: 10.1086/260058
– ident: CIT0010
  doi: 10.1177/0049124103262065
– volume-title: The Theory and Practice of Econometrics
  year: 1985
  ident: CIT0008
– ident: CIT0003
  doi: 10.1177/0049124104268644
– start-page: 267
  volume-title: Second International Symposium on Information Theory
  ident: CIT0001
– ident: CIT0017
  doi: 10.1214/aos/1176344136
– volume-title: Model Selection and Multimodel Inference: a Practical Information Theoretic Approach
  year: 2002
  ident: CIT0002
– ident: CIT0013
  doi: 10.1142/3573
– ident: CIT0006
  doi: 10.1093/biomet/76.2.297
– ident: CIT0009
  doi: 10.1007/BF02289635
– volume-title: Multiple Comparisons for Researchers
  year: 1991
  ident: CIT0020
– volume-title: Principles of Econometrics
  year: 1971
  ident: CIT0018
– ident: CIT0012
  doi: 10.1080/00401706.1973.10489103
– ident: CIT0021
  doi: 10.2307/271022
– ident: CIT0014
  doi: 10.1080/07474939208800232
SSID ssj0008153
Score 2.0003302
Snippet Model selection strategies play an important, if not explicit, role in quantitative research. The inferential properties of these strategies are largely...
SourceID proquest
repec
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1093
SubjectTerms AIC
Bayesian analysis
BIC
Data processing
model selection
Monte Carlo simulation
Social research
stepwise regression
Title Model selection procedures in social research: Monte-Carlo simulation results
URI https://www.tandfonline.com/doi/abs/10.1080/03081070802203959
http://econpapers.repec.org/article/tafjapsta/v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093-1114.htm
https://www.proquest.com/docview/213788838
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbK9rIcECwgysIqB06sgtLYeZjbapelgMqFXbHiEtmxQ4uybdWkvP4wf4PxK01KVcGKQ6IochLX83VmPB5_g9AzTFMZppHwC8ypTyQBPZjw3JdchCxhCSe5CuiP38ejS_L2Krrq9X61spZWNX-R_9y6r-QmUoV7IFe1S_YfJNu8FG7ANcgXziBhOP-VjFUhs_K40qVslBi1NRKrpU6ycuFwS-czUXP_seKi8k_ZspwfV9NrW7pLNVmVhtJpi6PKrKOq9h4ZWudmul8xHWkdraa-KqrdAO1M2hTa12DUZi1QVSry_nkjmV6tMhUFK-egtSZms_Y3vQnRqDxFxVxt85w_dDvkYhdpkwVn0GaCEnqVxJYRcYvw7UAluBA-cWpQGjWNY7WEjzt63NCeOLwGLa2sKLNaFh7UO9lqPWy6JQY3CTSh3oSMqSUs75Jy16z4whYw7tnXDDMcwekHHLqmJ2ZTOGByhdlCX1Cs5lkkm9TXt1A_TBKVT9A_GZ19-tg4DenQEKa6H-sW4BUN_GZ_Oi5Uh2C3M03qL-VC5i1v6eIuumPH1zsxmL2HenJ2gG6PG47g6gDtr8V3H401lL0Gyt4ayt505hkoew7KL70WkL01kD0L5Afo8vzVxenIt5U-_JwkpPZpAaaGg6mgJOYpjVkaCNAiIgy5FAzsIONFwGJJhaBYxDhkaTEUlEdhJEUuAvwQ7c3mM_kIeRizRA45YTQMiBSpIrALeF6EUZ5SQoMBCtzgZbmlwVfVWMps6NhyN8d7gJ43jywMB8yuxkFbIlmtMV4YeP_ZPKu_1wMU7XgE7_jUoZN2ZrVSlYVDVSEixekAnWsANF2-KWYf_68XHaL9tRJ4gvbq5Uo-BZe-5kf273AEk9p3b34D7TT2pA
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGP8E24Fx4DFAlPHwgRNShuNHYnNDE1WBpadN2s3yK6LQdVWTIuCvx46Tah2ohx0c5WDHTr73Z-f3AbylUngiuMtqamTGPAt6sDQ288YRXerSMBsT-tW0mJyzLxf8ok-4Nf2xyhhD1wkootPVUbhjMno4Evc-YqyEsCX9Jkoll3dhnwe_PXI4xdONJhZ5QqEMRihjQZCGXc3_PWLLLm2hlm75nvsrv_T2mgkaPwQ1LD6dPPlxvG7Nsf1zA9fx9m_3CB703in6mNjpMdzxi0O4X22gXZtDOIjuaUJ3fgJVLKU2R01XTCdQGHX20K1DDI9mC5QS8qgHFPr2AVURCys70av5FWpml33psNhhPW-bp3A-_nR2Msn6Ag2ZZSVrM1kHDWGChEtWGCELLbALxHeEGO90UF_a1FgXXjonqSso0aLOnTSccO-sw_QZ7C2uFv45IEp16XPDtCSYeSci7hg2tibcCskkHgEeyKNsj14ei2jMVT6AnN78bCN4txmyTNAduzrj6zRXbZcvqVNxk3-7q_ZXOwK-YwjdMdXRwE-qVxiNInkE9hdUjGDcsdhmya2uv-tlCBXUT0U15eHyO7SufCjVs9DCTFQvuxtJY0jHAkdevrjl8t7AvclZdapOP0-_HsEBGfB_85ew167W_lVwwlrzupO0vxGlI30
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaglVA5sBQQQ1l84ISU4thOYnNDhVFZZsSBSr1ZXtUp02k08SDg1-MlGXUKmkMPjnKwEyfPb3Nevg-A14Qzi1llCkcUL6ilwQ42ShdWGSwb2Siq44b-ZFofn9DPp9VpX5vT9WWVMYd2GSgi2eqo3K1xQ0Xc2wixErKW_Jco4RW_DXbrEJrEij6CpmtDzMoMQhl8UEGDHg0fNf93iQ23tAFauhF67i5ta_UVDzS-n2lWuwRcGAtPfhyuvDrUf67BOt744R6Ae31sCt_nxfQQ3LKLfXB3sgZ27fbBXgxOM7bzIzCJRGpz2CUqnSBfmLyhWYUMHs4WMG_Hwx5O6OwdnEQkrOJILueXsJtd9MRhscNq7rvH4GT88fvRcdHTMxSaNtQX3AX7oIJ-c1orxmvJkAmiNxgra2QwXlI5JGvLjeHE1ARL5krDVYUra7RB5AnYWVwu7FMACZGNLRWVHCNqDYuoY0hphyvNOOVoBNAgHaF77PJIoTEX5QBxev21jcCb9ZA2A3ds64yuilz4tFviMrXJv92F_-VHoNoyhGy51cGwnERvLjqBywjrzwgbgXFaYespe-nOZRsSBfFTEEmqcPgdWiIPJXIWWrgTkW064SQmdFSc-YtnN5zeK3Dn24ex-Ppp-uUA7OEB_Ld8Dnb8cmVfhAjMq5dJz_4CUsQiIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+selection+procedures+in+social+research%3A+Monte-Carlo+simulation+results&rft.jtitle=Journal+of+applied+statistics&rft.au=Tsao%2C+Hui-Shien&rft.au=Deane%2C+Glenn&rft.au=Armstrong%2C+David&rft.au=Raffalovich%2C+Lawrence&rft.series=Journal+of+Applied+Statistics&rft.date=2008-10-01&rft.pub=Taylor+and+Francis+Journals&rft.issn=0266-4763&rft.eissn=1360-0532&rft.volume=35&rft.issue=10&rft.spage=1093&rft.epage=1114&rft_id=info:doi/10.1080%2F03081070802203959&rft.externalDocID=tafjapsta_v_3a35_3ay_3a2008_3ai_3a10_3ap_3a1093_1114_htm
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4763&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4763&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4763&client=summon