Molecular Mechanisms of Pseudomonas -Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pse...
Saved in:
Published in | Molecular plant-microbe interactions Vol. 36; no. 9; pp. 536 - 548 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Phytopathological Society
01.09.2023
The American Phytopathological Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions.
[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license . |
---|---|
AbstractList | Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license. Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Graphic: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license. Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license . Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license. Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT and Pseudomonas sp. K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which in turn have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N), and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signalling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions, and differs at sufficient and deficient N. The molecular controls behind different plant response are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas driven nitrogen fixation and to point to possible agricultural solutions. Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. |
Author | Kuang, Weiqi Arsova, Borjana Schurr, Ulrich Schaaf, Gabriel Huesgen, Pitter Watt, Michelle Sanow, Stefan Roessner, Ute |
Author_xml | – sequence: 1 givenname: Stefan orcidid: 0000-0002-1077-6588 surname: Sanow fullname: Sanow, Stefan organization: Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany, School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia – sequence: 2 givenname: Weiqi orcidid: 0000-0002-8383-5876 surname: Kuang fullname: Kuang, Weiqi organization: College of life and Environmental Sciences, Hunan University of Arts and Science, China – sequence: 3 givenname: Gabriel orcidid: 0000-0001-9022-4515 surname: Schaaf fullname: Schaaf, Gabriel organization: Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany – sequence: 4 givenname: Pitter orcidid: 0000-0002-0335-2242 surname: Huesgen fullname: Huesgen, Pitter organization: Central institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Juelich GmbH, Germany – sequence: 5 givenname: Ulrich orcidid: 0000-0003-0369-8777 surname: Schurr fullname: Schurr, Ulrich organization: Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany – sequence: 6 givenname: Ute orcidid: 0000-0002-6482-2615 surname: Roessner fullname: Roessner, Ute organization: Research School of Biology, The Australian National University, Acton, 2601 Australian Capital Territory, Australia – sequence: 7 givenname: Michelle orcidid: 0000-0001-7843-0957 surname: Watt fullname: Watt, Michelle organization: School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia – sequence: 8 givenname: Borjana orcidid: 0000-0002-0566-2009 surname: Arsova fullname: Arsova, Borjana organization: Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36989040$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPCH-CAVuLCZWH8sbs2tygqbaSGRhU9W453HBw262B7D_x7HNJy6AFOlu3nfUYezwU5G8OIhLyl8JGCEp9W69WyplAzVgNjvF7cvyAzqgSvuw7aMzIDqUS5kuycXKS0A6CqbZpX5Jy3SioQMCN-FQa002BitUL73Yw-7VMVXLVOOPVhH0aTqnqekk8Z-2o9mDFXX32OYYtj9XDI5gd-ru4OhxDzNPrsMVUuFFnoMY7VfBt9secp4mvy0pkh4ZvH9ZI8fLn6tripb--ul4v5bW1FJ3KtUG7AMGc5SrqhzLmu5dgalMZxVAI55YI3tO3AWAmtYMgkcNdDY62jDb8ky5O3D2anD9HvTfylg_H6z0GIW21i9nZAjdBxi7hRjjLRo920rgPJLO8FKi6guD6cXIcYfk6Yst77ZHEoXcAwJc2UYKBUo_j_0U6xBihtZUHfP0N3YYpjaUoRAgNWKotCvXukps0e-78vefq7AsgTYGNIKaLT1meTfRhzNH7QFPRxTPRxTI4bxvRxTPTivkTZs-iT_R-h3-eIv60 |
CitedBy_id | crossref_primary_10_1038_s41598_024_59055_x crossref_primary_10_1016_j_ijhydene_2025_01_088 crossref_primary_10_1007_s13199_024_00978_4 crossref_primary_10_1016_j_jia_2024_11_007 crossref_primary_10_3390_jof10060398 crossref_primary_10_3390_ijms242216128 crossref_primary_10_1051_bioconf_202414301001 |
Cites_doi | 10.1093/molbev/msh047 10.1093/jxb/ert458 10.1023/A:1026037216893 10.1051/agro/2009041 10.1371/journal.pone.0250574 10.1038/s41598-018-29204-0 10.1046/j.1365-313X.1999.00396.x 10.1046/j.1365-313X.1999.00480.x 10.1007/s00425-005-0106-y 10.1126/science.1176985 10.2307/3870059 10.1142/p130 10.1104/pp.127.1.262 10.1016/S0038-0717(00)00209-1 10.1111/1462-2920.13376 10.1104/pp.105.074385 10.3389/fpls.2017.02242 10.1007/s40011-017-0946-9 10.1104/pp.68.3.750 10.1038/s41477-021-00897-y 10.1080/07352689.2010.524518 10.3389/fpls.2014.00443 10.1111/ppl.12872 10.1104/pp.106.091223 10.1186/1471-2164-11-11 10.1007/s00374-006-0074-9 10.1371/journal.pone.0132837 10.1016/j.scitotenv.2021.145483 10.1093/aob/mcl099 10.1016/j.molp.2017.10.001 10.1128/AEM.02894-06 10.1016/bs.ampbs.2016.02.007 10.1023/A:1013388619231 10.1007/s11738-009-0297-0 10.3390/plants10040681 10.1016/0031-9422(88)84071-8 10.1371/journal.pone.0105837 10.1099/ijs.0.02326-0 10.1016/j.syapm.2018.10.010 10.1104/pp.106.085209 10.1094/MPMI.2004.17.10.1078 10.3389/fmicb.2020.569366 10.1071/PP01093 10.1007/s00284-013-0508-1 10.1007/BF00016484 10.1016/0167-7799(89)90057-7 10.3390/microorganisms8030382 10.1016/j.resmic.2012.05.002 10.1007/978-981-10-6241-4_8 10.1111/j.1365-3040.2007.01712.x 10.1371/journal.pone.0063666 10.1038/nature16461 10.1007/s13199-019-00611-9 10.1371/journal.pcbi.0010055 10.1080/01904160801894970 10.1146/annurev.arplant.47.1.569 10.1016/B978-0-12-675405-6.50010-3 10.1093/jxb/eru320 10.1046/j.1469-8137.2003.00883.x 10.1007/s11738-021-03235-z 10.1073/pnas.1211238109 10.1016/S0734-9750(97)00004-9 10.1042/BST20180342 10.4161/psb.18957 10.1186/gb-2009-10-5-r51 10.1146/annurev.pp.40.060189.002023 10.1016/j.tplants.2020.11.009 10.1007/978-94-011-0053-3_9 10.1023/A:1016249704336 10.1007/s11104-008-9833-8 10.1007/s00203-008-0354-x 10.1094/MPMI-07-10-0148 10.1139/m95-015 10.3390/foods11152301 10.1016/j.jbiotec.2017.05.012 10.1105/tpc.007120 10.1093/jxb/erw502 10.1016/B978-0-12-386489-5.00003-8 10.3390/su3091452 10.1146/annurev.micro.62.081307.162737 10.1128/AEM.02103-19 10.1038/ngeo325 10.1016/j.micres.2013.09.009 10.1016/S0261-2194(00)00056-9 10.1104/pp.105.075721 10.3389/fpls.2017.00348 10.1038/s41579-020-0412-1 10.1007/s00299-018-2275-8 10.3390/foods11142098 10.1016/j.scitotenv.2018.06.215 10.1016/0038-0717(94)90117-1 10.1016/S0014-5793(01)02096-8 10.1039/C9EE02873K 10.1073/pnas.0801093105 10.1038/s41598-017-08016-8 10.1128/JB.187.2.405-414.2005 10.1071/PP01028 10.1080/17429145.2011.597002 10.1016/S0005-2736(00)00136-X 10.1016/0014-5793(77)80337-2 |
ContentType | Journal Article |
Copyright | Copyright American Phytopathological Society Sep 2023 |
Copyright_xml | – notice: Copyright American Phytopathological Society Sep 2023 |
DBID | AAYXX CITATION NPM K9. 7X8 7S9 L.6 DOA |
DOI | 10.1094/MPMI-10-22-0223-CR |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1943-7706 |
EndPage | 548 |
ExternalDocumentID | oai_doaj_org_article_e073ceeb9f124decb6f7082c3d4e9340 36989040 10_1094_MPMI_10_22_0223_CR |
Genre | Journal Article |
GroupedDBID | --- 123 29M 2WC 53G 7X2 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAYJJ AAYXX ABDNZ ABRJW ABUWG ACGFO ACPRK ACYGS ADBBV AENEX AEUYN AFKRA AFRAH ALIPV ALMA_UNASSIGNED_HOLDINGS ATCPS BAWUL BBNVY BENPR BES BHPHI BPHCQ BVXVI C1A CCPQU CITATION CS3 D1J DIK DU5 E3Z EBS EJD F5P FRP FYUFA GROUPED_DOAJ HCIFZ HMCUK HYO LK8 M0K M1P M7P MVM OK1 P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPS S0X TR2 UKHRP ~KM NPM YCJ K9. 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c474t-9e8b0a2fc3e81b12ff763e6ae8af3e94e3134351670ac80642e2803fd05ccf153 |
IEDL.DBID | DOA |
ISSN | 0894-0282 1943-7706 |
IngestDate | Wed Aug 27 01:29:58 EDT 2025 Fri Jul 11 01:05:57 EDT 2025 Fri Jul 11 15:39:55 EDT 2025 Mon Jun 30 09:00:30 EDT 2025 Thu Jan 02 22:52:41 EST 2025 Tue Jul 01 00:38:55 EDT 2025 Thu Apr 24 23:12:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-9e8b0a2fc3e81b12ff763e6ae8af3e94e3134351670ac80642e2803fd05ccf153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1077-6588 0000-0002-8383-5876 0000-0003-0369-8777 0000-0002-0566-2009 0000-0001-7843-0957 0000-0002-0335-2242 0000-0001-9022-4515 0000-0002-6482-2615 |
OpenAccessLink | https://doaj.org/article/e073ceeb9f124decb6f7082c3d4e9340 |
PMID | 36989040 |
PQID | 2902024034 |
PQPubID | 37269 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e073ceeb9f124decb6f7082c3d4e9340 proquest_miscellaneous_2942099593 proquest_miscellaneous_2792501168 proquest_journals_2902024034 pubmed_primary_36989040 crossref_citationtrail_10_1094_MPMI_10_22_0223_CR crossref_primary_10_1094_MPMI_10_22_0223_CR |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: St. Paul |
PublicationSubtitle | MPMI |
PublicationTitle | Molecular plant-microbe interactions |
PublicationTitleAlternate | Mol Plant Microbe Interact |
PublicationYear | 2023 |
Publisher | American Phytopathological Society The American Phytopathological Society |
Publisher_xml | – name: American Phytopathological Society – name: The American Phytopathological Society |
References | Bock E. (b6) 2001 b10 b98 b97 b12 b11 b99 b14 b13 b16 Saharan B. (b78) 2011; 21 b15 b18 b19 Prusiner S. (b66) 1973 b1 b2 b3 b4 b5 b7 b8 b9 b21 b20 b23 b22 b25 b24 b27 b26 b29 b28 b30 b32 b31 b34 b33 b36 b35 b38 Etesami H. (b17) 2020 b37 b39 b41 b40 b43 b42 b45 b100 b44 b47 b46 b49 b48 Podile A. R. (b63) 2007 Stajkovic O. (b92) 2011; 16 b109 b106 b105 b108 b107 b50 b102 b101 b52 b104 b51 b103 b54 b56 b58 b57 b59 Mirza M. S. (b53) 2000 b61 b60 b62 b65 b64 b67 b69 b68 b70 b72 b71 b74 b73 b76 b75 b77 b79 b81 b80 b83 b82 b85 b84 b87 b86 b89 b88 Mustafa S. E. (b55) 2022 b90 b91 b94 b93 b96 b95 |
References_xml | – ident: b70 doi: 10.1093/molbev/msh047 – ident: b68 doi: 10.1093/jxb/ert458 – ident: b99 doi: 10.1023/A:1026037216893 – ident: b1 doi: 10.1051/agro/2009041 – ident: b10 doi: 10.1371/journal.pone.0250574 – ident: b106 doi: 10.1038/s41598-018-29204-0 – ident: b109 doi: 10.1046/j.1365-313X.1999.00396.x – ident: b45 doi: 10.1046/j.1365-313X.1999.00480.x – ident: b49 doi: 10.1007/s00425-005-0106-y – start-page: 457 volume-title: The Prokaryotes: A Handbook on the Biology of Bacteria year: 2001 ident: b6 – ident: b69 doi: 10.1126/science.1176985 – ident: b14 doi: 10.2307/3870059 – ident: b29 doi: 10.1142/p130 – ident: b9 doi: 10.1104/pp.127.1.262 – ident: b60 doi: 10.1016/S0038-0717(00)00209-1 – ident: b19 doi: 10.1111/1462-2920.13376 – ident: b57 doi: 10.1104/pp.105.074385 – ident: b103 doi: 10.3389/fpls.2017.02242 – ident: b74 doi: 10.1007/s40011-017-0946-9 – ident: b97 doi: 10.1104/pp.68.3.750 – ident: b107 doi: 10.1038/s41477-021-00897-y – ident: b56 doi: 10.1080/07352689.2010.524518 – ident: b25 doi: 10.3389/fpls.2014.00443 – start-page: 195 volume-title: Plant-Associated Bacteria year: 2007 ident: b63 – ident: b3 doi: 10.1111/ppl.12872 – ident: b46 doi: 10.1104/pp.106.091223 – ident: b104 doi: 10.1186/1471-2164-11-11 – ident: b52 doi: 10.1007/s00374-006-0074-9 – ident: b44 doi: 10.1371/journal.pone.0132837 – ident: b40 doi: 10.1016/j.scitotenv.2021.145483 – ident: b102 doi: 10.1093/aob/mcl099 – ident: b23 doi: 10.1016/j.molp.2017.10.001 – ident: b88 doi: 10.1128/AEM.02894-06 – ident: b94 doi: 10.1016/bs.ampbs.2016.02.007 – ident: b79 doi: 10.1023/A:1013388619231 – ident: b15 doi: 10.1007/s11738-009-0297-0 – ident: b54 doi: 10.3390/plants10040681 – ident: b84 doi: 10.1016/0031-9422(88)84071-8 – ident: b98 doi: 10.1371/journal.pone.0105837 – ident: b42 doi: 10.1099/ijs.0.02326-0 – ident: b38 doi: 10.1016/j.syapm.2018.10.010 – ident: b59 doi: 10.1104/pp.106.085209 – ident: b34 doi: 10.1094/MPMI.2004.17.10.1078 – ident: b36 doi: 10.3389/fmicb.2020.569366 – volume: 16 start-page: 5919 year: 2011 ident: b92 publication-title: Rom. Biotech. Lett. – ident: b72 doi: 10.1071/PP01093 – ident: b93 doi: 10.1007/s00284-013-0508-1 – ident: b39 doi: 10.1007/BF00016484 – ident: b41 doi: 10.1016/0167-7799(89)90057-7 – ident: b37 doi: 10.3390/microorganisms8030382 – ident: b108 doi: 10.1016/j.resmic.2012.05.002 – start-page: 100229 volume-title: Rhizosphere year: 2020 ident: b17 – ident: b62 doi: 10.1007/978-981-10-6241-4_8 – ident: b24 doi: 10.1111/j.1365-3040.2007.01712.x – ident: b2 – ident: b82 doi: 10.1371/journal.pone.0063666 – ident: b12 doi: 10.1038/nature16461 – start-page: 191 year: 2000 ident: b53 publication-title: The Quest for Nitrogen Fixation in Rice – ident: b81 doi: 10.1007/s13199-019-00611-9 – ident: b73 doi: 10.1371/journal.pcbi.0010055 – ident: b50 doi: 10.1080/01904160801894970 – ident: b43 doi: 10.1146/annurev.arplant.47.1.569 – ident: b51 doi: 10.1016/B978-0-12-675405-6.50010-3 – ident: b65 doi: 10.1093/jxb/eru320 – volume-title: The Enzymes of Glutamine Metabolism year: 1973 ident: b66 – ident: b77 doi: 10.1046/j.1469-8137.2003.00883.x – ident: b5 doi: 10.1007/s11738-021-03235-z – ident: b80 doi: 10.1073/pnas.1211238109 – ident: b28 doi: 10.1016/S0734-9750(97)00004-9 – ident: b8 doi: 10.1042/BST20180342 – ident: b91 doi: 10.4161/psb.18957 – ident: b85 doi: 10.1186/gb-2009-10-5-r51 – ident: b30 doi: 10.1146/annurev.pp.40.060189.002023 – ident: b22 doi: 10.1016/j.tplants.2020.11.009 – ident: b7 doi: 10.1007/978-94-011-0053-3_9 – ident: b58 doi: 10.1023/A:1016249704336 – ident: b20 doi: 10.1007/s11104-008-9833-8 – ident: b31 doi: 10.1007/s00203-008-0354-x – ident: b11 doi: 10.1094/MPMI-07-10-0148 – ident: b26 doi: 10.1139/m95-015 – ident: b4 doi: 10.3390/foods11152301 – ident: b48 doi: 10.1016/j.jbiotec.2017.05.012 – ident: b47 doi: 10.1105/tpc.007120 – ident: b64 doi: 10.1093/jxb/erw502 – ident: b89 doi: 10.1016/B978-0-12-386489-5.00003-8 – ident: b32 doi: 10.3390/su3091452 – ident: b76 doi: 10.1146/annurev.micro.62.081307.162737 – ident: b86 doi: 10.1128/AEM.02103-19 – ident: b16 doi: 10.1038/ngeo325 – ident: b27 doi: 10.1016/j.micres.2013.09.009 – ident: b67 doi: 10.1016/S0261-2194(00)00056-9 – ident: b71 doi: 10.1104/pp.105.075721 – ident: b83 doi: 10.3389/fpls.2017.00348 – ident: b96 doi: 10.1038/s41579-020-0412-1 – ident: b95 doi: 10.1007/s00299-018-2275-8 – volume: 21 start-page: 1 year: 2011 ident: b78 publication-title: Life Sci. Med. Res – ident: b35 doi: 10.3390/foods11142098 – ident: b61 doi: 10.1016/j.scitotenv.2018.06.215 – ident: b100 doi: 10.1016/0038-0717(94)90117-1 – ident: b18 doi: 10.1016/S0014-5793(01)02096-8 – volume-title: High Level Panel of Experts on Food Security and Nutrition year: 2022 ident: b55 – ident: b87 doi: 10.1039/C9EE02873K – ident: b105 doi: 10.1073/pnas.0801093105 – ident: b101 doi: 10.1038/s41598-017-08016-8 – ident: b75 doi: 10.1128/JB.187.2.405-414.2005 – ident: b13 doi: 10.1071/PP01028 – ident: b21 doi: 10.1080/17429145.2011.597002 – ident: b33 doi: 10.1016/S0005-2736(00)00136-X – ident: b90 doi: 10.1016/0014-5793(77)80337-2 |
SSID | ssj0019655 |
Score | 2.4843798 |
Snippet | Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 536 |
SubjectTerms | air Ammonification Azotobacter Azotobacter vinelandii biological nitrogen fixation Climatic conditions denitrification Gene transfer Geographical locations growth promotion horizontal gene transfer Horizontal transfer Klebsiella Klebsiella pneumoniae Metabolites metabolome molecular mechanism Molecular modelling N-fixation Nitrogen nitrogen content Nitrogen fixation Nitrogenation phenotype Phenotypes Plant growth plant growth–promoting bacteria plant nitrogen content proteome Proteomes Pseudomonas Pseudomonas stutzeri secondary metabolites soil Soil bacteria Soil microorganisms Soils transcriptome Transcriptomes |
Title | Molecular Mechanisms of Pseudomonas -Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36989040 https://www.proquest.com/docview/2902024034 https://www.proquest.com/docview/2792501168 https://www.proquest.com/docview/2942099593 https://doaj.org/article/e073ceeb9f124decb6f7082c3d4e9340 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQ4IChfoQUZiRuyGseOE3MrK6qClFJVrNRb5NhjqArJapM99N8zk2RX5UC5cEziKE5mPPNGzrzH2DslYxHSMgpjdBA6WCnKJtUiGJdb6RrfeGpOrs7M6VJ_ucwvb0l90T9hEz3w9OGOAH0QA3ljI2aiAL4xscC05VXQYJUeq3XMedtiat4_sGbUO01LIr7FqmJul8Fa5qg6rz5T8MEiDPOXEouLP1LSyNz_d7g5pp2Tx-zRjBf58TTPJ-wetPvs4fH39cyZAfvs_qQnefOU_ai2Yre8Amrpvep_9byL_LyHTejQ41wv0CBk2sBJr2jgZ1fDukMv4svV4K7hA_-6Iki-aUeqVY6Ylk96afzWQ5-x5cmnb4tTMUspCK8LPQgLaAGXRa8AcarMYsS4AsZB6aICq0FJhcBJmiJ1vqSiBEi2KoY09z5iVHzO9tquhZeMm5AWVuYQEHto6oHKdKPTpsiNkx7hRsLk9mvWfuYZJ7mLn_W0361rsgAdZFlNFqgXFwl7v7tnNbFs3Dn6IxlpN5IYsscT6Df17Df1v_wmYYdbE9fzsu3rzCJ6JoZCnbC3u8u44GgXxbXQbXBMYRE2SmnKO8ZYTS3JuVUJezG5z262iiQ7MXS--h9vccAe4ITV9NPbIdsb1ht4jShpaN6MC-I3s1cMxw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Mechanisms+of+Pseudomonas-Assisted+Plant+Nitrogen+Uptake%3A+Opportunities+for+Modern+Agriculture&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Stefan+Sanow&rft.au=Weiqi+Kuang&rft.au=Gabriel+Schaaf&rft.au=Pitter+Huesgen&rft.date=2023-09-01&rft.pub=The+American+Phytopathological+Society&rft.issn=0894-0282&rft.eissn=1943-7706&rft.volume=36&rft.issue=9&rft.spage=536&rft.epage=548&rft_id=info:doi/10.1094%2FMPMI-10-22-0223-CR&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e073ceeb9f124decb6f7082c3d4e9340 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon |