Molecular Mechanisms of Pseudomonas -Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture

Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pse...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 36; no. 9; pp. 536 - 548
Main Authors Sanow, Stefan, Kuang, Weiqi, Schaaf, Gabriel, Huesgen, Pitter, Schurr, Ulrich, Roessner, Ute, Watt, Michelle, Arsova, Borjana
Format Journal Article
LanguageEnglish
Published United States American Phytopathological Society 01.09.2023
The American Phytopathological Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
AbstractList Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Graphic: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT and Pseudomonas sp. K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which in turn have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N), and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signalling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions, and differs at sufficient and deficient N. The molecular controls behind different plant response are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas driven nitrogen fixation and to point to possible agricultural solutions.
Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some beneficial to the plant. Several species in the family Pseudomonadaceae, including Azotobacter vinelandii AvOP, Pseudomonas stutzeri A1501, Pseudomonas stutzeri DSM4166, Pseudomonas szotifigens 6HT33bT, and Pseudomonas sp. strain K1 can fix nitrogen from the air. The genes required for these reactions are organized in a nitrogen fixation island, obtained via horizontal gene transfer from Klebsiella pneumoniae, Pseudomonas stutzeri, and Azotobacter vinelandii. Today, this island is conserved in Pseudomonas spp. from different geographical locations, which, in turn, have evolved to deal with different geo-climatic conditions. Here, we summarize the molecular mechanisms behind Pseudomonas-driven plant growth promotion, with particular focus on improving plant performance at limiting nitrogen (N) and improving plant N content. We describe Pseudomonas-plant interaction strategies in the soil, noting that the mechanisms of denitrification, ammonification, and secondary metabolite signaling are only marginally explored. Plant growth promotion is dependent on the abiotic conditions and differs at sufficient and deficient N. The molecular controls behind different plant responses are not fully elucidated. We suggest that superposition of transcriptome, proteome, and metabolome data and their integration with plant phenotype development through time will help fill these gaps. The aim of this review is to summarize the knowledge behind Pseudomonas-driven nitrogen fixation and to point to possible agricultural solutions.
Author Kuang, Weiqi
Arsova, Borjana
Schurr, Ulrich
Schaaf, Gabriel
Huesgen, Pitter
Watt, Michelle
Sanow, Stefan
Roessner, Ute
Author_xml – sequence: 1
  givenname: Stefan
  orcidid: 0000-0002-1077-6588
  surname: Sanow
  fullname: Sanow, Stefan
  organization: Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany, School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
– sequence: 2
  givenname: Weiqi
  orcidid: 0000-0002-8383-5876
  surname: Kuang
  fullname: Kuang, Weiqi
  organization: College of life and Environmental Sciences, Hunan University of Arts and Science, China
– sequence: 3
  givenname: Gabriel
  orcidid: 0000-0001-9022-4515
  surname: Schaaf
  fullname: Schaaf, Gabriel
  organization: Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
– sequence: 4
  givenname: Pitter
  orcidid: 0000-0002-0335-2242
  surname: Huesgen
  fullname: Huesgen, Pitter
  organization: Central institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Juelich GmbH, Germany
– sequence: 5
  givenname: Ulrich
  orcidid: 0000-0003-0369-8777
  surname: Schurr
  fullname: Schurr, Ulrich
  organization: Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
– sequence: 6
  givenname: Ute
  orcidid: 0000-0002-6482-2615
  surname: Roessner
  fullname: Roessner, Ute
  organization: Research School of Biology, The Australian National University, Acton, 2601 Australian Capital Territory, Australia
– sequence: 7
  givenname: Michelle
  orcidid: 0000-0001-7843-0957
  surname: Watt
  fullname: Watt, Michelle
  organization: School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, 3010 Victoria, Australia
– sequence: 8
  givenname: Borjana
  orcidid: 0000-0002-0566-2009
  surname: Arsova
  fullname: Arsova, Borjana
  organization: Institute for Bio- and Geosciences, Plant Sciences (IBG-2), Forschungszentrum Juelich GmbH, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36989040$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPCH-CAVuLCZWH8sbs2tygqbaSGRhU9W453HBw262B7D_x7HNJy6AFOlu3nfUYezwU5G8OIhLyl8JGCEp9W69WyplAzVgNjvF7cvyAzqgSvuw7aMzIDqUS5kuycXKS0A6CqbZpX5Jy3SioQMCN-FQa002BitUL73Yw-7VMVXLVOOPVhH0aTqnqekk8Z-2o9mDFXX32OYYtj9XDI5gd-ru4OhxDzNPrsMVUuFFnoMY7VfBt9secp4mvy0pkh4ZvH9ZI8fLn6tripb--ul4v5bW1FJ3KtUG7AMGc5SrqhzLmu5dgalMZxVAI55YI3tO3AWAmtYMgkcNdDY62jDb8ky5O3D2anD9HvTfylg_H6z0GIW21i9nZAjdBxi7hRjjLRo920rgPJLO8FKi6guD6cXIcYfk6Yst77ZHEoXcAwJc2UYKBUo_j_0U6xBihtZUHfP0N3YYpjaUoRAgNWKotCvXukps0e-78vefq7AsgTYGNIKaLT1meTfRhzNH7QFPRxTPRxTI4bxvRxTPTivkTZs-iT_R-h3-eIv60
CitedBy_id crossref_primary_10_1038_s41598_024_59055_x
crossref_primary_10_1016_j_ijhydene_2025_01_088
crossref_primary_10_1007_s13199_024_00978_4
crossref_primary_10_1016_j_jia_2024_11_007
crossref_primary_10_3390_jof10060398
crossref_primary_10_3390_ijms242216128
crossref_primary_10_1051_bioconf_202414301001
Cites_doi 10.1093/molbev/msh047
10.1093/jxb/ert458
10.1023/A:1026037216893
10.1051/agro/2009041
10.1371/journal.pone.0250574
10.1038/s41598-018-29204-0
10.1046/j.1365-313X.1999.00396.x
10.1046/j.1365-313X.1999.00480.x
10.1007/s00425-005-0106-y
10.1126/science.1176985
10.2307/3870059
10.1142/p130
10.1104/pp.127.1.262
10.1016/S0038-0717(00)00209-1
10.1111/1462-2920.13376
10.1104/pp.105.074385
10.3389/fpls.2017.02242
10.1007/s40011-017-0946-9
10.1104/pp.68.3.750
10.1038/s41477-021-00897-y
10.1080/07352689.2010.524518
10.3389/fpls.2014.00443
10.1111/ppl.12872
10.1104/pp.106.091223
10.1186/1471-2164-11-11
10.1007/s00374-006-0074-9
10.1371/journal.pone.0132837
10.1016/j.scitotenv.2021.145483
10.1093/aob/mcl099
10.1016/j.molp.2017.10.001
10.1128/AEM.02894-06
10.1016/bs.ampbs.2016.02.007
10.1023/A:1013388619231
10.1007/s11738-009-0297-0
10.3390/plants10040681
10.1016/0031-9422(88)84071-8
10.1371/journal.pone.0105837
10.1099/ijs.0.02326-0
10.1016/j.syapm.2018.10.010
10.1104/pp.106.085209
10.1094/MPMI.2004.17.10.1078
10.3389/fmicb.2020.569366
10.1071/PP01093
10.1007/s00284-013-0508-1
10.1007/BF00016484
10.1016/0167-7799(89)90057-7
10.3390/microorganisms8030382
10.1016/j.resmic.2012.05.002
10.1007/978-981-10-6241-4_8
10.1111/j.1365-3040.2007.01712.x
10.1371/journal.pone.0063666
10.1038/nature16461
10.1007/s13199-019-00611-9
10.1371/journal.pcbi.0010055
10.1080/01904160801894970
10.1146/annurev.arplant.47.1.569
10.1016/B978-0-12-675405-6.50010-3
10.1093/jxb/eru320
10.1046/j.1469-8137.2003.00883.x
10.1007/s11738-021-03235-z
10.1073/pnas.1211238109
10.1016/S0734-9750(97)00004-9
10.1042/BST20180342
10.4161/psb.18957
10.1186/gb-2009-10-5-r51
10.1146/annurev.pp.40.060189.002023
10.1016/j.tplants.2020.11.009
10.1007/978-94-011-0053-3_9
10.1023/A:1016249704336
10.1007/s11104-008-9833-8
10.1007/s00203-008-0354-x
10.1094/MPMI-07-10-0148
10.1139/m95-015
10.3390/foods11152301
10.1016/j.jbiotec.2017.05.012
10.1105/tpc.007120
10.1093/jxb/erw502
10.1016/B978-0-12-386489-5.00003-8
10.3390/su3091452
10.1146/annurev.micro.62.081307.162737
10.1128/AEM.02103-19
10.1038/ngeo325
10.1016/j.micres.2013.09.009
10.1016/S0261-2194(00)00056-9
10.1104/pp.105.075721
10.3389/fpls.2017.00348
10.1038/s41579-020-0412-1
10.1007/s00299-018-2275-8
10.3390/foods11142098
10.1016/j.scitotenv.2018.06.215
10.1016/0038-0717(94)90117-1
10.1016/S0014-5793(01)02096-8
10.1039/C9EE02873K
10.1073/pnas.0801093105
10.1038/s41598-017-08016-8
10.1128/JB.187.2.405-414.2005
10.1071/PP01028
10.1080/17429145.2011.597002
10.1016/S0005-2736(00)00136-X
10.1016/0014-5793(77)80337-2
ContentType Journal Article
Copyright Copyright American Phytopathological Society Sep 2023
Copyright_xml – notice: Copyright American Phytopathological Society Sep 2023
DBID AAYXX
CITATION
NPM
K9.
7X8
7S9
L.6
DOA
DOI 10.1094/MPMI-10-22-0223-CR
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 548
ExternalDocumentID oai_doaj_org_article_e073ceeb9f124decb6f7082c3d4e9340
36989040
10_1094_MPMI_10_22_0223_CR
Genre Journal Article
GroupedDBID ---
123
29M
2WC
53G
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
AAYXX
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M1P
M7P
MVM
OK1
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
~KM
NPM
YCJ
K9.
7X8
7S9
L.6
ID FETCH-LOGICAL-c474t-9e8b0a2fc3e81b12ff763e6ae8af3e94e3134351670ac80642e2803fd05ccf153
IEDL.DBID DOA
ISSN 0894-0282
1943-7706
IngestDate Wed Aug 27 01:29:58 EDT 2025
Fri Jul 11 01:05:57 EDT 2025
Fri Jul 11 15:39:55 EDT 2025
Mon Jun 30 09:00:30 EDT 2025
Thu Jan 02 22:52:41 EST 2025
Tue Jul 01 00:38:55 EDT 2025
Thu Apr 24 23:12:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-9e8b0a2fc3e81b12ff763e6ae8af3e94e3134351670ac80642e2803fd05ccf153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1077-6588
0000-0002-8383-5876
0000-0003-0369-8777
0000-0002-0566-2009
0000-0001-7843-0957
0000-0002-0335-2242
0000-0001-9022-4515
0000-0002-6482-2615
OpenAccessLink https://doaj.org/article/e073ceeb9f124decb6f7082c3d4e9340
PMID 36989040
PQID 2902024034
PQPubID 37269
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_e073ceeb9f124decb6f7082c3d4e9340
proquest_miscellaneous_2942099593
proquest_miscellaneous_2792501168
proquest_journals_2902024034
pubmed_primary_36989040
crossref_citationtrail_10_1094_MPMI_10_22_0223_CR
crossref_primary_10_1094_MPMI_10_22_0223_CR
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: St. Paul
PublicationSubtitle MPMI
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2023
Publisher American Phytopathological Society
The American Phytopathological Society
Publisher_xml – name: American Phytopathological Society
– name: The American Phytopathological Society
References Bock E. (b6) 2001
b10
b98
b97
b12
b11
b99
b14
b13
b16
Saharan B. (b78) 2011; 21
b15
b18
b19
Prusiner S. (b66) 1973
b1
b2
b3
b4
b5
b7
b8
b9
b21
b20
b23
b22
b25
b24
b27
b26
b29
b28
b30
b32
b31
b34
b33
b36
b35
b38
Etesami H. (b17) 2020
b37
b39
b41
b40
b43
b42
b45
b100
b44
b47
b46
b49
b48
Podile A. R. (b63) 2007
Stajkovic O. (b92) 2011; 16
b109
b106
b105
b108
b107
b50
b102
b101
b52
b104
b51
b103
b54
b56
b58
b57
b59
Mirza M. S. (b53) 2000
b61
b60
b62
b65
b64
b67
b69
b68
b70
b72
b71
b74
b73
b76
b75
b77
b79
b81
b80
b83
b82
b85
b84
b87
b86
b89
b88
Mustafa S. E. (b55) 2022
b90
b91
b94
b93
b96
b95
References_xml – ident: b70
  doi: 10.1093/molbev/msh047
– ident: b68
  doi: 10.1093/jxb/ert458
– ident: b99
  doi: 10.1023/A:1026037216893
– ident: b1
  doi: 10.1051/agro/2009041
– ident: b10
  doi: 10.1371/journal.pone.0250574
– ident: b106
  doi: 10.1038/s41598-018-29204-0
– ident: b109
  doi: 10.1046/j.1365-313X.1999.00396.x
– ident: b45
  doi: 10.1046/j.1365-313X.1999.00480.x
– ident: b49
  doi: 10.1007/s00425-005-0106-y
– start-page: 457
  volume-title: The Prokaryotes: A Handbook on the Biology of Bacteria
  year: 2001
  ident: b6
– ident: b69
  doi: 10.1126/science.1176985
– ident: b14
  doi: 10.2307/3870059
– ident: b29
  doi: 10.1142/p130
– ident: b9
  doi: 10.1104/pp.127.1.262
– ident: b60
  doi: 10.1016/S0038-0717(00)00209-1
– ident: b19
  doi: 10.1111/1462-2920.13376
– ident: b57
  doi: 10.1104/pp.105.074385
– ident: b103
  doi: 10.3389/fpls.2017.02242
– ident: b74
  doi: 10.1007/s40011-017-0946-9
– ident: b97
  doi: 10.1104/pp.68.3.750
– ident: b107
  doi: 10.1038/s41477-021-00897-y
– ident: b56
  doi: 10.1080/07352689.2010.524518
– ident: b25
  doi: 10.3389/fpls.2014.00443
– start-page: 195
  volume-title: Plant-Associated Bacteria
  year: 2007
  ident: b63
– ident: b3
  doi: 10.1111/ppl.12872
– ident: b46
  doi: 10.1104/pp.106.091223
– ident: b104
  doi: 10.1186/1471-2164-11-11
– ident: b52
  doi: 10.1007/s00374-006-0074-9
– ident: b44
  doi: 10.1371/journal.pone.0132837
– ident: b40
  doi: 10.1016/j.scitotenv.2021.145483
– ident: b102
  doi: 10.1093/aob/mcl099
– ident: b23
  doi: 10.1016/j.molp.2017.10.001
– ident: b88
  doi: 10.1128/AEM.02894-06
– ident: b94
  doi: 10.1016/bs.ampbs.2016.02.007
– ident: b79
  doi: 10.1023/A:1013388619231
– ident: b15
  doi: 10.1007/s11738-009-0297-0
– ident: b54
  doi: 10.3390/plants10040681
– ident: b84
  doi: 10.1016/0031-9422(88)84071-8
– ident: b98
  doi: 10.1371/journal.pone.0105837
– ident: b42
  doi: 10.1099/ijs.0.02326-0
– ident: b38
  doi: 10.1016/j.syapm.2018.10.010
– ident: b59
  doi: 10.1104/pp.106.085209
– ident: b34
  doi: 10.1094/MPMI.2004.17.10.1078
– ident: b36
  doi: 10.3389/fmicb.2020.569366
– volume: 16
  start-page: 5919
  year: 2011
  ident: b92
  publication-title: Rom. Biotech. Lett.
– ident: b72
  doi: 10.1071/PP01093
– ident: b93
  doi: 10.1007/s00284-013-0508-1
– ident: b39
  doi: 10.1007/BF00016484
– ident: b41
  doi: 10.1016/0167-7799(89)90057-7
– ident: b37
  doi: 10.3390/microorganisms8030382
– ident: b108
  doi: 10.1016/j.resmic.2012.05.002
– start-page: 100229
  volume-title: Rhizosphere
  year: 2020
  ident: b17
– ident: b62
  doi: 10.1007/978-981-10-6241-4_8
– ident: b24
  doi: 10.1111/j.1365-3040.2007.01712.x
– ident: b2
– ident: b82
  doi: 10.1371/journal.pone.0063666
– ident: b12
  doi: 10.1038/nature16461
– start-page: 191
  year: 2000
  ident: b53
  publication-title: The Quest for Nitrogen Fixation in Rice
– ident: b81
  doi: 10.1007/s13199-019-00611-9
– ident: b73
  doi: 10.1371/journal.pcbi.0010055
– ident: b50
  doi: 10.1080/01904160801894970
– ident: b43
  doi: 10.1146/annurev.arplant.47.1.569
– ident: b51
  doi: 10.1016/B978-0-12-675405-6.50010-3
– ident: b65
  doi: 10.1093/jxb/eru320
– volume-title: The Enzymes of Glutamine Metabolism
  year: 1973
  ident: b66
– ident: b77
  doi: 10.1046/j.1469-8137.2003.00883.x
– ident: b5
  doi: 10.1007/s11738-021-03235-z
– ident: b80
  doi: 10.1073/pnas.1211238109
– ident: b28
  doi: 10.1016/S0734-9750(97)00004-9
– ident: b8
  doi: 10.1042/BST20180342
– ident: b91
  doi: 10.4161/psb.18957
– ident: b85
  doi: 10.1186/gb-2009-10-5-r51
– ident: b30
  doi: 10.1146/annurev.pp.40.060189.002023
– ident: b22
  doi: 10.1016/j.tplants.2020.11.009
– ident: b7
  doi: 10.1007/978-94-011-0053-3_9
– ident: b58
  doi: 10.1023/A:1016249704336
– ident: b20
  doi: 10.1007/s11104-008-9833-8
– ident: b31
  doi: 10.1007/s00203-008-0354-x
– ident: b11
  doi: 10.1094/MPMI-07-10-0148
– ident: b26
  doi: 10.1139/m95-015
– ident: b4
  doi: 10.3390/foods11152301
– ident: b48
  doi: 10.1016/j.jbiotec.2017.05.012
– ident: b47
  doi: 10.1105/tpc.007120
– ident: b64
  doi: 10.1093/jxb/erw502
– ident: b89
  doi: 10.1016/B978-0-12-386489-5.00003-8
– ident: b32
  doi: 10.3390/su3091452
– ident: b76
  doi: 10.1146/annurev.micro.62.081307.162737
– ident: b86
  doi: 10.1128/AEM.02103-19
– ident: b16
  doi: 10.1038/ngeo325
– ident: b27
  doi: 10.1016/j.micres.2013.09.009
– ident: b67
  doi: 10.1016/S0261-2194(00)00056-9
– ident: b71
  doi: 10.1104/pp.105.075721
– ident: b83
  doi: 10.3389/fpls.2017.00348
– ident: b96
  doi: 10.1038/s41579-020-0412-1
– ident: b95
  doi: 10.1007/s00299-018-2275-8
– volume: 21
  start-page: 1
  year: 2011
  ident: b78
  publication-title: Life Sci. Med. Res
– ident: b35
  doi: 10.3390/foods11142098
– ident: b61
  doi: 10.1016/j.scitotenv.2018.06.215
– ident: b100
  doi: 10.1016/0038-0717(94)90117-1
– ident: b18
  doi: 10.1016/S0014-5793(01)02096-8
– volume-title: High Level Panel of Experts on Food Security and Nutrition
  year: 2022
  ident: b55
– ident: b87
  doi: 10.1039/C9EE02873K
– ident: b105
  doi: 10.1073/pnas.0801093105
– ident: b101
  doi: 10.1038/s41598-017-08016-8
– ident: b75
  doi: 10.1128/JB.187.2.405-414.2005
– ident: b13
  doi: 10.1071/PP01028
– ident: b21
  doi: 10.1080/17429145.2011.597002
– ident: b33
  doi: 10.1016/S0005-2736(00)00136-X
– ident: b90
  doi: 10.1016/0014-5793(77)80337-2
SSID ssj0019655
Score 2.4843798
Snippet Pseudomonas spp. make up 1.6% of the bacteria in the soil and are found throughout the world. More than 140 species of this genus have been identified, some...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 536
SubjectTerms air
Ammonification
Azotobacter
Azotobacter vinelandii
biological nitrogen fixation
Climatic conditions
denitrification
Gene transfer
Geographical locations
growth promotion
horizontal gene transfer
Horizontal transfer
Klebsiella
Klebsiella pneumoniae
Metabolites
metabolome
molecular mechanism
Molecular modelling
N-fixation
Nitrogen
nitrogen content
Nitrogen fixation
Nitrogenation
phenotype
Phenotypes
Plant growth
plant growth–promoting bacteria
plant nitrogen content
proteome
Proteomes
Pseudomonas
Pseudomonas stutzeri
secondary metabolites
soil
Soil bacteria
Soil microorganisms
Soils
transcriptome
Transcriptomes
Title Molecular Mechanisms of Pseudomonas -Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture
URI https://www.ncbi.nlm.nih.gov/pubmed/36989040
https://www.proquest.com/docview/2902024034
https://www.proquest.com/docview/2792501168
https://www.proquest.com/docview/2942099593
https://doaj.org/article/e073ceeb9f124decb6f7082c3d4e9340
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQ4IChfoQUZiRuyGseOE3MrK6qClFJVrNRb5NhjqArJapM99N8zk2RX5UC5cEziKE5mPPNGzrzH2DslYxHSMgpjdBA6WCnKJtUiGJdb6RrfeGpOrs7M6VJ_ucwvb0l90T9hEz3w9OGOAH0QA3ljI2aiAL4xscC05VXQYJUeq3XMedtiat4_sGbUO01LIr7FqmJul8Fa5qg6rz5T8MEiDPOXEouLP1LSyNz_d7g5pp2Tx-zRjBf58TTPJ-wetPvs4fH39cyZAfvs_qQnefOU_ai2Yre8Amrpvep_9byL_LyHTejQ41wv0CBk2sBJr2jgZ1fDukMv4svV4K7hA_-6Iki-aUeqVY6Ylk96afzWQ5-x5cmnb4tTMUspCK8LPQgLaAGXRa8AcarMYsS4AsZB6aICq0FJhcBJmiJ1vqSiBEi2KoY09z5iVHzO9tquhZeMm5AWVuYQEHto6oHKdKPTpsiNkx7hRsLk9mvWfuYZJ7mLn_W0361rsgAdZFlNFqgXFwl7v7tnNbFs3Dn6IxlpN5IYsscT6Df17Df1v_wmYYdbE9fzsu3rzCJ6JoZCnbC3u8u44GgXxbXQbXBMYRE2SmnKO8ZYTS3JuVUJezG5z262iiQ7MXS--h9vccAe4ITV9NPbIdsb1ht4jShpaN6MC-I3s1cMxw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Mechanisms+of+Pseudomonas-Assisted+Plant+Nitrogen+Uptake%3A+Opportunities+for+Modern+Agriculture&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Stefan+Sanow&rft.au=Weiqi+Kuang&rft.au=Gabriel+Schaaf&rft.au=Pitter+Huesgen&rft.date=2023-09-01&rft.pub=The+American+Phytopathological+Society&rft.issn=0894-0282&rft.eissn=1943-7706&rft.volume=36&rft.issue=9&rft.spage=536&rft.epage=548&rft_id=info:doi/10.1094%2FMPMI-10-22-0223-CR&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e073ceeb9f124decb6f7082c3d4e9340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon